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1 Introduction

Production functions (PF) are important components of many economic models. The esti-

mation of PFs plays a key role in the empirical analysis of issues such as the contribution

of different factors to productivity growth; complementarity and substitutability of inputs;

skill-biased technological change; estimation of economies of scale and economies of scope;

evaluation of the effects of new technologies; learning-by-doing; or the quantification of pro-

duction externalities; among many others.

There are some important econometric issues in the estimation of productions functions.

(a) Data problems: measurement error in output (typically we observe revenue but not

output, and we do not have prices at the firm level); measurement error in capital (we
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observe the book value of capital, but not the economic value of capital); differences in the

quality of labor; etc.

(b) Specification problems: Functional form assumptions, particularly when we have dif-

ferent types of labor and capital inputs such that there may be both complementarity and

substitutability.

(c) Simultaneity: Observed inputs (e.g., labor, capital) may be correlated with unobserved

inputs or productivity shocks (e.g., managerial ability, quality of land, materials, capacity

utilization). This correlation introduces biases in some estimators of PF parameters.

(d) Multicollinearity: Typically, labor and capital inputs are highly correlated with each

other. This collinearity may be an important problem for the precise estimation of PF

parameters.

(e) Endogenous Exit/Selection: In panel datasets, firm exit from the sample is not exogenous

and it is correlated with firm size. Smaller firms are more likely to exit than larger firms.

Endogenous exit introduces selection-biases in some estimators of PF parameters.

In this paper, I concentrate on the problems of simultaneity and endogenous exit, and

on different solutions that have been proposed to deal with these issues. For the sake of

simplicity, I discuss these issues in the context of a Cobb-Douglas PF. However, the argu-

ments and results can be extended to more general specifications of PFs. In fact, some of

the estimation approaches could be generalized to estimate nonparametric specifications of

PF.

It is important to emphasize that different estimation approaches are based on different

identification assumptions. Some assumptions can be more plausible for some applications

(industries, markets) than for others. One of the main goals of this paper is to explain the

role of different identifying assumptions used in alternative estimation methods.

The rest of the paper is organized as follows. Section 2 discusses the simultaneity problem

and different approaches to deal with this issues. Section 3 concentrates on the problem of

endogenous exit. Section 4 summarizes and concludes.
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2 Simultaneity Problem

Consider a random sample of N firms, indexed by i, with information on the logarithm of

output (yi), the logarithm of labor (li), and the logarithm of physical capital (ki): {yi, li,

ki : i = 1, 2, ..., N}. Throughout the paper, I consider that all the observed variables are in

mean deviations. Therefore, I omit constant terms in all the equations. We are interested

in the estimation of the Cobb-Douglas PF (in logs):

yi = αL li + αK ki + ωi + ei (1)

αL and αK are technological parameters. ωi represents unobserved (for the econometrician)

inputs such as managerial ability, quality of land, materials, etc, which are known to the

firm when it decides capital and labor. I refer to ωi as total factor productivity (TFP), or

unobserved productivity, or productivity shock. ei represents measurement error in output,

or any shock affecting output that is unknown to the firm when it decides capital and labor.

Throughout the paper, the error term ei is assumed to be independent of inputs and of the

productivity shock. I use the variable yei to represent the "true" value of output, y
e
i ≡ yi−ei.

The seminal paper by Marshak and Andrews (Econometrica, 1944) presented what prob-

ably is the first discussion of the simultaneity problem in the estimation of PF. If ωi is

known to the firm when it decides (ki, li), then observed inputs will be correlated with the

unobserved ωi and the OLS estimator of αL and αK will be biased.

Example 1: Suppose that firms in our sample operate in the same markets for output

and inputs. These markets are competitive. Output and inputs are homogeneous products

across firms. For simplicity, consider a PF with only one input, say labor. The model can

be described in terms of two equations. The production function:

yi = αL li + ωi + ei (2)
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and the condition for profit maximization, i.e., marginal product is equal to the real wage:1

αL
exp{yei }

exp{li}
= W (3)

where W represents the real wage. Note that W is the same for all the firms because, by

assumption, they operate in the same competitive output and input markets. The reduced

form equations of this structural model are:

yi =
ωi

1− αL
+ ei

li =
ωi

1− αL

(4)

Note that, Cov(yi, li) = E

µ∙
ωi

1− αL
+ ei

¸
ωi

1− αL

¶
= V ar(li). Therefore, the OLS estima-

tor of αL is such that:

p lim
N→∞

α̂L = p lim
N→∞

PN
i=1 yiliPN
i=1 li

2
=

Cov(yi, li)

V ar(li)
= 1 (5)

That is, the OLS estimator of αL converges in probability to 1 regardless the true value of

αL. Even if the hypothetical case that labor is not productive and αL = 0, the OLS estimator

converges in probability to 1. It is clear that the OLS estimator can be seriously biased.

Example 2: Consider the similar conditions as in Example 1, but now firms in our sample

produce differentiated products and use differentiated labor inputs. The model can be de-

scribed in terms of two equations: the production function (2), and the profit maximization

equation αL exp{y
e
i }/ exp{li} = Wi. The key difference with respect to Example 1 is that

now the real wageWi has sample variation across firms. The reduced form equations for this

model are:

yi =
ωi − ri
1− αL

+ ri + ei

li =
ωi − ri
1− αL

(6)

where ri = ln(Wagei). Therefore, the OLS estimator of αL is such that:

p lim
N→∞

α̂L =
Cov(yi, li)

V ar(li)
= 1 +

Cov(li, ri)

V ar(li)
(7)

1The firm’s profit maximization problem depends on output exp{yei } without the measurement error ei.
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For instance, suppose that Cov (ωi, ri) = 0, then:

Bias(α̂L) = (1− αL)
V ar (ωi)

V ar (ωi) + V ar (ri)
(8)

This bias of the OLS estimator in this model is smaller that the bias in Example 1.2 Sam-

ple variability in input prices, if it is not correlated with the productivity shock, induces

exogenous variability in the labor input. This exogenous sample variability in labor re-

duces the bias of the OLS estimator. In fact, the bias of the OLS estimator goes to zero as

V ar (ri) /V ar (ωi) increases. Nevertheless, the bias can be very significant if the exogenous

variability in input prices is not much larger than the variability in unobserved productivity.

The rest of this section discusses different estimators which try to deal with this endo-

geneity or simultaneity problem.

2.1 Using Input Prices as Instruments

If input prices, ri, are observable, and they are not correlated with the productivity shock

ωi, then we can use these variables as instruments in the estimation of the PF. However, this

approach has several important limitations. First, input prices are not always observable in

some datasets, or they are only observable at the aggregate level but not at the firm level.

Second, if firms in our sample use homogeneous inputs, and operate in the same output and

input markets, we should not expect to find any significant cross-sectional variation in input

prices. Time-series variation is not enough for identification. Third, if firms in our sample

operate in different input markets, we may observe significant cross-sectional variation in

input prices. However, this variation is suspicious of being endogenous. The different markets

where firms operate can be also different in the average unobserved productivity of firms, and

therefore cov (ωi, ri) 6= 0, i.e., input prices not a valid instruments. In general, when there is

cross-sectional variability in input prices, can one say that input prices are valid instruments

for inputs in a PF? Is cov (ωi, ri) = 0? When inputs are firm-specific, it is commonly the

case that input prices depend on the firm’s productivity.

2The model in Example 1 is a particular case of the model in Example2, i.e., the case when V ar(ri) = 0.
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2.2 Panel Data: Within-Firms Estimator

Suppose that we have firm level panel data with information on output, capital and labor

for N firms during T time periods. The Cobb-Douglas PF is:

yit = αL lit + αK kit + ωit + eit (9)

Mundlak (1961) and Mundlak and Hoch (1965) are seminal studies in the use of panel data

for the estimation of production functions. They consider the estimation of a production

function of an agricultural product. They postulate the following assumptions:

Assumption PD-1: ωit has the following variance-components structure: ωit = ηi + δt + ω∗it.

The term ηi is a time-invariant, firm-specific effect that may be interpreted as the quality of

a fixed input such as managerial ability, or land quality. δt is an aggregate shock affecting

all firms. And ω∗it is an firm idiosyncratic shock.

Assumption PD-2: The idiosyncratic shock ω∗it is realized after the firm decides the amount

of inputs to employ at period t. In the context of an agricultural PF, this shock may be

intepreted as weather, or other random and unpredictable shock.

Assumption PD-3: ω∗it is not serially correlated.

Assumption PD-4: The amount of inputs depend on some other exogenous time varying

variables, such that var
¡
lit − l̄i

¢
> 0 and var

¡
kit − k̄i

¢
> 0, where l̄i ≡ T−1

PT
t=1 lit, and

k̄i ≡ T−1
PT

t=1 kit.

The Within-Groups estimator (WGE) or fixed-effects estimator of the PF is just the OLS

estimator in the Within-Groups transformed equation:

(yit − ȳi) = αL

¡
lit − l̄i

¢
+ αK

¡
kit − k̄i

¢
+ (ωit − ω̄i) + (eit − ēi) (10)

Under assumptions (PD-1) to (PD-4), the WGE is consistent. Under these assumptions, the

only endogenous component of the error term is the fixed effect ηi. The transitory shocks

ω∗it and eit do not induce any endogeneity problem. The WG transformation removes the

fixed effect ηi.
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It is important to point out that, for short panels (i.e., T fixed), the consistency of the

WGE requires the regressors xit ≡ (lit, kit) to be strictly exogenous. That is, for any (t, s):

cov (xit, ω
∗
is) = cov (xit, eis) = 0 (11)

Otherwise, the WG-transformed regressors
¡
lit − l̄i

¢
and

¡
kit − k̄i

¢
would be correlated with

the error (ωit − ω̄i). This is why Assumptions (PD-2) and (PD-3) are necessary for the

consistency of the OLS estimator.

However, it is very common to find that the WGE estimator provides very small esti-

mates of αL and αK (see Grilliches and Mairesse, 1998). There are at least two factors that

can explain this empirical regularity. First, though Assumptions (PD-2) and (PD-3) may be

plausible for the estimation of agricultural PFs, they are very unrealistic for manufacturing

firms. And second, the bias induced by measurement-error in the regressors can be exacer-

bated by the WG transformation. That is, the noise-to-signal ratio can be much larger for

the WG transformed inputs than for the variables in levels. To see this, consider the model

with only one input, say capital, and suppose that it is measured with error. We observe

k∗it where k
∗
it = kit + ekit, and ekit represents measurement error in capital and it satisfies the

classical assumptions on measurement error. In the estimation of the PF in levels we have

that:

Bias(α̂OLS
L ) =

Cov(k, η)

V ar(k) + V ar(ek)
− αL V ar(ek)

V ar(k) + V ar(ek)
(12)

If V ar(ek) is small relative to V ar(k), then the (downward) bias introduced by the mea-

surement error is negligible in the estimation in levels. In the estimation in first differences

(similar to WGE, in fact equivalent when T = 2), we have that:

Bias(α̂WGE
L ) = − αL V ar(∆ek)

V ar(∆k) + V ar(∆ek)
(13)

Suppose that kit is very persistent (i.e., V ar(k) is much larger than V ar(∆k)) and that

ekit is not serially correlated (i.e., V ar(∆ek) = 2 ∗ V ar(ek)). Under these conditions, the

ratio V ar(∆ek)/V ar(∆k) can be large even when the ratio V ar(ek)/V ar(k) is quite small.

Therefore, the WGE may be significantly downward biased.
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2.3 Dynamic Panel Data: GMM Estimation

In the WGE described in previous section, the assumption of strictly exogenous regressors is

very unrealistic. However, we can relax that assumption and estimate the PF using GMM

method proposed by Arellano and Bond (1991). Consider the PF in first differences:

∆yit = αL ∆lit + αK ∆kit +∆δt +∆ω∗it +∆eit (14)

We maintain assumptions (PD-1), (PD-3), and (PD-4), but we remove assumption (PD-2).

Instead, we consider the following assumption.

Assumption PD-5: There are adjustment costs in inputs (at least in one input). More

formally, the reduced form equations for labor and capital are lit = fL(li,t−1, ki,t−1, ωit) and

kit = fK(li,t−1, ki,t−1, ωit), respectively, where either li,t−1 or ki,t−1, or both, have non-zero

partial derivatives in fL and fK .

Under these assumptions {li,t−j, ki,t−j, yi,t−j : j ≥ 2} are valid instruments in the PD in

first differences. Identification comes from the combination of two assumptions: (1) serial

correlation of inputs; and (2) no serial correlation in productivity shocks {ω∗it}. The presence

of adjustment costs implies that the shadow prices of inputs vary across firms even if firms

face the same input prices. This variability in shadow prices can be used to identify PF

parameters. The assumption of no serial correlation in {ω∗it} is key, but it can be tested

using an LM test (see Arellano and Bond, 1991).

This GMM in first-differences approach has also its own limitations. In some applications,

it is common to find unrealistically small estimates of αL and αK and large standard errors.

(see Blundell and Bond, 2000). Overidentifying restrictions are typically rejected. Further-

more, the i.i.d. assumption on ω∗it is typically rejected, and this implies that {xi,t−2, yi,t−2}

are not valid instruments. It is well-known that the Arellano-Bond GMM estimator may

suffer of weak-instruments problem when the serial correlation of the regressors in first differ-

ences is weak (see Arellano and Bover, 1995, and Blundell and Bond, 1998). First difference

transformation also eliminates the cross-sectional variation in inputs and it is subject to the
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problem of measurement error in inputs.

The weak-instruments problem deserves further explanation. For simplicity, consider the

model with only one input, xit. We are interested in the estimation of the PF:

yit = α xit + ηi + ω∗it + eit (15)

where ω∗it and eit are not serially correlated. Consider the following dynamic reduced form

equation for the input xit:

xit = δ xi,t−1 + λ1 ηi + λ2 ω
∗
it (16)

where δ, λ1, and λ2 are reduced form parameters, and δ ∈ [0, 1] captures the existence of

adjustment costs. The PF in first differences is:

∆yit = α ∆xit +∆ω∗it +∆eit (17)

For simplicity, consider that the number of periods in the panel is T = 3. In this context,

Arellano-Bond GMM estimator is equivalent to Anderson-Hsiao IV estimator (Anderson and

Hsiao, 1981, 1982) where the endogenous regressor ∆xit is instrumented using xi,t−2. This

IV estimator is:

α̂N =

PN
i=1 xi,t−2 ∆yitPN
i=1 xi,t−2 ∆xit

(18)

Under the assumptions of the model, we have that xi,t−2 is orthogonal to the error (∆ω∗it +∆eit).

Therefore, α̂N identifies α if the (asymptotic) R-square in the auxiliary regression of ∆xit

on xi,t−2 is not zero.

By definition, the R-square coefficient in the auxiliary regression of ∆xit on xi,t−2 is such

that:

p limR2 =
Cov (∆xit, xi,t−2)

2

V ar (∆xit) V ar (xi,t−2)
=

(γ2 − γ1)
2

2 (γ0 − γ1) γ0
(19)

where γj ≡ Cov (xit, xi,t−j) is the autocovariance of order j of {xit}. Taking into account

that xit =
λ1 ηi
1−δ + λ2(ωit + δ ωi,t−1 + δ2 ωi,t−2 + ...), we can derive the following expressions
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for the autocovariances:

γ0 =
λ21 σ

2
η

(1− δ)2
+

λ22 σ
2
ω

1− δ2

γ1 =
λ21 σ

2
η

(1− δ)2
+ δ

λ22 σ
2
ω

1− δ2

γ2 =
λ21 σ

2
η

(1− δ)2
+ δ2

λ22 σ
2
ω

1− δ2

(20)

Therefore, γ0 − γ1 = (λ
2

2σ
2
ω)/(1 + δ) and γ1 − γ2 = δ(λ22σ

2
ω)/(1 + δ). The R-square is:

R2 =

µ
δ
λ22σ

2
ω

1 + δ

¶2

2

µ
λ22σ

2
ω

1 + δ

¶Ã
λ21 σ

2
η

(1− δ)2
+

λ22 σ
2
ω

1− δ2

!

=
δ2 (1− δ)2

2 (1− δ + (1 + δ) ρ)

(21)

with ρ ≡ λ21σ
2
η/λ

2

2σ
2
ω ≥ 0. We have a problem of weak instruments and poor identification if

this R-square coefficient is very small. It is simple to verify that this R-square is small both

when adjustment costs are small (i.e., δ is close to zero) and when adjustment costs are large

(i.e., δ is close to one). When using this IV estimator, large adjustments costs are bad news

for identification because with δ close to one the first difference ∆xit is almost iid and it is

not correlated with lagged input (or output) values. What is the maximum possible value

of this R-square? It is clear that this R-square is a decreasing function of ρ. Therefore, the

maximum R-square occurs for λ21σ
2
η = ρ = 0 (i.e., no fixed effects in the input demand).

Then, R2 = δ2 (1− δ) /2. The maximum value of this R-square is R2 = 0.074 that occurs

when δ = 2/3. This is the upper bound for the R-square, but it is a too optimistic upper

bound because it is based on the assumption of no fixed effects. For instance, a more realistic

case for ρ is λ21σ
2
η = λ22σ

2
ω and therefore ρ = 1. Then, R

2 = δ2 (1− δ)2 /4. The maximum

value of this R-square is R2 = 0.016 that occurs when δ = 1/2.

Arellano and Bover (1995) and Blundell and Bond (1998) have proposed GMM estimators

that deal with this weak-instrument problem. Suppose that at some period t∗i ≤ 0 (i.e., before

the first period in the sample, t = 1) the shocks ω∗it and eit were zero, and input and output
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were equal to their firm-specific, steady-state mean values:

xit∗i =
λ1ηi
1− δ

yit∗i = α
λ1ηi
1− δ

+ ηi

(22)

Then, it is straightforward to show that for any period t in the sample:

xit = xit∗i + λ2
¡
ω∗it + δω∗it−1 + δ2ω∗it−2 + ...

¢

yit = yit∗i + ω∗it + αλ2
¡
ω∗it + δω∗it−1 + δ2ω∗it−2 + ...

¢ (23)

These expressions imply that input and output in first differences depend on the history of

the i.i.d. shock {ω∗it} between periods t
∗
i and t, but they do not depend on the fixed effect ηi.

Therefore, cov(∆xit, ηi) = cov(∆yit, ηi) = 0 and lagged first differences are valid instruments

in the equation in levels. That is, for j > 0:

E (∆xit−j [ηi + ω∗it + eit]) = 0 ⇒ E (∆xit−j [yit − αxit]) = 0

E (∆yit−j [ηi + ω∗it + eit]) = 0 ⇒ E (∆yit−j [yit − αxit]) = 0
(24)

These moment conditions can be combined with the "standard" Arellano-Bond moment

conditions to obtain a more efficient GMM estimator. The Arellano-Bond moment conditions

are, for j > 1:

E (xit−j [∆ω∗it +∆eit]) = 0 ⇒ E (xit−j [∆yit − α∆xit]) = 0

E (yit−j [∆ω∗it +∆eit]) = 0 ⇒ E (yit−j [∆yit − α∆xit]) = 0
(25)

Based on Monte Carlo experiments and on actual data of UK firms, Blundell and Bond

(2000) have obtained very promising results using this GMM estimator. Alonso-Borrego

and Sanchez-Mangas (2001) have obtained similar results using Spanish data. The reason

why this estimator works better than Arellano-Bond GMM is that the second set of moment

conditions exploit cross-sectional variability in output and input. This has two implications.

First, instruments are informative even when adjustment costs are larger and δ is close to

one. And second, the problem of large measurement error in the regressors in first-differences

is reduced.
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Bond and Soderbom (2005) present a very interesting Monte Carlo experiment to study

the actual identification power of adjustment costs in inputs. The authors consider a model

with a Cobb-Douglas PF and quadratic adjustment cost with both deterministic and sto-

chastic components. They solve firms’ dynamic programming problem, simulate data of

inputs and output using the optimal decision rules, and use simulated data and Blundell-

Bond GMM method to estimate PF parameters. The main results of their experiments

are the following. When adjustment costs have only deterministic components, the iden-

tification is weak if adjustment costs are too low, or too high, or two similar between the

two inputs. With stochastic adjustment costs, identification results improve considerably.

Given these results, one might be tempted to "claim victory": if the true model is such that

there are stochastic shocks (independent of productivity) in the costs of adjusting inputs,

then the panel data GMM approach can identify with precision PF parameters. However,

as Bond and Soderbom explain, there is also a negative interpretation of this result. De-

terministic adjustment costs have little identification power in the estimation of PFs. The

existence of shocks in adjustment costs which are independent of productivity seems a strong

identification condition. If these shocks are not present in the "true model", the apparent

identification using the GMM approach could be spurious because the "identification" would

be due to the misspecification of the model. As we will see in the next section, we obtain a

similar conclusion when using a control function approach.

2.4 Control Function Approach

In a seminal paper, Olley and Pakes (1996) propose a control function approach to estimate

PFs. Levinshon and Petrin (2003) have extended Olley-Pakes approach to contexts where

data on capital investment presents significant censoring at zero investment.

Consider the Cobb-Douglas PF in the context of the following model of simultaneous
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equations:
(PF ) yit = αL lit + αK kit + ωit + eit

(LD) lit = fL (li,t−1, kit, ωit, rit)

(ID) iit = fK (li,t−1, kit, ωit, rit)

(26)

where equations (LD) and (ID) represent the firms’ optimal decision rules for labor and capi-

tal investment, respectively, in a dynamic decision model with state variables (li,t−1, kit, ωit, rit).

The vector rit represents input prices. Under certain conditions on this system of equations,

we can estimate consistently αL and αK using a control function method.

Olley and Pakes consider the following assumptions:

Assumption OP-1: fK (li,t−1, kit, ωit, rit) is invertible in ωit.

Assumption OP-2: There is not cross-sectional variation in input prices. For every firm i,

rit = rt.

Assumption OP-3: ωit follows a first order Markov process.

Assumption OP-4: Time-to-build physical capital. Investment iit is chosen at period t but

it is not productive until period t+ 1. And kit+1 = (1− δ)kit + iit.

In Olley and Pakes model, lagged labor, li,t−1, is not a state variable, i.e., there a not

labor adjustment costs, and labor is a perfectly flexible input. However, that assumption

is not necessary for Olley-Pakes estimator. Here we discuss the method in the context of a

model with labor adjustment costs.

Olley-Pakes method deals both with the simultaneity problem and with the selection

problem due to endogenous exit. For the sake of clarity, we start describing here a version

of the method that does not deal with the selection problem. We will discuss later their

approach to deal with endogenous exit.

The method proceeds in two-steps. The first step estimates αL using a control function

approach, and it relies on assumptions (OP-1) and (OP-2). This first step is the same with

and without endogenous exit. The second step estimates αK and it is based on assumptions

(OP-3) and (OP-4). This second step is different when we deal with endogenous exit.
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Step 1: Estimation of αL. Assumptions (OP-1) and (OP-2) imply that ωit = f−1K (li,t−1, kit, iit, rt).

Solving this equation into the PF we have:

yit = αL lit + αK kit + f−1L (li,t−1, kit, iit, rt) + eit

= αL lit + φt(li,t−1, kit, iit) + eit

(27)

where φt(li,t−1, kit, iit) ≡ αK kit + f−1L (li,t−1, kit, iit, rt). Without a parametric assumption on

the investment equation fK, equation (27) is a semiparametric partially linear model. The

parameter αL and the functions φ1(.), φ2(.), ..., φT (.) can be estimated using semiparametric

methods. A possible semiparametric method is the kernel method in Robinson (1988). In-

stead, Olley and Pakes use polynomial series approximations for the nonparametric functions

φt.

This method is a control function method. Instead of instrumenting the endogenous

regressors, we include additional regressors that capture the endogenous part of the error

term (i.e., proxy for the productivity shock). By including a flexible function in (li,t−1, kit, iit),

we control for the unobservable ωit. Therefore, αL is identified if given (li,t−1, kit, iit) there

is enough cross-sectional variation left in lit. The key conditions for the identification of

αL are: (a) invertibility of fL (li,t−1, kit, ωit, rt) with respect to ωit; (b) rit = rt, i.e., no

cross-sectional variability in unobservables, other than ωit, affecting investment; and (c)

given (li,t−1, kit, iit, rt), current labor lit still has enough sample variability. Assumption (c)

is key, and it is the base for Ackerberg, Caves, and Frazer (2006) criticism (and extension)

of Olley-Pakes approach.

Example 3: Consider Olley-Pakes model but with a parametric specification of the optimal

investment equation (ID). More specifically, the inverse function f−1K has the following linear

form:

ωit = γ1 iit + γ2 li,t−1 + γ3 kit + rit (28)

Solving this equation into the PF, we have that:

yit = αL lit + (αK + γ3) kit + γ1 iit + γ2 li,t−1 + (rit + eit) (29)
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Note that current labor lit is correlated with current input prices rit. That is the reason

why we need Assumption OP-2, i.e., rit = rt. Given that assumption we can control for the

unobserved rt by including time-dummies. Furthermore, to identify αL with enough preci-

sion, there should not be high collinearity between current labor lit and the other regressors

(kit, iit, li,t−1).

Step 2: Estimation of αK . Given the estimate of αL in step 1, the estimation of αK is based

on Assumptions (OP-3) and (OP-4), i.e., the Markov structure of the productivity shock,

and the assumption of time-to-build productive capital. Since ωit is first order Markov, we

can write:

ωit = E[ωit | ωi,t−1] + ξit = h (ωi,t−1) + ξit (30)

where ξit is an innovation which is mean independent of any information at t − 1 or be-

fore. h(.) is some unknown function. Define φit ≡ φt(li,t−1, kit, iit), and remember that

φt(li,t−1, kit, iit) = αK kit + ωit. Therefore, we have that:

φit = αK kit + h (ωi,t−1) + ξit

= αK kit + h
¡
φi,t−1 − αK ki,t−1

¢
+ ξit

(31)

Though we do not know the true value of φit, we have consistent estimates of these values

from step 1: i.e., φ̂it = yit − α̂L lit.
3

If function h(.) is nonparametrically specified, equation (31) is a partially linear model.

However, it is not a "standard" partially linear model because the argument of the h function,

φi,t−1−αKki,t−1, is not observable, i.e., it depends on the unknown parameter αK. To estimate

h(.) and αK, Olley and Pakes propose a recursive version of the semiparametric method in

the first step. Suppose that we consider a quadratic function for h(.): i.e., h(ω) = π1ω+π2ω
2.

Then, given an initial value of αK , we construct the variable ω̂
αK
it = φ̂it−αKkit, and estimate

by OLS the equation φ̂it = αKkit + π1ω̂
αK
it−1 + π2(ω̂

αK
it−1)

2 + ξit. Given the OLS estimate of

αK , we construct new values ω̂
αK
it = φ̂it− αKkit and estimate again αK , π1, and π2 by OLS.

3In fact, φ̂it is an estimator of φit + eit, but this does not have any incidence on the consistency of the
estimator.
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We proceed until convergence. An alternative to this recursive procedure is the following

Minimum Distance method. For instance, if the specification of h(ω) is quadratic, we have

the regression model:

φ̂it = αKkit + π1φ̂i,t−1 + π2φ̂
2

i,t−1 + (−π1αK) ki,t−1 + (π2α2K)k
2
i,t−1

+ (−2π2αK) φ̂i,t−1ki,t−1 + ξit

(32)

We can estimate the parameters αK, π1, π2, (−π1αK), (π2α
2
K), and (−2π2αK) by OLS.

This estimate of αK can be very imprecise because the collinearity between the regressors.

However, given the estimated vector of {αK , π1, π2, (−π1αK), (π2α
2
K), (−2π2αK)} and its

variance-covariance matrix, we can obtain a more precise estimate of (αK , π1, π2) by using

minimum distance.

Example 4: Suppose that we consider a parametric specification for the stochastic process

of {ωit}. More specifically, consider the AR(1) process ωit = ρ ωi,t−1 + ξit, where ρ ∈ [0, 1)

is a parameter. Then, h (ωi,t−1) = ρωi,t−1 = ρ(φi,t−1 − αK ki,t−1), and we can write:

φit = αK kit + ρ φi,t−1 + (−ραK) ki,t−1 + ξit (33)

we can see that a regression of φit on kit, φi,t−1 and ki,t−1 identifies (in fact, over-identifies)

αK and ρ.

Time-to build is a key assumption for the consistency of this method. If new in-

vestment at period t is productive at the same period, then we have that: φit = αK

ki,t+1 + h
¡
φi,t−1 − αK kit

¢
+ ξit. Now, the regressor ki,t+1 depends on investment at period

t and therefore it is correlated with the innovation in productivity ξit.

2.5 Ackerberg-Caves-Frazer Critique

Under Assumptions (OP-1) and (OP-2), we can invert the investment equation to obtain

the productivity shock ωit = f−1K (li,t−1, kit, iit, rt). Then, we can solve the expression into the

labor demand equation, lit = fL (li,t−1, kit, ωit, rt), to obtain the following relationship:

lit = fL
¡
li,t−1, kit, f

−1
K (li,t−1, kit, iit, rt), rt

¢
= Gt (li,t−1, kit, iit) (34)
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This expression shows an important implication of Assumptions (OP-1) and (OP-2). For

any cross-section t, there should be a deterministic relationship between employment at

period t and the observable state variables (li,t−1, kit, iit). In other words, once we condition

on the observable variables (li,t−1, kit, iit), employment at period t should not have any cross-

sectional variability. It should be constant. This implies that in the regression in step 1,

yit = αL lit + φt(li,t−1, kit, iit) + eit, it should not be possible to identify αL becuase the

regressor lit does not have any sample variability that is independent of the other regressors

(li,t−1, kit, iit).

Example 5: The problem can be illustrated more clearly by using linear functions for the

optimal investment and labor demand. Suppose that the inverse function f−1K is ωit = γ1

iit+γ2 li,t−1+γ3 kit+γ4rt; and the labor demand equation is lit = δ1li,t−1+δ2kit+δ3ωit+δ4rt.

Then, solving the inverse function f−1K into the production function, we get:

yit = αL lit + (αK + γ3) kit + γ1 iit + γ2 li,t−1 + (γ4rt + eit) (35)

And solving the inverse function f−1K into the labor demand, we have that:

lit = (δ1 + δ3γ2)li,t−1 + (δ2 + δ3γ3)kit + δ3γ1iit + (δ4 + δ3γ4)rt (36)

Equation (36) shows that there is perfect collinearity between lit and (li,t−1, kit, iit) and

therefore it should not be possible to estimate αL in equation (35). Of course, in the data we

will find that lit has some cross-sectional variation independent of (li,t−1, kit, iit). Equation

(36) shows that if that variation is present it is because input prices rit have cross-sectional

variation. However, that variation is endogenous in the estimation of equation (35) because

the unobservable rit is part of the error term. That is, if there is apparent identification,

that identification is spurious.

After pointing out this important problem in Olley-Pakes model and method, Ackerberg-

Caves-Frazer study different that could be combined with Olley-Pakes control function ap-

proach to identify the parameters of the PF. For identification, we need some source of exoge-

nous variability in labor demand that is independent of productivity and that does not affect
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capital investment. Ackerberg-Caves-Frazer discuss several possible arguments/assumptions

that could incorporate in the model this kind of exogenous variability.

Consider a model with same specification of the PF, but with the following specification

of labor demand and optimal capital investment:

(LD0) lit = fL
¡
li,t−1, kit, ωit, r

L
it

¢

(ID0) iit = fK
¡
li,t−1, kit, ωit, r

K
it

¢ (37)

Ackerberg-Caves-Frazer propose to maintain Assumptions (OP-1), (OP-3), and (OP-4), and

to replace Assumption (OP-2) by the following assumption.

Assumption ACF: Unobserved input prices rLit and r
K
it are such that conditional on (t, iit, li,t−1, kit):

(a) rLit has cross-sectional variation, i.e., var(r
L
it |t, iit, li,t−1, kit) > 0; and (b) rLit and rKit are

independently distributed.

There are different possible interpretations of Assumption ACF. The following list of

conditions (a) to (d) is a group of economic assumptions that generate Assumption ACF: (a)

the capital market is perfectly competitive and the price of capital is the same for every firm

(rKit = rKt ); (b) there are internal labor markets such that the price of labor has cross sectional

variability; (c) the realization of the cost of labor rLit occurs after the investment decision takes

place, and therefore rLit does not affect investment; and (d) the idiosyncratic labor cost shock

rLit is not serially correlated such that lagged values of this shock are not state variables for

the optimal investment decision. Aguirregabiria and Alonso-Borrego (2008) consider similar

assumptions for the estimation of a production function with physical capital, permanent

employment, and temporary employment.

3 Endogenous Exit

Firm or plant panel datasets are unbalanced, with significant amount of firm exits. Exiting

firms are not randomly chosen from the population of operating firms. For instance, existing

firms are typically smaller than surviving firms.
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3.1 Selection Bias Due to Endogenous Exit

Let dit be the indicator of the event "firm i stays in the market at the end of period t". Let

V 1(lit−1, kit, ωit) be the value of staying in the market, and let V
0(lit−1, kit, ωit) be the value

of exiting (i.e., the scrapping value of the firm). Then, the optimal exit/stay decision is:

dit = I
©
V 1(lit−1, kit, ωit)− V 0(lit−1, kit, ωit) ≥ 0

ª
(38)

Under standard conditions, the function V 1(lit−1, kit, ωit)−V 0(lit−1, kit, ωit) is strictly increas-

ing in all its arguments, i.e., all the inputs are more productive in the current firm/industry

than in the best alternative use. Therefore, the function is invertible with respect to the

productivity shock ωit and we can write the optimal exit/stay decision as a single-threshold

condition:

dit = I { ωit ≥ ω∗ (lit−1, kit) } (39)

where the threshold function ω∗ (., .) is strictly decreasing in all its arguments.

Consider the PF yit = αL lit + αK kit + ωit + eit. In the estimation of this PF, we use

the sample of firms that survived at period t: i.e., dit = 1. Therefore, the error term in the

estimation of the PF is ωd=1
it + eit, where:

ωd=1
it ≡ {ωit | dit = 1} = {ωit | ωit ≥ ω∗ (li,t−1, kit)} (40)

Even if the productivity shock ωit is independent of the state variables (li,t−1, kit), the self-

selected productivity shock ωd=1
it will not be mean-independent of (li,t−1, kit). That is,

E
¡
ωd=1
it | li,t−1, kit

¢
= E (ωit | li,t−1, kit, dit = 1)

= E (ωit | li,t−1, kit, ωit ≥ ω∗ (li,t−1, kit))

= λ (li,t−1, kit)

(41)

λ (li,t−1, kit) is the selection term. Therefore, the PF can be written as:

yit = αL lit + αK kit + λ (li,t−1, kit) + ω̃it + eit (42)

where ω̃it ≡ {ωd=1
it − λ (li,t−1, kit)} that, by construction, is mean-independent of (li,t−1, kit).
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Ignoring the selection term λ (li,t−1, kit) introduces bias in our estimates of the PF pa-

rameters. The selection term is an increasing function of the threshold ω∗ (li,t−1, kit), and

therefore it is decreasing in li,t−1 and kit. Both lit and kit are negatively correlated with the

selection term, but the correlation with the capital stock tend to be larger because the value

of a firm depends strongly on its capital stock than on its "stock" of labor. Therefore, this

selection problem tends to bias downward the estimate of the capital coefficient.

To provide an intuitive interpretation of this bias, first consider the case of very large

firms. Firms with a large capital stock are very likely to survive, even if the firm receives a

bad productivity shock. Therefore, for large firms, endogenous exit induces little censoring

in the distribution of productivity shocks. Consider now the case of very small firms. Firms

with a small capital stock have a large probability of exiting, even if their productivity shocks

are not too negative. For small firms, exit induces a very significant left-censoring in the

distribution of productivity, i.e., we only observe small firms with good productivity shocks

and therefore with high levels of output. If we ignore this selection, we will conclude that

firms with large capital stocks are not much more productive than firms with small capital

stocks. But that conclusion is partly spurious because we do not observe many firms with

low capital stocks that would have produced low levels of output if they had stayed.

This type of selection problem has been pointed out also by different authors who have

studied empirically the relationship between firm growth and firm size. The relationship

between firm size and firm growth has important policy implications. Mansfield (1962),

Evans (1987), and Hall (1987) are seminal papers in that literature. Consider the regression

equation:

∆sit = α+ β si,t−1 + εit (43)

where sit represents the logarithm of a measure of firm size, e.g., the logarithm of capital

stock, or the logarithm of the number of workers. Suppose that the exit decision at period

t depends on firm size, si,t−1, and on a shock εit. More specifically,

dit = I { εit ≥ ε∗ (si,t−1) } (44)
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where ε∗ (.) is a decreasing function, i.e., smaller firms are more likely to exit. In a regression

of ∆sit on si,t−1, we can use only observations from surviving firms. Therefore, the regression

of ∆sit on si,t−1 can be represented using the equation ∆sit = α + β si,t−1 + εd=1it , where

εd=1it ≡ {εit|dit = 1} = {εit|εit ≥ ε∗ (si,t−1)}. Thus,

∆sit = α+ βsi,t−1 + λ (si,t−1) + ε̃it (45)

where λ (si,t−1) ≡ E(εit|εit ≥ ε∗ (si,t−1)), and ε̃it ≡ {εd=1it −λ (li,t−1, kit)} that, by construction,

is mean-independent of firm size at t−1. The selection term λ (si,t−1) is an increasing function

of the threshold ε∗ (si,t−1), and therefore it is decreasing in firm size. If the selection term

is ignored in the regression of ∆sit on si,t−1, then the OLS estimator of β will be downward

biased. That is, it seems that smaller firms grow faster just because small firms that would

like to grow slowly have exited the industry and they are not observed in the sample.

Mansfield (1962) already pointed out to the possibility of a selection bias due to endoge-

nous exit. He used panel data from three US industries, steel, petroleum, and tires, over

several periods. He tests the null hypothesis of β = 0, i.e., Gibrat’s Law. Using only the sub-

sample of surviving firms, he can reject Gibrat’s Law in 7 of the 10 samples. Including also

exiting firms and using the imputed values ∆sit = −1 for these firms, he rejects Gibrat’s Law

for only for 4 of the 10 samples. Of course, the main limitation of Mansfield’s approach is

that including exiting firms using the imputed values ∆sit = −1 does not correct completely

for selection bias. But Mansfield’s paper was written almost twenty years before Heckman’s

seminal contributions on sample selection in econometrics. Hall (1987) and Evans (1987)

dealt with the selection problem using Heckman’s two-step estimator. Both authors find

that ignoring endogenous exit induces significant downward bias in β. However, they also

find that after controlling for endogenous selection a la Heckman, the estimate of β is sig-

nificantly lower than zero. They reject Gibrat’s Law. A limitation of their approach is that

their models do not have any exclusion restriction and identification is based on functional

form assumptions, i.e., normality of the error term, and linear relationship between firm size

and firm growth.
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3.2 Olley and Pakes on Endogenous Selection

Olley and Pakes (1996) show that there is a structure that permits to control for selection

bias without a parametric assumption on the distribution of the unobservables. Before

describing the approach proposed by Olley and Pakes, it will be helpful to describe some

general features of semiparametric selection models.

Consider a selection model with outcome equation,

yi =

⎧
⎨
⎩

xi β + εi if di = 1

unobserved if di = 0
(46)

and selection equation

di =

⎧
⎨
⎩
1 if h(zi)− ui ≥ 0

0 if h(zi)− ui < 0
(47)

where xi and zi are exogenous regressors; (ui, εi) are unobservable variables independently

distributed of (xi, zi); and h(.) is a real-valued function. We are interested in the consistent

estimation of the vector of parameters β. We would like to have an estimator that does not

rely on parametric assumptions on the function h or on the distribution of the unobservables.

The outcome equation can be represented as a regression equation: yi = xi β + εd=1i ,

where εd=1i ≡ {εi|di = 1} = {εi|ui ≤ h(zi)}. Or similarly,

yi = xiβ +E(εd=1i |xi, zi) + ε̃i (48)

where E(εd=1i |xi, zi) is the selection term. The new error term, ε̃i, is equal to εd=1i −

E(εd=1i |xi, zi) and, by construction, is mean independent of (xi, zi). The selection term

is equal to E (εi | xi, zi, ui ≤ h(zi)). Given that ui and εi are independent of (xi, zi), it is

simple to show that the selection term depends on the regressors only through the func-

tion h(zi): i.e., E (εi | xi, zi, ui ≤ h(zi)) = g(h(zi)). The form of the function g depends

on the distribution of the unobservables, and it is unknown if we adopt a nonparametric

specification of that distribution. Therefore, we have the following partially linear model:

yi = xiβ + g(h(zi)) + ε̃i.
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Define the propensity score Pi as:

Pi ≡ Pr (di = 1 | zi) = Fu (h(zi)) (49)

where Fu is the CDF of u. Note that Pi = E (di | zi), and therefore we can estimate

propensity scores nonparametrically using a Nadaraya-Watson kernel estimator or other

nonparametric methods for conditional means. If ui has unbounded support and a strictly

increasing CDF, then there is a one-to-one invertible relationship between the propensity

score Pi and h(zi). Therefore, the selection term g(h(zi)) can be represented as λ(Pi), where

the function λ is unknown. The selection model can be represented using the partially linear

model:

yi = xiβ + λ(Pi) + ε̃i. (50)

A sufficient condition for the identification of β (without a parametric assumption on λ)

is that E (xi x
0

i | Pi) has full rank. Given equation (50) and nonparametric estimates of

propensity scores, we can estimate β and the function λ using standard estimators for par-

tially linear model such as the kernel estimator in Robinson (1988), or alternative estimators

as discussed in Yatchew (2003).

Now, we describe Olley-Pakes procedure for the estimation of the production function

taking into account endogenous exit. The first step of the method (i.e., the estimation

of αL) is not affected by the selection problem because we are controlling for ωit using a

control function approach. However, there is endogenous selection in the second step of

the method. For simplicity consider that the productivity shock follows an AR(1) process:

ωit = ρ ωi,t−1 − ξit. Then, the "outcome" equation is:

φit =

⎧
⎨
⎩

αK kit + ρ φi,t−1 + (−ραK) ki,t−1 + ξit if dit = 1

unobserved if di = 0
(51)

The exit/stay decision is: {dit = 1} iff {ωit ≥ ω∗(lit−1, kit)}. Taking into account that

ωit = ρωi,t−1 + ξit, and that ωi,t−1 = φi,t−1 − αK kit−1, we have that the condition {ωit ≥

ω∗(lit−1, kit)} is equivalent to {ξit ≤ ω∗(lit−1, kit)−ρ(φi,t−1−αKkit−1)}. Then, it is convenient
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to represent the exit/stay equation as:

dit =

⎧
⎨
⎩
1 if ξit ≤ h(lit−1, kit, φi,t−1, kit−1)

0 if ξit > h(lit−1, kit, φi,t−1, kit−1)
(52)

where h(lit−1, kit, φi,t−1, kit−1) ≡ ω∗(lit−1, kit) − ρ(φi,t−1 − αKkit−1). The propensity score is

Pit ≡ E
¡
dit | lit−1, kit, φi,t−1, kit−1

¢
. And the equation controlling for selection is:

φit = αKkit + ρφi,t−1 + (−ραK) ki,t−1 + λ (Pit) + ξ̃it (53)

where, by construction, ξ̃it is mean independent of kit, kit−1, φi,t−1, and Pit. And we can

estimation equation (53) using standard methods for partially linear models.

4 Conclusion

In this paper, I have discussed the simultaneity and sample selection problems in the iden-

tification and estimation of production functions, and I have reviewed the advantages and

limitations of different estimation methods. The main emphasis of the paper has been to

explain the role of different identifying assumptions used in alternative estimation methods.
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