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ABSTRACT 

This paper analyzes the field of investors’ decision-making on a multi-asset market. It does it 

through a simulation games on a social network framework. It has been demonstrated that more 

stocks there are in the game and more changing alternatives investors have available to choose 

from, tougher it is for them to make decisions. Despite in most simulations the safest alternative 

was dominant, many investors opt for portfolio of the safest and the riskiest stock, by which they 

back the risk they take with some safe stocks. Non-omniscient investors behave chaotically. In all 

the cases, liquidity agents proved to be decisive elements of the games, though not always able to 

deliver the information of all the alternatives when too many alternatives are available. 

 

Keywords: social networks, behavioral finance, portfolio analysis, multi-asset 

game, chaos. 
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1 Introduction 

Simulations of a dynamic portfolio selection model with multiple assets are being 

done in the article. The article combines the theory of stochastic and behavioral 

finance, game theory, with the models of social networks, and continues my work 

on simulated portfolio games (Steinbacher 2008a, b; 2009a, b, c). In all previous 

games investors had to decide upon two separate assets and the combination of 

the two. This was quite easy task for them. However, managing portfolio is a 

much more complex game because many different kinds of assets make number 

of alternatives from which individual investors choose. I consider portfolio 

selection as such complex game in the article. 

 

Perception of portfolio is the same as in Markowitz (1952) who puts it as a two-

stage process, with the first aiming at getting the knowledge of the prices of assets 

and the second of how to make a portfolio when the first stage is done. Such 

notion of a portfolio in fact reflects the existence of an uncertain future in 

financial markets, due to the stochastic nature of prices (Fama 1965; Campbell et 

al. 1997). Like Markowitz, I do not try to tackle the first stage, but focus only on 

the second. Daily and intraday movements on markets reflecting the behavior of 

selfish and goal-oriented individuals on markets would make such modeling 

superfluous. Besides, portfolio is the response to the stochastic nature of prices 

with individuals making decisions upon their beliefs and expectations (see 

Hirshleifer (2001) for a review on investor psychology in asset pricing). If prices 

were common knowledge, no one would take portfolio but the stock with the 

highest return. In fact, as long as prices are common knowledge, no trade is 

possible with no one be willing to sell below the common knowledge price and no 

one to buy above it. Therefore, I omit the first stage, take historical stock returns 

in time in a minute time intervals and simulate the decision-making of individuals 

in time upon the given returns.  

 

Several pillars are significant in making simulations. When making decisions, 

investors have knowledge only of the current and past returns of alternatives they 

choose. They also possess the knowledge of the past returns that have been chosen 

by those to whom they are directly connected. Investors do not know the returns 
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of alternatives they do not possess neither do they know the future returns of 

stocks they possess or alternatives they choose. Investors also do not know the 

mechanisms that drive the returns of assets in time. Therefore, investors decide 

upon their realized returns, from which they make expectations for the future. 

Since the future is not known with certainty, investors also consider uncertainty, 

as argued by Kahneman and Tversky (1979), and behave strategically. I also 

introduce such investors in the game that never change their initial strategy, 

whatever its efficiency. This is in line with the Rubinstein (1998), Osborne and 

Rubinstein (1990), and Kahneman and Tversky. The latter argue that investors 

have a strong desire to avoid the feeling of regret, by which some of them rather 

do nothing. Such assumption draws some very significant consequences for the 

decision-making of the entire group of investors, keeping the liquidity of 

temporary dominated strategies. Without such individuals, some consecutive poor 

outcomes of some alternatives could eliminate such alternatives from the scope of 

alternatives in the longer run. This process works as to the principle of an 

invisible hand. For this credits, I call them liquidity individuals (Steinbacher 

(2009b)). 

 

Finally, investors in the game use a social network to communicate and share 

information with each other. Becker (1996) argues that individuals possess two 

sorts of capital: personal and social. Personal capital involves all of the previous 

experiences that influence or determine the current knowledge and behavior of an 

individual. Social capital determines all of the external effects of other individuals 

that contribute to the current and future level of knowledge of an individual. As 

such, personal capital and human capital represent only a part of an entire human 

capital of an individual.  

 

In the network, each investor is connected to a small number of other investors, 

what represents individual’s social capital. I assume that investors communicate 

with those to whom they are directly connected, by which they share information 

throughout the network. This is the most significant part of the simulation games, 

because investors get information they need to make decisions in time from their 

own experiences, as well as from the experiences of others. In an isolated world, 

investors would only depend on their own knowledge, which would limit the 
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scope of the alternatives from which to choose. That would lead to superficial 

decisions. Individuals namely possess only a small bit of the entire knowledge 

(Hayek 1945), which makes the cooperation a requisite for the progress and better 

decisions. Levine and Pesendorfer (2007) argue that when individuals are 

involved in the social interaction, they are prone to modify their preferences and 

select the most efficient strategies out of the pool of strategies of their friends. The 

side effect of such cooperation within the network is herding, leading to 

synchronous decisions in time (Keynes 1936; Bikhchandani et al. 1998). 

 

I assume that investors form a small world network, by which I assume that 

individuals have much stronger local contacts than global, but where individuals 

also have some of such global connections (Watts and Strogatz 1998; Wasserman 

and Faust 1994). For the efficient use of a social network, it is also important for 

individuals how capable they are in receiving information from others, how good 

the information they get from others is, how efficient they are to incorporate 

information into their knowledge and how good they use this in their decision-

making. Another important aspect that affects the stock of individuals’ knowledge 

is how prone agents are in sharing the information and knowledge they have with 

others. Rubinstein (1998) also brings forward some of the causes for the existence 

of constraints on the information held by an agent. The acquisition of information 

is costly; the information acquired often has to be stored in the memory before its 

use, and the memory is not unbounded; while information are received through 

the process of interaction that also has some of its own limits. If other agents are 

not prone of sharing their knowledge to others, such interaction does not spread 

the knowledge around the network. I do not consider the techniques by which 

investors communicate with each other, but assume that the communication 

among investors is perfect and efficient. This means that the two investors 

communicating with each other fully share their knowledge to one another. 

 

The paper proceeds as follows. In the Section 2, I consider the social network 

used in the simulations, whereas in the Section 3, I propose a model of decision-

making. In Section 4, I present the simulation results and the final Section 5 

concludes. 
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2 Social network 

Agents are central feature of an agent-based approach, because they make 

decisions in time and share their knowledge. Russel and Norvig (1995) define 

agents as anything that is able to perceive the environment one is in by using 

sensors, and react upon the information one gets. In the model, I don not use 

machines or robots to make decisions, but software agents in a dynamic 

environment, which is changing in time. When modeling them, it is important 

what sort of knowledge they have, what are the ways they acquire new 

information, how they learn in time, how they process information they get into 

knowledge, how autonomous they are in their decision-making, and similar.  

 

In a social network world, agents are involved in the social interaction with others 

and acquire new information by using communication skills with other agents to 

whom they are connected. This means that individuals are not isolated entities but 

as social beings who have relatives, friends, colleagues and other acquaintances 

with whom they communicate and share information. Interaction as such could be 

seen as a consequence of the fact that knowledge of an individual represents only 

a small portion of the entire knowledge, as argued by Hayek (1945). 

 

A social network ( ),G V E=  describes relations between individuals and is 

composed of finite the set of nodes (or vertices) V , representing individuals, and 

finite set of edges (or links) E , representing their pairwise relations. By using a 

adjacency matrix, a network is defined as N N×  matrix Α , with , 1i j =A  if 

( ),i j E∈  and 0  otherwise. 

 

In the simulation games, I employ an undirected network. In an undirected 

network, edges are unordered pairs of nodes. That is, if , ,1 1i j j i= ⇔ =A A  and if 

, ,0 0i j j i= ⇔ =A A . In a directed network, edges have directions. The network 

being used here is a complete network, which means that all pairs of nodes in the 

network are connected and none isolated.  
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The next significant characteristic of a network is the node degree k . Loosely 

speaking, it reflects to the number of connections an individual node has. The 

network average degree node is an average over the degree nodes of individuals 

and equals 
1

1 n

i
i

k k
n =

= ∑  where n  represents the number of nodes in the network. 

Very much related to the node degree is the concept of the prestige of individuals. 

A prestige reflects the number of connections one has in the network (Freeman 

1977), whereas it can also refer to the “importance” of connections one has. Using 

the concept of importance of nodes, Bianconi and Barabasi (2001) define the 

fitness of each node reflecting the level of attractiveness of a particular node in the 

network. In the network I use below, the fitness level is considered only 

implicitly, with all the nodes of the same number of connections having the same 

level of fitness. 

 

In the simulation games, I assume that all nodes are populated in the network 

according to the principle of a small world network with individuals having many 

local and some small number of global connections. The formation of a small 

world network starts with a regular network where nodes are rewired with some 

small probability 0 1p< << . Watts and Strogatz (1998) and Barrat and Weigt 

(2000) argue that the network has all the properties of a small world network in 

the neighborhood of 0.01p = , with the properties changing quite much with the 

changes in probabilities. In such network, the local homogeneity is large, whereas 

some global connections drastically reduce the diameter of the network, with the 

latter being a maximum shortest path between any two nodes in the network. 

 

The last significant characteristic of a network that is being considered here is 

navigation (Kleinberg 1999). Navigation tackles the question whether individuals 

are capable of using their connections in such way that they reach their target 

individual on the network in the shortest possible path. In the paper, I argue that 

they are not, with individuals tackling the dilemma in such a manner, that in every 

time interval they choose one from their connections at random. 
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3 The model 

The network is populated with { }1, 2, ,1000V = …  infinitely lived individuals, 

distributed on the lattice to form a small world network, as defined by Watts and 

Strogatz (1998). Individuals in the network are rewired with probability 0.01p = . 

An average node degree in the network is 6k = . Once individuals are populated 

on the lattice, the network remains unchanged until the end of the simulation 

process. A representation of a social network, used in the model is given in Figure 

1 with nodes representing individual investors and edges their connections. 

 

Figure 1: Social network of investors 

 

 

 

In such network, investors have many local connections and some global. In the 

model, individuals communicate with others, but make fully autonomous 

decisions. However, as Levine and Pesendorfer (2007) and Bala and Goyal (1998) 

argue, the communication within a complete social network leads to synchronous 

decisions of otherwise autonomous agents.  

 

Individuals accumulate their wealth in time according to the strategy they choose, 

whereas they are free to change their strategy as the game proceeds. They 

accumulate the wealth according to (1). 
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( )( ) ( )( ) ( )1 ,t t t
W A W A r+ • • •

⎡ ⎤= ⋅ ⎣ ⎦   (1) 

( )( )1tW A+ •  and ( )( )tW A •  represent the wealth of an individual in time intervals t  

and 1t + , while ( )•  denotes the strategy used by an individual in time, and ( ),t
r •  

denotes the return of a strategy ( )•  in time t . Upon their preferences and 

prospects, individuals can distribute their wealth to all the alternatives that are 

available to them.  

 

In the game, I use realized returns of stocks on a minute basis. Returns of 

portfolios are calculated from the returns of individual stocks. Returns of assets 

are exogenous to them, whereas investors are neither able to foresee them, neither 

do they know the system that drives returns in time. To make the game feasible, I 

assume that investors always make portfolio out of equal shares of stocks they 

include into it. Therefore, if they make portfolio out of three stocks, they have one 

third of each stock, if they include four stocks into portfolio, they possess one 

fourth of each stock, and so on.  

 

In the game, I assume that individuals don not make deterministic decisions, but 

follow a logistic distribution. By doing this, I combine all the kinds of 

uncertainties of individuals they face when making decisions. This also reflects 

the level of omniscience of agents. Thus, following Szabo and Toke (1998), the 

level of omniscience of individuals is defined through κ . 

( ) ( )( )
1

1 exp i jW A W A κ
−

⎡ ⎤⎡ ⎤℘= + −⎢ ⎥⎣ ⎦⎣ ⎦
 (2) 

In every time period t  an individual iA  chooses one of whom he his directly 

connected, jA , and compares his payoff, ( )iW A , to the payoff of selected 

individual, ( )jW A . It depends upon the level of coefficient κ  which strategy an 

individual iA  adopt. For 0κ = , he always adopts the strategy that gives higher 

outcome. Such individual is denoted an omniscient individual. Higher the value of 

κ  and smaller the difference between the two payoffs, more likely it is that an 

individual will not choose the strategy with higher payoff. Such individual is 

denoted a non-omniscient individual. Contrary, lower the value of a coefficient κ  



 9

and bigger the difference between the two payoffs, more likely it is that an 

individual will choose the strategy with higher payoff. 

 

Finally, I assume that a portion of individuals, l , never change their strategy, 

whatever its efficiency. The presence of such liquidity individuals proved to be 

the most significant for the developments of the game. I set 0.1l =  and assume 

that whatever their strategy, these are individuals numbered from 

200 229,  470 499, 600 629n n n≤ ≤ ≤ ≤ ≤ ≤  and 900 909n≤ ≤  from 1000n =  

individuals. In the games, liquidity agents pursue all alternatives, randomly 

defined to them in the beginning of each game. 

 

Figure 2: Pairwise stock returns in time 
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All the games are simulated forward in time using real data of the stocks under 

consideration. I take the following stocks from the four different sectors: Wal-

Mart Stores, Inc. (NYSE: WMT), Microsoft Corporation (NYSE: MSFT), Exxon 

Mobil Corp. (NYSE: XOM) and JPMorgan & Chase (NYSE: XOM). The data 

present the returns of stocks on a minute basis of the trading days’ day sessions on 

the New York Stock Exchange from 9.30 to 16.00. The time period used in the 
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simulations is from April 6, 2009 to June 8, 2009. Because of the Memorial Day 

of May 25, which is a non-trading day, the series refers to 44 trading days and 

contains 17.160 data for each stock. Pairwise realizations of returns are presented 

in Figure 2, their distributions in Figure 3 and boxplots in Figure 4. 

 

Figure 3: Distributions of stock returns 
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Figure 4: Boxplots of returns 
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Lower bounds of the boxes in Figure 4 present first quartiles of returns, whereas 

the upper bounds figure third quartiles of realized returns. 

 

Table 1: Descriptive statistics of returns 

 

 WMT MSFT XOM JPM 

 Mean -6.51E-06 -5.55E-06  3.41E-06  7.14E-06 

 Median  0.000000  0.000000  0.000000  0.000000 

 Maximum  0.006905  0.009142  0.004885  0.016282 

 Minimum -0.006400 -0.014271 -0.006543 -0.014655 

 Std. Dev.  0.000817  0.001086  0.000734  0.001892 

 Skewness  0.043424 -0.026540 -0.187643  0.035034 

 Kurtosis  8.880335  9.248734  6.550736  7.940240 

     

 Jarque-Bera  24728.90  27920.39  9115.223  17453.78 

 Probability  0.000000  0.000000  0.000000  0.000000 

     

 Observations  17160  17160  17160  17160 

 

We can see from the Table 1 that all the stocks have excess kurtosis. JPM and 

MSFT have huge standard deviations, with JPM being very volatile, making it the 

riskiest of the four. Contrary, the least risky stocks of the four are XOM and 

WMT. 

 

4 Simulation results 

4.1 Omniscient agents 

Two stocks 

I first consider omniscient agents having two different stocks available. They are 

modeled through the value of the parameter of omniscience 0.001κ = . Because 

agents can possess either one of the two stocks or equal share of the two, this 

makes three alternatives available to every investor from which to choose. First, I 

take WMT and MSFT and simulate two independent realizations of the games. 

Figures 5 and 6 present the shares of agents of the games playing each of the three 

alternatives, 1,  2s s  and 3s , in time. 1s  represents the share of agents with WMT, 

2s  the share of investors with portfolio of the two, and 3s  the share of investors 

with MSFT. 
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Figure 5: Shares of agents with each of the alternatives 

 

Figure 6: Shares of agents with each of the alternatives 

 

The two figures demonstrate how some consecutive lower performances affect the 

developments of the game. In such cases, liquidity agents are needed to do their 

job in “rescuing” dominated alternatives. In the game, they backed MSFT’s weak 

performance from the start, keeping it among the alternatives. We can also detect 

chaotic behavior of investors from the two figures, as 60.5 percent of investors opt 

for WMT and 8.3 percent for MSFT in the first realization of the game, whereas 

24.8 percent of investors opt for MSFT in the second and 32.2 percent for WMT. 

The roots of such chaotic behavior lie in the ways in which investors make 

decisions. That is, an investor first randomly selects an investor to whom he is 



 13

directly connected, compares the two payoffs and makes decision according to 

(2). 

Three stocks 

I now add an additional stock, XOM, into the game, thus increasing the number of 

alternatives from 3 to 7. This is so because investors can now choose either to 

possess only one stock of the three, or equal shares of the two or the three from 

the three that are available.  

 

Again, I make two independent realizations of the games and present the results in 

Figures 7 and 8. 1s  represents the share of investors with WMT, 2s  the share of 

investors with MSFT, 3s  the share of investors with XOM, 4s  the share of 

investors with portfolio of WMT and MSFT, 5s  the share of investors with 

portfolio of WMT and XOM, 6s  the share of agents with portfolio of MSFT and 

XOM, and 7s  the share of investors with the portfolio of the three. 

 

Figure 7: Shares of agents with each of the alternatives 
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Figure 8: Shares of agents with each of the alternatives 

 

The introduction of XOM, the safest stock among the four, changed the behavior 

of investors drastically, as XOM turned out to be a dominant and the most desired 

stock of omniscient investors. Because omniscient investors are very efficient in 

separating efficient from inefficient alternatives, liquidity agents again take their 

role of preventing the dominant alternative, this time XOM, to wipe out the 

others. We can again detect some chaotic behavior in the investors’ decision-

making, with XOM being dominant in the first realization with 78.3 percent of 

investors choosing it in the last iteration, whereas a portfolio of XOM and MSFT, 

ended with 25.7 percent, ascended in the second, as MSFT, the riskiest in this 

setting, improved on the efficiency during the game. XOM ended with 60.3 

percent, whereas all the rest ended below 5 percent. 

Four stocks 

The last stock I introduce into the game is JPM, which is the riskiest stock of the 

four. By that, the number of alternatives increases from seven to 15. This is so 

because investors can now choose either to possess only one of each four stocks, 

or equal shares of the two, or of the three or of the all four from the four that are 

present in the game. 

 

Again, I make two independent realizations of the games. Figures 9 and 10 

present the shares of agents of the games playing each of the alternatives. 1s  

represents the share of investors with WMT, 2s  the share of investors with 
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MSFT, 3s  the share of investors with XOM, 4s  the share of investors with JPM. 

5s  represents the share of investors with portfolio of WMT and MSFT, 6s  the 

share of agents with portfolio of WMT and XOM, 7s  the share of investors with 

the portfolio WMT and JPM, 8s  the share of investors with the portfolio MSFT 

and XOM, 9s  the share of investors with the portfolio MSFT and JPM, 10s  the 

share of investors with the portfolio XOM and JPM. 11s  represents the share of 

investors with the portfolio WMT, MSFT and XOM, 12s  the share of investors 

with the portfolio WMT, MSFT and JPM, 13s  the share of investors with the 

portfolio WMT, XOM and JPM, 14s  the share of investors with the portfolio 

MSFT, XOM and JPM, and 15s  the share of investors with the portfolio of the all 

four. 

 

Figure 9: Shares of agents with each of the alternatives 
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Figure 10: Shares of agents with each of the alternatives 

 

After the introduction of JPM, the riskiest of the four, XOM ended first in the first 

realization of the game with 26.6 percent of investors opted for it, second being 

portfolio MSFT, XOM and JPM with 20.4 percent. 12.6 percent of investors opted 

for portfolio of the least and the most risky stock, XOM and JPM, with 8.9 

percent for the portfolio of the two riskiest, JPM and MSFT. That is slightly 

higher then the share of investors opting for the portfolio of the two safest stocks, 

XOM and WMT (8.1 percent), or only for the JPM (7.9 percent). 

 

In the second realization of the game, portfolio of XOM and JPM ended first with 

31 percent, followed by XOM with 23.3 percent, portfolio of portfolio MSFT, 

XOM and JPM with 13.2 percent and portfolio of WMT, MSFT and XOM with 

10.1 percent. We can find some similarities when comparing the two. In both 

realizations XOM, and portfolios of XOM and JPM, and MSFT, XOM and JPM 

were among the most desired in the end. We might conclude from such behavior 

that investors back their risk with some safest stocks, but also that they are 

prepared to take the risk. 

More than four stocks 

Using the assumptions of the game, having more than four stocks in the game 

increases the number of alternatives sharply. Namely, they equal to the number of 

combinations that could be made out of the n  stocks available in the game, i.e. 
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( ) ( )1

!
,

! !

n

i

n
C n i

i n i=

⎛ ⎞
= ∑ ⎜ ⎟⎜ ⎟−⎝ ⎠

 with i  representing the number of stocks from all the 

stocks in the game that an investor includes into his portfolio. Therefore, with five 

stocks in the game an investor has 31 different alternatives available, with six 

stocks there are 63 alternatives, with seven stocks 127, with 15 stocks 32.767 

alternatives, etc.  

 

When knowing that DJIA is made out of 30 stocks and that there are 500 stocks in 

the Standard&Poors, whereas the NASDAQ composite index includes more than 

3.800 stocks, we see that there are a way too many alternatives available than 

investors could handle. 

 

4.2 Non-omniscient agents 

Finally, I take non-omniscient agents and do the same groups of simulations 

again. To model non-omniscient agents, I take 0.5κ = . Color palette and the 

alternatives used in figures equals to that in the omniscient agents. 

Two stocks 

When deciding from the two different stocks, each agent has three alternatives 

available from which to choose. Again, I take WMT and MSFT and make two 

independent realizations of the games. Figures 11 and 12 present the shares of 

agents of the games playing each of the alternatives available. 
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Figure 11: Shares of agents with each of the alternatives 

 

Figure 12: Shares of agents with each of the alternatives 

 

The introduction of non-omniscient investors drastically changed the behavior of 

investors, which became very much changeable in time, similar to the chaotic. In 

both cases, investors value WMT a better alternative in the end, with 58.4 percent 

in the first realization and 70 percent in the second. The other alternatives were 

valued pretty much the same. 

Three stocks 

As in the case of omniscient agents, I introduce a XOM stock into the game, thus 

increasing the number of alternatives to seven. I make two independent 
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realizations of the games and present the results in Figures 13 and 14. Figures 

present the shares of agents of the games playing each of the alternatives available 

to them. 

 

Figure 13: Shares of agents with each of the alternatives 

 

Figure 14: Shares of agents with each of the alternatives 

 

With three stocks and seven alternatives available, non-omniscient investors make 

their decisions very arbitrary. In the last iteration of the first realization of the 

game, 33.8 percent of them opted for XOM, and 21.7 percent for portfolio of 

MSFT and XOM. The order of precedence is the same as in a game of omniscient 

investors’ setting, but shares here are fundamentally different. In the second 

realization of the game, most investors (40 percent) opted for portfolio of all the 
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three, being followed by portfolio of WMT and MSFT (28.4 percent), and 

portfolio of MSFT and XOM with 12.6 percent. In the first realization, a winning 

portfolio of the three was opted by 6.1 percent of investors, and was backed by 

liquidity agents. When comparing also other alternatives, we see that non-

omniscient investors decide randomly. 

Four stocks 

Finally, I include JPM and increase the number of alternatives to 15. The results 

of two independent realizations of the games are presented in Figures 15 and 16. 

 

Figure 15: Shares of agents with each of the alternatives 
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Figure 16: Shares of agents with each of the alternatives 

 

The winning alternative of the first realization of the game was a portfolio of 

MSFT and JPM with 31 percent investors opting for it, being followed by a 

portfolio of XOM and JPM with 21.6 percent and portfolio of WMT, MSFT and 

XOM with 15.2 percent. In the second realization of the game, the winning 

alternative was the portfolio of the all four stocks with 25.9 percent, being 

followed by portfolio of WMT, XOM and JPM with 19.2 percent and XOM with 

18.6 percent. When comparing the two realizations, the winning portfolio of all 

the four stocks was chosen by 6.4 percent of investors in the first realization of the 

game. Contrary, the winning alternative of the first game, portfolio of MSFT and 

JPM, was chosen by only 1.6 percent of investors in the second game, and the 

second best in the second game, portfolio of WMT, XOM and JPM, was chosen 

by 0.3 percent of investors in the first realization of the game, thus ended on the 

liquidity investors. There are no common patterns when combining the two 

realizations of the games and figures indicate that non-omniscient investors make 

decisions chaotically. 

 

5 Concluding remarks 

Simulations put some answers on how individual investors make their portfolios 

when they have many alternatives available. It has been demonstrated that most of 

the time omniscient investors took the safest stock, or combine it with the riskiest. 

Therefore, to improve on the efficiency and securing the riskiness of the 
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alternative, omniscient investors usually take portfolio of one risky stock, either 

JPM or MSFT, and back the risk with the one of the safest, usually with XOM. 

Contrary, the behavior of non-omniscient investors pretty much reflects that of the 

chaos. 

 

Liquidity agents have again proved to be indispensable elements in the games. 

However, as the number of alternatives increases, the probability that they fail in 

performing their role of keeping all the non-dominant alternatives alive also 

increases. Namely, it happens that some of them are caught among the others, 

which means that they share their information only with other liquidity agents, 

who do not change their strategies. As this happens, investors who do change 

alternatives in time lose information about individual alternatives, making such 

alternatives to fall beyond their reach. 

 

Finally, managing portfolio is very complex and tough task to do, especially when 

there are too many alternatives that are changing in time available. Therefore, also 

omniscient investors behave in a chaotic manner, making the prediction of their 

behavior harder. Besides, neither are they able to reach a unanimous decision in 

time, as returns of alternatives change much faster then information are able to 

circle through the entire network. 
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