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Abstract

Concerns with CO2 emissions are creating incentives for the development and deploy-

ment of energy technologies that do not use fossil fuels. Indeed, such technologies would

provide tangible benefits in terms of avoided fossil-fuel costs, which are likely to increase as

∗The support of the British Council’s Researcher Exchange Programme is gratefully acknowledged. Fleten

acknowledges the Research Council of Norway through project 178374/S30 and recognises the Norwegian Centre

for Sustainable Energy Strategies (CenSES). Feedback from participants at the 2007 INFORMS Annual Meeting

in Seattle, WA, USA, the 2008 FIBE Conference in Bergen, Norway, the UKERC workshop on financial methods
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restrictions on CO2 emissions are imposed. However, there are a number of challenges that

need to be overcome, and the current costs of developing new alternative energy technolo-

gies would be too high to be handled privately. We analyse how a government may proceed

with a staged development of meeting electricity demand as fossil-fuel sources are being

phased out. A large-scale, new alternative technology is one possibility, where one would

start a major research and development programme as an intermediate step. Alternatively,

the government could choose to deploy an existing renewable energy technology, and using

the real options framework, we compare the two projects to provide policy implications on

how one might proceed.

JEL Classification Codes: D81, Q42

Keywords: Alternative energy technologies, CO2 emissions, environmental policy, real

options

1 Introduction

Global warming, the risk of fossil-fuel price increases, heavy-metal emissions from fossil-fuel use,

new technology such as passively safe plants, and energy security concerns have all renewed

interest in both nuclear power plants and renewable energy (RE) technologies. Combustion

of fossil fuels contributes to the concentration of CO2 in the atmosphere, thereby enhancing

the greenhouse effect [IPCC, 2007]. Since prices of fossil fuels do not fully reflect the societal

costs of the emissions they produce, government involvement in the energy sector is necessary

in order to correct such externalities. As fossil-fuel sources for electricity generation are being

phased out, new technologies are needed.

Currently undeveloped technologies that can serve as replacement for fossil-fuelled electricity
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generation include nuclear fusion, nuclear cycles based on thorium, and new generations of

fast/breeding nuclear reactors as well as RE technologies that can potentially harness the power

of waves or salt crystals. A common advantage of these technologies is that no greenhouse gases

are emitted as a result of the actual electricity generation process, and that once built, the direct

operating costs are low. The main nuclear fusion project is the International Thermonuclear

Experimental Reactor (ITER) [ITER, 2007], which is attempting to exploit the energy provided

by fusion of light atoms, and partners include the EU, Japan, China, India, Korea, Russia, and

the USA. This technology has a long way to go before commercialisation, e.g., the time scale

for technical development involves many decades.

Nuclear power based on thorium is another example. The advantages of this type of fuel

are that it is potentially safer, it can make weapons proliferation more difficult, and it produces

less long-lived waste than today’s traditional uranium reactors do. Furthermore, thorium is

much more abundant in nature than uranium is. These issues together make thorium cycles

a considerable long-term option. In terms of technical feasibility, several thorium fuel reactor

concepts have been studied since the 1960s. However, there is a wide range of unsolved technical

challenges connected to this type of fuel. Consequently, thorium-fuelled reactors exist only in

the planning stage. A final example we mention is breeder reactors, in which more fissile

material is produced than consumed. This may contribute to mitigating a potential future

shortage of uranium, a problem that has been foreseen since at least the 1970s. On the other

hand, such reactors are not economically competitive and require fuel reprocessing, which has

serious proliferation and radiotoxic waste concerns. In the words of Manne [1974], we are still

waiting for the breeder. Basically, more uranium has been available than foreseen, and current

and new reactors are getting more energy out of the fuel.
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Regarding safety, the risk of severe accidents, such as the ones at Three Mile Island and

Chernobyl, is much lower in new reactors. They are designed so that it is physically not possible

to induce an uncontrolled chain reaction in the core, i.e., they are “passively safe,” and this is

applicable to thorium- as well as uranium-fuelled plants. However, no technology is fool-proof,

and public acceptance of nuclear energy is still going to be an issue.

We abstract from most of the political and technical issues to take the view of a government

planner that needs to meet the demand for electricity and is looking promote the development

of a new power technology that is clean, cost-effective, long-term sustainable, and safe. Due

to economies of scale, there may also be a minimum capacity level necessary to develop a new

electricity source. For these reasons, we consider a situation in which the planner needs to choose

between allocating funds to deploying an existing RE technology, e.g., wind, or developing and

possibly deploying a large-scale alternative (LSA) technology, e.g., based on nuclear power (see

Gollier et al. [2005] and Rothwell [2006] for recent studies of investment in nuclear power plants).

Of course, there are other alternatives such as carbon capture and sequestration; however, this is

feasible only in limited locations and depends on continued use of non-renewable fossil sources.

The development of an LSA technology that avoids problems associated with CO2 emissions

restrictions, volatile fossil-fuel prices, and security of supply stemming from geopolitical risk

may benefit from a phased approach where a research and development (R&D) programme is

set up before actual deployment and building of power plants. Such an intermediate R&D phase

would have the effect of reducing the total operating cost associated with the LSA technology.

As there is considerable uncertainty affecting the technology deployment decisions, we take

a real options approach based on dynamic programming as outlined in Chapters 4–6 of Dixit

and Pindyck [1994]. In contrast to the traditional deterministic “now or never” discounted cash
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flow (DCF) analysis, the real options one allows for decision-making under uncertainty when

there exists managerial flexibility to invest, abandon, or modify a project. In particular, the real

options approach trades off in continuous time the marginal benefits and costs from delaying an

investment or operational decision. Here, the government planner has the option to defer the

release of funds and will do so until a certain electricity price threshold is reached, which is set to

maximise the option value of the opportunity. A recent paper uses the real options framework

to quantify the optimal level of US federal R&D funding for a RE technology under uncertain

fossil fuel prices and technical risk [Davis and Owens, 2003]. In the European context, a case

for government support for undeveloped energy technologies is made in Alfsen et al. [2009].

In this paper, we outline a strategy for developing a non-fossil, LSA technology through a

phased approach. We identify the factors affecting the tradeoff in choosing between an existing

RE technology and an undeveloped, but potentially more promising, LSA technology. We find

the value of an R&D programme to develop the LSA technology, where any R&D effort will

reduce its operating cost, along with long-term electricity price thresholds at which to begin

R&D and to deploy the LSA technology. Since the value of the LSA technology depends on

the present value (PV) of cost savings of its generation relative to the fossil-based long-term

electricity price, the option value of the investment is increasing in the electricity price. By

comparing the phased LSA R&D programme to a more direct one, we also extract the option

value of the intermediate R&D stage. Using the approach of Décamps et al. [2006], we then

consider the impact of the mutually exclusive opportunity to deploy an existing RE technology.

We find that the interaction of the two mutually exclusive projects increases the value of the

entire alternative energy portfolio while making the selection of any given technology less likely.

Within the field of energy economics, this technique has been applied to investment and
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sizing of renewable generation capacity and transmission lines, two types of investments that

are sensitive to market uncertainty and scale (see Fleten et al. [2007] and Siddiqui and Gupta

[2007], respectively). In the literature, Pindyck [1993] uses nuclear power plants as an example

to focus on uncertain costs in completing the project (an uncertainty that is resolved as one

proceeds with development) and input costs to launch a final project (an uncertainty that is

resolved solely by passage of time), whereas we consider operating costs of generating electricity,

which will be reduced once the R&D programme is initiated.

We do not consider the technical design process of the LSA in any detail except through

the reduction in its operating cost, which is a relatively aggregate description of technical

learning (see Majd and Pindyck [1989] for a real options model of learning through production).

Since modern-day designs must probably be empirically verified through laboratory and small-

scale testing of experimental reactors, development engineers may insist on an intermediate

R&D stage. In general, real options have been used to justify and value such R&D projects.

Early work such as Roberts and Weitzman [1981] (actually predating the term “real options”)

analyses an investment project where an R&D effort reduces the variability of the cash flows

of the project. Newton and Pearson [1994] uses the Black-Scholes formula to value R&D, and

Jensen and Warren [2001] considers research and development as two distinct phases in project

development. Recent work such as Malchow-Møller and Thorsen [2005] and Goetz and Yatsenko

[2008] has extended the real options analysis to many stages and with technology updating,

respectively.

The remainder of this paper is organised as follows:

• Section 2 states the assumptions and formulates the problem using the real options ap-

proach for various technology cases
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• Section 3 presents the results of the numerical examples

• Section 4 summarises the contribution of this work, discusses its limitations, and offers

directions for future research

2 Model and Assumptions

In formulating the government’s decision-making problem under uncertainty, we assume that

the long-term electricity price is exogenous to the model and, thus, unaffected by any technol-

ogy deployment decisions. This is justified by the fact that although the scale of the poten-

tial investment, i.e., 10 TWh,1 may be a sizeable fraction of a small country’s annual energy

consumption, it is, nevertheless, small compared to the worldwide consumption of energy. Fur-

thermore, we analyse a one-time investment opportunity, the effects of which are unlikely to

influence the long-term electricity price as it will have already anticipated the consequences of

such technology adoption.

We assume that the long-term, time-t electricity price at which society’s electricity needs

are met, Pt (in $/MWh), depends chiefly on fossil fuels and evolves according to a geometric

Brownian motion (GBM) process, i.e., dPt = αPtdt+σPtdzt, where α is the annualised growth

rate of Pt, σ is the annualised percentage volatility of Pt, and dzt is an increment to the Wiener

process.2 As an alternative to using fossil fuels, the government may meet a given portion of

1Assuming a 90% capacity factor, this corresponds to approximately 1250 MWe of power capacity.
2The difference between the long-term electricity price and the spot price is related to the fact that electricity

prices are affected by fluctuations in short-term supply and demand and in expectations regarding long-term

supply and demand. One can think of the long-term electricity price as the electricity price where short-term

deviations have been removed from the spot price, so that the only source of uncertainty in the long-term

electricity price is long-term uncertainty, related to changing expectations regarding future supply and demand.
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the annual electricity demand via either an existing low-emitting RE technology at constant

operating cost CE (in $/MWh) or an LSA technology at operating cost Ct (in $/MWh), which

evolves stochastically according to a GBM once the government starts an R&D programme, i.e.,

dCt = −λCtdt + σCCtdzC
t . Here, λ is the annualised rate of decrease in the LSA technology’s

operating cost, while σC denotes the level of technical risk associated with the R&D programme.

We assume that the LSA technology’s operating cost is uncorrelated with fluctuations in the

long-term electricity price.3 If the LSA technology is to be realised early, then there will be

increased safety and security costs, costs associated with gaining public acceptance, regulatory

costs, transportation and other logistics costs, and costs for highly skilled, i.e., PhD-level,

labour. For these reasons, we assume that C0 > CE , but that Ct∗ < CE for some t∗ > 0 once

the R&D programme has lowered the cost of LSA generation sufficiently.

If the government initiates such a programme, then it must pay a lump sum of I (in $), which

covers the initial start-up cost of the programme plus the PV of the annual R&D expenses.

After the LSA R&D programme has been under way, the government may decide to deploy

the newly developed technology to meet the electricity demand, X (in MWh). In this case,

X MWh of electricity are provided by the LSA each year, and the R&D programme continues

indefinitely, thereby reducing the cost of electricity production forever. Instead of undertaking

the staged development of the LSA technology, the government may choose to proceed with

an existing RE technology by paying a lump-sum cost IE < I, which allows it to meet a more

modest electricity demand, XE (in MWh), at cost CE per year forever plus the right to switch

to the LSA R&D programme at any point by paying I. Due to the intermittency and constraints

See Schwartz [1998] for an example of how this can be estimated and operationalised.
3Incorporating instantaneous correlation between dzt and dzC

t poses no analytical difficulty in our model.
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on suitable sites for RE technologies, we assume that XE < X. Furthermore, we assume that

all investment and deployment options are perpetual, which not only eases the analysis, but

also reflects the flexibility a government planner may have over timing.

The limitations of our approach include the assumption of an exogenous long-term electricity

price, a lower possible capacity for the existing RE technology installment, and the treatment

of the existing RE technology and LSA as mutually exclusive alternative projects due to limited

government funding. We provide justifications for these assumptions, but for future work, it

would be instructive to explore relaxing them. In particular, optimising the level of funding

for a portfolio of energy technology programmes would be closer to a typical government’s

decision-making problem. In Sections 2.1 and 2.2, we formulate the government’s problem and

find analytical solutions where possible.4

2.1 Case 1: No Existing Renewable Energy Technology

For now, we ignore the opportunity to use the existing RE technology and focus on the staged

development of the LSA project. The state transition diagram for this simplified problem may

be seen in Figure 1. There are, thus, three states of the world:

• State 0, in which no R&D programme exists.

• State 1, in which the R&D programme exists, thereby decreasing the LSA operating cost,

Ct, but no incremental savings accrue since the LSA technology has not been deployed.

• State 2, in which the LSA technology has been deployed with ongoing R&D that lowers

its operating cost and is accruing savings relative to fossil-fuel generation.

4The Appendix covers the case in which it is possible to switch from the existing RE to the LSA programme.
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In order to solve the government’s LSA R&D investment problem, we start at the end in

state 2 and work backwards. Given that LSA technology has been deployed and will operate

forever, the expected PV of cost savings is:

V2(P,C) = X

(
∫ ∞

0
E [Pt|P ]e−ρtdt −

∫ ∞

0
E [Ct|C]e−ρtdt

)

⇒ V2(P,C) = X

(
∫ ∞

0
Pe−(ρ−α)tdt −

∫ ∞

0
Ce−(λ+ρ)tdt

)

⇒ V2(P,C) = X

(

P

ρ − α
−

C

λ + ρ

)

(1)

Here, ρ is the discount rate used by the government.

In state 1, while the R&D programme is ongoing, the government holds a perpetual option

to deploy the LSA technology. The value of this option to the government is V1(P, C), which

we find by using Itô’s Lemma to expand dV1 and then use the Bellman Equation. First, we

find the expected appreciation of the value of the option to deploy:

dV1 =
1

2

∂2V1

∂P 2
(dP )2 +

1

2

∂2V1

∂C2
(dC)2 +

∂V1

∂P
dP +

∂V1

∂C
dC

⇒ E [dV1] =
1

2

∂2V1

∂P 2
σ2P 2dt +

1

2

∂2V1

∂C2
σ2

CC2dt +
∂V1

∂P
αPdt −

∂V1

∂C
λCdt (2)

Next, we equate the expected appreciation of V1 to the instantaneous rate of return on V1 via

the Bellman Equation:

E [dV1] = ρV1dt

⇒ 1
2

∂2V1

∂P 2 σ2P 2 + 1
2

∂2V1

∂C2 σ2
CC2 + ∂V1

∂P
αP − ∂V1

∂C
λC − ρV1 = 0 (3)

Equation 3 is solved subject to the following value-matching and smooth-pasting conditions:

V1(P
∗, C∗) = V2(P

∗, C∗)

⇒ V1(P
∗, C∗) = X

(

P ∗

ρ − α
−

C∗

λ + ρ

)

(4)
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∂V1

∂P

∣

∣

∣

∣

P=P ∗,C=C∗

=
∂V2

∂P

∣

∣

∣

∣

P=P ∗,C=C∗

⇒
∂V1

∂P

∣

∣

∣

∣

P=P ∗,C=C∗

=
X

ρ − α
(5)

∂V1

∂C

∣

∣

∣

∣

P=P ∗,C=C∗

=
∂V2

∂C

∣

∣

∣

∣

P=P ∗,C=C∗

⇒
∂V1

∂C

∣

∣

∣

∣

P=P ∗,C=C∗

= −
X

λ + ρ
(6)

Equation 4 states that at deployment, the value of the option to use LSA generation equals the

expected net present value (NPV) of an active investment. Meanwhile, Equations 5 and 6 are

first-order necessary conditions that equate the marginal benefit of delaying deployment with

its marginal cost. Since the solution to system of Equations 3 to 6 involves a free boundary, i.e.,

P ∗ depends on C, we convert the partial differential equation (PDE) to an ordinary differential

equation (ODE) as discussed in Dixit and Pindyck [1994].

We start by defining p ≡ P
C

and assuming that V1(P, C) is homogenous of degree one in

(P, C). Then, we note that V1(P,C) = Cv1(P/C) = Cv1(p). Using the definition of p and

v1(p), we re-write Equations 3 through 6 as follows:

1
2v′′1(p)(σ2 + σ2

C)p2 + v′1(p)(α + λ)p − v1(p)(λ + ρ) = 0 (7)

v1(p
∗) = X

(

p∗

ρ − α
−

1

λ + ρ

)

(8)

v′1(p
∗) =

X

ρ − α
(9)

v1(p
∗) − p∗v′1(p

∗) = −
X

λ + ρ
(10)

Since Equation 10 follows from Equations 8 and 9, we may ignore it. The solution to the ODE

in Equation 7 is:

v1(p) = a1p
γ1 (11)
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This is the normalised value of the option to deploy the LSA technology, where γ1 is a positive

exogenous constant that is the solution to the characteristic quadratic equation, i.e.,

γ1 =
−(α + λ − 1

2(σ2 + σ2
C)) +

√

(α + λ − 1
2(σ2 + σ2

C))2 + 2(σ2 + σ2
C)(λ + ρ)

σ2 + σ2
C

(12)

Using Equations 8 and 9, we can solve simultaneously for the deployment price-cost threshold

ratio, p∗, and the positive endogenous constant, a1:

p∗ =

(

γ1

γ1 − 1

)

ρ − α

λ + ρ
(13)

a1 =
X(p∗)1−γ1

γ1(ρ − α)
(14)

From Equations 11 and 13, the value of the R&D programme and the deployment threshold

price-cost ratio, respectively, may be determined.

State 0:  No R&D
Programme

V
0
(P;C

0
)=A

1
P

β
1

for 0 ≤ P < P
I

State 1:  R&D
Programme

V
1
(P,C)=a

1
C

1−γ
1P

γ
1

for 0 ≤ P/C < p
*

R&D
Investment
Threshold:

P
I

Investment
Cost: I

State 2: LSA
Technology

Deployed with
Ongoing R&D
Programme

V
2
(P,C)=PX/(ρ−α)−CX/(λ+ρ)

LSA
Technology
Deployment
Threshold

Ratio:
p*

Figure 1: State transition diagram for an LSA R&D project with an intermediate learning step

that reduces the operating cost.

Moving once step back, we would like to obtain the value of the perpetual option to invest

in the R&D programme, V0(P ;C0), along with the investment threshold price, PI . By following
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reasoning similar to that in Equations 2 and 3, we obtain the option value to start the R&D

programme:

V0(P ;C0) = A1P
β1 (15)

In order to find the investment threshold price, PI , and the endogenous constant, A1, we use

the following value-matching and smooth-pasting conditions:

V0(PI ; C0) = V1(PI , C0) − I

⇒ A1P
β1

I = a1(C0)
1−γ1P γ1

I − I (16)

dV0

dP

∣

∣

∣

∣

P=PI

=
∂V1

∂P

∣

∣

∣

∣

P=PI ,C=C0

⇒ β1A1P
β1−1
I = γ1a1(C0)

1−γ1P γ1−1
I (17)

Here, β1 is a positive exogenous constant:

β1 =
−(α − 1

2σ2) +
√

(α − 1
2σ2)2 + 2σ2ρ

σ2
(18)

Note that in Equations 16 and 17 we use the fact that v1(p) ≡ V1(P,C)
C

, which implies that

V1(P, C) = Cv1(p) = Ca1

(

P
C

)γ1

. Solving Equations 16 and 17 simultaneously, we obtain the

following:

PI =

[

(

Iβ1

β1 − γ1

)

(C0)
γ1−1

a1

]
1

γ1

(19)

A1 =
γ1a1(C0)

1−γ1P γ1−β1

I

β1
(20)

Although we solve the problem backwards, in terms of implementation, the government

would first wait until the electricity price reaches PI before paying I to enter state 1. Once
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the LSA R&D programme is active, the operating cost would decrease stochastically. The

important point is that the government does not care about the absolute level of the cost of

generation; instead, it deploys the LSA technology once the ratio of the electricity price to the

cost of LSA generation reaches p∗. What makes this possible is the assumption of homogeneity

in the value of the option to deploy LSA and the conglomeration of any deployment costs into

the investment cost, I. Even if Ct were correlated with Pt, the result would hold as the NPV of

the deployed LSA generation depends only on the ratio of the long-term electricity price to the

cost of LSA generation.5 We will illustrate the intuition with a numerical example in Section

3.1. Before that, we formulate the government’s problem with a mutually exclusive investment

opportunity in an existing RE technology.

2.2 Case 2: Existing Renewable Energy Technology without Switching Op-

tion to the Large-Scale Alternative Technology

We now include the flexibility of using the existing RE technology but without the possibility

of reverting to the staged development of the LSA project. Here, there are four states of the

world (see Figure 2):

• State 0, in which neither the LSA R&D programme exists nor the existing RE technology

is deployed.

• State E, in which the existing RE technology has been deployed to meet the available

electricity demand.

5Nevertheless, it should be noted that the real options approach becomes analytically intractable with more

than two risk factors.
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• State 1, in which the LSA R&D programme exists, thereby decreasing the LSA operat-

ing cost, Ct, but no incremental savings accrue since the LSA technology has not been

deployed.

• State 2, in which the LSA technology has been deployed with ongoing R&D that lowers

its operating cost and is accruing savings relative to fossil-fuel generation.

State 0:  No R&D
Programme or RE

Technology Deployment

V
ex

0
(P;C

0
, C

E
)=A

ex

1
P

β
1

for 0 ≤ P < P
ex

E

V
ex

0
(P;C

0
,C

E
)=F

ex
P

β
1+G

ex
P

β
2

for P
ex

F
 < P < P

ex

G

State 1:  R&D
Programme

V
1
(P,C)=a

1
C

1−γ
1P

γ
1

for 0 ≤ P/C < p
*

R&D
Investment
Threshold:

Pex
G

Investment
Cost: I

State 2: LSA
Technology

Deployed with
Ongoing R&D
Programme

V
2
(P,C)=PX/(ρ−α)−CX/(λ+ρ)

LSA
Technology
Deployment
Threshold

Ratio:
p*

State E: Existing
RE

Technology
Deployed

V
ex

E
(P; C

E
) =

PX
E
/(ρ−α) −

C
E
X

E
/ρ

Existing RE
Technology
Deployment
Threshold:

Pex
E

Investment
Cost: IE

Figure 2: State transition diagram with a mutually exclusive existing RE technology option.

The government may choose either to deploy an existing RE technology or to start a major LSA

R&D project. If the latter avenue is selected, then the government may subsequently deploy

the LSA technology.

Since the switching option is not available, we assume that in state 0, the government can

choose either the existing RE technology or initiate the LSA R&D programme; however, once

state E is entered, it is no longer possible to switch to the LSA option. Following Décamps et al.

[2006], we note that the value of the option to meet electricity demand via alternative energy

sources, V ex
0 (P ;C0, C

E), may be dichotomous for small enough σ, with immediate investment
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occurring in the existing RE (LSA) technology for P ex
E ≤ P ≤ P ex

F (P ≥ P ex
G ); specifically, we

may have:

V ex
0 (P ; C0, C

E) =



















Aex
1 P β1 if 0 ≤ P < P ex

E

F exP β1 + GexP β2 if P ex
F < P < P ex

G

(21)

Here, β1 is defined as in Equation 18, respectively, while β2 =
−(α− 1

2
σ2)−

√

(α− 1

2
σ2)2+2σ2ρ

σ2 (the

negative root of the characteristic quadratic function). In order to find Aex
1 and P ex

E analytically

for the first branch of V ex
0 (P ; C0, C

E), we use the following value-matching and smooth-pasting

conditions between V ex
0 (P ;C0, C

E) and V ex
E (P ;CE):

V ex
0 (P ex

E ; C0, C
E) = V ex

E (P ex
E ;CE) − IE

⇒ Aex
1 (P ex

E )β1 = XE

(

P ex
E

ρ − α
−

CE

ρ

)

− IE (22)

dV ex
0

dP

∣

∣

∣

∣

P=P ex
E

=
dV ex

E

dP

∣

∣

∣

∣

P=P ex
E

⇒ β1A
ex
1 (P ex

E )β1−1 =
XE

ρ − α
(23)

Note that V ex
E (P ; CE) is simply equal to the PV of cost savings from using the existing RE

technology. Solving Equations 22 and 23 simultaneously, we obtain the investment threshold

price and endogenous constant for the existing RE technology:

P ex
E =

(

β1(ρ − α)

XE(β1 − 1)

)

[

CEXE

ρ
+ IE

]

(24)

Aex
1 =

(P ex
E )1−β1XE

β1(ρ − α)
(25)

However, the endogenous constants, F ex and Gex, and the thresholds, P ex
F and P ex

G , for the sec-

ond branch of V ex
0 (P ; C0, C

E) have no analytical solution and must be determined numerically
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for specific parameter values via appropriate value-matching and smooth-pasting conditions to

find the four unknowns. We also know that P ex
F < P̃ ex < P ex

G , where P̃ ex is the price at which

V ex
E (P ; CE) − IE and V1(P, C = C0) − I intersect. Since the latter function is nonlinear, P̃ ex

itself must be found numerically. Of course, for large values of σ, it may be preferable to skip

considering the state E option, in which case the problem reduces to one of Section 2.1: the

key is to check whether A1 > Aex
1 . If so, then the government can proceed as in Section 2.1

[Dixit, 1993].

From state 0, if the threshold P ex
E is reached, then the existing RE technology is deployed

to meet electricity demand XE at a marginal cost of CE each year forever. This implies that

the PV of cost savings in state E is:

V ex
E (P ; CE) = XE

(

P

ρ − α
−

CE

ρ

)

(26)

By contrast, no action will be taken if the electricity price is between P ex
F and P ex

G , while

immediate initiation of the LSA R&D programme (state 1) will occur if the latter threshold

price is exceeded. Therefore, the value functions in states 1 and 2 are the same as those defined

in Equations 2 and 1, respectively. The two endogenous constants, F ex and Gex, and threshold

prices, P ex
F and P ex

G , are determined by the following four value-matching and smooth-pasting

conditions between V ex
0 (P ; C0, C

E) and V ex
E (P ;CE) as well as between V ex

0 (P ;C0, C
E) and

V1(P, C0):

V ex
0 (P ex

F ; C0, C
E) = V ex

E (P ex
F ; CE) − IE

⇒ F ex(P ex
F )β1 + Gex(P ex

F )β2 = XE

(

P ex
F

ρ − α
−

CE

ρ

)

− IE (27)

dV ex
0

dP

∣

∣

∣

P=P ex
F

=
dV ex

E

dP

∣

∣

∣

P=P ex
F

⇒ β1F
ex(P ex

F )β1−1 + β2G
ex(P ex

F )β2−1 = XE

ρ−α
(28)
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V ex
0 (P ex

G ;C0, C
E) = V1(P

ex
G , C0) − I

⇒ F ex(P ex
G )β1 + Gex(P ex

G )β2 = a1(C0)
1−γ1(P ex

G )γ1 − I (29)

dV ex
0

dP

∣

∣

∣

∣

P=P ex
G

=
∂V1

∂P

∣

∣

∣

∣

P=P ex
G

,C=C0

⇒ β1F
ex(P ex

G )β1−1 + β2G
ex(P ex

G )β2−1 = γ1a1(C0)
1−γ1(P ex

G )γ1−1 (30)

In the Appendix, we consider the case with a switching option, i.e., in which it is possible to

proceed from state 1 to E. Next, however, we illustrate the intuition and policy insights of the

models we have developed via numerical examples.

3 Numerical Examples

3.1 Numerical Example 1: No Existing Renewable Energy Technology

For the numerical example, we use the following parameters: α = 0.04, σ = 0.20, ρ = 0.10,

I = $1 billion, λ = 0.04, C0 = $100/MWh, and X = 1×107 MWh (10 TWh). Furthermore, we

allow σ to vary between 0.15 and 0.40 and λ to become 0.08 as parameter estimates. Initially,

in Section 3.1.1, we set σC = 0 to abstract from technical uncertainty in the LSA technology’s

intermediate R&D stage. Then, in Section 3.1.2, we set σC = 0.10 to examine how the results

are affected by technical uncertainty.

3.1.1 No Technical Uncertainty in LSA R&D

For σ = 0.20 and λ = 0.04, we obtain β1 = 1.7913, γ1 = 1.5414, A1 = 2.29, PI = 82.13,

and p∗ = 1.22. According to Figures 3 and 4, the government’s strategy is to wait until the

long-term electricity price reaches $82.13/MWh before initiating the LSA R&D programme
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and then to wait again until the long-term electricity price is 1.22 times the nominal LSA

operating cost before deployment. With σ = 0.20, once state 1 is entered, the R&D programme

will continue since the ratio of the long-term electricity price to the LSA operating cost is

82.13
100 = 0.8213 < p∗. In other words, there will not be an instantaneous transition from state 0

to state 2. From Figure 3, the value of the option to invest in LSA R&D is worth approximately

V0(PI ; C0) = V1(PI , C0) − I = $6.17 × 109, i.e., around $6.17 billion, at deployment, which is

equal to the initial value in Figure 4 minus the investment cost: C0v1(p = PI/C0)− I. Finally,

the value of the investment opportunity at state 0 for P0 = 60 is V0(P0; C0) = $3.52× 109, i.e.,

around $3.52 billion. If we use the “now or never” DCF approach to value to benefit of the

LSA generation technology, then we would obtain an expected NPV of only $1.86 billion, i.e.,

V2(P0, C0) − I = X
(

P0

ρ−α
− C0

λ+ρ

)

− I, which is almost 50% lower than the value from the real

options approach.
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Figure 3: Value of option to invest in LSA R&D without an existing RE technology (σ = 0.20).
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Figure 4: Value of option to deploy the LSA technology without an existing RE technology

from an R&D state (σ = 0.20).

By contrast, if state 1 were avoided, i.e., if the government had only the option to deploy

the LSA technology at initial generating cost C0 without waiting to improve its performance

via the intermediate R&D stage, then the value of the entire programme in state 0 would be:

V D
0 (P ; C0) = AD

1 P β1 (31)

Solving simultaneously for the deployment threshold, PD
I , and endogenous constant, AD

1 ,

via the value-matching and smooth-pasting conditions between V D
0 (P ; C0) and V2(P, C), i.e.,

V D
0 (PD

I ;C0) = V2(P
D
I , C0) − I and

dV D
0

dP

∣

∣

∣

∣

P=P D
I

= ∂V2

∂P

∣

∣

∣

P=P D
I

,C=C0

, we obtain the following:

PD
I =

(

β1(ρ − α)

X(β1 − 1)

) [

C0X

ρ + λ
+ I

]

(32)

AD
1 =

(PD
I )1−β1X

β1(ρ − α)
(33)
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Upon solving for the base-case parameter values, i.e., with σ = 0.20 and λ = 0.04, we find

AD
I = 2.25 and PD

I = 110.60 as opposed to A1 = 2.29 and PI = 82.13 when state 1 was available

(see Figure 5). In effect, there is considerable option value to improving the performance of the

LSA technology before deploying it. Quantitatively, it is worth:

F(P0) =























































V0(P0; C0) − V D
0 (P0; C0) if P0 < PI and P0 < PD

I

V1(P0, C0) − I − V D
0 (P0; C0) if P0 ≥ PI and P0 < PD

I

V0(P0; C0) − V D
2 (P0, C0) + I if P0 < PI and P0 ≥ PD

I

V1(P0, C0) − V D
2 (P0, C0) if P0 ≥ PI and P0 ≥ PD

I

(34)

For σ = 0.20 and λ = 0.04, this option value to perform the intermediate R&D is worth $73

million, which is 2.1% of the entire programme in state 0. Notably, with increasing uncertainty,

the value of intermediate R&D decreases as the greater probability of higher electricity prices

makes the existing LSA technology more attractive even without the enhancement provided

by R&D from state 1 (see Figure 6). Indeed, it is only in a scenario with low electricity price

volatility does intermediate LSA R&D add value by making the technology more cost effective.

Furthermore, as λ increases ceteris paribus, i.e., as the LSA R&D programme becomes more

effective, the option value of the intermediate R&D state becomes more valuable. For example,

for λ = 0.08, it is worth 8.33% of the entire programme.

Varying estimates of the volatility of the long-term electricity price, σ, reveals that the R&D

investment price threshold increases with uncertainty as the value of waiting also increases (see

Figure 7). As indicated earlier, since greater volatility diminishes the value of the intermedi-

ate R&D from state 1, the investment threshold price, PI , and direct deployment threshold

price, PD
I , converge. Similarly, the LSA deployment price-cost ratio increases as the volatility

increases (see Figure 8). However, it is interesting to note that for σ = 0.40, although the ratio
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Figure 5: Value of option to deploy the LSA technology without intermediate R&D (σ = 0.20).

PI

C0
is quite close to p∗, instantaneous deployment of the LSA technology still does not occur.

Hence, for reasonable values of σ, it is always optimal to perform intermediate R&D.

3.1.2 Technical Uncertainty in LSA R&D

Here, we allow for uncertainty in the R&D of the LSA technology, i.e., the decrease in its

operating cost is not deterministic after state 1 is entered. We use a representative value of

σC = 0.10 to capture this technical risk. Referring to our base-case parameter values of σ = 0.20

and λ = 0.04, we find that the inclusion of technical uncertainty increases the option value of

the entire LSA programme to $3.58 billion at P0 = 60 from $3.52 billion and decreases the

long-term electricity price threshold, PI , at which to initiate R&D (see Figure 9). Indeed, we

find that PI = 75.21 as opposed to $82.13/MWh as in the case with σC = 0. The reason for

this is that the value of the option to deploy the R&D-enhanced LSA technology from state
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Figure 6: Option value of intermediate R&D stage without an existing RE technology. Faster

learning to reduce the LSA technology’s operating cost makes the R&D step more valuable. The

R&D option value decreases with uncertainty since the probability of high long-term electricity

prices makes even the non-R&D enhanced LSA technology increase in option value.
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with uncertainty. If such an R&D step is available, then the trigger is lower due to the improved

possibility of managing deployment timing and is shown in red.
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1 increases with technical uncertainty as discretion over timing implies that it is possible to

take advantage of rapid decreases in the operating cost without being adversely affected by

unexpected increases. In effect, the government has a greater option value in state 0 without

having to worry about technical risk until state 1. Thus, it is easier for it to initiate the LSA

R&D programme. On ther other hand, in Figure 10, it is optimal to wait longer than in the

case without technical uncertainty, i.e., until p∗ = 1.27, before deploying the R&D-enhanced

LSA technology as greater uncertainty also increases the value of waiting and, therefore, the

opportunity cost of killing the waiting option in state 1.
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Figure 9: Value of option to invest in LSA R&D without an existing RE technology under

technical uncertainty (σ = 0.20, σC = 0.10).

Examining the value of the intermediate R&D for the LSA technology under technical un-

certainty, we find that it is greater than in the case with σC = 0 (see Figure 11). Intuitively, this

result arises for two reasons: first, the investment threshold for initiating the R&D programme
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Figure 10: Value of option to deploy the LSA technology without an existing RE technology

from an R&D state under technical uncertainty (σ = 0.20, σC = 0.10).

is lower, thereby implying that state 1 is entered sooner than in the example considered in Sec-

tion 3.1.1; second, more time is spent in the intermediate R&D stage to ensure that deployment

is done optimally to mitigate the effects of technical uncertainty. At the same time, technical

uncertainty does not change the option value of direct deployment, V D
0 (P ; C0), because the

expected NPV from direct deployment, V D
2 (P, C) − I, is not affected by technical uncertainty,

i.e., the average rate of decrease in the LSA technology’s operating cost is still the same. Hence,

the option value of the intermediate R&D stage as captured by F(P0) in Equation 34 increases.

The other qualitative results of Section 3.1.1 also hold, viz., the investment thresholds all

increase as parameter estimates of the long-term electricity price’s volatility are increased.

Again, PI is lower here as the option value of the LSA R&D programme in state 0 is higher
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Figure 11: Option value of intermediate R&D stage without an existing RE technology under

technical uncertainty. Relative to the case with σC = 0, the case here with σC = 0.10 implies

that greater value is placed on the intermediate R&D stage. The other attributes of the option

value are similar to those in the case without technical uncertainty.
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due to a higher expected value in moving to state 1 without facing any technical risk until the

R&D programme starts. Conversely, p∗ is higher because technical uncertainty implies that

more time must be spent in the intermediate R&D state to offset the effects of any adverse

movements in the LSA technology’s operating cost.
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der technical uncertainty. The general trends are the same as in the case without technical

uncertainty except that the investment threshold for the LSA R&D programme is lower.
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Figure 13: The deployment threshold ratio under technical uncertainty where the value of

waiting has increased. As before, the value of waiting also increases with uncertainty.
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3.2 Numerical Example 2: Existing Renewable Energy Technology without

Switching Option to the LSA Technology

Assuming the same parameter values as in Section 3.1 for the LSA technology and using IE =

$200 million, XE = 5 TWh,6 and CE = $25/MWh, we illustrate the intuition for R&D when

there exists an available RE technology. We keep σC = 0 here because numerical examples

with technical uncertainty do not reveal any insights additional to those discussed in Section

3.1.2. However, we will comment on how the numerical results are affected if σC = 0.10 is used.

For σ = 0.20, we find that Aex
1 > A1, which implies that the waiting region is dichotomous

around the indifference point, P̃ ex = 64.10, i.e., the government’s optimal policy is to deploy the

existing RE when the long-term electricity price is in the range [P ex
E , P ex

F ] = [39.39, 52.05] and

to start the LSA R&D programme if the long-term electricity price is greater than P ex
G = 87.80

(see Figure 14).7 For all other prices, it is optimal to wait. Note that the threshold for initiating

the LSA R&D programme is greater than what it was without the availability of the existing

RE technology, PI = 82.13, as the presence of an alternative project reduces the attraction of

the LSA technology.

Even though the R&D investment threshold has increased, immediate deployment does not

take place once the R&D programme is commenced because the threshold ratio is still less than

p∗, i.e.,
P ex

G

C0
= 0.88 < p∗. The value of the entire investment opportunity at the initial long-term

6We assume that XE < X because the capacity of the existing RE technology is limited either by the number

of desirable sites (e.g., for solar panels or windmills) or the waste-disposal issues (e.g., for conventional nuclear

power plants).
7By comparison, for σC = 0.10, we have P̃ ex = 60.93, [P ex

E , P ex
F ] = [39.39, 50.24], and P ex

G = 80.46. Intuitively,

greater technical uncertainty facilitates investment in R&D for the LSA technology and reduces the immediate

deployment region for the existing RE technology due to the greater potential upside of the LSA project.
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electricity price, P0 = 60, is worth V ex
0 (P0; C0, C

E) = F exP β1

0 +GexP β2

0 = $3.61 billion, which is

$90 million higher than the value in Section 3.1.1 (an increase of 2.56%).8 If the waiting region

is ignored and the existing RE technology is deployed immediately as recommended by Dixit

[1993], then the government would lose $62 million from acting too quickly, which is 1.75% of

the expected NPV. In effect, by using the approach of Décamps et al. [2006], we show how the

government planner is able to optimise investment in the two mutually exclusive projects for

all long-term electricity prices.

At higher levels of estimated volatility, the viability of the existing RE technology as an

alternative to the LSA R&D programme gradually diminishes (see Figure 15). Here, as σ

increases, the region for immediate deployment of the RE technology shrinks as there exists

greater probability of high electricity prices in the future. Furthermore, the indifference point

between the two projects, P̃ ex, decreases as the LSA R&D programme starts to look more

promising. Indeed, for high enough levels of volatility, the option to deploy the existing RE

technology may be disregarded, which then reduces the problem to a simple real options one

with the same investment threshold as in Section 3.1.1.

Again, instead of managing the LSA project in a staged manner, the government may

choose to pursue a more direct strategy in which state 1 is skipped. In terms of Figure 2, the

government may transition from state 0 either to state E or directly to state 2, i.e., deploying

the existing LSA technology at its initial operating cost with ongoing R&D to come later. In

this case, the value of the entire programme in state 0 is similar to that in Equation 21:

V D,ex
0 (P ;C0, C

E) =



















Aex
1 P β1 if 0 ≤ P < P ex

E

FD,exP β1 + GD,exP β2 if PD,ex
F < P < PD,ex

G

(35)

8With technical uncertainty, this option value increases to $3.64 billion.



How to Proceed with Competing Alternative Energy Technologies: a Real Options Analysis33

0 20 40 60 80 100
−2000

0

2000

4000

6000

8000

10000

Long−Term Electricity Price, P ($/MWh)

O
p
ti
o
n
 V

a
lu

e
 (

m
ill

io
n
 $

),
 N

P
V

 (
m

ill
io

n
 $

)

 

 

Value of Option to Invest in LSA R&D when Existing RE Technology is Available (σ = 0.20)

P
ex

E
 P

ex

F
 

P
ex

G
 P

~ex
 V

ex

E
(P; C

E
) − I

E

V
ex

1
(P, C

0
) − I

V
ex

0
(P; C

0
, C

E
) if 0 ≤ P < P

ex

E

V
ex

0
(P; C

0
, C

E
) if P

ex

F
 < P < P

ex

G

Figure 14: Value of option to invest in LSA R&D when an existing RE technology is available

(σ = 0.20). The broken blue line is the expected NPV of the (small) existing RE technology,

while the dotted red curve is the option value to deploy the LSA technology from an intermediate

R&D state. The solid blue and green curves are the option values for state 0 when neither

project has yet been selected.
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whereas the LSA R&D project should be launched at higher electricity price levels. When

uncertainty increases, the waiting region increases until the existing RE technology disappears

as a candidate solution.
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Now, the coefficients, FD,ex and GD,ex, together with the threshold prices for the indifference

zone, PD,ex
F and PD,ex

G , must be found numerically via value-matching and smooth-pasting

conditions analogous to those in Equations 27 through 30. The only difference is that the second

set of value-matching and smooth-pasting conditions are defined with respect to a contact point

on the expected NPV curve in state 2, V2(P, C) − I. In Figure 16, we plot the option value

and expected NPV curves for the direct investment strategy. We note that due to the lack of

intermediate R&D opportunities with the LSA technology, the second waiting region widens.

Indeed, since the LSA project’s timing cannot be managed as precisely now, deployment of it is

less likely to be precipitated, a fact that is also captured by the effect of varying the volatility

parameter on the investment thresholds (see Figure 17). However, it is still the case that it

dominates the existing RE technology option for σ > 0.24.

As we did in Section 3.1.1, we now also illustrate the option value of the intermediate R&D

state for various levels of σ and λ by using an analogue of Equation 34. First, fixing λ = 0.04 and

σ = 0.20, we find that the option value of this state is less than 1% of the overall project’s value.

However, it is zero in the range 0.15 ≤ σ ≤ 0.16, increasing in the range 0.16 < σ < 0.25, and

decreasing for σ ≥ 0.25 (see Figure 18). The first component can be explained by the fact that

both strategies recommend immediate deployment of the existing RE for low levels of volatility

as there is not much value to waiting for the LSA technology to become attractive. We use the

same intuition from Section 3.1.1 to explain why the option value decreases for high levels of

σ: the prospect of sustained price increases makes disregarding the existing RE technology and

focusing on the LSA technology attractive. However, the value of the intermediate R&D state

decreases with σ in this region as greater electricity price uncertainty makes even the existing

LSA generation capability competitive. By contrast, in the intermediate range of σ, there is
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Figure 16: Value of option to deploy the LSA technology without intermediate R&D when an

existing RE technology is available (σ = 0.20). The broken blue line is the expected NPV of the

(small) existing RE technology, while the dotted red line is the expected NPV of the deployable

LSA technology. The solid blue and green curves are the option values for state 0 when neither

project has yet been selected.
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not enough information to make a decision between existing RE deployment or pursuing LSA

generation at the initial price, P0. Consequently, the resulting indifference zone also widens with

more uncertainty starting from a low level of σ (until the existing RE technology is no longer

considered). The option value increases in this range because the intermediate R&D programme

provides a way to time the deployment of the new technology. Finally, note that the option

value of the intermediate R&D is much higher (over 8% of the total project value for σ = 0.20)

when λ is increased to 0.08. Due to the greater effectiveness of the LSA R&D programme,

there is more value to the intermediate state. And, precisely due to its attraction, the LSA

R&D programme is started more quickly, which then causes the option value to decrease with

σ again as there is little competition with the existing RE technology.9

4 Conclusions

Given the concern over global warming, the development of alternative energy technologies

with lower rates of carbon emissions is gaining prominence. Within the domain of existing RE

technologies, biofuels, fuel cells, hydroelectric power, solar-based technologies, wave generation,

and windmills have all demonstrated various levels of effectiveness and gained some measure

of public support in contributing to the world’s energy supply. As cap-and-trade systems for

carbon emissions gain popularity, these aforementioned technologies will become only more

competitive with traditional combustion technologies using fossil fuels. On the other hand, the

allure of nuclear power technology has ebbed and flowed due to public concerns about the safety

of reactors, processing of waste material, and the potential weaponisation of programmes. In

addition, even if most of the world’s energy supply were to come from nuclear power plants,

9These results also hold for the case in which Ct is stochastic.
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Figure 18: Option value of intermediate R&D stage with an existing RE technology. Faster

learning to reduce the LSA technology’s operating cost makes the intermediate R&D stage

more valuable. For high learning rates, the intermediate R&D option value decreases with

uncertainty since the probability of higher long-term electricity prices means that even the

existing LSA technology dominates the smaller RE project. By contrast, for low learning rates

and an intermediate level of uncertainty, the intermediate R&D option value increases with

uncertainty since R&D provides a way to optimise the timing of the deployment of the LSA

technology.
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the known supply of uranium used in traditional reactors would not be enough to sustain the

planet’s demand for energy beyond a few decades. Therefore, a prudent policy for governments

is to continue investing in existing RE technologies and energy efficiency measures along with

funding R&D for promising new technologies possibly based on nuclear power.

In this paper, we examine how a staged R&D programme for an LSA technology could

proceed under uncertainty. By taking the real options approach, we find that the option

to develop such a technology would have considerable value. In particular, the value of the

intermediate R&D state is worth more if the effectiveness of the R&D programme increases,

while it decreases with the volatility of the long-term electricity price. The latter, seemingly

counter-intuitive, result holds because it is only in a scenario with low price volatility that the

intermediate R&D stage of the programme makes the LSA technology competitive. Otherwise,

a high level of volatility makes even the rudimentary LSA technology attractive since there

is a high probability of sustained electricity price increases. With the addition of an existing

RE technology, we have the problem of mutually exclusive investment in alternative staged

projects under uncertainty. We find in this case that the addition of an existing RE technology

increases the value of the overall programme from the perspective of the government. However,

it delays the potential initiation of the LSA R&D programme as the existing RE technology

is more beneficial for a moderate range of electricity prices. Furthermore, the value of the

intermediate R&D stage increases for an intermediate range of price volatility as such activity

provides additional information about the relative benefit of the LSA versus the existing RE

technology. For high volatility levels, the existing RE technology is not considered at all, which

causes the value of the intermediate R&D stage to decrease as before. Hence, governments

planning to initiate similar R&D programmes would be prudent not to neglect the effects of
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their interactions with existing RE technologies and should ideally try to optimise their R&D

portfolios jointly.
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APPENDIX: Existing Renewable Energy Technology with Switch-

ing Option to the LSA Technology

Here, the setup is the same as in Section 2.2 except that once state E is entered, it is possible

for a subsequent transition to state 1 by paying the full LSA R&D programme start-up and

annual expense cost of I (see Figure 19). Therefore, while the value functions in states 1 and

2 are still defined by Equations 2 and 1, respectively, those in states 0 and E are as follows:

V sw
0 (P ;C0, C

E) =



















Asw
1 P β1 if 0 ≤ P < P sw

E

F swP β1 + GswP β2 if P sw
F < P < P sw

G

(A-1)

V sw
E (P ;C0, C

E) = XE

(

P

ρ − α
−

CE

ρ

)

+ BswP β1 for 0 ≤ P < P sw
E1 (A-2)

Again, if A1 > Asw
1 , then the approach of Section 2.1 may be used, i.e., there is no need to

consider the existing RE technology. However, for small values of σ, it may be relevant, in
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Figure 19: State transition diagram with a mutually exclusive existing RE technology option

and a possibility to switch to the LSA technology. The government may choose either to deploy

an existing RE technology or to start a major LSA R&D project. If the former avenue is

selected, then the government may subsequently switch to the LSA R&D phase, from where it

is then possible to deploy the LSA technology.
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which case the last term in Equation A-2 is the value of the option to switch to state 1 by

paying the full investment cost of the LSA R&D programme. The endogenous constant, Bsw,

and the switching threshold price, P sw
E1 , are found numerically via the following value-matching

and smooth-pasting conditions:

V sw
E (P sw

E1 ; C0, C
E) − IE = V1(P

sw
E1 , C0) − I − IE

⇒ XE

(

P sw
E1

ρ − α
−

CE

ρ

)

+ Bsw(P sw
E1 )β1 − IE = a1(C0)

1−γ1(P sw
E1 )γ1 − I − IE (A-3)

dV sw
E

dP

∣

∣

∣

P=P sw
E1

= ∂V1

∂P

∣

∣

∣

P=P sw
E1

,C=C0

⇒ XE

ρ−α
+ β1B

sw(P sw
E1 )β1−1 = γ1a1(C0)

1−γ1(P sw
E1 )γ1−1 (A-4)

The endogenous constant, Asw
1 , and the existing RE technology deployment threshold price,

P sw
E , are found by value-matching and smooth-pasting conditions involving V sw

0 (P ; C0, C
E) and

V sw
E (P ; C0, C

E) as follows:10

V sw
0 (P sw

E ;C0, C
E) = V sw

E (P sw
E ; C0, C

E) − IE

⇒ Asw
1 (P sw

E )β1 = XE
(

P sw
E

ρ−α
− CE

ρ

)

+ Bsw(P sw
E )β1 − IE (A-5)

dV sw
0

dP

∣

∣

∣

P=P sw
E

=
dV sw

E

dP

∣

∣

∣

P=P sw
E

⇒ β1A
sw
1 (P sw

E )β1−1 = XE

ρ−α
+ β1B

sw(P sw
E )β1−1 (A-6)

Solving Equations A-5 and A-6 simultaneously, we obtain the following closed-form solutions:

P sw
E =

(

β1(ρ − α)

XE(β1 − 1)

)

[

CEXE

ρ
+ IE

]

(A-7)

10We assume here that investment is sequential, i.e., P sw
E < P sw

E1 . Otherwise, it is optimal to invest directly in

the LSA R&D programme at a cost of (IE + I).
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Asw
1 = Bsw +

(P sw
E )1−β1XE

β1(ρ − α)
(A-8)

In other words, P sw
E = P ex

E and Asw
1 = Bsw + Aex

1 .

Finally, the two endogenous constants, F sw and Gsw, and threshold prices, P sw
F and P sw

G , are

determined by the following value-matching and smooth-pasting conditions between V sw
0 (P ; C0, C

E)

and V sw
E (P ;C0, C

E) as well as between V sw
0 (P ; C0, C

E) and V1(P, C0):

V sw
0 (P sw

F ; C0, C
E) = V sw

E (P sw
F ; C0, C

E) − IE

⇒ F sw(P sw
F )β1 + Gsw(P sw

F )β2 = XE

(

P sw
F

ρ − α
−

CE

ρ

)

+ Bsw(P sw
F )β1 − IE (A-9)

dV sw
0

dP

∣

∣

∣

P=P sw
F

=
dV sw

E

dP

∣

∣

∣

P=P sw
F

⇒ β1F
sw(P sw

F )β1−1 + β2G
sw(P sw

F )β2−1 = XE

ρ−α
+ β1B

sw(P sw
F )β1−1 (A-10)

V sw
0 (P sw

G ; C0, C
E) = V1(P

sw
G , C0) − I

⇒ F sw(P sw
G )β1 + Gsw(P sw

G )β2 = a1(C0)
1−γ1(P sw

G )γ1 − I (A-11)

dV sw
0

dP

∣

∣

∣

∣

P=P sw
G

=
∂V1

∂P

∣

∣

∣

∣

P=P sw
G

,C=C0

⇒ β1F
sw(P sw

G )β1−1 + β2G
sw(P sw

G )β2−1 = γ1a1(C0)
1−γ1(P sw

G )γ1−1 (A-12)

For completeness, we perform a numerical example with the same data as in Section 3.2

and without technical uncertainty. We consider the case in which either deployment of the

existing RE technology (with a subsequent option to deploy the LSA technology directly) or

direct deployment of the LSA technology is possible. In terms of Figure 19, we suppose that

the arrow from state E leads to state 2, i.e., there is no intermediate R&D stage for the LSA

technology. At the initial long-term electricity price of $60/MWh, we obtain that it is optimal
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to deploy the existing RE technology and wait for the opportunity to switch to deployment of

the LSA technology when the long-term electricity price reaches $187.25/MWh. The expected

NPV of this alternative energy programme with the switching option is $4.68 billion, which is

more than a $1 billion increase relative to the example in Section 3.2 with direct deployment

of the LSA technology.

Intuitively, the subsequent option to switch to the LSA technology (even without the inter-

mediate R&D stage) facilitates the deployment of the existing RE technology as this decision

is now reversible. Indeed, until the electricity price reaches suitably high levels for deployment

of the LSA technology to become viable, the government planner is able to benefit from the

cost savings of using the existing RE technology. The option value and expected NPV curves

in Figure 20 indicate how the situation changes from that illustrated in Figure 16 without the

switching option: the region for immediate investment in the existing RE technology widens,

the indifference zone between the two alternative energy projects occurs at a much higher elec-

tricity price and is narrower, and, finally, the threshold for switching to the LSA technology

from the existing RE technology is much higher. In particular, P sw
E = 39.39 as before, but

[P sw
F , P sw

G ] = [149.37, 157.79] and P sw
E1 = 187.25. Figure 21 illustrates how these thresholds

behave with varying estimates of the long-term electricity price volatility.
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Figure 20: Value of option to deploy the LSA technology without intermediate R&D when

an existing RE technology is available with a switching option (σ = 0.20). The broken blue

line is the expected NPV of the (small) existing RE technology, while the solid blue line is

the expected NPV of the deployable LSA technology. Representing the value of the option to

switch to the LSA technology after the existing RE technology has been selected is the broken
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Figure 21: Investment thresholds with direct deployment of the LSA technology when an exist-

ing RE technology is available with a switching option. Unlike the case without the switching

option, the existing RE project is always selected at moderate levels of the long-term electricity

price. The waiting region increases with uncertainty, and the LSA technology is deployed at

high long-term electricity prices as before, but these regions are relatively narrower than before.

Finally, if the existing RE technology is deployed, then the switch to the LSA technology is

made at even higher electricity price levels than for those at which the LSA technology would

have been deployed.


