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The North American Natural Gas
Liquids Markets are Chaeotic

Apostolos Serletis and Periklis Gogas*

In this paper we test for deterministic chaos (i.e., nonlinear
deterministic processes which look random) in seven Mont Belview, Texas
hydrocarbon markets, using monthly data from 1985:1 to 1996:12—the markets
are those of ethane, propane, normal butane, iso-butane, naptha, crude oil, and
natural gas. In doing so, we use the Lyapunov exponent estimator of Nychka,
Ellner, Gallant, and McCaffrey (1992). We conclude that there is evidence
consistent with a chaotic nonlinear generation process in all five natural gas
liquids markets.

I. INTRODUCTION

In recent years, interest in deterministic chaos (i.e., nonmlinear
deterministic processes which look random) has increased tremendously and the
literature is still growing. Besides its obvious intellectual appeal, chaos
represents a radical change of perspective in the explanation of fluctuations
observed in economic and financial time series. In this view, the fluctuations and
irregularities observed in such series receive an endogenous explanation and are
traced back to the strong nonlinear deterministic structure that can pervade the
economic system. Moreover, if chaos can be shown to exist, the implication
would be that (nonlinearity-based) prediction is possible (at least in the short run
and provided the actual generating mechanism is known exactly). Prediction,
however, over long periods is all but impossible, due to the “sensitive
dependence on initial conditions” property of chaos.

Until recently, chaotic dynamics had been studied almost exclusively by
theoreticians. However, theorizing might be viewed (by economists) as empty
if there is no evidence of chaos in macroeconomic and financial time series.
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Therefore, a number of researchers have recently focused on testing for
nonlinearity in general and chaos in particular in economic and financial time
series, with encouraging results, especially in the case of financial time series.
For example, Scheinkman and LeBaron (1989) studied United States weekly
returns on the Center for Research in Security Prices (CRSP) value-weighted
index, and found rather strong evidence of nonlinearity and some evidence of
chaos. Some similar results have been obtained by Frank and Stengos (1989),
investigating daily prices for gold and silver. More recently, Serletis and Gogas
(1997) test for chaos in seven East Furopean black-market exchange rates and
find evidence consistent with z chactic noniinear generation process in two out
of the seven series—the Russian ruble and East German mark. Barneit and
Serletis (1999) provide a state-of-the-art review of this literature.

In this paper we test for deterministic chaos in North American
hydrocarbon markets. I doing so, we use monthly data, from 1985:1 to
1996:12, on Mont Belview, Texas ethane (C2), propane (C3), normal butane
(a4}, iso-butane (iC4), naptha (CS), crude oil, and natural gas prices. In the
last decade, the North American hydrocarbon industry has seen a dramatic
transformation from a highly regulated enviromment to one which is rmore
market-driven, and this transition has led to the emergence of different markets
{especially for natural gas and natural gas Hquids) throughout North America—
see Serletis (1997}, for example, for more details. However, capacity constraints
seemn to be distorting these markets raising the possibility of chactic prices
behavior, arising from within the structure of these markets.

The paper is organized along the foliowing lines. Section I provides
some background regarding North American hydrocarbon markets. Section I
discusses some basic data facts and investigates the univariate time series
properties of Belview hydrocarbon prices, interpreting the results in terms of the
permanert/temporary rature of shocks. Section 1V provides a description of the
key features of the Nychka et al. (1992) Lyapunov exponent estimator, focusing
explicit attention on the test’s ability to detect chaos. Section V presents the
results of the chaos tests and the final section concludes with some suggestions
for potentially useful future empirical research.

. BACKGROUKRD

The raw natural gas that comes from wells consists mainly of methane
(Cy). However, it also contains various quantities of other heavier hydrocarbons

such as ethane (C,), propane (Cs), butane (C,), and pentane plus (. )—the

subscripts correspond to the number of carbon atoms that the respective gas
molecule contains. Moreover, butane can take one of iwo forms (isomers),
normat butane (8C,) and isobutane (iC,). These heavier products (with respect
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to methane) are collectively known as natural gas liquids (NGLs), with C, and
C, often referred to as liquefied petroleum gases (LPGs).
NGLs are extracted from raw natural gas in mixed streams. For

example, a C,” stream contains C,, C;, C,, and C; while a C, stream contains

all of the above except C,. In fact, some liquids extraction from raw natural gas
is necessary in order to meet minimum (gas) pipeline quality specifications.

Also, the majority of the C, is removed from raw natural gas to prevent

condensation of these liquids in gas pipelines. Of course, the amount of
processing depends on how ‘wet’ or ‘dry’ the raw gas is—gas that is rich in
NGLs is referred to as -“‘wet,” whereas gas with a lower than average NGL
content is referred to as ‘dry’ or ‘lean.’

Liquids production depends on raw natural gas production, which
depends on geographic distribution across basins. In the last decade, the North
American natural gas industry has seen a dramatic transformation from a highly
regulated industry to one which is more market-driven. The transition to a less
regulated, more market-oriented environment has led to the emergence of
different spot markets throughout North America. In particular, producing area
spot markets have emerged in Alberta, British Columbia, Rocky Mountain,
Anadarko, San Juan, Permian, South Texas, and Louisiana basins. Moreover,
production sites, pipelines and storage services are more accessible today,
thereby ensuring that changes in market demand and supply are reflected in
prices on spot, futures, and swaps markets.

Liquids markets, however, have their own dynamics. For example, the
fuels do not compete at any of the major burnertips and what has been done to
restructure the North American natural gas business has little to do with liquids
markets. Capacity constraints, however, that distort North American natural gas
markets impact production of natural gas and thus processed liquids. For
example, the development of spot markets for natural gas and of storage
facilities has had an effect on propane markets, especially the use of propane for
peaking and enriching of lean gas streams. Also, on the demand side, there is
not a large consumer market for liquids in the United States and Canada, in the
sense that liquids are not a primary domestic or commercial fuel, like they are
in other countries.

Our objective in this study is not to examine how the North American
hydrocarbon markets are linked together, but to test for deterministic chaos in
North American hydrocarbon markets, using Mont Belview, Texas spot prices.
One of the most interesting aspects of Belview prices is that they are ‘marker’
prices for traders from many countries. For example, liquids traders at
Petrobras, Brazil’s national oil company, use Belview in all of their trading
formulas. Moreover, international trading activity is important in the formation
of liquids prices at Belview. Brazil, for example, is a huge importer of liquids
from the United States (and elsewhere), and liquids constitute almost 80% of
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domestic fuel use in Brazil (and about 90% in Mexico), suggesting that liquids
prices at Belview have more to do with trading factors overseas than with North
America.

In what follows, we turn to a discussion of some basic facts and to an
investigation of the univariate time series properties of Belview hydrocarbon
prices. In Section [V, we consider univariate statistical tests for nonlinearity and
chaos that have been recently motivated by the mathematics of determinisiic
nonlinear dynamical systems.

HI. BASIC FACTS AND INTEGRATEON TESTS

One interesting feature of Belview hydrocarbon prices is the
contemporanecus correlation between these prices. These correlations are
reporied in Table I for log levels and in Table 2 for first differences of log
levels. To determine whether these correlations are statistically significant,
Pindyck and Rotemberg (1990) is followed and a likelihood ratio test of the
hypotheses that the correlation matrices are equal to the identity matrix is
performed. The test statistic is

2n(|R|M)

where |R| is the deterpxinant of the correlation matrix and N is the number of

observations. This test statistic is distributed as x? with 0.5g(g-1) degrees of
freedom, where ¢ is the number of series.

Table 1. Contemporanecus Correlations Between Logged Prices

c2 C3 nC4 iC4 Ccs Crude Natural
oil gas
C2 H
C3 0767 1
nCé 0.686  0.906 i
iC4 $.588  0.821 0.923 H
Cs 0611 0.766 0.869 0.928 1
Crude oil 0.547  0.701 0.823 0.890 0.956 i

Nawmral gas 0.431 $.437 0.39¢ 0.278 0.289 0.266 1
x(21) = 1353.50

Note: Monthly data: 1985:1 - 1996:12
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Table 2.

Contemporaneous Correlations Between Differenced (logged) Prices
C2 C3 nC4 iC4 Cs Crude Natural

oil gas

c2 1

C3 0.785 1

nC4 0.702 0.811 1

iC4 0.617 0.725 0.828 1

Cs 0.646 -0.708 0.777 0.803 1

Crude oil 0.582 0.621 0.701 0.703 0.862 1

Natural gas 0.222 0.172 0.121 0.011 0.005 0.035 1

x*(21) = 849.57

Note: Monthly data: 1985:2 - 1996:12

The test statistic is 1353.50 with a p-value of 0.000 for the logged
hydrocarbon prices in Table 1, suggesting that the hypothesis that Belview
hydrocarbon prices are uncorrelated in log levels is rejected. Turning now to
Table 2, we see that the test statistic is 849.57 with a p-value of 0.000 for the
first differences of the logged prices. Clearly, the null hypothesis that these
prices are uncorrelated in first differences of log levels is also rejected.

The first step in testing for nonlinearity and chaos is to test for the
presence of a stochastic trend (a unit root) in the autoregressive representation
of each individual series. Nelson and Plosser (1982) argue that most
macroeconomic and financial time series have a unit root (a stochastic trend),
and describe this property as one of being "difference stationary” (DS) so that
the first difference of a time series is stationary. An alternative "trend
stationary"” model (TS) has been found to be less appropriate.

In what follows we test the null hypothesis of a stochastic trend against
the trend-stationary alternative by estimating by ordinary least-squares (OLS) the
following augmented Dickey-Fuller (ADF) type regression (see Dickey and
Fuller, 1981).

k
Alogy, = a, + a,t + ylogy, | + ElbjAlogy,_j + g, )

where A is the difference operator. The k extra regressors in (1) are added to
eliminate possible nuisance parameter dependencies in the limit distributions of
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the test statistics caused by temporal dependencies in the disturbances. The
optimal lag length (that is, k) is taken to be the one selected by the Akaike
information criterion (AIC) plus 2-see Pantula et al. (1994) for details
regarding the advantages of this rule for choosing the number of augmenting
fags in equation (i),

Table 3 presents the results. The first column of Table 3 gives the
optimal value of k in equation (1), based on the AIC plus 2 rule, for each price
series. This identifies % to be 3 for C2, nC4, iC4, and CS5, 4 for C3, 5 for crude
oil, and 10 for natural gas. The ¢-statistics for the null hypothesis v = 0 in
equation (1} are given under 7, in Table 3. Under the null hypothesis that y =
0, the appropriate critical value of 7, at the 5% level (with 100 observations) is -
3.45—see Fuller (1976, Table 8.5.2). Hence, the null hypothesis of a unit root
cannot be rejected for all series.

Table 3. Unit Root Test Results

Test statistics

Series 4 7. Ha,) b 7, Decision
c2 3 -3.09 1.66 5.48 -2.75 I(1y
C3 4 -2.5% 2.43 4.64 -1.67 (1)
nC4 3 -3.33 .53 6.42 -3.13° KO}
iC4 3 -2.83 1.11 4.83 -2.82 K1)
C3 3 -3.26 6.95 6.22 -3.32° KO}
Crude oil 5 -3.20 0.94 6.03 -3.23" KG)
Natural gas 10 -1.80 2.74 4.94 -1.16 i1

Notes: Monthly data, 1985:1 - 1996:12. All the series are in logs. An asterisk indicates
rejection of the null hypothesis at the 5% significance level. 7, is the f-statistic for the null
hypothesis v = 0 in equation (1). Under the null hypothesis, the appropriate critical value of 7,
at the 5% significance level (with 100 observations) is -3.45—see Fuller (1976, Table 8.5.2).
Ka,) is the r-statistic for the presence of the time trend (i.e., the null hypothesis ¢, = 0) in
equation (1}, given the presence of a unit root. The appropriate 95% critical value for Ka,),
given by Dickey and Fuller (1981}, is 2.79. The 4, statistic tests the joint null 2, = v = 0 in
equation (1). The 95% critical value, given by Dickey and Fuller (1981) is 6.49. Finally, 7, is
the ¢-statistic for the null v = 0 in equation (2). The appropriate 95% critical value of 7 . 18
-2.8%—see Dickey and Fuller (1976, Table 8.5.2).
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Since the null hypothesis of a unit root hasn’t been rejected, there is a
question concerning the test’s power in the presence of the deterministic part of
the regression (i.e., @, + a,f). In particular, one problem is that the presence of
the additional estimated parameters reduces degrees of freedom and the power
of the test—reduced power means that we will conclude that the process contains
a unit root when, in fact, none is present. Another problem is that the
appropriate statistic for testing v = 0 depends on which regressors are included
in the model.

Although we can never be sure of the actual data-generating process,
here we follow the procedure suggested by Doldado et al. (1990) for testing for
a unit root when the form of the data-generating process is unknown. In
particular, since the null hypothesis of a unit root is not rejected, it is necessary
to determine whether too many deterministic regressors are included in equation
(1). We therefore test for the significance of the trend term in equation (1) under .
the null of a unit root, using the #(a,) statistic in Table 3. Under the null that a,
= ( given the presence of a unit root, the appropriate critical value of #(a,) at
the 5% significance level is 2.79—see Dickey and Fuller (1981). Clearly, the
null cannot be rejected, suggesting that the trend is not significant. The ¢,
statistic which tests the joint null hypothesis a, = y = 0 reconfirms this resuit.

This means that we should estimate the model without the trend, i.e.,
in the following form

k
Alogy, = ay + Yy, * ElbjAlogy,_j + e, @

and test for the presence of a unit root using the 7, statistic. The results,
reported in Table 3, indicate that the null hypothesis of a unit root is now
rejected for nC4, CS5, and crude oil. The remaining series do contain a unit root,
based on this unit root testing procedure. Our decision regarding the univariate
time series properties of these series is summarized in the last column of Table
3.

IV. TESTS FOR CHAOS

Recently, five highly regarded tests for nonlinearity or chaos (against
various alternatives) have been introduced—see Barnett et al. (1995, 1997) for
a detailed discussion. All five of the tests are purported to be useful with noisy
data of moderate sample sizes. The tests are the Hinich (1982) bispectrum test,
the BDS (Brock, Dechert, Scheinkman, and LeBaron, 1996) test, White’s (1989)
neural network test, Kaplan’s (1994) test, and the Nychka, Ellner, Gallant, and
McCaffrey (1992) dominant Lyapunov exponent estimator. Another very
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promising test [that is, similar in some respects to the Nychka, et al. (1992) test]
has also been recently proposed by Gencay and Dechert (1992).

It is to be noted, however, that the Hinich bispectrum test, the BDS
test, White’s test, and Kaplan’s test are currently in use for testing nonlinear
dependence [whether chaotic (i.e., nonlinear deterministic) or stochastic}, which
is necessary but not sufficient for chaos. Only the Nychka et al. (1992) and the
Gencay and Dechert (1992) tests are specifically focused on chaos as the null
hypothesis. In what follows, we only apply the Lyapunov exponent estimator of
Nychka et al. (1992). This is a Jacobian-based method involving the use of a
neural net to estimate a map function by nonlinear least squares, and
subsequently the use of the estimated map and the data to produce an estimate
of the dominant Lyapunov exponent. We first describe this test, following
Serletis and Gogas (1997).

We assume that the data {x,} are real-valued and are generated by a
nonlinear autoregressive model of the form

X, = fX s Xy gy s ) * €, 3)

where L is the time-delay parameter, m is the length of the autoregression, and
e, is a sequence of zero mean (and unknown constant variance) independent
random variables. A state-space representation of (3) can be written as follows

*, 'f(xt—L""’xt—mL) e,
XL XL 0
= +
Xi-mL+L Xi-mLeL 0
or equivalently,
X, = F(X,,) +E, 3]

where
X = Xy s Xy ) FX) = F(Bys oo X)) s X oo Xy )T

and E, = (e, 0, ..., 0)7.
The definition of the dominant Lyapunov exponent, A\, can be
formulated more precisely as follows. Let X, X', €R™ denote two "nearby"
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initial state vectors. After M iterations of model (4) with the same random shock
we have (using a truncated Taylor approximation)

1X, - Xy | = 1F¥X) - FHX) | = [DF*) (% - X1

where F is the Mth iterate of F and (DF¥), is the Jacobian matrix of F

evaluated at X;. By application of the chain rule for differentiation, it is possible
to show that

| XM - MI | = || TM(XO - XOI)I

where Ty, = Jy,Jyy, ... J, and J, = (DF™), . Letting v, (M) denote the largest

eigenvalue of T; T, the formal definition of the dominant Lyapunov exponent,
A, is

. 1
A= lim —Inlv
e o [vi(M)|

In this setting, A gives the long-term rate of divergence or convergence between
trajectories. A positive A measures exponential divergence of two nearby
trajectories [and is often used as a definition of chaos—see, for example,
Deneckere and Pelikan (1986)], whereas a negative A measures exponential
convergence of two nearby trajectories.

In the next section we use the Nychka et al. (1992) Jacobian-based
method and the LENNS program [see Ellner et al. (1992)] to estimate the
dominant Lyapunov exponent. In particular we use a neural network model to
estimate f by nonlinear least squares, and use the estimated map f and the data
{x,} to produce an estimate of the dominant Lyapunov exponent. In doing so, we
follow the protocol described in Nychka et al. (1992).

The predominant model in statistical research on neural pets is the
single (hidden) layer feedforward network with a single output. In the present
context it can be written as
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. 13
F(X,0) = a+ EBY, + ¥ X,)

where XER™ is the input,  is a known (hidden) univariate nonlinear "activation
function” [usually the logistic distribution function y(u) = 1/(1 + exp(-u))—see,
for example, Nychka et al. (1992) and Gencay and Dechert (1992)], ¢ =
(a,B,w,7) is the parameter vector, and v, = (yy, Yoo -ees 'y,,y-)T. BER* represents
hidden unit weights and wER*, vE R*™ represent input weights to the hidden
units. & is the number of units in the hidden layer of the neural net. Notice that
there are [k(m+2)+1] free parameters in this model.

Given a data set of inputs and their associated outputs, the network
parameter vector, 8, is fit by nonlinear least squares to formulate accurate map
estimates. As appropriate values of L, m, and &, are unknown, LENNS selects
the value of the triple (L,m,k) that minimizes the Bayesian Information Criterion
(BIC)—see Schwartz (1978). Gallant and White (1992) have shown that we can

then use J, the estimate of the Jacobian matrix J, obtained from the

approximate map f» as a nonparametric estimator of J. The estimate of the
dominant Lyapunov exponent then is
1

A= —Inp
o B

where ¥ (N) is the largest eigenvalue of TIT, and where TN = jN jN_1 jl_

V. EMPIRICAL RESULTS

Before conducting nonlinear dynamical analysis the data must be
rendered stationary, delinearized (by replacing the stationary data with residuals
from an autoregression of the data) and transformed (if necessary). Since a
stochastic trend has been confirmed for each of C2, C3, iC4, and natural gas,
these series are rendered stationary by taking first differences of logarithms. In
the case of C4, C5, and crude oil we use the logged series, since these are 1(0).
Also, since we are interested in nonlinear dependence, we remove any linear
dependence in the stationary data by fitting the best possible linear model. In
particular, we prefilter the stationary series by the following autoregression

; 5
z, = bo M %bizt‘j * e, er'lt-l ~ N(O, Wo) )
j=
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using for each series the number of lags, ¢, for which the Ljung-Box (1978)
Q(36) statistic is not significant at the 5% level. This identifies g to be 1 for C2
and nC4, 2 for C3, iC4, C5, and crude oil, and 3 for natural gas-see Table 4.

Table 4. Diagnostics of AR Models Under the Ljung-Box (1978) Q(36)
Test Statistic

2, = by + Lbz + ¢, e |l ~ NOw)

AR Error Term Diagnostics (p-values)

Series AR Lag, ¢ Q-statistic ARCH J-B
Cc2 1 0.532 0.025 0.000
Cc3 2 0.054 0.802 0.000
nC4 1 0.095 0.057 0.000
iC4 2 0.124 0.097 0.002
Cs 2 0.840 0.030 0.000
Crude oil 2 0.639 0.049 0.000
Natural gas 3 0.098 0.035 0.000

Notes: The Q-statistic is distributed as a x%(36) on the null of no autocorrelation. ARCH is
Engle’s (1982) Autoregressive Conditional Heteroskedasticity (ARCH) test distributed as a
x3(1) on the null of no ARCH. The Jarque-Bera test statistic is distributed as a x2(2) under the
null hypothesis of normality.

Although the autocorrelation diagnostics in Table 4 indicate that the
chosen AR models adequately remove linear dependence in the stationary data,
the ARCH test suggests the presence of a time-varying variance (except in the
case of C3). Since variance-nonlinearity could be generated by either a
(stochastic) ARCH process or a deterministic process, in what follows we follow
Serletis and Gogas (1997) and model the conditional variance (or predictable
volatility) using Bollerslev’s (1986) generalized autoregressive conditional
heteroskedasticity (GARCH) model and Nelson’s (1991) exponential GARCH
(EGARCH) model. One important feature of what we are doing, however, is to
present the results of a diagnostic test for checking the adequacy of these models
and choose among the estimated GARCH and EGARCH models.
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The GARCH model is a generalization of the pure ARCH model,
originally due to Engle (1982) and is useful in detecting nonlinear patterns in
variance while not destroying any signs of deterministic structural shifts in a
model-see, for example, Lamoreux and Lastrapes (1990). Using the same AR
structure as before we estimate the following GARCH(1,1) model

q
z,=b, + Xbz . +e, el|l, ~N(0,ac
¢ (] j=1j” ¢ tltl (0,0;) 6)

2 2 2
o, =Wy + e g, + Bo,

where N(O, of) represents the normal distribution with mean zero and variance
0. Parameter estimates and diagnostic tests are given in Table 5. First,
estimated coefficients of the ARCH term, «,, and the GARCH term, B3,, are
positive and (in general) significant at the 5% level. Also, the Q-test finds no
linear dependence and the ARCH test finds no ARCH effects, suggesting that
the lag structure of the conditional variance is correctly identified. However, the
null hypothesis that «;, + B, = 1 cannot be rejected, suggesting the presence
of integrated variances.

GARCH models assume that the conditional variance in equation (6) is
a function only of the magnitude of the lagged residuals and not their
signs—i.e., only the size, not the sign, of lagged residuals determines
conditional variance. This assumption imposes important limitations on GARCH
models. For example, these models are not well suited to capture the so-called
“leverage effect.” To meet these objections, we use Nelson’s (1991) exponential
GARCH (1,1), or EGARCH (1,1), also inspired by Engle’s (1982) ARCH

model, in which the conditional variance 0,2 depends on both the size and the
sign of lagged residuals as follows

€11

loga} = wy + Blog(al,) +
-1

The log transformation ensures that of remains non-negative for all ¢. Clearly,
the impact of the most recent residual is now exponential rather than quadratic.

Parameter estimates and diagnostic tests for the EGARCH (1,1) model
are presented in Table 6. In general, the log likelihood for the EGARCH (1,1)
model is higher than that for the GARCH (1,1) model, suggesting that
the EGARCH model is superior to the GARCH model for these series.
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To investigate this further, and in order to choose between GARCH and
EGARCH models, we present in Table 7 the results of a diagnostic test
suggested by Kearns and Pagan (1993) for checking the adequacy of these
models. The test involves the regression of &2 against a constant and the
estimated conditional variance g, The intercept of such a regression should be
zero and the slope coefficient unity.

The insignificant Q(36) statistic in Table 7 indicates that each of these
models captures much of the persistence in actual volatility and the coefficient
of determination indicates how well the estimated conditional variance predicts
the actual variance and is used to compare the GARCH and EGARCH models.
On the basis of these results, and a comparison between the log likelihood values
in Tables 6 and 7, in what follows we test for chaos using the standardized

EGARCH (1,1) residuals—the standardized residuals are defined aseg, /6”

where ¢, is the residual of the mean equation and §/? its estimated (time-
varying) variance.

Table 8. The Nychka et al. (1992) BIC Selection of the Parameter Triple
(L,m,k), the Value of the Minimized BIC, and the Dominant
Lyapunov Exponent Point Estimate

(L,m,k) Triple that Value of the Dominant Lyapunov
Series Minimizes the BIC Minimized BIC Exponent Point Estimate
Cc2 (3.3,2) 1.447 0.056
C3 2,7.2) 1.292 0.211
nC4 (1,7,2) 1.366 0.081
iC4 (2,6,2) 1.386 0.100
C5 (1,4,2) 1.362 0.068
Crude oil (1,2,1) 1.427 -1.835
Natural gas 2,8,1) 1.391 -0.063

Notes: Numbers in parentheses represent the BIC selection of the parameter triple, (L, m, k), where
L is the time delay parameter, m is the number of lags in the autoregression and & is the number of
units in the hidden layer of the neural net.

We now apply the Nychka et al. (1992) Lyapunov exponent test to the
standardized residuals. The Bayesian Information Criterion (BIC) point estimates
of the dominant Lyapunov exponent for each parameter triple (L,m,k) are
displayed in Table 8 along with the respective optimized value of the BIC
criterion. Clearly, all but two Lyapunov exponent point estimates are positive,
supporting the conclusion that all Belview natural gas liquids prices have a
chaotic nonlinear generating process.
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Of course, the standard errors of the estimated dominant Lyapunov
exponents are not known [there has not yet been any published research on the
computation of a standard error for the Nychka et al. (1992) Lyapunov exponent
estimate]. It is possible, however, to produce sensitivity plots that are
informative about precision, as the ones in Figure 1. Figure 1 indicates the
sensitivity of the dominant Lyapunov exponent estimate to variations in the
parameters, by plotting the estimated dominant Lyapunov exponent for each
setting of (L,m,k), where L=1, 2, 3, m=1,...,10, and k = 1, 2, 3.

Figure 1. NEGM Sensitivity Plots
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Figure 1. NEGM Sensitivity Plots (continued)
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Figure 1. NEGM Sensitivity Plots (continued)
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Figure 1. NEGM Sensitivity Plots (continued)
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VI. CONCLUSION

We have provided results of nonlinear dynamical analysis of North
American hydrocarbon prices using the Nychka et al. (1992) test for positivity
of the dominant Lyapunov exponent. Before conducting such a nonlinear
analysis, the data were rendered stationary and appropriately filtered, in order
to remove any linear as well as nonlinear stochastic dependence.

We have found evidence of nonlinear chaotic dynamics in all five (C2,
C3, nC4, iC4, and C5) Belview natural gas liquids markets. In principle, it
should be possible to model (by means of differential/difference equations) the
nonlinear chaos-generating mechanism and build a predictive model of North
American natural gas liquids prices. This is an area for potentially productive
future research that will undoubtedly improve our understanding of how North
American NGLs prices change over time. See Barnett and Serletis (1999) for
more insights regarding this line of research.
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