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Abstract

For a correspondence from a partially ordered set to a lattice, three sets of
sufficient conditions for the existence of a monotone selection are obtained. (1)
The correspondence is weakly ascending while every value satisfies a completeness
condition, e.g., is chain-complete. (2) The correspondence is ascending while the
target is a sublattice of the Cartesian product of a finite number of chains. (3)
Both source and target are chains while the correspondence is generated by the
maximization of a strongly acyclic interval order with the single crossing property.
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1 Introduction

The existence of monotone selections is a fascinating topic from a purely mathematical
viewpoint. It is also important for economic theory, especially, game theory.

To derive the existence of a Nash equilibrium from Tarski’s (1955) fixed point theorem,
or its immediate generalization by Abian and Brown (1961), we need monotone selections
from the best response correspondences. (In contrast, Kakutani’s theorem, while being
a generalization of Brouwer’s, is usually applied in the absence of continuous selections.)
Admittedly, there are fixed point theorems for increasing correspondences without mono-
tone selections, see e.g., Smithson (1971, Theorem 1.1) or Roddy and Schröder (2005,
Lemma 2.8), but so far they have found no application in game theory. When it comes to
decreasing best responses (or monotonicity in a more elaborate sense), every equilibrium
existence result in the literature hinges on the availability of monotone (in an appropriate
sense) selections (McManus, 1962, 1964; Novshek, 1985; Kukushkin, 1994, 2000, 2004,
2007; Dubey et al., 2006).

The “standard” theory of games with strategic complementarities as developed in
Topkis (1979), Veinott (1989), Vives (1990), Milgrom and Roberts (1990), Milgrom and
Shannon (1994), and summarized in Topkis (1998), imposes assumptions ensuring that
the best responses to any profile of other players’ strategies form a complete sublattice
of the player’s strategy set, hence the maximal, or minimal, best response provides a
selection needed.

Those assumptions hold in a wide variety of important situations. However, if, in the
spirit of Milgrom and Shannon (1994), one asks whether they are, indeed, indispensable
for the best responses to exist and be increasing, the answer will be an unequivocal “No.”
Smith’s (1974) Theorems 4.1 and 4.2 show a clear difference between the two properties
of a preference ordering – “to attain a maximum on every compact subset” and “to have
a nonempty, closed set of maximizers on every compact subset”; the difference does not
disappear when an order structure replaces, or is added to, topology. Similarly, qua-
sisupermodularity is necessary for monotone comparative statics (Milgrom and Shannon,
1994, Theorem 4), but not for increasing best responses when a strategy set is fixed; and
if the preferences are not quasisupermodular, the set of best responses need not be a
sublattice.

It even happens that no assumption ensuring the existence of the best responses can
be justified. Although a Nash equilibrium may still exist (Dasgupta and Maskin, 1986;
Reny, 1999), a more robust approach is to consider ε-best responses and ε-equilibrium.
Moreover, the description of preferences by, say, semiorders may be suggested for its own
sake rather than for technical convenience: it is sometimes argued that the “complete
rationality” of the players’ preferences is unrealistic.

Monotone selections from the best, or ε-best, response correspondences would greatly
help in every situation described above. To the best of my knowledge, there is no result
in the previous literature wherefrom their existence could be derived. This paper strives
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to fill in the lacuna although some interesting questions remain open.

There is another objective, also related to the existence of Nash equilibria. The Ap-
pendix to Milgrom and Shannon (1994) contains an “almost topology-free” sufficient con-
dition for a utility function on a complete lattice to attain its maximum. Unfortunately,
their proof relies on “Theorem A2,” actually, a misquotation from Veinott (1989), which
is just wrong. The mistake seems to have never been corrected in economics literature,
and Veinott’s result to have never been published at all. Theorem 1 of this paper is a
valid version of “Theorem A2,” whose assumptions are even weaker than Veinott’s. A
correct proof of Milgrom and Shannon’s Theorem A4 easily follows.

Section 2 reproduces some standard notions. In Section 3, we consider correspondences
increasing w.r.t. extensions of the basic order from points to subsets. In Theorem 1, it
is the weak Veinott “order,” which need not even be transitive; in Theorem 2, the usual
Veinott order. For the existence of a monotone selection, we have to assume that every
value satisfies a completeness condition in Theorem 1, or that the target is a sublattice
of the Cartesian product of a finite number of chains in Theorem 2.

In Section 4, the correspondence is generated by the maximization of a binary relation
on a chain; the relation depends on a parameter from a partially ordered set, and the
single crossing condition holds. Theorem 3 shows the existence of a monotone selection if
the preference relation is always a strongly acyclic interval order and the set of parameters
is a chain. If the relation is only strongly acyclic and transitive, then there may be no
monotone selection, but Theorem 4 shows that a Nash equilibrium exists anyway. The
main proofs are deferred to Section 5; concluding remarks are collected in Section 6.

2 Preliminaries

Notions such as a partially ordered set (a poset), a chain, and a (complete) lattice are
assumed commonly known. We denote BX the set of all nonempty subsets of a given
set X. A poset X is called Zorn bounded above/below if every chain Y ∈ BX admits an
upper/lower bound. A poset X is called chain-complete upwards/downwards if sup Y /
inf Y exists in X for every chain Y ∈ BX ; in this case, X ′ ∈ BX is chain-subcomplete
upwards/downwards if sup Y ∈ X ′/inf Y ∈ X ′ for every chain Y ∈ BX′ ⊆ BX . A poset
X is called chain-complete if it is chain-complete both upwards and downwards; X ′ ∈ BX

is then chain-subcomplete if it is chain-subcomplete both upwards and downwards.

A correspondence from T to X is a mapping R : T → BX ; a mapping r : T → X is
a selection from R if r(t) ∈ R(t) for all t ∈ T . Given a poset X and a correspondence
R : T → BX , we denote R+(t) := {x ∈ R(t) | ∄y ∈ R(t) [y > x]} and R−(t) := {x ∈
R(t) | ∄y ∈ R(t) [y < x]} for every t ∈ T . If T and X are posets, a mapping r : T → X
is increasing if r(t′) ≥ r(t) whenever t′ > t; r is decreasing if r(t′) ≤ r(t) whenever t′ > t.
A monotone selection from a correspondence R : T → BX is a selection from R which
is increasing. Since the reversal of the order on T (or, equivalently, on X) makes an
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increasing mapping decreasing and vice versa, there is no need for a separate study of
“anti-monotone” selections.

The framework of the “naive” set theory with the unrestricted Axiom of Choice is
adopted throughout. In practice, we invoke either Zorn’s Lemma (if a poset is Zorn
bounded above/below, then it contains a maximal/minimal point) or Zermelo’s Theorem
(every set can be well-ordered).

3 Selections from increasing correspondences

We start with a few ways to extend an order given on X to BX . Let X be a poset and
Y, Z ∈ BX . The following relations are, at least, transitive:

Y ≥Inf Z ⇋ ∀y ∈ Y ∀z ∈ Z ∃z′ ∈ Z [y ≥ z′ & z ≥ z′]; (1a)

Y ≥Sup Z ⇋ ∀y ∈ Y ∀z ∈ Z ∃y′ ∈ Y [y′ ≥ z & y′ ≥ y]. (1b)

A wider variety of similar relations is used in the literature (Smithson, 1971; Echenique,
2002; Roddy and Schröder, 2005; Heikkilä and Reffett, 2006; Quah, 2007), but we do not
need them here.

When X is a lattice, Veinott’s order (Topkis, 1998) seems most popular. Following
Veinott (1989), we define it as a conjunction of the “lower and upper halves,” and also
define a weak version:

Y ≥∧ Z ⇋ ∀y ∈ Y ∀z ∈ Z [y ∧ z ∈ Z]; (1c)

Y ≥∨ Z ⇋ ∀y ∈ Y ∀z ∈ Z [y ∨ z ∈ Y ]; (1d)

Y ≥Vt Z ⇋ [Y ≥∧ Z & Y ≥∨ Z]; (1e)

Y ≥wV Z ⇋ ∀y ∈ Y ∀z ∈ Z [y ∨ z ∈ Y or y ∧ z ∈ Z]. (1f)

The relation ≥Vt is antisymmetric and transitive on BX ; it is reflexive on sublattices.
Neither ≥wV, nor ≥∧ or ≥∨ need even be transitive. Clearly, Y ≥∧ Z ⇒ Y ≥Inf Z and
Y ≥∨ Z ⇒ Y ≥Sup Z.

Let ≥∗ denote one of the relations (1) and T be a poset. A correspondences R : T → BX

is increasing w.r.t. ≥∗ if R(t′) ≥∗ R(t) whenever t′ > t. Note the strong inequality in the
last condition; it is natural when dealing with binary relations that need not be reflexive.
Veinott (1989) called correspondences increasing w.r.t. ≥Vt (≥wV) in this sense (weakly)
ascending.

The best-known results on the existence of monotone selections (Topkis, 1998) are
applicable to ascending correspondences to complete lattices. Similar results hold under
weaker assumptions. One example is given by Smithson (1971, Theorem 1.7); the following
result assumes monotonicity in a stronger sense, but demands less of the values R(t).
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Proposition 3.1. A correspondence R from a poset T to a poset X admits a monotone
selection if it is increasing w.r.t. ≥Inf while R−(t) 6= ∅ for every t ∈ T .

Proof. For every t ∈ T , we pick r(t) ∈ R−(t) arbitrarily. If t′ > t, then, by (1a), there is
x ∈ R(t) such that x ≤ r(t) and x ≤ r(t′). Since r(t) ∈ R−(t), we must have x = r(t).

Corollary. A correspondence R from a poset T to a poset X admits a monotone selection
if it is increasing w.r.t. ≥Inf while every R(t) (t ∈ T ) is Zorn bounded below.

Dually, the existence of a monotone selection follows from monotonicity w.r.t. ≥Sup

and R+(t) 6= ∅ for every t. Without any restriction on R(t), Proposition 3.1 is wrong, as
was shown in Smithson (1971, p. 307); that example simultaneously shows that Milgrom
and Shannon’s (1994) “Theorem A2” is also wrong.

Theorem 1. Let X be a lattice, T be a poset, R : T → BX be increasing w.r.t. ≥wV, and
such that, for every t ∈ T , R(t) is chain-complete upwards and R−(t) 6= ∅ (e.g., R(t) is
Zorn bounded below). Then there exists a monotone selection from R.

The proof is deferred to Section 5.1. Naturally, the dual version is valid as well. Note
that the upward chain-completness of every R(t) in Theorem 1 cannot be replaced with
just Zorn boundedness above.

Example 3.2. Let X := [−1, 1] and R : X → BX be this: R(0) := X\{0}; R(x) := {x/2}
for x ∈ X \ {0}. Clearly, every R(x) is Zorn bounded both above and below, whereas R
is increasing w.r.t. ≥wV; however, R admits neither monotone selection, nor fixed point.

Referring to Theorem 1 instead of “Theorem A2,” we obtain a correct proof of Milgrom
and Shannon’s (1994) Theorem A4.

Theorem A4 (Milgrom and Shannon, 1994). Let X be a complete lattice; let f : X →
R be quasisupermodular and such that for every chain C ⊆ X, there hold

lim sup
x∈C, x↑sup C

f(x) ≤ f(sup C) (2a)

and
lim sup

x∈C, x↓inf C

f(x) ≤ f(inf C). (2b)

Then argmaxx∈X f(x) is a nonempty complete sublattice of X.

Remark. The original formulation of Milgrom and Shannon is about argmaxx∈S f(x),
where S is a complete sublattice of X; however, this extension is straightforward because
all assumptions about f are inherited by its restriction to S. The following proof essen-
tially belongs to Veinott (1989) and Shannon (1990, Proposition 2). The existence proof
remains valid under either “half” of quasisupermodularity, but then the set of maximizers
need not be a sublattice.
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Proof. We consider the mapping R : f(X) → BX defined by R(a) := {x ∈ X | f(x) ≥ a}.
Conditions (2) ensure that every R(a) is chain-subcomplete in X. If x ∈ R(a) and
y ∈ R(b), but y ∧ x /∈ R(a), then f(x) > f(y ∧ x), hence f(y ∨ x) > f(y) by the
quasisupermodularity of f , hence y ∨ x ∈ R(b); therefore, R(b) ≥wV R(a). We see that R
is increasing w.r.t. ≥wV, whatever order is chosen on f(X) (this funny thing is possible
because ≥wV is not an order). Let us consider the order on f(X) induced from R; by
Theorem 1, there exists a monotone selection r from R. Clearly, C := {r(a)}a∈f(X) is a
chain in X; denoting x∗ := sup C, we have f(x∗) ≥ f(x) for every x ∈ X by (2a), i.e.,
x∗ ∈ argmaxx∈X f(x) 6= ∅. Now, the quasisupermodularity of f ensures, in a standard
way, that argmaxx∈X f(x) is a sublattice of X. Being chain-subcomplete, it is a complete
sublattice of X.

Without topological restrictions on values R(t), the existence of a monotone selection
can be obtained either for a weakly ascending correspondence from a finite poset, or for
an ascending correspondence.

Proposition 3.3. Let X be a lattice, T be a finite poset, and R : T → BX be increasing
w.r.t. ≥wV. Then there exists a monotone selection from R.

Theorem 2. Let X be a sublattice of the Cartesian product of a finite number of chains.
Let T be a poset and R : T → BX be increasing w.r.t. ≥Vt. Then there exists a monotone
selection from R.

The proofs are deferred to Sections 5.2 and 5.3 respectively. The validity of Proposi-
tion 3.3 was mentioned in Veinott (1989), but a different proof was suggested.

4 ε-Best responses

In this section, we study correspondences generated by the maximization of a binary
relation. Formally, we consider a parametric family 〈≻t〉t∈T of binary relations on X; the
parameter t may be interpreted as (an aggregate of) the choice(s) of other agent(s). We
define

R(t) := {x ∈ X | ∄ y ∈ X [y ≻t x]}. (3)

A relation ≻ is strongly acyclic if there exists no infinite improvement path, i.e., no
sequence 〈xk〉k∈N such that xk+1 ≻ xk for all k. A relation ≻ is an interval order if it is
irreflexive and transitive, and satisfies the condition

∀x, y, a, b ∈ X
[

[y ≻ x & b ≻ a] ⇒ [y ≻ a or b ≻ x]
]

.

The importance of those properties of preference relations is shown by these straightfor-
ward characterization results.
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Proposition 4.1. Let ≻ be a binary relation on a set X. For every Y ⊆ X, we denote
M(Y ) := {x ∈ Y | ∄ y ∈ Y [y ≻ x]}. Then these two statements are equivalent.

1. ≻ is strongly acyclic and transitive.

2. Whenever Y ⊆ X and x ∈ Y \ M(Y ), there is y ∈ M(Y ) such that y ≻ x.

Proposition 4.2. Let ≻ be a binary relation on a set X, and M(Y ), for every Y ⊆ X,
be the same as in Proposition 4.1. Then these two statements are equivalent.

1. ≻ is a strongly acyclic interval order.

2. Whenever Y ⊆ X and {x0, . . . , xk} ⊆ Y \ M(Y ), there is y ∈ M(Y ) such that
y ≻ xm for each m = 0, . . . , k.

Routine proofs are omitted.

A parametric family 〈≻t〉t∈T has the single crossing property if these conditions hold:

∀x, y ∈ X ∀t, t′ ∈ T
[

[t′ > t & y ≻t x & y > x] ⇒ y ≻t′ x
]

; (4a)

∀x, y ∈ X ∀t, t′ ∈ T
[

[t′ > t & y ≻t′ x & y < x] ⇒ y ≻t x
]

. (4b)

The property (equivalent to Milgrom and Shannon’s when every ≻t is an ordering repre-
sented by a numeric function) can be perceived as monotonicity w.r.t. a partial order on
the set of binary relations on X. The fact was noticed (in somewhat narrower contexts)
by Quah and Strulovici (2007) and Alexei Savvateev (a seminar presentation, 2007).

Theorem 3. Let X and T be chains such that both min T and max T exist. Let a para-
metric family 〈≻t〉t∈T of binary relations on X satisfy both conditions (4). Let every ≻t

be a strongly acyclic interval order. Then there exists a monotone selection from R.

Remark. The restriction on T is obviously satisfied if it is complete,

The proof is deferred to Section 5.4. As an example, let u : X × T → R be bounded
above and ε > 0; let the preference relation be

y ≻t x ⇋ u(y, t) > u(x, t) + ε.

It is easily seen that every ≻t is a strongly acyclic interval order (actually, a semiorder).
R(t) consists of all ε-maxima of u(·, t). Both conditions (4) hold if u satisfies Topkis’s
(1979) increasing differences condition:

[t′ > t & y > x] ⇒ u(y, t′) − u(x, t′) ≥ u(y, t) − u(x, t);

in this context, the property is equivalent to the supermodularity of u (as a function
on the lattice X × T ). Neither Theorem 1, nor Theorem 2 are applicable here: R is
increasing w.r.t. ≥wV, but not necessarily w.r.t. ≥Vt; R(t) need not be complete, nor even
Zorn bounded.

The assumption in Theorem 3 that the preferences are described by interval orders
cannot just be dropped, even for finite sets X and T .
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Example 4.3. Let X := {0, 1, 2, 3, 4}, T := {0, 1} (both with natural orders), and
relations ≻t be defined by: 2 ≻0 4 ≻0 0 ≻0 1 ≻0 3; 1 ≻1 3 ≻1 2 ≻1 4 ≻1 0. Clearly,
R(0) = {2} while R(1) = {1}, so there is no monotone selection. On the other hand,
conditions (4) are easy to check: (4a) is nontrivial only for 4 ≻0 0; (4b), only for 1 ≻1 3
and 2 ≻1 4.

Under the assumption that every ≻t is strongly acyclic and transitive, Theorem 3 is
valid for finite X or T , but not generally.

Example 4.4. Let X := [−2, 2], T := [−1, 1] (both with natural orders), and relations
≻t be defined by

y ≻t x ⇋ [u1(y, t) > u1(x, t) & u2(y, t) > u2(x, t)], (5)

where u : X × T → R2 is this: u(1, t) := 〈5, 2〉 and u(−1, t) := 〈2, 5〉 for all t ∈ T ;
u(2, t) := u(−2, t) := u(x, t) := 〈0, 0〉 for all x ∈]− 1, 1[ and t ∈ T ; whenever x ∈]1, 2[ and
t ≥ 0,

u1(x, t) :=

{

x + t − 1, if x + t ≤ 2,

x + t + 4, if x + t > 2,
while u2(x, t) := 6 − x − t;

whenever x ∈] − 2,−1[ and t ≥ 0, u(x, t) := 〈6 + x,−1 − x〉; finally, ui(x, t) for t < 0,
i = 1, 2, and x ∈] − 2,−1[∪]1, 2[ is such that the equality

ui(x, t) = u3−i(−x,−t) (6)

holds for all t ∈ T , i = 1, 2, and x ∈ X.

The very form of (5) ensures that every ≻t is irreflexive and transitive. Whenever
x ∈ {−2}∪]−1, 1[∪{2} and y ∈] − 2,−1] ∪ [1, 2[, y ≻t x for every t ∈ T . Whenever
x, y ∈] − 2,−1[ or x, y ∈]1, 2[, y ≻t x does not hold for any t ∈ T . Let t ≥ 0; if
−2 < x < −1, then u1(x) < 5 and u2(x) ≤ 1, hence 1 ≻t x; if 1 < x ≤ 2 − t < 2, then
u1(x) ≤ 1 and u2(x) < 5, hence −1 ≻t x; if 2 − t < y < 2, then u1(y) > 6 and u2(y) > 3,
hence y ≻t 1. “Dually,” by (6), y ≻t −1 ≻t x whenever t < 0, −2 < y < −2 − t, and
1 < x < 2; 1 ≻t x whenever t < 0 and −2− t ≤ x < −1. Thus, we see that every relation
≻t is strongly acyclic: no more than three consecutive improvements can be made from
any starting point (e.g., 2− t/2 ≻t 1 ≻t −1.5 ≻t −2 when t > 0). Conditions (4) are easy
to check.

It is also easily checked that R(0) = {−1, 1}, R(t) =]−2,−2 − t[∪{1} for t < 0, and
R(t) = {−1}∪]2 − t, 2[ for t > 0. Suppose there is a monotone selection r from R. If
r(t) > −1 for some t > 0, then 2 > r(t) > 2 − t; defining t′ := 2 − r(t) > 0, we have
t′ < t, hence r(t′) ≤ r(t), hence r(t′) < 2 − t′, hence r(t′) ∈ R(t′) is only possible if
r(t′) = −1. Therefore, r(t) = −1 for some t > 0; dually, r(t) = 1 for some t < 0. We
have a contradiction, i.e., there is no monotone selection: Theorem 3 cannot be extended
to strongly acyclic and transitive preference relations.
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The point of Examples 4.3 and 4.4 is that one cannot expect a connection between
the single crossing property (4) and behavior of “best” responses without Statement 2 of
Proposition 4.2 or, at least, of Proposition 4.1.

Let us consider a modification of the standard notion of a strategic game. There
is a finite set N of players and a poset Xi of strategies for each i ∈ N . We denote
XN :=

∏

i∈N Xi and X−i :=
∏

j 6=i Xj; both are posets with the Cartesian product of the
orders on components. Each player i’s preferences are described by a parametric family of
binary relations ≻

x−i

i (x−i ∈ X−i) on Xi; the player’s “best” response correspondence Ri

is defined by (3) with T := X−i. A Nash equilibrium is xN ∈ XN such that xi ∈ Ri(x−i)
for each i ∈ N .

Theorem 4. Let Γ be a strategic game where each Xi is a complete chain. Let the para-
metric family of preference relations of each player satisfy both conditions (4). Let every
relation ≻

x−i

i be strongly acyclic and transitive. Then Γ possesses a Nash equilibrium.

The proof is deferred to Section 5.5. Example 4.4 shows that the assumptions of the
theorem do not ensure the existence of monotone selections from the “best” response
correspondences.

5 Proofs

5.1 Proof of Theorem 1

We define R as the set of mappings F : T → BX such that:

∀t ∈ T [R−(t) ⊆ F (t) ⊆ R(t)]; (7a)

∀t ∈ T ∀y, x ∈ R(t) [y > x & y ∈ F (t) ⇒ x ∈ F (t)]; (7b)

∀t ∈ T [F (t) is chain-subcomplete upwards in R(t)]; (7c)

F is increasing w.r.t. ≥wV . (7d)

Clearly, R ∈ R 6= ∅. We define F̄ : T → BX by

F̄ (t) :=
⋂

F∈R

F (t) (8)

for every t ∈ T .

Lemma 5.1.1. F̄ ∈ R.

Proof. Conditions (7a), (7b), and (7c) are satisfied trivially; only (7d) deserves some
attention. Let t′ > t, y ∈ F̄ (t′), and x ∈ F̄ (t); then y ∈ F (t′) and x ∈ F (t) for every
F ∈ R. If y ∧ x ∈ R(t), then y ∧ x ∈ F (t) for every F ∈ R by (7b) for F , hence
y∧x ∈ F̄ (t). Otherwise, y∨x ∈ F (t′) for every F ∈ R by (7d) for F , hence y∨x ∈ F̄ (t′).
Since y and x were arbitrary, F̄ (t′) ≥wV F̄ (t), hence F̄ ∈ R indeed.
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For every F ∈ R and t ∈ T , we have F+(t) 6= ∅ since F (t) is chain-complete upwards.

Lemma 5.1.2. If t′ > t, y ∈ F+(t′) and x ∈ R−(t), then y ≥ x.

Proof. Otherwise, we would have y ∨ x > y and y ∧ x < x; therefore, y ∨ x /∈ F (t′) and
y ∧ x /∈ R(t), contradicting F (t′) ≥wV F (t) ⊆ R(t).

For any F ∈ R, we define its transformation F τ : T → BX by

F τ (t) := {x ∈ F (t) | ∀t′ > t ∀y ∈ F+(t′) [y ≥ x]}. (9)

Lemma 5.1.3. For every F ∈ R, there holds F τ ∈ R.

Proof. Condition (7a) immediately follows from Lemma 5.1.2 and (9); (7b) is obvious.
To check (7c), we fix t ∈ T and consider a chain Z ⊆ F τ (t); we have to show that
sup Z ∈ F τ (t) (sup here means the least upper bound in R(t); it may depend on t).
Suppose x := sup Z /∈ F τ (t), i.e., there are t′ > t and y ∈ F+(t′) such that y � x; then
we have x > y ∧ x. On the other hand, y ∧ x ∈ F (t) ⊆ R(t) because F (t′) ≥wV F (t) and
y ∈ F+(t′); for every z ∈ Z, we have x ≥ z by the definition of x and y ≥ z because
z ∈ F τ (t), hence y ∧ x ≥ z as well. Clearly, we have a contradiction with the definition
of x.

Finally, let us check (7d); let t′ > t, y ∈ F τ (t′), and x ∈ F τ (t). If y ∧ x ∈ F (t), then
y ∧ x ∈ F τ (t) by (7b) for F τ . Otherwise, y ∨ x ∈ F (t′). For every t′′ > t and z ∈ F+(t′′),
we have z ≥ x because x ∈ F τ (t), and z ≥ y because y ∈ F τ (t′). Therefore, z ≥ y ∨ x;
since t′′ and z were arbitrary, y ∨ x ∈ F τ (t′).

Lemma 5.1.4. F̄ = F̄ τ .

Immediately follows from (8), (9), and Lemma 5.1.3.

Finally, let r : T → X be an arbitrary selection from F̄+. Lemma 5.1.4 and (9)
immediately imply that r is increasing.

5.2 Proof of Proposition 3.3

We denote T+ := {t ∈ T | ∄t′ ∈ T [t′ > t]}; for every t ∈ T , we denote T ↓(t) := {t′ ∈ T |
t′ < t}; for every t ∈ T and x∗ ∈ X, R↓(t; x∗) := {x ∈ R(t) | x ≤ x∗}.

Lemma 5.2.1. For every t∗ ∈ T+, there exists x∗ ∈ R(t∗) such that R↓(t; x∗) 6= ∅ for
every t ∈ T ↓(t∗).

Proof. For every x ∈ R(t∗), we denote Z+(x) := {t ∈ T ↓(t∗) | R↓(t; x∗) 6= ∅} and
Z−(x) := T−\Z+(x). Then we pick x0 ∈ R(t∗) arbitrarily and define a sequence x0, x1, . . .
by recursion. Let xk ∈ R(t∗) have been defined; if Z+(xk) = T ↓(t∗), we take xk as x∗ and
finish the process. Otherwise, we pick t ∈ Z−(xk) arbitrarily; we have R(t∗) ≥wV R(t).
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Picking x ∈ R(t) arbitrarily, we apply (1f) with y = xk. Since R↓(t; xk) = ∅, we have
x ∧ xk /∈ R(t), hence x ∨ xk ∈ R(t∗). Defining xk+1 := x ∨ xk > xk, we obtain Z+(xk) ⊂
Z+(xk+1). Since T is finite, the sequence must stabilize at some stage, i.e., reach the
situation Z+(xk) = T ↓(t∗).

Now the proposition is proven with straightforward induction in #T . Picking t∗ ∈ T+

arbitrarily and x∗ as in Lemma 5.2.1, we define R̄ : T \ {t∗} → X by R̄(t) := R↓(t; x∗)
for t ∈ T ↓(t∗) and R̄(t) := R(t) otherwise. Obviously, R̄(t) is increasing w.r.t. ≥wV, hence
it admits a monotone selection r by the induction hypothesis. Adding r(t∗) := x∗, we
obtain a monotone selection from R on T .

5.3 Proof of Theorem 2

Let X ⊆
∏

m∈M Cm, where each Cm is a chain. We assume M totally ordered, say, M =
{0, 1, . . . , m̄}; then, invoking Zermelo’s Theorem, we assume each Cm well ordered with
an order ≫m (generally, having nothing to do with the basic order on Cm). Given y 6= x,
we define D(y, x) := {m ∈ M | ym 6= xm}, d := min D(y, x), and y ≫ x ⇋ yd ≫d xd;

Lemma 5.3.1. X is well ordered by ≫.

Proof. Being a lexicographic combination, ≫ is clearly an order. For every Y ∈ BX , we
define c1 := min{y1 | y ∈ Y }, c2 := min{y2 | y ∈ Y & y1 = c1}, etc. (the minima are
w.r.t. ≫1, ≫2, etc.); then (c1, c2, . . . , cm̄) is the minimum of Y w.r.t. ≫.

Lemma 5.3.2. Let x, y ∈ X and y � x. Then x ≫ y ∧ x ⇐⇒ y ∨ x ≫ y.

Proof. Denoting D− := {m ∈ M | ym < xm}, we immediately see that D− = D(y, y∨x) =
D(x, y ∧ x); let d := min D−. If xd ≫d yd, then x ≫ y ∧ x and y ∨ x ≫ y. If yd ≫d xd,
then y ≫ y ∨ x and y ∧ x ≫ x.

Remark. We might say that ≫ is “quasimodular.”

Now we define r(t) := min R(t) (w.r.t. ≫); it exists and is unique. r is a selection
from R by definition; let us show it is increasing. Let t′ > t, y = r(t′) and x = r(t); since
R is increasing w.r.t. ≥Vt, we have y∧x ∈ R(t) and y∨x ∈ R(t′). If y � x, then x 6= y∧x
and y 6= y ∨ x, hence y ∧ x ≫ x and y ∨ x ≫ y by the definition of r. Thus, we have a
contradiction with Lemma 5.3.2.

5.4 Proof of Theorem 3

We call a subset T ′ ⊆ T an interval if t ∈ T ′ whenever t′ < t < t′′ and t′, t′′ ∈ T ′. The
intersection of any number of intervals is an interval too. Till the end of the proof, we
denote [t′, t′′] the least interval containing both t′ and t′′ (thus [t′, t′′] = [t′′, t′]).
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Lemma 5.4.1. For every x ∈ X, the set {t ∈ T | x ∈ R(t)} is an interval.

Proof. Suppose the contrary: t′ < t < t′′ and x ∈ R(t′) ∩ R(t′′), but x /∈ R(t). By
Proposition 4.1, we can pick x∗ ∈ R(t) such that x∗ ≻t x. If x∗ > x, we have x∗ ≻t′′ x by
(4a), contradicting the assumed x ∈ R(t′′). If x∗ < x, we have x∗ ≻t′ x by (4b) with the
same contradiction.

The key role is played by the following recursive definition of sequences xk ∈ X, tk ∈ T ,
and T k ⊆ T (k ∈ N) such that:

tk ∈ T k; (10a)

T k is an interval; (10b)

∀t ∈ T k
[

xk ∈ R(t)
]

; (10c)

∀m < k
[

T k ∩ Tm = ∅
]

; (10d)

∀m < k
[

[tk < tm ⇒ xk < xm] & [tk > tm ⇒ xk > xm]
]

; (10e)

∀m < k
[

xk ≻tk xm or xm ∈ R(tk)
]

; (10f)

∀t ∈ T
[

[xk ∈ R(t) & t /∈ T k] ⇒ ∃m < k
(

t ∈ Tm or tm ∈ [t, tk]
)]

. (10g)

We start with an arbitrary t0 ∈ T , pick x0 ∈ R(t0), and set T 0 := {t ∈ T | x0 ∈ R(t)}.
Now (10a), (10c), and (10g) for k = 0 immediately follow from the definitions; (10b),
from Lemma 5.4.1; (10d), (10e), and (10f) hold by default.

Let k ∈ N\{0}, and let xm, tm, Tm satisfying (10) have been defined for all m < k. We
define T̄ k :=

⋃

m<k Tm. For every t ∈ T̄ k, there is a unique, by (10d), µ(t) < k such that
t ∈ T µ(t). By (10c), r(t) := xµ(t) is a selection from R on T̄ k. The conditions (10b) and
(10e) imply that r is increasing. If T̄ k = T , then we already have a monotone selection,
so we stop the process.

Otherwise, we pick tk ∈ T \ T̄ k arbitrarily and denote K− := {m < k | tm < tk},
K+ := {m < k | tm > tk} K∗ := {m < k | xm /∈ R(tk)}, m− := argmaxm∈K− tm,
m+ := argminm∈K+ tm, and I := [tm

−

, tm
+

]. If one of K± is empty (both cannot be), the
respective m± is left undefined, in which case I := {t ∈ T | tm

−

< t} or I := {t ∈ T | t <
tm

+

}.

By Proposition 4.2, we can pick xk ∈ R(tk) such that xk ≻tk xm for each m ∈ K∗,
hence (10f) holds. Finally, we define T k := {t ∈ T \ T̄ k | xk ∈ R(t)} ∩ I. Now the
conditions (10a), (10c), and (10d) immediately follow from the definitions; (10b) and
(10g), from Lemma 5.4.1.

Checking (10e) needs a bit more effort. If we assume that xm−

∈ R(tk), then the
condition (10g) for m− and tk implies the existence of m < m− such that tm

−

< tm < tk,
contradicting the definition of m−; therefore, xk ≻tk xm−

by (10f). If xk < xm−

then

xk ≻tm
−

xm−

by (4b), contradicting (10c) for m−. Therefore, xk > xm−

≥ xm for all

12



m ∈ K−. A dual argument shows that xk < xm+

≤ xm for all m ∈ K+. Thus, (10e)
holds.

To summarize, either we obtain a monotone selection on some step, or our sequences
are defined [and satisfy (10)] for all k ∈ N.

Lemma 5.4.2. If conditions (10) hold for all k ∈ N, then there exists an increasing
sequence 〈kh〉h∈N such that tkh is either monotone increasing or monotone decreasing in

h, and xkh+1 ≻t
kh+1

xkh for each h ∈ N.

Proof. We denote N↓, respectively, N↑, the set of k ∈ N such that tm < tk, or tm > tk,
holds for an infinite number of m ∈ N. Clearly, N = N↓∪N↑; without restricting generality,
N↓ 6= ∅. We consider two alternatives.

Let there exist min{tk | k ∈ N↓} = t∗; then the set {m ∈ N | tm < tk} is finite for every
tk < t∗, hence the set {m ∈ N | tk < tm < t∗} is infinite. We define k0 := min{k ∈ N |
tk < t∗}, and then recursively define kh+1 as the least k ∈ N for which tkh < tk < t∗. The
minimality of kh ensures that kh+1 > kh. Whenever tkh < tm < tkh+1 , we have m > kh+1

by the same minimality; therefore, xkh /∈ R(tkh+1) by (10g), hence xkh+1 ≻t
kh+1

xkh by
(10f).

Let min{tk | k ∈ N↓} not exist; then the set {m ∈ N↓ | tm < tk} is nonempty (actually,
infinite) for every k ∈ N↓. We set k0 := min N↓, and then recursively define kh+1 as the
least k ∈ N↓ for which tk < tkh . The minimality of kh again ensures that kh+1 > kh.
Whenever tkh+1 < tm < tkh , we have m ∈ N↓, hence m > kh+1; therefore, xkh /∈ R(tkh+1)

by (10g), hence xkh+1 ≻t
kh+1

xkh by (10f).

The final step of the proof consists in showing that the existence of a sequence described
in Lemma 5.4.2 contradicts the strong acyclicity assumption. We denote t− := min T and

t+ := max T . If tkh is increasing, the relations xkh+1 ≻t
kh+1

xkh “translate,” by (4a), to
xkh+1 ≻t+ xkh for each h ∈ N. If tkh is decreasing, we obtain xkh+1 ≻t− xkh for each h ∈ N
by (4b).

5.5 Proof of Theorem 4

The key role is played by the following recursive definition of a sequence xk
N ∈ XN (k ∈ N)

such that xk+1
N ≥ xk

N and xk+1
i ∈ Ri(x

k
−i) for all k ∈ N and i ∈ N . By the latter condition,

xk
N is a Nash equilibrium if xk+1

N = xk
N . On the other hand, the sequence must stabilize

at some stage because of the strong acyclicity assumption.

We define x0
i := min Xi for each i ∈ N . Given xk

N , we, for each i ∈ N independently,
check whether xk

i ∈ Ri(x
k
−i) holds. If it does, we define xk+1

i := xk
i ; otherwise, we pick

xk+1
i ∈ Ri(x

k
−i) such that xk+1

i ≻
xk

−i

i xk
i (it exists by Proposition 4.1). Supposing xk+1

i < xk
i

(hence k > 0), we obtain xk+1
i ≻

xk−1

−i

i xk
i by (4b), contradicting the induction hypothesis

xk
i ∈ Ri(x

k−1
−i ). Therefore, xk+1

i > xk
i , hence xk+1

N ≥ xk
N .

13



Supposing that xk+1
N > xk

N for all k ∈ N, we denote xω
i := supk xk

i for each i ∈ N ;

the completeness of Xi is essential here. Whenever xk+1
i 6= xk

i , we have xk+1
i ≻

xk

−i

i xk
i and

xk+1
i > xk

i as was shown in the previous paragraph; since xω
−i ≥ xk

−i, we have xk+1
i ≻

xω

−i

i xk
i

by (4a). Since N is finite, there must be i ∈ N such that xk+1
i > xk

i for an infinite number
of k. Clearly, the elimination of repetitions in the sequence 〈xk

i 〉k makes it an infinite

improvement path for the relation ≻
xω

−i

i , which contradicts the supposed strong acyclicity.

Remark. There is an obvious similarity with the Algorithm II of Topkis (1979); Xi need
not be chains there because the assumptions on preferences are much stronger. An analog
of Topkis’s Algorithm I could work here as well, but then the proof would be a bit longer.

6 Concluding remarks

6.1. We may say that a correspondence R : T → BX admits enough monotone selections
if, whenever t ∈ T and x ∈ R(t), there is a monotone selection r from R such that r(t) = x.
It is easily seen from the proofs that a correspondence R satisfying the assumptions of
Theorem 2 or Theorem 3 admits enough monotone selections; a similar assertion about
Theorem 1 would be wrong as simple finite examples show.

6.2. It is not necessary in Theorem 1 for R(t) to be chain-subcomplete in X as was
assumed in Theorem 3.2 of Veinott (1989); X itself need not be complete. This gain in
generality is hardly needed in any context, but it comes at no cost.

6.3. The function f in Theorem A4 can be replaced with a quasisupermodular preference
ordering without any significant change in the proof; only a straightforward modification
of conditions (2) is needed. Actually, both quasisupermodularity and (2) can be weakened
considerably at the price of a longer proof. A plausible conjecture that a quasisupermod-
ular ordering on a complete lattice attains its maximum if it attains a maximum on every
subcomplete chain remains neither proven nor disproved.

6.4. To the best of my knowledge, there is no example of an ascending correspondence
without a monotone selection. However, the current proof of Theorem 2 is useless even if
X is a sublattice of the Cartesian product of an infinite number of chains, to say nothing
of a non-distributive lattice. Vladimir Danilov (personal communication, 2007) proved
the theorem for an arbitrary lattice X, but a countable poset T . On the other hand,
strategy sets in economic models are often sublattices of Rm, so Theorem 2 is sufficient
to prove the existence of a Nash equilibrium under strategic complementarity; only the
existence of the best responses is needed, and not the completeness of Ri(x−i).

6.5. It is immediately seen from the proof of Theorem 3 that there exists a monotone
selection r from R with a finite range r(T ). Actually, the theorem remains valid without
the existence of min T or max T , but then the finiteness of r(T ) can no longer be asserted.
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This extension is not included here because it is useless for game-theoretic applications
(there is virtually no fixed point theorem without completeness), while requiring a signif-
icantly longer proof.

6.6. It remains unclear whether the assumption that both X and T are chains can be
dropped or weakened in Theorem 3. From the game-theoretic viewpoint, however, the
question does not seem pressing. The existence of an ε-Nash equilibrium in a game with
increasing best responses may hold in the absence of monotone selections as Theorem 4
and Example 4.4 demonstrate. If the best responses are, say, decreasing, then, indeed,
all existence results in the literature need monotone selections, but they also need the
strategies effectively be scalar and each player be only affected by a scalar aggregate of
the partners/rivals’ choices.

6.7. The assumption in Theorem 4 that each Xi is a chain is strong enough to be extremely
irritating; however, I have no idea at the moment whether and how it could be dispensed
with.
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