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Abstract 

Interfuel substitutability has been of longstanding interest to the energy economics and policy 

community. However, no quantitative meta-analysis has yet been carried out of this literature. 

This paper fills this gap by analyzing a broad sample of studies of interfuel substitution in the 

industrial sector, manufacturing industry or subindustries, or macro-economy of a variety of 

developed and developing economies. Publication bias is controlled for by including the primary 

study sample size in the meta-regression. Results for the shadow elasticities of substitution 

between coal, oil, gas, and electricity for forty-six primary studies show that at the level of the 

industrial sector there are easy substitution possibilities between all the fuel pairs with the 

exception of gas-electricity and coal-electricity. Substitution possibilities seem more constrained 

at the macro level and less constrained in sub-industries. Estimates also vary across countries. 

Publication bias does not seem to be present, but model and data specification issues very 

significantly affect the estimates derived by each individual study. Estimates from cross-section 

regressions are generally largest, fixed effects panel estimates intermediate in magnitude, and 

time-series estimates are mostly much smaller. Econometric research suggests that the fixed 

effects estimates are likely the best among the existing studies, though biased downwards. 
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1. Introduction 

Interfuel substitutability has been of longstanding interest to the energy economics and policy 

community and is of critical importance in evaluating sustainability options and in estimating the 

economic cost of environmental policies such as a carbon tax. Apostolakis (1990) and Bacon 

(1992) surveyed some of the early studies of interfuel substitution elasticities for the OECD 

countries. Bacon found that studies that used panel data tended to find more substitutability 

between fuels as measured by the cross-price elasticities. He suggested that this was because this 

data represented long-run elasticities, while time series data generated short-run elasticities. 

Apostolakis (1990) came to a similar conclusion regarding substitution between aggregate 

energy and capital.
1
 Apostolakis (1990) did not, however, come to as clear-cut conclusions 

regarding interfuel substitution. He found that coal and oil and coal and electricity were good 

substitutes with less substitutability between coal and gas and electricity and gas and a mixed 

picture for the remaining two combinations.  

 

Given what we now know about cointegration in time series, whether time series estimates 

represent short-run elasticities or not depends on the type of time series model estimated and 

whether the time series cointegrate or not. Time series estimates in levels could represent long-

run equilibrium elasticities if the variables cointegrate. It is also possible that the larger sample 

size of most panel and cross-section studies results in less-biased estimates of the elasticities. 

These and other hypotheses will be investigated in this paper.  

 

Since Bacon’s and Apostolakis’ surveys, numerous additional primary studies have been carried 

out for both developed and developing economies. However, no quantitative meta-analysis of 

this literature has yet been carried out. This paper fills this lacuna by analyzing a broad sample of 

studies of interfuel substitution in either the industrial sector, manufacturing industry as a whole 

or manufacturing sub-industries, or the macro-economy of a variety of developed and developing 

economies. An initial glance at this literature shows a wide range of numerical values for 

                              
1
 Koetse et al.’s (2008) meta-analysis finds a mean value of the Morishima elasticity of 

substitution between capital and energy for a change in the price of energy of 0.216 for their 
time-series base case with significantly greater values for panel data of 0.592 and for cross-
section data of 0.848. 
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substitution elasticities. Some studies show low substitutability between fuels (the shadow 

elasticity of substitution (McFadden, 1963) is between 0 and 1) and others show a high level of 

substitutability. Signs of cross-price elasticities also vary across studies and across countries 

within multi-country studies. Some simple hypotheses can be formulated to explain these 

patterns but they tend to be contradicted by outliers. For example, I hypothesized that studies that 

incorporate post 1973 or 1979 data show less substitutability than the classic Pindyck (1979) 

paper. But Jones (1996), using a linear logit model, found a high degree of substitutability (many 

of his Morishima elasticities are greater than Pindyck’s) for most fuels apart from electricity. On 

the other hand, Considine (1989) also used a linear logit model but estimated very low 

elasticities. The value of a meta-analysis over a traditional literature review is that it can 

objectively untangle these patterns in the metadata.  

 

Meta-analysis seeks to estimate the true value of a parameter or summary statistic given in many 

different primary research studies – known as an “effect size” in the jargon of the meta-analysis 

literature – and how it varies over the relevant population as well as accounting for the errors 

introduced by inaccurate measurement, differences in methodology, publication selection biases 

etc. In the simplest case, if we believed that the underlying parameter was a constant across the 

population – called a fixed effect size (FES) in the meta-analysis jargon - and had no information 

on the sources of variations in the various primary estimates nor the precision of the primary 

estimates themselves, we could compute the unweighted mean of all the effect sizes in all the 

primary studies (each primary study often has many individual observations) (Nelson and 

Kennedy, 2008). When the precision of primary estimates is known, the sum weighted by the 

inverse of the variances (i.e. the precisions) - called the FES weighted mean - can be computed.  

 

It is more reasonable in most cases to maintain that the effect size in different studies is actually 

different and not purely the result of sampling error. This is called a random effect size – (RES). 

It is reasonable to assume that some of this second source of variance is explainable: 

 

"
i
=#

i
+ e

i
, e

i
~ N(0,v

i

2
)          (1) 

 

"
i
=" + x

i

'# + u
i
, u

i
~ N(0,w

2
)         (2) 



4 

 

where a single observtion per study is assumed,  "
i
 is the effect size, " + x

i

'#  is a regression 

model on the explanatory variables x
i
, u

i
 is the unexplainable variability across studies, and e

i
 

the disturbance due to sampling error (Boys and Florax, 2007). If w = 0, the model can be 

estimated by GLS using the variances of the estimates from the primary studies as estimates of 

v
i

2. In the general case, more sophisticated estimators may be required (see Nelson and Kennedy, 

2008). Additional issues concerning meta-analysis are discussed in the methods section of this 

paper. 

 

2. Methods 

a. Choice of Dependent Variables 

Stern (2008b) reviews the theoretical literature on the elasticity of substitution. With two inputs 

and constant returns to scale the elasticity of substitution is unambiguously defined. But the 

situation is much more complex for more general cases. Elasticities of substitution can be 

classified along three dimensions: 

 

• Gross and net elasticities: Under non-constant returns to scale, some of the elasticities 

of substitution measured holding output constant (net substitution) and letting it vary optimally 

(gross substitution) differ. For non-homothetic technologies all the elasticities differ for net and 

gross substitution.  

• Primal and dual elasticities: Also known as the distinction between elasticities of 

complementarity and elasticities of substitution. The familiar Allen-Uzawa elasticity is a dual 

elasticity in that is derived from the cost function. The Antonelli elasticities by contrast are 

derived from the input distance function, a primal representation of the technology. 

• Scalar, asymmetric ratio, and symmetric ratio elasticities: The Allen-Uzawa 

elasticities measure the effect on the quantity of the factor demanded for a change in the price of 

another factor scaled by the cost share of that factor. These elasticities are symmetric. The 

Morishima elasticities measure the effect on the factor ratio of the change in a ratio of prices. But 

the elasticity takes a different value depending on which price in the ratio changes, such that 

these elasticities are not symmetric. By placing the restriction that cost is held constant on the 

Morishima elasticity we obtain the shadow elasticity of substitution. Ratio and scalar elasticities 
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measure different concepts of substitution. The ratio elasticities measure the difficulty of 

substitution between inputs with values between zero and unity indicating poor substitutability 

and values greater than one indicating good substitutability. By contrast, the scalar elasticities 

can be positive or negative – for p-substitutes and p-complements respectively in the case of the 

Allen-Uzawa elasticities (or q-complements and q-substitutes respectively in the case of the 

Antonelli elasticities). 

 

Most interfuel substitution studies look only at equations for fuel cost shares with the quantity of 

energy implicitly held constant and do not consider changes in output. A few studies such as 

Pindyck (1979) estimate an energy submodel and a capital-labor-energy-materials model 

(“super-model”). This allows computation of the “partial elasticities” which hold the quantity of 

energy constant and “total elasticities” which allow it to vary. Both of these are net elasticities – 

the level of output is held constant. Even so, few if any studies estimate the parameters necessary 

to compute the returns to scale in the super-model. Given this, it is not possible to compute the 

gross elasticities of substitution and I do not consider them further.  

 

Most primary studies simply report the own and cross-price elasticities from which the 

Morishima elasticities can be derived as differences between cross-price and own-price 

elasticities and the shadow elasticities as share weighted averages of the Morishima elasticities 

(Chambers, 1988).
2
 For the translog function the own- and cross-price elasticities are given by: 

 

"ii =
# lnX i(y,p)

# ln pi
=
$ii + Si

2 % Si

Si
 , "ij =

# lnX i(y,p)

# ln p j

=
$ij + SiS j

Si
     (3) 

 

                              
2
 Some papers also report Allen-Uzawa elasticities or Morishima elasticities. But regardless of 

how the data is presented I compute the shadow elasticities from the information given. Most, 

but not all studies, also present the parameters of the cost function and/or the average cost shares, 

which can be of use in computing shadow elasticities and even cross-price elasticities that are not 

reported in the primary study - some studies only report one of each pair of cross-price 

elasticities. 
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where X
i
 is the quantity of input i, pi  its price, and S

i
 its cost share. "ij  is the relevant second 

order parameter from the translog cost function, y is output and p is the vector of factor prices. 

The Morishima elasticity for a change in price i can be derived as: 

 

µij =
" ln(X j (y,p) /X i(y,p))

" ln(pi / p j ) p j

=#ij $#ii
       (4) 

 

and the shadow elasticity is: 

 

" ij =
# ln(X j (y,p) /X i(y,p))

# ln(pi / p j ) C
=

Si

Si + S j

µij +
Si

Si + S j

µ ji
      (5) 

 

The shadow elasticities should be non-negative 
3
. As averages of the Morishima elasticities, the 

shadow elasticities are good summary statistics of the overall degree of substitutability between 

inputs. For any given number of inputs they are fewer in number than the cross-price, Morishima 

elasticities, or Allen-Uzawa elasticities. In the case of four fuels there are just six shadow 

elasticities. Therefore, in this paper I carry out a meta-analysis of the shadow elasticities.
4
 The 

various elasticities (cross-price, Allen-Uzawa, and Morishima) found in the primary studies were 

converted to shadow elasticities. 

 

Equation (3) can be used to find the cost shares required to compute (5) when these are not given 

in the primary study if the study uses the translog function. The quadratic equation given by the 

own price elasticity and cost function parameter presented in the paper is solved for the cost 

share. Alternatively, if a study presents both Allen-Uzawa elasticities and cross-price elasticities 

their ratio gives the unstated cost share.  

                              
3
 Morishima elasticities are usually positive but are not necessarily so – one of pair for a factor 

combination can be positive and the other negative.  
4 Koetse et al. (2008) carry out separate meta-analyses for the cross-price and Morishima 
elasticities but they only look at the capital-energy elasticity for a change in the price of energy. 
Hence they have just two meta-regressions vs. six in this paper. Boys and Florax estimate a 
single meta-regression for the Allen-Uzawa elasticity of substitution between capital and labor. 
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b. Choice of Explanatory Variables 

i Overview 

Explanatory variables play two roles in a meta-analysis:  

 

• Measuring differences between “effect sizes” that are real and that we want to measure. 

• Accounting for outliers and explainable variability in the estimates around the true values 

of the parameter or statistic of interest. 

 

Examples of the first category are measuring the difference between the elasticity of substitution 

in North America and Europe or between partial and total elasticities or between the industrial 

sector and the economy as a whole. An example of the second category is that the elasticity of 

substitution may differ depending on whether the primary studies modeled technical change or 

ignored it. If we argue that a best practice study includes some sort of time trends in the cost 

function we will want to use the fitted elasticities for the case where technological change was 

modeled while regarding the difference in effect size in the studies which ignored technological 

change as noise that we wish to account for.  

 

I referred to the two existing meta-analyses of elasticities of substitution (Boys and Florax, 2007; 

Koetse et al., 2008) and reviewed the literature on interfuel substitution to develop a list of 

appropriate variables to include as explanatory variables in the meta-analysis. Many of my 

explanatory variables are the same as those of Koetse et al. (2008) or Boys and Florax (2007). 

There are a number of variables regarding model specification that I collected but dropped from 

the final analysis because they only differentiated one or two studies from the remainder. An 

example is the use of stochastic technological change trends vs. deterministic trends. Only 

Harvey and Marshall (1991) and Morana (2003) used the stochastic specification. In another 

example, very few studies used quarterly data. Some variables were collected but did not have 

significant effects in the meta-regressions and did not have strong theoretical reasons for 

inclusion. An example is a dummy variable I created for studies that did not include all four of 

the standard fuels.  
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ii Methodology Variables 

From the introduction, we can see that some variables of clear interest are whether the primary 

study was estimated with time series, cross-section, or panel data, whether a translog, linear 

logit, or other functional form was used, and whether technological change was modeled. Data 

type is strongly correlated with sample size, which is a required variable in the regression in 

order to control for publication bias. 5 I first tested the effects of data type when controlling for 

sample size in a preliminary regression analysis. There are only two cross-sectional studies in the 

sample – Halvorsen (1977) and Bousquet and Ladoux (2007). So the effect of cross-section vs. 

panel data may not be accurately estimated. Only Halvorsen (1977) provides cross-sectional 

estimates for the coal elasticities. On the other hand, 31 of the 46 studies employ time-series 

data. So it should be easier to test the difference between panel and time series data. I treat panel-

data with fixed effects as the default and include dummies for cross-sectional and time-series 

data. I also include a dummy for those studies that do not include fixed effects in panel data 

estimates and, therefore, estimate the model using OLS. Again, there are relatively few such 

studies - only Jones (1996), Taheri (1994), and Uri (1979a) omitted fixed effects from a panel 

regression with more than three or four time observations.6 

 

To deal with functional form, I use dummies for translog, linear logit, and other functional 

forms. As there is no a priori reason to believe that one function is more appropriate than 

another, it is desirable, therefore, that the base case is for a weighted mean of the different 

functional forms. I subtract the weighted mean of the dummy variable from each functional form 

dummy 7 and then subtract the translog dummy from each of the other two dummies, which are 

                              
5
 The time series samples are the smallest and the cross-section samples the largest. 

6
 Jones (1996) and Taheri (1994) apply fixed effects and (System) OLS to the same data and 

model. Jones obtains smaller elasticities for the OLS estimates, while Taheri obtains mostly 

greater elasticities. Uri (1979a) only uses OLS. His shadow elasticities are all in the range of 0.2-

0.3.  Fisher-Vanden et al. (2004) have just three time series observations and Lakshmanan et al. 

(1984) four. Jones has data for all four fuels, Uri and Fisher-Vanden et al. for coal, electricity 

and oil, Lakshmanan et al. for oil, gas, and electricity. Therefore, only Jones provides an 

estimate for the coal-gas elasticity. No studies used random effects estimation. 
7
 For this and the country dummies, described below, these computations were repeated for each 

meta-regression omitting from the computation of the mean the observations that had a missing 

value for the dependent variable. The number of non-missing observations is different for each 

elasticity. The weights used are the sample size in the primary study as discussed below. 
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then used in their transformed form in the meta-regression. This ensures that the sum of the 

effects of these dummies in the sample is zero.  

 

By contrast, I argue that models that omit technical change are misspecified and, therefore, it is 

desirable that the base case be for a model with technical change. I introduce a dummy equal to 

one if technical change variables are omitted in the energy submodel. 

 

iii Data and Definition Variables 

The variables mentioned in the previous section are questions of specification on the part of the 

researchers that do not reflect variations in the true values of the elasticities. As mentioned 

above, the region covered may be of interest, which I control for using dummy variables for 

countries. A country is assigned its own individual dummy if it has at least two studies available 

for each elasticity for which that country has an estimate. Individual dummies are, therefore, 

assigned to Australia, China, India, Japan, Korea, France, Germany, Italy, Netherlands, UK, 

Canada, and USA. The remaining countries were assigned dummies for “other Europe” and 

“other Asia”.8 Again these dummies were demeaned, as described above, and the transformed 

dummy for the Netherlands was subtracted from the remaining dummies. The transformed 

dummies were used in the meta-regressions.  

 

I trialed various methods of accounting for the period of the data. Each primary study covers a 

different number of years with different starting and ending points. It is, therefore, not clear a 

priori what is the correct way to measure the date of the data. One approach is to include the 

number of years from the present to either the final or average year of the data, on the basis that 

we are most interested in a current estimate for the elasticity. Using this method, it seems that the 

coal-oil and coal-gas elasticities may have declined over time. But the estimate of the latter was 

negative. This is due to some recent low estimates from small samples. As we see in Figure 2, 

there are no large sample studies for the coal-gas elasticity and all the larger samples are older. 

                              
8
 I also tested dummies for more aggregated regions but the hypothesis that the intercept term 

was constant across studies could be rejected for those models for all elasticities. For some of the 

elasticities some dummies were amalgamated due to the low number of observations. For the 

coal-gas and oil-gas meta-regressions “Other Asia” and “Other Europe” were merged together. 
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Give this and the difficulty of interpreting an unconstrained trend term in a regression I decided 

not to use this approach. An alternative approach is to assume that the best estimate includes data 

from all time periods and dummy variables can be used to account for time periods not included 

in a sample. The results of this approach were highly variable depending on exactly how the time 

periods were partitioned. So I did not use this approach either.  

 

I collected data on whether an elasticity is a partial elasticity estimated from a submodel that 

holds energy constant or a total elasticity that allows energy use to vary (see Pindyck, 1979). But 

as the Morishima elasticities are the differences between a cross-price and an own-price 

elasticity the partial and total elasticities are theoretically equal and so this variable is not used in 

the meta-regressions. 

 

I also introduce dummies for studies of the macroeconomy, manufacturing, and subsectors of 

manufacturing (industrial sector = 0). For dynamic models, I note whether an elasticity is a short-

run or a long-run elasticity.9 The default is an estimate from a static model. Most studies that use 

static models are not specific about whether they are attempting to estimate a long-run or a short-

run elasticity. We can presume that the authors intend to estimate a long-run elasticity 

(Söderholm, 1998). The question of what static estimates actually estimate is taken up in section 

3c below. 

 

It is possible that the elasticity varies with the level of economic development. Klump and de la 

Grandville (2000) argued that income per capita will be higher in economies with more 

substitutability between capital and labor but there is no a priori theory in the case of interfuel 

substitution. I use the log of average GDP per capita in 2000 PPP Dollars for the sample period 

of the primary study (Heston et al., 2006) relative to the sample size weighted arithmetic mean 

income in the full sample to reflect the effect of the level of economic development. The base 

case is for a country with this average income of $14538.  

 

                              
9
 Most of these are time-series studies. Only Jones (1996) and Taheri (1994) estimate dynamic 

models using panel data.  
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iv Publication Bias 

Stanley (2001) suggests including the sample size as an explanatory variable. Where the 

dependent variable is a test statistic this is a test of whether there is a true underlying effect. The 

t-statistic should increase with sample size if there is a true non-zero effect in the data. In our 

case, the true elasticity might just as well be zero. But the estimate is also likely to be closer to 

the true value in larger samples (Stanley, 2005). On the other hand, this effect should not be 

monotonic – studies of small sample size should be equally likely to report values above or 

below the true parameter in the absence of publication bias – as exemplified by the “funnel 

graph”.10 Publication bias can take various forms. Journals and researchers might only publish 

results that appear to be theoretically satisfactory – for example rejecting studies with positive 

own price elasticities. Or they may only accept studies with statistically significant effects. If 

both statistically significant and theoretically correct results are favored, a correlation between 

sample size and effect size will result because studies with small samples have to struggle to find 

larger effects (in the theoretically correct direction) in order to get statistically significant results 

(Stanley, 2005). One side of the true bell shaped distribution of effect sizes in studies is then 

censored to leave a monotonic relation between sample size and the remaining effect sizes. If the 

theoretical value is positive, this correlation will be negative and vice versa. If statistically 

significant results are favored regardless of sign then there will be no correlation with sample 

size but the distribution of effect sizes will be kurtotic. 

 

In the presence of unidirectional publication bias, the average effect size in the literature will be 

a biased estimate of the underlying parameter. Begg and Berlin (1988) argue that publication 

bias will be proportional to the inverse of the square root of sample size. Including this variable 

in a metaregression means that the intercept in the regression will estimate the value of the 

elasticity for a study with an infinite sample size, thus correcting for publication bias. This 

regression is then Stanley’s (2005) “funnel asymmetry test” (FAT) estimator using the inverse of 

the square root of the sample size in place of the precision of the primary estimate.  

 

                              
10 The funnel graph plots sample size or precision on the y-axis and the effect size on the x axis. 
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I would expect that in the substitution literature researchers are not very concerned with 

significance because the cost function parameters themselves are not of much interest. However, 

positive own price elasticities are likely to be censored. If cross price elasticities are not affected, 

this would cause estimates of Morishima elasticities and consequently of shadow elasticities of 

substitution to be somewhat more positive than is actually the case.  

 

All the variables used are listed in Table 1. 

 

c. Choice of Studies 

I developed a database of articles by first searching the Web of Science and RePEc for all 

relevant published articles on interfuel substitution. I then checked the articles in these articles’ 

reference lists and also all the articles that cited them in the ISI Citation Index and Google 

Scholar.  

 

Only studies that looked at interfuel substitution in the industrial sector as a whole, the economy 

as a whole, manufacturing, or sub-industries within manufacturing for single countries, provinces 

or states within countries, or groups of countries were considered. Studies for industries such as 

agriculture, construction, or electricity generation were not included. Neither were studies of 

consumer demand or transport fuel demand. A study must include estimates of the cross-price 

elasticities or elasticities of substitution between at least two of: coal, oil, natural gas, and 

electricity. Where possible we used estimates for aggregate energy use rather than for fuel use 

only. Some studies break down the standard fuel categories into subtypes such as heavy and light 

oil (Taheri and Stevenson, 2002) or domestic and foreign coal (Perkins, 1994). In these cases I 

created additional observations. For example, for the Taheri and Stevenson results one 

observation treats heavy oil as representing the oil category and the other treats light oil as 

representing the oil category. The cross-price elasticity between the two types of oil is dropped. 

 

I dropped Hall (1986) because only significant elasticities were reported. Harper and Field 

(1983) was dropped because only charts and no actual figures are reported. The selected studies 

are listed in Table 2. The table notes where some data were interpolated or extracted from other 
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statistics. Because each primary study has a different number of estimates of the elasticity, the 

data are an unbalanced panel. 

 

d. Other Econometric Issues 

This is the first meta-analysis of the elasticity of substitution to attempt to analyze the elasticities 

for multiple factor pairs. Koetse et al. (2008) investigate the capital-energy elasticity and Boys 

and Florax (2007) the capital-labor elasticity. The elasticities of substitution for the different fuel 

combinations are interrelated as they are all functions of jointly estimated regression parameters 

(which are subject to summation and symmetry conditions for the homothetic translog cost 

function) and the cost shares which sum to unity. Though there are no simple linear relationships 

between the elasticities, the residuals of meta-regression equations explaining each of them 

should be correlated. However, as the explanatory variables are the same in each equation, 

seemingly unrelated regression estimates are identical to equation by equation estimates. And, 

though the standard errors of the coefficients are different in the two cases, as is well known 

(Greene, 1993), there is no efficiency gain to joint estimation. Additionally, because many 

primary studies do not include all four major fuel types, each metaregression has many missing 

values. Joint estimation would mean discarding all studies that did not use all four fuels.  

 

Nelson and Kennedy (2008) review the use of meta-analysis in environmental and natural 

resource economics and make a number of recommendations for best practice including 

weighting the regression variables by the inverse of the standard errors of the estimates in the 

primary studies. This practice is followed by Koetse et al. (2008) and Boys and Florax (2007). 

As I transform the elasticities provided in the primary studies and do not have standard errors for 

the cost shares in almost all cases, I instead used the square root of sample size as my weights, 

which is the second best approach according to Nelson and Kennedy. The weights are 

implemented using the SPREAD option in RATS. I also estimate standard errors clustered by 

primary study using the CLUSTER option in RATS. Additionally, I test for residual 

heteroskedasticity using the Breusch-Pagan test and for a difference in the intercept term across 

studies using an F-test on a regression of the residuals on a vector of dummies for the studies. As 

will be seen, in five out of six cases the null hypothesis of equal means could not be rejected.  
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Koetse et al. (2008) and Boys and Florax (2007) use mixed effects regression. According to 

Nelson and Kennedy there should not be much practical difference between such more 

sophisticated procedures and the standard random effects estimator. A problem arises in using 

the standard algorithm for random effects as it estimates the variances of the individual and 

random effects using a preliminary fixed effects regression. But in a meta-analysis dataset of this 

type many variables take exactly the same value for all observations of a given individual study. 

Therefore, there is a perfect correlation between the fixed individual effects and these variables 

and a fixed effects regression cannot be estimated. Instead, following Greene (1993, 475), we 

could estimate a weighted least squares regression as described above and carrying out an 

analysis of variance of its residuals using the PSTATS command in RATS. The analysis of 

variance produces estimates of the required individual and random effects variances. In the 

RATS package the procedure PREGRESS must be used for estimating the random effects model 

in unbalanced panels. This procedure does not allow the estimation of robust coefficient 

covariance matrices within the procedure itself. Given these difficulties, I therefore, used the 

simpler WLS, robust covariance matrix procedure described in the previous paragraph. I also 

estimated simple random effects models omitting the country and time period dummies using 

PREGRESS – the RATS command for regression in unbalanced panels. The coefficients were 

not substantially different to OLS estimates of my model. 

 

3. Results 

a.  Exploratory Meta-Analysis 

There are 367 observations from 46 primary studies. Table 1 presents some summary statistics 

for the variables in the full sample. The means and standard deviations are unweighted. The 

results weighted by sample size would look very different due to two papers (Bousquet and 

Ladoux, 2007; Fisher-Vanden et al., 2004) with much larger sample sizes than the other papers. 

Each metaregression uses a subsample that drops observations that have missing values for the 

dependent variable. The statistics for these subsamples will also differ substantially from those in 

Table 1. Still, some key points that emerge include: 

• The minimum value for all the elasticities is a theoretically inconsistent negative value 

and there is a wide range of estimates in the studies.  
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• The average sample size is 400 with samples as large as 25490 (Bousquet and Ladoux, 

2007) and as small as 20 (Agostini et al., 1992). 

• As noted above, the data is dominated by time series studies – 71%, with just 4% of 

observations from cross-section studies. 17% are for fixed effects panel estimates and 8% for 

OLS panel estimates. 

• 34% of the observations are from Canada. The U.S. is the next most represented country 

(17%) and then other Europe (14%), which mostly consists of observations for Greece. 

• 14% of the observations are for explicitly long-run elasticities and 6% for explicitly 

short-run elasticities. 

• 25% of the observations are for the industry sector as a whole, 10% for the macro-

economy, 18% for the manufacturing industry as a whole, and 47% for subindustries within 

manufacturing.  

• 65% of the observations are for the translog function. Only 7% use the linear logit 

functional form and the remainder use other functions such as the Fourier, Cobb Douglas etc. 

• Only 59% of the observations model technical change. 

 

Weighted means of the cost shares are (with standard errors in parentheses): 

Coal  0.152 (0.088) 

Oil  0.179 (0.021) 

Gas  0.092 (0.025) 

Electricity 0.569 (0.056) 

 

Though not included in the table, as I noted above, I gathered information on the sample period 

used in the original studies to estimate each observation. 96% of observations were estimated 

with data that included some data from the 1970s and 1980s. 66% of datasets include data from 

before 1970, but only 30% include data from after 1990.  

 

Table 3 presents estimates of the mean elasticity computed using different methods. All standard 

errors were computed using the CLUSTER option in RATS. Because not all studies use the four 

standard fuels, none of the elasticities has been estimated using the full 367 observations. The 

oil-electricity elasticity can, however, be estimated from the vast majority of the papers with 361 
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observations. Coal-gas is based on the smallest sample (125 data points), especially considering 

that neither the Bousquet and Ladoux (2007) (no coal) nor the Fisher-Vanden et al. (2004) (no 

gas) studies provide estimates for the coal-gas combination.  

 

The simple unweighted means show moderate substitutability for coal and oil and coal and gas, 

which have elasticities just above unity, though not significantly so. The remaining elasticities 

are all below unity though only the oil-electricity elasticity is significantly so. The elasticities 

involving electricity are the smallest. The sample size weighted means alter this picture to some 

degree and provide a first illustration of the effect of sample size on the value of the elasticities. 

Four of the six elasticities increase, with the oil-gas elasticity increasing the most and all but one 

of the elasticities are now greater than unity though most are not significantly so. This shows 

that, in general, studies with larger sample sizes tend to find higher values of the elasticities, 

which is the reverse of the sample size – effect size relationship in the presence of publication 

bias proposed by Stanley (2005).  

 

Figures 1 to 6 present funnel graphs for the six elasticities. On the whole, they show funnel-like 

form to a limited degree. Figure 1 shows a broad scatter with the point from the largest sample 

(Fisher-Vanden et al., 2004) near the centre of the distribution, but the estimates from the next 

largest sample (Ma et al., 2008) are much smaller. The left side of the distribution shows more 

funnel-like form (if any). Figure 2 also shows more of a funnel profile on the left-hand side. 

Figure 3 is more funnel-like than the first two graphs, but in the core of the data there appears to 

be a tendency towards large sample sizes having larger effect sizes, though the data point from 

the largest sample (Fisher-Vanden et al., 2004) is only 0.33. Figure 4 shows a pronounced 

positive correlation between sample and effect size . Figure 5 is quite funnel-like though the 

estimates from the large sample studies (Bousquet and Ladoux, 2007; Fisher-Vanden et al., 

2004) cover quite a range of values. Figure 6 is somewhat similar to Figure 4 apart from one 

extreme outlier from the Duncan and Binswanger (1976) study. 

 

To further investigate this relationship, I estimated weighted least squares regressions of the 

elasticities on the inverse of the square root of sample size – Stanley’s (2005) “Funnel 

Asymmetry Test” or FAT. The results are reported in Table 4 and the intercepts are also included 
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in Table 3. Looking first at the intercepts, the trend seen in moving from OLS to WLS continues 

with the coal-oil and coal-electricity elasticities declining further and the other elasticities 

increasing. Elasticities involving gas seem large and those involving electricity relatively small. 

Four of the equations show negative coefficients for SAMPLE-0.5 indicating that larger samples 

have greater elasticities. These coefficients vary in significance but all have t-statistics greater 

than unity in absolute value. The coal-oil equation has a positive but insignificant sample size 

effect and the coal-electricity equation has a significantly positive effect in line with the 

publication bias hypothesis.  

 

To investigate these results further, I decompose sample size into the time series dimension (T), 

the cross-section dimension (N), and the number of independent equations (E). The results of 

these weighted regressions using these three variables are reported in Table 5 with the intercepts 

included in Table 3. The intercepts change in varying directions. The more positive the 

coefficient on the time series dimension the smaller the intercept. Only the coal-gas and coal-

electricity equations have negative signs for all three variables. This is surprising, as the sign of 

SAMPLE-0.5 was positive in the FAT regression for coal-electricity. But only the time dimension 

is at all statistically significant. For coal-gas the equation and cross-section dimensions have 

significantly negative signs. In all but these two equations, E-0.5 has a positive coefficient. N-0.5 has 

a negative or insignificant effect. Overall, these results are hard to interpret as most of 

coefficients are very imprecisely estimated. 

 

Table 6 reports the results of weighted regressions that directly test the effect of data type while 

holding sample size constant. The constants in these regressions again reflect the pattern of small 

electricity elasticities and large gas elasticities. All intercepts are smaller than in the FAT 

regressions (Table 3). Compared to Table 5, the results are very clear-cut. Inverse sample size 

has a positive or insignificant effect on effect size in line with the expected publication bias 

effect. Cross-sectional estimates are larger or insignificantly different to panel estimates, while 

time series estimates are smaller or insignificantly different to panel estimates.  
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b.  Metaregression Analysis 

The mean elasticities for each type of elasticity are reported in Table 3. There is no clear pattern 

to the base model elasticities. Compared to the simple FAT model or the data-type model two are 

smaller and four are larger. There also does not appear to be any obvious pattern to the estimated 

standard errors. Some are larger and some are smaller than those of FAT or FES.  

 

I will discuss the effect of data-type in the following subsection of the paper but will comment 

here on the dynamic elasticities. Each of the dynamic elasticities includes the constant and time 

series effect in addition to the effect of the specific dynamic dummy. Three of the short-run 

dynamic elasticities are larger and three smaller than the static time series estimates though the 

differences do not seem to be statistically significant. The same is true for the long-run dynamic 

elasticities compared to their short-run counterparts. All but one of these are, however, larger 

than the static estimates but only in one case (coal-oil) is that difference likely to be at all 

statistically significant. The bottom line is that none of these differences can be estimated with 

any precision given the available data.  

 

There is a clearer picture for the elasticities for different levels of aggregation. With the 

exception of only one equation in each case, the macro-level elasticity is smaller than the 

industry level elasticity (base case) and the manufacturing elasticity is larger. The subindustry 

elasticity is larger still in only half the cases. But again, only a couple of the macro elasticities 

are statistically significantly smaller than the base case. On the other hand, four out of six of the 

manufacturing elasticities are significantly larger than the base case. Figures 7 through 12 

present these elasticities with 95% confidence intervals. Only Figure 8 does not show a generally 

upward sloping channel. This relationship is similar to that which I proposed for the capital-

energy elasticity (Stern, 1997). In that case, I argued that substituting capital for energy at the 

micro-level required additional energy use elsewhere in the economy to produce that capital, so 

that the net macro-level reduction in energy use was less than the micro-level reduction. It is 

possible that reduction in the use of a fuel at the micro level results in increased usage of that 

fuel elsewhere in the economy. This is obvious in the case of substituting electricity for fossil 

fuels, though most of the papers with macro-level estimates that include electricity exclude the 

fossil fuels used in the power generation sector. Koetse et al. (2008) found that studies that used 
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2 or 4 digit industry data had an insignificantly greater capital-energy Morishima elasticity than 

studies that used single digit industry data. 

 

Table 7 presents the full set of metaregression coefficient estimates and t-statistics. 

 

In this more complete model, SAMPLE-0.5 has an insignficant effect in general. Three out of the 

six coefficients are positive (i.e. small samples have larger effects) but only one (oil-electricity) 

is statistically significantly greater than zero and at a low level of significance. There does not 

seem to be significant publication bias in this literature unless it is outweighed by a small sample 

bias towards smaller estimates of the elasticities.  

 

GDP per capita has mostly negative effects on the elasticities so that more developed economies 

have less substitutability, ceteris paribus. This is opposite to the prediction of Klump and de la 

Granville for capital and labor. But only one coefficient is statistically significant at any level. 

The following country effects appear to be statistically significant: India and Korea have more 

and other Asian countries less substitutability. Italy and perhaps Germany have less and the US 

and the Netherlands more substitutability. It is hard to see anything in common among the 

countries in each of those groups.  

 

The linear logit elasticities are mostly greater than average and the translog estimates smaller. An 

argument in favor of the linear logit was that it was less likely to produce positive estimates of 

own price elasticities. Ensuring negative own price elasticities would ceteris paribus increase the 

estimated shadow elasticities. This seems to be born out in this data. Not including technical 

change trends in the energy model has mixed results, though the most significant coefficients are 

negative. Similarly, Koetse et al. (2008) found that allowing for non-neutral technical change 

increased the estimated capital-energy elasticity. The sign of the coefficient will depend on the 

direction of the technological change biases in the underlying demand equations. 

 

Table 7 presents some diagnostic statistics for the metaregressions. Goodness of fit is measured 

by Buse’s (1973) R-Squared. All the equations have reasonable fits. For most equations, the 

Breusch-Pagan test rejects homoskedasticity at the 5% level. A test of equality of residual 
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variances across studies also rejects homoskedasticity in the majority of the equations and an F-

test for the regression of the residuals on dummies for the studies rejects the null of equal 

intercepts in five out of six cases too. This remaining heterogeneity is dealt with by the use of 

clustered coefficient covariance estimates.  

 

c.  Effect of Data-Type and Estimator on Effect Size 

i. The Issue 

With the exception of the coal-gas elasticity, whose meta-regression coefficients are mostly very 

different to those of the other elasticities, cross-section estimates of the elasticities are larger or 

insignificantly different to fixed effects panel estimates and time series estimates are smaller or 

insignificantly different. The time series estimate of the oil-electricity elasticity is even negative, 

which is theoretically inconsistent (Table 3). Except for the oil-gas elasticity, OLS panel 

estimates result in smaller elasticities than fixed effects estimates. Similarly, Koetse et al. (2008) 

found that time series estimates of the capital-energy Morishima elasticity of substitution tend to 

be smaller and cross-section estimates higher than panel-based estimates. The cross-section 

estimates are most intuitively pleasing. They indicate that it is harder to substitute electricity for 

other fuels and that it is most difficult to substitute between coal and electricity. But, as noted 

above, the three coal elasticities are based Halvorsen’s (1977) study, which uses small cross-

sections of firms.  

 

So why are there differences between the elasticities and which if any is likely to be more 

plausible on econometric grounds? In addition to the estimators included in our meta-regression, 

the econometric literature also considers the following: 

o The average of static or dynamic time series regressions. 

o The between estimator – a cross-section estimate using time-averages for each individual. 

The traditional cross-section estimate is the between estimator on a panel with a time 

dimension of one.  

o Random effects estimators. 
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Pesaran and Smith (1995) point out that if the true data generating process (DGP) is static, the 

explanatory variables are not correlated with the error term (due to either omitted variables 
11

 or 

measurement error), and any parameter heterogeneity across individuals is random and 

distributed independently of the regressors, all alternative estimators – time series or the various 

pooled estimators - should be consistent estimators of the coefficient means. It is the presence of 

dynamics and/or correlation between the regressors and the error term that results in differences 

between the estimators whether the true parameters are homogenous or heterogeneous. There is 

no essential difference between time series and cross-section estimates, only differences in the 

likely importance and impact of misspecification. In the following, I address the impact of each 

type of misspecification on the different estimators. 

 

ii. Coefficient Heterogeneity 

Pesaran and Smith (1995) argue that in the absence of omitted variables or measurement error 

the averaged time series and between estimators are consistent for large N and T, whatever the 

nature of coefficient heterogeneity. A traditional cross-section estimate, however, may suffer 

from a high level of bias because T = 1. In the presence of coefficient heterogeneity, FE and RE 

estimators for dynamic models will be inconsistent as forcing the coefficients to be equal induces 

serial correlation in the disturbance which results in inconsistency when there are lagged 

dependent variables. If the true model is static, static FE and RE should be consistent in the 

absence of other misspecifications. 

 

Pesaran and Smith analyze both stationary and non-stationary cases – static time-series estimates 

are of course superconsistent when the variables are I(1) and cointegrate. But, if the parameters 

vary across groups, the pooled estimates need not cointegrate. The between estimator is also 

consistent when the explanatory variables are strictly exogenous. They estimate a labor demand 

model (cross-section dimension: 38, time-series dimension: 29) using heterogeneous and pooled 

approaches. The static cointegrating time series regressions yield an average own price elasticity 

of -0.30 and a variety of dynamic time series models give elasticities up to -0.45. The between 

estimate is -0.523 and static pooled estimates are: OLS: -0.53, RE: -0.42, and FE: -0.41. 

                              
11

 Omitted variables refers here to additional unique explanatory variables not to omitted lags of 

variables that are already included in the regression. 
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Dynamic pooled estimates are much larger in absolute value, OLS: -3.28, RE: -1.83, and FE: -

0.74. The bottom line is that there are no large differences between their static estimates though 

BE and OLS show greater elasticities, time series smaller elasticities, and fixed effects occupies 

a mid-point. The dynamic pooled estimators, however, deviate significantly from the estimators 

that Pesaran and Smith argue are consistent. 

 

iii. Misspecified Dynamics 

Baltagi and Griffin (1984) examined the theory of omitted dynamics for stationary panel data. If 

the true DGP for a time series is dynamic and a static model is estimated there are omitted 

variables (lags) but the value of the estimated coefficient depends on the correlation between the 

omitted lags and the current value of the variable. The greater the correlation the closer the static 

coefficient will be to the sum of the dynamic coefficients – i.e. the long-run effect. The less the 

correlation the closer the static estimate will be to the impact coefficient – i.e. a short-run effect. 

Baltagi and Griffin (1984) argued further that in panel data the higher the correlation between 

lagged dependent variables the better the between estimator would estimate the long-run. The 

performance of the within estimator also depends on the relative amount of between and within 

variation in the data as correlations between cross-sections of demeaned data are usually lower 

than between the raw data. They carry out a Monte Carlo analysis of a model with a very long 

lag structure, random effects errors, and no correlation between the explanatory variables and 

those errors. They fit dynamic models to the generated data (they do not fit static models). 

Estimated lag length tends to be truncated. The between estimator gets very close to the true 

long-run elasticity while the within estimator provides good estimates of the short-run elasticity 

and somewhat underestimates the long-run elasticity. The within estimator is also strongly 

affected by changes in the dynamic structure or length of time series, while the between 

estimator is not. All this is despite the cross-section dimension being only 18 (the time-series 

dimension is 14). OLS is slightly biased upwards. 

 

Van Doel and Kiviet (1994) concluded that in general “static estimators usually underestimate 

the long-run effect” when the variables are stationary but are consistent under non-stationarity. 

Three recent papers examine the performance of static estimators for stationary data further. 

Pirotte (1999) shows that even if the time dimension is fixed but N -> ∞ the between estimator 
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converges to the long-run coefficients of a dynamic model. When there is little serial correlation 

the within estimator converges to short-run effects. If there are no individual effects, OLS 

converges to the long-run when the sum of the lag coefficients tends to unity as well as when 

there is less serial correlation but large individual effects. Egger and Pfaffermayr (2004) also 

assume an underlying stationary, dynamic DGP. Using Monte Carlo analysis they find that when 

the explanatory variable is not serially correlated the static within estimator is downwardly 

biased even compared to the short-run effects. But when the level of serial correlation is high it 

converges towards the long-run effects. On the other hand, the between estimator is biased 

downwards if serial correlation is high and the time dimension is small. In their simulations, on 

the whole, the parameter estimates are ranked from smallest to largest FE, RE, OLS, BE with 

even BE biased down from the true value.  

 

iv. Omitted Explanatory Variables 

The one-way error components model assumes that the error term in a panel model is composed 

of an individual effect, which varies across individuals but is constant over time and a remainder 

disturbance that varies over both time and individuals (Baltagi, 2008). If omitted explanatory 

variables are correlated with the included regressors, the regressors will be correlated with the 

individual effects and/or the remainder disturbance (Griliches and Mairesse, 1984). The fixed 

effects estimator eliminates the individual effects prior to estimation while the between estimator 

averages over the remainder disturbances of each individual. Therefore, OLS panel, random 

effects, between, and cross-section estimators will be biased if the regressors are correlated with 

the individual effects and the fixed effects and time series estimators will be unbiased. But if the 

correlation is with the remainder disturbance instead, the between estimator will be consistent 

(though biased when the time series dimension is small) and all the other estimators will be 

inconsistent. 

 

In the case of cost share equations, the most important omitted variable is likely to be technical 

change. As noted above, many studies do not include a time trend of any sort in their models 

while others usually include a linear time trend. If the true technical change trend is not 

deterministic and linear, a variable has been omitted. Technology trends certainly vary over time 

and there may well be a correlation between factor prices and the technology adopted. Therefore, 
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there is likely to be a correlation between the remainder error and the regressors. The direction of 

the bias will depend on the sign of the correlation between the technical change bias and the 

price series. Of course, the level of technology may also vary across firms or countries and, 

therefore, a priori there is no reason to prefer within or time series estimators to between 

estimators. 

 

v. Measurement Error 

Mairesse (1990) introduces a further factor – measurement error in the explanatory variables. As 

is well-known, measurement error induces a correlation between the error term and the 

regressors and biases the estimates downwards if the measurement error is not correlated with 

the regressors (Hausman, 2001). If measurement errors are non-systematic the between estimator 

will average them out over time and will be consistent but biased when the time series dimension 

is small, while the within estimator amplifies the noise to signal ratio by subtracting individual 

means from each time series.  

 

Hauk and Wacziarg (2004) carry out a Monte Carlo analysis of an economic growth equation to 

examine the effects of both measurement error and omitted variables on alternative panel 

estimators. They find that the between estimator is the best performer in terms of having the 

minimum bias relative to fixed effects, random effects, and some GMM estimators commonly 

used in the growth literature. In theory the between estimator should be biased due to the 

correlated effects while the fixed effects estimator should be unbiased. But the between estimator 

performs much better in the face of the measurement error. 

 

vi. Conclusion 

There appears to be, therefore, a consensus that the between estimator is the best estimator – it 

uses a large sample of data and is consistent for both stationary and non-stationary data in the 

face of misspecified dynamics and heterogeneous regression coefficients. And despite the 

potential for correlation between the explanatory variables and the individual effects, it appears 

to perform well in real world situations. This, however, provides little guidance on the 

desirability of cross-section estimates. They may be significantly biased. And there is 
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disagreement on the properties of other estimators whose performance depends on the specific 

properties of the data.  

 

It is likely that the data used in energy demand studies is in fact stationary but has a high degree 

of serial correlation. This is because cost shares are bounded between zero and one and price 

ratios rather than prices themselves are the explanatory variables. In the absence of between 

estimates, I would argue that static fixed effects estimates are likely the best we have but are 

likely to be biased down a little. Somewhat surprisingly we found that OLS estimates were 

smaller than fixed effects despite all the results we surveyed above that indicated that the 

opposite is likely. 

 

4.  Conclusions and Suggestions for Further Research 

This first meta-analysis of interfuel substitution elasticities is able to answer several questions 

while leaving others open for future research. We found that at the level of the industrial sector 

as a whole only the coal-gas elasticity was significantly greater than unity and only the oil-

electricity elasticity was significantly smaller than unity. But all the estimated elasticities are 

likely to biased downwards to an unknown degree. Using evidence from cross-section estimates, 

all elasticities with the exception of coal-electricity are significantly greater than unity. These 

cross-section estimates might be biased in an unknown direction too and are based on just two 

studies, though one of those used the largest sample in our meta-analysis. If these larger values 

are valid, this would be good news for the prospects for sustainability involving replacing the 

direct use of some fossil fuels with renewable or nuclear generated electricity. However, the 

elasticities tend to be smaller at higher levels of economic aggregation with the most 

substitutability at the subindustry level and the least at the macro-economic level. At the macro 

level all but one of the elasticities (coal-gas) are not significantly greater than unity and three or 

four are not significantly different to zero. But the number of observations for the macro-

economy is small and the standard errors large on these elasticities. There is some indication that 

there is less substitutability in high-income countries than in low-income countries. There is a 

strong tendency for elasticities estimated with the linear logit model to be significantly greater 

than those estimated using other methods. But this does not tell us whether this functional form 

is more appropriate or not.  
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There is still a lot of unexplained variation across the studies and the clustered standard errors 

that take this into account result in typically large standard errors for the regression coefficients. 

Coefficients for many explanatory variables are either insignificant or vary in sign across the 

elasticities. In the case of the technical change trend variable and possibly other variables, this 

variability may be justified. On the other hand, there is little or no sign of significant publication 

bias in the shadow elasticities of substitution.  

 

The next step in this research would be to repeat this meta-analysis for all sixteen cross-price and 

own-price  elasticities. The results also suggest lacunae in the primary studies. There is a 

consensus in the econometric literature that the between estimator is likely to produce the best 

estimates of long-run elasticities. But there is no study that uses the between estimator. The 

between estimator could be applied to panel data sets previously used in primary studies or to 

new data sets. Also, we only have two studies of interfuel substitution for large data sets of more 

than one thousand observations, one for China and one for France, neither of which include all 

four standard fuels. There is, therefore, no large sample study for the gas-coal elasticity nor for 

any other regions. Either existing firm level data sets could be exploited or created. 
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Table 1. Variables 

Name of Variable Description Maximum Minimum Mean Standard 

Deviation 

SESCO Shadow elasticity of 
substitution between 
coal and oil 4.094 -0.886 1.154 0.960 

SESCG Shadow elasticity of 
substitution between 
coal and gas 5.924 -4.790 1.217 1.416 

SESCE Shadow elasticity of 
substitution between 
coal and electricity 7.298 -4.221 0.870 1.196 

SESOG Shadow elasticity of 
substitution between 
oil and gas 6.253 -22.016 0.998 1.805 

SESOE Shadow elasticity of 
substitution between 
oil and electricity 8.922 -3.265 0.825 0.925 

SESGE Shadow elasticity of 
substitution between 
gas and electricity 48.539 -10.487 0.880 3.141 

SAMPLE Primary study sample 
size 25490 20 400.381 2232.179 

CS Dummy for cross-
sectional data 1 0 0.038 0.192 

TS Dummy for time- 
series data 1 0 0.711 0.454 

NOFE Dummy for no-fixed 
effects in panel 
regression 1 0 

0.079 0.270 

AUSTRALIA Dummy for Australia 1 0 0.038 0.192 

CANADA Dummy for Canada 1 0 0.338 0.474 

CHINA Dummy for China 1 0 0.057 0.233 

FRANCE Dummy for France 1 0 0.035 0.185 

GERMANY Dummy for Germany 1 0 0.030 0.171 

INDIA Dummy for India 1 0 0.025 0.155 

ITALY Dummy for Italy 1 0 0.035 0.185 

JAPAN Dummy for Japan 1 0 0.055 0.227 

KOREA Dummy for Korea 1 0 0.057 0.233 

NETHERLANDS Dummy for 
Netherlands 1 0 0.035 0.185 

UK Dummy for UK 1 0 0.041 0.198 

USA Dummy for USA 1 0 0.172 0.378 

OTHEREUR Dummy for other 
Europe 1 0 0.139 0.346 



34 

OTHERASI Dummy for other Asia 1 0 0.022 0.146 

GDP GDP per Capita in 
2000 PPP Dollars 33429 821.483 13858.83 5473.968 

DYNAMICSR Dummy for short-run 
elasticity in a dynamic 
model 1 0 0.060 0.238 

DYNAMICLR Dummy for long-run 
elasticity in a dynamic 
model 1 0 0.144 0.352 

MANUF Dummy for 
manufacturing 1 0 0.180 0.385 

MACRO Dummy for 
macroeconomy 1 0 0.104 0.305 

SUBIND Dummy for sub-
industry in the 
manufacturing sector 1 0 0.466 0.500 

LINLOG Dummy for linear 
logit 1 0 0.074 0.261 

TRANSLOG Dummy for translog 1 0 0.649 0.478 

OTHERFUNC Dummy for other 
functional form 1 0 0.278 0.449 

NOTECH-
ENERGY 

Dummy for no 
technological change 
in the energy 
submodel 1 0 0.414 0.493 
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Table 2. Studies Included in the Meta-Analysis 

 

Paper Country/Sector Used? Fuels  Cost Shares Sample 

Size 

Agostini et al. 
(1992)  
 

OECD Europe: 4 
Sectors 

Only use 
industry 
estimates 

3 fuels – oil, 
gas, coal 

Shares based on 
average of 
European 
countries in 
Jones (1996) 

20 

Andrikopoulos et 
al. (1989) 

Ontario: 7 
industries 

Use all 
estimates 

Four standard 

fuels 

AES / CPE ratio 63 

Borges and Pereira 
(1992) 

Portugal: 
Manufacturing 

Use all 
estimates 

3 fuels -
electricity, oil, 
coal 

AES / CPE ratio 20-80 

Bousquet and 
Ladoux (2006).  

France: Industry Use estimates 
averaged over 
fuel patterns 

3 fuels - Oil, 
gas, and 
electricity 

Quadratic 

formula 

 

25490 

Buranakunaporn, 
and Oczkowski 
(2007) 
 

Thailand: 
Manufacturing 

Use all short-
run estimates 

5 fuels – three 
types of 
petroleum + 
coal and 
electricity 

Quadratic 

formula 
 

147 
 

Cho et al. (2004)  Korea: Macro Use all 
estimates 

3 fuels – does 
not include 
natural gas 

Quadratic 

formula 
 

136-
272 

Christopoulos 

(2000) 

Greece: 

Manufacturing 

Use all 
estimates 

3 fuels – 

electricity and 

two types of 

oil 

Quadratic 

formula 
 

42-84 

Considine (1989) U.S.A.: Industry Only use 

estimates for 

total industrial 

sector 

Four standard 

fuels 

Use translog 

intercepts as cost 

shares 

45 

 

Duncan and 
Binswanger (1976) 

Australia: 5 
industries 

Drop 
elasticities for 
“other fuels” 

5 fuels – 
includes 
“other” 

Given in paper 
 

72 

Eltony (2008) 
 

Kuwait: 
Manufacturing 

Use all 
estimates 

3 fuels Used quantity 
shares from the 
paper – given 
very low price of 
electricity in 
Kuwait this is 
reasonable 

50-75 
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Paper Country/Sector Used? Fuels  Cost Shares Sample 

Size 

Fisher-Vanden et 

al. (2004) 
China: Use all 

estimates 
Three fuels – 

not including 

natural gas 

Provided by 

author 

23238 

Floros and Vlachou 
(2005) 

Greece: 18 
industries 

Use all 
estimates 

3 fuels – 
electricity and 
2 types of oil 

Quadratic 
formula 

34 

Fuss (1977) Canada: 
Manufacturing 

Used all 
estimates 

6 fuels – 
breaks oil and 
nat gas each 
into into 2 
enduser 
products 

Quadratic 
formula 

200-
400 

Hall (1983)  G7 Economies: 

Industry 
Included all 

estimates 

 

Four standard 

fuels 

Use shares from 

Jones, 1996 

399 

Halvorsen R. 

(1977) 

U.S.: 

Manufacturing 

Used all 
estimates 

Four standard 

fuels 

Derived from 

relation between 

total and partial 

elasticities for 

aggregate 

industry and 

using quadratic 

formula for 

subindustries 

462 

 

Hang and Tu 

(2007) 

China: Macro 

 

Included all 

estimates 

 

Three fuels – 

not including 

natural gas 

Used shares 

from Ma et al. 

(2008) 

60 

 

Harvey and 

Marshall (1991)  

UK: Industry Used “other 

industry” 

estimates 

Four standard 

fuels 

Use shares from 

Jones, 1996 

180 

Iqbal (1986) Pakistan: 

Manufacturing 

Included all 

interfuel 

estimates 

 

Four standard 

fuels 

AES / CPE ratio 66 

Jones (1995) U.S.A.: Industry Used 

aggregate 

energy use 

only 

Four standard 

fuels 

Use shares from 

Jones (1996) 

96 

Jones (1996)  G7 Economies: 

Industry 
Included all 

estimates 

 

Four standard 

fuels 

Given in paper 
 

651 
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Paper Country/Sector Used? Fuels  Cost Shares Sample 

Size 

Kim and Labys 
(1988) 
 

Korea: 12 
subsectors/sectors 

Used estimates 
for total 
manufacturing, 
4 manufacturing 
subsectors, and 
total economy 

Coal, oil, and 
Electricity 

Quadratic 

formula 
 

42 

Lakshmanan et al. 
(1984) 

U.S.A. States: 
Manufacturing 

Used all 
estimates 

3 fuels – no 
coal 

Use shares from 
Halvorsen 
(1977) as US 
average and used 
quadratic 
formula to get 
state shares 

400-
1000 

Ma et al. (2008) China: Macro Used all 
estimates 

4 fuels – but 
uses diesel 
instead of 
natural gas 

Given in paper. 
Recomputed 
cross-price 
elasticities from 
AES and cost 
shares 
 

930-
1550 

Ma et al. (2009) China Regions: 
Macro 

Used regional 
estimates only 

4 fuels – but 
uses diesel 
instead of 
natural gas 

Given in paper 
 

930 

Magnus and 
Woodland (1987) 

Netherlands: 

Manufacturing 

Used all 
estimates 

Four standard 

fuels 

Given in paper 
for total 
manufacturing, 
used AES/CPE 
ratio for 
subindustries 

54-324 

Mahmud (2006) 
 

Pakistan: 
Manufacturing 

Used all 
estimates 

3 fuels – 
electricity, gas, 
and oil 

Quadratic 

formula 

 

44 

Morana (2000) Italy: Macro Included all 

estimates 

Four standard 

fuels 

AES / CPE ratio 192 

Perkins (1994) Japan: Macro Included all 

estimates 

 

5 fuels 
including 2 
types of coal 

Quadratic 

formula 
 

96-432 

Mountain and 
Hsiao (1989) 

Ontario and 
Quebec: 15 
industries 

Included all 

estimates 

 

3 fuels – no 
coal 

Used shares 

from Mountain 

et al with some 

interpolation 

36 
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Paper Country/Sector Used? Fuels  Cost Shares Sample 

Size 

Mountain et al. 
(1989) 

Ontario: 11 
industries 

Included all 

estimates 

 

3 fuels – no 
coal 

Given in the 

paper and 

interpolated for 

missing years 

 

46 

Murty (1986) India: 
Manufacturing 

Included all 

estimates 

 

3 fuels – no 
gas 

AES / CPE ratio 50-90 

Pindyck (1979)  Ten OECD 

Economies: 

Industry 

Included all 

estimates 

 

Four standard 

fuels 

Quadratic 

formula 
 

84-376  

Renou-Maissant 
(1999) 

G7 Economies: 
Industry 

Used all 
estimates 

3 fuels – does 
not include 
coal 

Quadratic 

formula with 

missing values 

from Jones 

(1996) 

72-102 

Serletis and 
Shahmoradi (2008) 

U.S.A.: Macro Used all 
estimates 

3 fuels – does 
not include 
electricity 

AES / CPE ratio 70 

Shin (1981) Korea: Macro Used all 
estimates 

3 fuels – does 
not include gas 

Given in paper 
 

28 

Taheri (1994) 
 

U.S.A.: 11 
Industries Panel 

Used all 
estimates  

5 fuels – two 
types of oil 

Quadratic 

formula 

308 

Taheri. and 
Stevenson (2002)  

U.S.A. 10 
Industries Panel 

Used all 
estimates 

5 fuels – two 
types of oil 

Quadratic 

formula 
440 

Truong (1985) 
 

NSW: Industry Dropped “other 
fuels” 
elasticities 

5 fuels – 4 
standard and 
“other” 

Used conditional 
marginal shares 
in the paper 

52-91 

Turnovsky et al. 
(1982) 

Australia: 

Manufacturing 

Included all 

estimates 

Four standard 

fuels 

Quadratic 

formula 

87-174 

Urga (1999) U.S.A.: Industry Included all 

estimates 

Four standard 

fuels 

AES / CPE ratio 128 
 

Urga and Walters 
(2003)  

U.S.A.: Industry Included all 

estimates 

Four standard 

fuels 

AES / CPE ratio 54-96 

Uri (1979a) India: Industry Use mining and 
manufacturing 
and total 
estimates 

3 fuels – 
electricity, oil, 
coal 

Use translog 

intercepts as cost 

shares 

120 

Uri (1979b) UK: Macro Included all 

estimates 

 

Four standard 

fuels 

Given in paper 
 

51 
 

Uri (1982) U.K.: Industry Included all 

estimates 

Four standard 

fuels 

Given in paper 
 

96 
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Paper Country/Sector Used? Fuels  Cost Shares Sample 

Size 

Vlachou and 
Samouilidis (1986) 
 

Greece: Industry Use Industry 
Total Only 

3 fuels – 
electricity solid 
and liquid 

Given in paper 
 

42 

Westoby (1984)  UK: Industry 
(also domestic 
sector) 

Use industry 
estimates 

5 fuels – also 
includes coke 

Quadratic 
formula 

88 

 

 

Table 3. Mean Elasticities 

 

Elasticity "
CO

 "
CG

 "
CE

 "
OG

 "
OE

 "
GE

 

Number of 

Observations 

190 125 186 260 361 257 

Unweighted 

Mean 

1.153 

(0.186) 

1.217 

(0.308) 

0.870 

(0.173) 

0.998 

(0.192) 

0.825 

(0.092) 

0.880 

(0.206) 

FES Weighted 

Mean 

1.067 

(0.250) 

1.441 

(0.390) 

0.761 

(0.155) 

2.029 

(0.288) 

1.018 

(0.158) 

1.101 

(0.232) 

FAT 0.988 

(0.270) 

1.925 

(0.729) 

0.625 

(0.238) 

2.542 

(0.117) 

1.122 

(0.203) 

1.288 

(0.207) 

NTE 0.643 

(1.049) 

4.054 

(1.815) 

1.550 

(0.664) 

1.558 

(0.931) 

-0.070 

(0.376) 

-0.380 

(0.595) 

Data Type 

Regression 

0.926 

(0.200) 

1.074 

(0.570) 

0.511 

(0.209) 

1.960 

(0.451) 

0.655 

(0.071) 

0.573 

(0.305) 

Base Model 

Mean 

1.066 

(0.147) 

2.384 

(0.474) 

0.949 

(0.248) 

0.600 

(0.387) 

0.646 

(0.162) 

1.554 

(0.605) 

Static Time 

Series 

0.114 

(0.309) 

1.759 

(0.609) 

0.116 

(0.649) 

0.689 

(0.527) 

-0.470 

(0.356) 

1.670 

(0.927) 

Dynamic SR 

Elasticity 

0.371 

(0.309) 

0.689 

(0.599) 

1.166 

(0.608) 

0.275 

(0.560) 

0.460 

(0.453) 

1.560 

(0.957) 

Dynamic LR 

Elasticity 

0.984 

(0.249) 

0.489 

(0.586) 

0.915 

(0.461) 

0.783 

(0.558) 

0.366 

(0.302) 

1.897 

(0.935) 

Cross-Section 2.335 

(0.436) 

3.422 

(0.999) 

0.831 

(0.500) 

2.629 

(0.286) 

1.385 

(0.082) 

1.544 

(0.264) 

OLS Panel 

Data 

0.709 

(0.149) 

2.067 

(0.481) 

0.418 

(0.252) 

1.321 

(0.335) 

0.634 

(0.101) 

1.543 

(0.500) 

Macro 

Elasticity 

0.318 

(0.186) 

2.244 

(0.570) 

0.110 

(0.356) 

0.367 

(0.673) 

0.683 

(0.219) 

1.194 

(0.818) 

Manufacturing 

Elasticity 

1.281 

(0.387) 

1.287 

(0.641) 

1.448 

(0.348) 

1.711 

(0.414) 

1.181 

(0.232) 

2.162 

(0.603) 

Sub-industry 

Elasticity 

1.506 

(0.501) 

1.834 

(1.145) 

1.279 

(0.836) 

0.519 

(1.274) 

1.103 

(0.359) 

4.641 

(2.154) 

C = Coal, O = Oil, G = Natural Gas, E = Electricity 

Standard errors (computed using CLUSTER in RATS) in parentheses 
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Table 4. FAT Regression Results 

 

Elasticity "
CO

 "
CG

 "
CE

 "
OG

 "
OE

 "
GE

 

Constant 0.988 

(0.270) 

1.925 

(0.729) 

0.625 

(0.238) 

2.542 

(0.117) 

1.122 

(0.203) 

1.288 

(0.207) 

SAMPLE-0.5 2.072 

(1.993) 

-8.334 

(7.012) 

3.585 

(0.950) 

-15.29 

(2.561) 

-3.220 

(2.484) 

-5.620 

(3.242) 

Buse R- 

Squared 

0.0067 0.0311 0.0303 0.2715 0.0453 0.0217 

C = Coal, O = Oil, G = Natural Gas, E = Electricity 

Standard errors (computed using CLUSTER in RATS) in parentheses 

 

 

Table 5. NTE Regression Results 

 

Elasticity "
CO

 "
CG

 "
CE

 "
OG

 "
OE

 "
GE

 

Constant 0.643 

(1.049) 

4.054 

(1.815) 

1.550 

(0.664) 

1.558 

(0.931) 

-0.070 

(0.376) 

-0.380 

(0.595) 

E-0.5 0.173 

(1.143) 

-3.176 

(2.252) 

-0.257 

(0.662) 

1.753 

(1.423) 

1.284 

(0.732) 

0.659 

(0.713) 

T-0.5 0.506 

(2.210) 

-0.037 

(0.676) 

-1.433 

(0.950) 

-0.270 

(1.108) 

0.529 

(0.454) 

1.417 

(0.514) 

N-0.5 0.475 

(0.814) 

-1.859 

(0.944) 

-0.432 

(0.426) 

-1.943 

(0.758) 

-0.017 

(0.311) 

0.501 

(0.645) 

Buse R- 

Squared 

0.0172 0.1549 0.0801 0.3236 0.2414 0.0917 

C = Coal, O = Oil, G = Natural Gas, E = Electricity 

Standard errors (computed using CLUSTER in RATS) in parentheses 
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Table 6. Data Type Regression Results 

 

Elasticity "
CO

 "
CG

 "
CE

 "
OG

 "
OE

 "
GE

 

Constant 0.926 

(0.200) 

1.074 

(0.570) 

0.511 

(0.209) 

1.960 

(0.451) 

0.655 

(0.071) 

0.573 

(0.305) 

SAMPLE-0.5 4.507 

(4.979) 

13.015 

(7.609) 

9.023 

(5.105) 

-4.231 

(4.908) 

6.325 

(2.761) 

0.646 

(2.890) 

CS 1.692 

(0.476) 

-0.249 

(0.516) 

0.035 

(0.232) 

0.588 

(0.439) 

0.704 

(0.080) 

0.890 

(0.296) 

TS -0.434 

(0.606) 

-1.831 

(0.618) 

-0.710 

(0.384) 

-0.871 

(0.613) 

-0.792 

(0.371) 

0.251 

(0.551) 

Buse R- 

Squared 

0.1047 0.1595 0.0927 0.3044 0.3261 0.0746 

C = Coal, O = Oil, G = Natural Gas, E = Electricity 

Standard errors (computed using CLUSTER in RATS) in parentheses 
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Table 7. Meta-Regression Results 

 

Dependent Variable 

 

"
CO

 "
CG

 "
CE

 "
OG

 "
OE

 "
GE

 

Constant 1.0658 2.3844 0.9458 0.6002 0.6462 1.5542 

 (7.2506) (5.031) (3.8101) (1.5523) (4.0001) (2.5701) 
       
SAMPLE-0.5

 1.5323 -2.3164 2.7115 -3.4325 5.2148 -10.953 

 (0.6889) (-0.4221) (0.324) (-0.6007) (1.6051) (-1.1452) 
       
DYNAMICSR 0.2567 -1.0692 1.0491 -0.4145 0.93 -0.1101 

 (1.0804) (-2.6805) (2.2309) (-1.4311) (2.2116) (-0.4013) 
       
DYNAMICLR 0.8694 -1.2696 0.7983 0.0937 0.836 0.227 

 (5.4938) (-3.0359) (2.461) (0.2659) (4.5713) (0.9869) 
       
MACRO -0.7479 -0.1406 -0.836 -0.2327 0.0363 -0.3598 

 (-4.2141) (-0.3647) (-2.8704) (-0.5439) (0.1558) (-0.6419) 
       
MANUF 0.2152 -1.0969 0.5023 1.1105 0.5345 0.608 

 (0.631) (-2.1342) (1.7093) (4.7532) (3.2723) (3.5134) 
       
SUBIND 0.4401 -0.5508 0.3333 -0.0814 0.4563 3.0872 

 (0.9979) (-0.6372) (0.4878) (-0.0867) (1.7673) (1.8799) 
       
TRANSLOG 0.3378 0.3005 -0.4693 0.7921 0.6482 -0.4487 
 (4.5679) (1.2669) (-3.0733) (3.2395) (2.7443) (-1.2901) 
       
LINLOG 0.1845 -0.2901 0.1502 0.8108 0.0641 0.5169 

 (1.3757) (-1.1884) (0.6452) (2.3739) (0.4247) (1.2769) 
       
OTHERFUNC 0.1532 0.5906 -0.6196 -0.0187 0.0471 -0.9657 

 (1.0313) (1.4448) (-2.431) (-0.0421) (0.3445) (-1.3773) 
       
NOTECHENERGY 0.1161 0.2818 -0.2761 0.4106 -0.3929 -0.8413 

 (0.6878) (0.912) (-1.1674) (1.3738) (-2.6446) (-2.7613) 
       
LGDP -0.171 -0.9054 -0.1427 -0.0754 0.0841 -0.3898 

 (-1.6761) (-1.0253) (-0.6498) (-0.159) (0.8501) (-0.7963) 
       
AUSTRALIA 0.8925 -0.3373 -0.7912 -0.4052 -0.5576 2.4781 

 (2.5295) (-0.7791) (-1.0252) (-0.4542) (-2.6183) (1.7158) 
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Dependent Variable 

 

"
CO

 "
CG

 "
CE

 "
OG

 "
OE

 "
GE

 

CHINA -0.3603  0.885  -0.0089  

 (-1.343)  (1.6706)  (-0.0278)  
       
INDIA 0.4205  1.1028  1.7097  

 (0.8594)  (2.166)  (2.3538)  
       
JAPAN -0.1262 -0.2009 -0.0082 -0.0856 -0.0533 -0.072 

 (-1.5386) (-0.8406) (-0.0883) (-0.5851) (-0.7643) (-0.4815) 
       
KOREA 0.7486  1.1056  0.4959  

 (5.1376)  (3.3389)  (1.5976)  
       
OTHERASI -0.5167 0.0842 -1.8045 0.026 -0.7443 -1.4808 

 (-2.1328) (0.096) (-3.6322) (0.0335) (-1.8916) (-1.5458) 
       
FRANCE 0.0398 0.0516 0.0848 0.4029 -0.0102 0.2831 

 (0.3057) (0.2701) (2.1301) (2.9549) (-0.1215) (2.3995) 
       
GERMANY -0.1252 1.0698 0.054 -0.4001 -0.2195 -0.4906 

 (-3.6925) (1.195) (1.2028) (-2.9681) (-2.0882) (-1.1208) 
       
ITALY -0.2711 -0.3503 -0.0943 -0.0927 -0.1326 -0.1478 

 (-4.476) (-1.7474) (-1.1782) (-0.4089) (-1.3323) (-0.7558) 
       
UK 0.0293 -0.2827 0.0638 0.2081 0.0532 0.1466 

 (0.2658) (-1.2018) (0.8069) (2.3285) (0.6752) (1.3908) 
       
NETHERLANDS 0.8327 -0.3384 0.3927 0.1489 0.1113 0.6153 
 (2.1468) (-0.7514) (1.3682) (0.4311) (1.5814) (1.2861) 

       
OTHEREUR -0.1905 0.0842 0.0923 0.026 -0.0971  
 (-2.6385) (0.096) (0.6097) (0.0335) (-0.7228)  

       
CANADA 0.1063 0.3458 -0.4004 0.5104 0.0166 -0.6483 
 (0.4611) (0.8712) (-1.7781) (1.1736) (0.1371) (-1.6625) 

       
USA 0.1858 -0.7185 0.1028 -0.0147 0.1964 0.5471 
 (2.9628) (-1.8095) (-0.2439) (4.067) (5.5606) (-0.0109) 
       

CS 1.2689 -0.6257 -0.1144 2.0292 0.7384 -0.0099 
 (2.9786) (-2.1307) (-0.2955) (5.3256) (4.4437) (-0.0225) 
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Dependent Variable 

 

"
CO

 "
CG

 "
CE

 "
OG

 "
OE

 "
GE

 

TS -0.9515 1.0374 -0.8294 0.0894 -1.1161 0.1153 

 (-4.689) (1.0534) (-1.7707) (0.2208) (-3.7255) (0.2474) 
       

NOFE -0.3572 -0.3173 -0.5281 0.7209 -0.0125 -0.0109 

 (-4.3993) (-3.1613) (-6.2021) (3.3533) (-0.094) (-0.0706) 

       

 
t-statistics are in parentheses below the coefficient values. 
 

 

 

Table 8. Metaregression Diagnostics 

 

 "
CO

 "
CG

 "
CE

 "
OG

 "
OE

 "
GE

 

Sample Size 190 
 

125 
 

186 
 

260 
 

361 
 

257 
 

Buse R Squared 0.8393  0.6220 0.4388 0.5739 0.6096 0.2196 

       

Breusch-Pagan 
Test for 
Remaining 
Heteroskedasticity 39.809 66.158 60.69 32.201 47.832 36.900 

 (0.041) (0.000) (0.0001) (0.056) (0.006) (0.024) 
Chi-Squared Test 
for equal 
variances across 
studies 54.048 35.898 85.467 66.870 109.28 70.372 

 (0.027) (0.073) (0.000) (0.0003) (0.000) (0.000) 
F-Test for equal 
means across 
studies 1.958 1.986 1.9126 1.499 2.294 1.010 

 (0.003) 

 

(0.009) 

 

(0.004) 

 

(0.049) 

 

(0.000) 

 

(0.458) 

 

 
p-values in parentheses 
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Figure 1: Coal-Oil Funnel Chart 

Figure 2: Coal-Gas Funnel Chart 

Figure 3: Coal-Electricity Funnel Chart 

Figure 4: Oil-Gas Funnel Chart 

Figure 5: Oil-Electricity Funnel Chart 

Figure 6: Gas-Electricity Funnel Chart 

Figure 7: Coal-Oil – Effect of Level of Aggregation 

Figure 8: Coal-Gas – Effect of Level of Aggregation 

Figure 9: Coal-Electricity – Effect of Level of Aggregation 

Figure 10: Oil-Gas – Effect of Level of Aggregation 

Figure 11: Oil-Electricity – Effect of Level of Aggregation 

Figure 12: Gas-Electricity – Effect of Level of Aggregation 

 



Figure 1: Coal-Oil Funnel Chart
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Figure 2: Coal-Gas Funnel Chart
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Figure 3: Coal-Elec Funnel Chart
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Figure 4: Oil-Gas Funnel Chart

3

4

5

6

7

8

9

10

11

-25 -20 -15 -10 -5 0 5 10

SESOG

ln
 S

a
m

p
le



Figure 5: Oil-Elec Funnel Chart
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Figure 6: Gas-Elec Funnel Chart
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Coal-Oil Elasticities and 95% Confidence Interval
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Coal-Gas Elasticities and 95% Confidence Interval
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Coal-Electricity Elasticities and 95% Confidence Interval
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Oil-Gas Elasticities and 95% Confidence Interval
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Oil-Electricity Elasticities and 95% Confidence Interval
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Gas-Electricity Elasticities and 95% Confidence Interval
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