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The digital revolution of the information age and in particular the sweeping changes of scien-
tific communication brought about by computing and novel communication technology, potentiate
global, high grade scientific information for free. The arXiv for example is the leading scientific
communication platform, mainly for mathematics and physics, where everyone in the world has free
access on. While in some scientific disciplines the open access way is successfully realized, other
disciplines (e.g. humanities and social sciences) dwell on the traditional path, even though many
scientists belonging to these communities approve the open access principle. In this paper we try to
explain these different publication patterns by using a game theoretical approach. Based on the as-
sumption, that the main goal of scientists is the maximization of their reputation, we model different
possible game settings, namely a zero sum game, the prisoners’ dilemma case and a version of the
stag hunt game, that show the dilemma of scientists belonging to “non-open access communities”.
From an individual perspective, they have no incentive to deviate from the Nash Equilibrium of
traditional publishing. By extending the model using the quantum game theory approach it can be
shown, that if the strength of entanglement exceeds a certain value, the scientists will overcome the
dilemma and terminate to publish only traditionally in all three settings.

PACS numbers: 03.67.-a, 02.50.Le, 01.20.+x, 01.30.Xx, 89.65.-s, 89.70.+c

I. INTRODUCTION

In recent years the market of scientific publishing faces
several forces that may cause a major change of tradi-
tional market mechanisms. First of all, the increase of
digitalization brought a shift towards electronic publi-
cation. Furthermore, shrinking library budgets with a
simultaneous rise of journal prices resulted in massive
cancellations of journals and books [1, 2, 3, 4]. In conse-
quence of this still lasting journal crisis, alternative ways
of publishing, in particular open access, received increas-
ing attention [5, 6, 7]. Currently two main approaches
have emerged. On the one hand, new open access jour-
nals are brought to being, either through transformation
of traditional journals or through creation of new titles.
This approach is often called the Golden Road to Open
Access. On the other hand, authors may self-archive
their articles in Institutional Repositories, a model re-
ferred to as the Green Road to Open Access [8, 9].

In the following we understand open access publishing
as the electronic publication of scientific information on
a platform that provides access to this information for all
potential users, without financial or other barriers. The
realization of open access publishing differs between re-
search disciplines [10]. The prime example of an adoption
of the open access publishing paradigm is the arXiv server
which is mainly used by physicists and mathematicians.
Researchers in this fields normally self-archive their pa-
pers on the arXiv (so that everyone has free access to
the work) and often additionally submit them to regu-

lar scientific journals, where these papers go through the
traditional peer review process. Thus the arXiv-model
represents neither exactly the golden nor the green road
of open access publishing.

In contrast most other scientific disciplines do not
make use of open access publishing, even though they
support this model if asked for [11, 12]. Instead, they
submit research papers to traditional journals that do
not provide free access to their articles. Considering that
the majority of scientists regard open access publishing
as superior to the traditional system, the question arises,
why it is only adopted by few disciplines.

Based on the assumption, that the main goal of scien-
tists is the maximization of their reputation, we try to
answer this question from the perspective of the produc-
ers of scientific information by using a game theoretical
approach. Scientific reputation originates mainly from
two different sources: on the one hand the citations to
the articles of a scientist and on the other hand the repu-
tation of the journals he publishes his articles [13]. Start-
ing from a general 2-Scientists-Game, where two authors
have to decide whether they publish open access or not,
three different possible game settings are developed. In
each case the outcome of the game results in a dilemma,
that cannot be solved within the static framework of clas-
sical game theory. Therefore we extend the model using
the quantum game theoretical approach and show, that if
choosing quantum strategies, the players can escape the
dilemma.

The remainder of the paper is structured as follows.
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In section II the open access game is developed using
the classical game theoretical notation. Firstly we define
the general reputation payoff matrix of the game. The
three settings of the game cover a zero sum game, the
prisoners’ dilemma case, and a variation of the so called
stag hunt game. In section III, after a brief introduction
into the history of quantum game theory, we define the
basic notations of the quantum version of the open access
game and discuss the different game settings in detail.
Our results are summarized in section IV.

II. THE CLASSICAL GAME OF OPEN ACCESS

A. Formalization of the Game

To describe the classical open access game we use a
normal-form representation of a two-player [29] game Γ
where each player (Player 1 =̂ A, Player 2 =̂ B) can
choose between two strategies (SA = {sA

1 , s
A
2 }, SB =

{sB
1 , s

B
2 }). In our case the two strategies represent the

authors’ choice between publishing open access (o) or not
(ø). The game tree can therefore be visualized as in Fig.
1.

A

B

B

sA1 =o

sA2 =ø

Open Access

Non-Open Access

sB1 =o

sB2 =ø

sB1 =o

sB2 =ø

(sA
1 , sB

1 ) =̂ (o,o)

(sA
1 , sB

2 ) =̂ (o,ø)

(sA
2 , sB

1 ) =̂ (ø,o)

(sA
2 , sB

2 ) =̂ (ø,ø)

FIG. 1: Classical tree of the open access game.

The whole strategy space S is composed with use of a
Cartesian product of the individual strategies of the two
players (scientists):

S = SA × SB = {(o,o), (o,ø), (ø,o), (ø,ø)} (1)

As outlined in the introduction, we assume, that the main
objective of scientists is the maximization of their reputa-
tion. In the following we focus on a situation, where the
two scientists belong to a scientific community in which
the open access paradigm is not yet broadly adopted and
the publishers decline the acceptance of articles that are
already accessible on an open access server. The payoff
structure of this game can be described by the following
matrix:

A\B o ø

o (r + δ,r + δ) (r − α,r + β)

ø (r + β,r − α) (r,r)

TABLE I: General open access payoff matrix.

The actual reputation of the two scientists is repre-
sented by a single parameter r [30]. If both players decide
to publish their papers only in traditional journals (ø,ø),
their reputation r does not change. If only one of the two
players chooses the open access strategy ((ø,o) or (o,ø))
the parameters α and β (α, β ≥ 0) describe the decrease
and the increase of the scientists’ reputation, depending
on the selected strategy. By modeling the payoff in this
way, it is assumed that the reputation of the player, who
performs open access, decreases if the other player si-
multaneously decides not to publish open access. This
can be explained by the fact, that in “non-open access
communities” reputation is mainly defined through the
reputation of the journals a scientist publishes in. Thus
if performing open access (by what a publication in tra-
ditional journals gets impossible), the scientist has no
chance to gain journal-related reputation any more. On
the other hand the parameter β describes the potential
increase of reputation of a scientist that refuses to per-
form open access while the other player selects the open
access strategy. By setting α = β the reputation is con-
sidered as a relative construct (see section II B 1). The
parameter δ represents the potential benefit in the case
that both players choose the open access strategy (o,o).
The payoff for each player then is r + δ. In this case
it is assumed that if all players choose the open access
strategy the publishers are forced to accept articles for
publication even if they are already accessible. Then sci-
entists can gain reputation both through the reputation
of the journal they publish in and through the increase
of citations due to a broader accessibility [14, 15, 16].

In the following we will describe three specific param-
eter settings of the open access game.

B. Potential Game Settings

1. Open Access as a Zero Sum Game

The most simple case of an open access game is realized
by setting the free parameters of the games’ payoff matrix
to the following fixed values: r = 0, δ = 0 and α =
β = 1. The starting reputation and the open access
benefit of both players is set to zero, whereas the absolute
value of the increase (β) and decrease (α) in reputation
is taken to be equal. This setting therefore describes
reputation as a relative quantity. A potential increase in
reputation of one player results in an equivalent decrease
of the other player’s reputation. In this case, δ has to
be zero because the total amount of reputation in the
system cannot increase. The payoff matrix of this setting
is illustrated in Table II.
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A\B o ø

o (0,0) (−1,1)

ø (1,−1) (0,0)

TABLE II: Open access payoff matrix with reputation as a
relative quantity.

In this game each player has a dominant strategy (ø)
and the Nash equilibrium is (ø,ø). Therefore no player
has the incentive to deviate from the non-open access
strategy ø.

2. The Open Access Game as a Prisoners’ Dilemma

The game is similar to a classical prisoners’ dilemma,
if the assumption that reputation is a relative quantity is
partially abrogated. If both players choose the open ac-
cess strategy, the total amount of reputation will increase
by δ (δ > 0). In this case we have taken the following
parameter settings: r = 3, δ = 1 and α = β = 2. Table
III depicts the payoff of both players.

A\B o ø

o (4,4) (1,5)

ø (5,1) (3,3)

TABLE III: Open access payoff matrix within the prisoners’
dilemma setting.

Although the payoff for both players would be higher if
they choose the strategy set (o,o), they are stuck within
the Nash equilibrium (ø,ø). This outcome describes the
paradox situation of many scientific disciplines: Scien-
tists on the one hand realize that they would benefit, if
all players adopt open access, but on the other hand, no
player has an individual incentive to change.

3. Open Access as a “Stag Hunt” Game

The stag hunt game in its original meaning describes
the situation of two hunters, which have the choice be-
tween hunting a stag or a rabbit. If successful, bagging
a stag provides more benefit than bagging a rabbit. The
problem within this game is that hunting a stag can only
be successful if both players go for the stag, whereas a
rabbit can be easily bagged by only one hunter. In our
case hunting a stag corresponds to the strategy of per-
forming open access, and the non-open access strategy
stands for hunting rabbits. Compared to the prisoners’
dilemma only the parameter β is modified. To formulate
the open access stag hunt game we have used the follow-
ing parameter settings: r = 3, δ = 1, α = 2 and β = 0
(see Table IV) [31].

A\B o ø

o (4,4) (1,3)

ø (3,1) (3,3)

TABLE IV: Open access payoff matrix within the stag hunt
setting.

In contrast to the other settings this game has two pure
Nash equilibria ((o,o) and (ø,ø)) and one mixed strat-
egy Nash equilibrium 2

3 (o,o). (o,o) is payoff dominant,
whereas (ø,ø) is the risk dominant pure Nash equilibrium.
The mixed strategy Nash equilibrium 2

3 (o,o) implies that
one scientist has the incentive to choose non-open access
if he expects the probability of the other player to choose
non-open access as well, to be higher than 33.3%.

In the following section we formulate the classical game
settings described above within a quantum game theoret-
ical framework.

III. THE QUANTUM GAME OF OPEN ACCESS

The basic principles of game theory were developed by
J. von Neumann in the year 1928. Together with O. Mor-
genstern he applied this new theory to economics [17].
In addition to this outstanding scientific contribution he
was also involved in the description of the mathematical
foundations of quantum theory [18]. Keeping these his-
torical facts in mind, it is surprising, that only recently
game theory and quantum physics has been unified to
one theory, the so called Quantum Game Theory.

The leadoff articles of quantum game theory where
published by D. A. Meyer and J. Eisert et al. in the year
1999. Meyer illustrated a quantum version of the simple
“Penny Flip” game and showed, that if one player uses a
specific quantum strategy, whereas the other player per-
sists in a classical one, the player who selects the quan-
tum strategy will always win the game [19]. Just a few
weeks after Meyers’ article was published, Eisert et al.
focused on the well known prisoners’ dilemma [20], un-
knowing Meyers’ results. Within their quantum repre-
sentation they where able to demonstrate, that prisoners
could escape from the dilemma, if the entanglement of the
prisoners’ wave function is above a certain value. S. C.
Benjamin and P. M. Hayden amplified the formal descrip-
tion of quantum games towards many players [21]. L.
Marinatto and T. Weber applied the density matrix ap-
proach to the “Battle of Sexes” game and demonstrated,
that entangled strategies lead to a unique solution of the
game [22]. E. W. Piotrowski and J. Sladkowski disposed
quantum game theory to market behaviors [23]. In 2001
J. Du et al. realized the first simulation of a quantum
game; the experimental results confirmed their theoreti-
cal predictions [24]. Particularly they performed a pris-
oners’ dilemma quantum game on their nuclear magnetic
resonance quantum computer. Several other topics re-
garding quantum game theory have been addressed (e.g.
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overviews are given in [25, 26, 27]).
In the following subsection we summarize the main

formal concepts of a two-player two-strategy quantum
game. We follow the description of Eisert et al. [20, 28]
and allow two parameter sets of quantum strategies [32].

A. Formalization of the Quantum Game

One can understand the concept of quantum strate-
gies as an enlargement of mixed strategies towards an
abstract complex strategy space. The measurable clas-
sical strategies (o and ø) correspond to the orthonormal
unit basis vectors |o〉 and |ø〉 of the two dimensional com-
plex space C2, the so called Hilbert space Hi of the player
i (i = A,B). A quantum strategy of a player i is repre-
sented as a general unit vector |ψ〉i in his strategic Hilbert
space Hi. The whole quantum strategy space H is con-
structed with the use of the direct tensor product of the
individual Hilbert spaces: H := HA ⊗ HB . The main
difference between classical and quantum game theory is,
that in the Hilbert space H correlations between the play-
ers’ individual quantum strategies are allowed, if the two
quantum strategies |ψ〉A and |ψ〉B are entangled. The
overall state of the system we are looking at is described
as a two-players quantum state |Ψ〉 ∈ H. The four basis
vectors of the Hilbert space H are chosen to be equal to
the classical game outcomes (|oo〉, |oø〉, |øo〉 and |øø〉).

The setup of the quantum game begins with the choice
of the initial state |Ψ0〉. We assume that both players are
in the state |o〉. The initial state of the two players is then

given by |Ψ0〉 = Ĵ |oo〉, where the unitary operator Ĵ
is responsible for the possible entanglement of the two
player system. The players’ quantum decision (quantum
strategy) is formulated with the use of a two parameter
set of unitary 2 × 2 matrices:

Û(θ, ϕ) :=

(

ei ϕ cos( θ
2 ) sin( θ

2 )

−sin( θ
2 ) e−i ϕ cos( θ

2 )

)

(2)

∀ θ ∈ [0, π] ∧ ϕ ∈ [0, π
2 ] .

By arranging the parameters θ and ϕ a player is choos-
ing his quantum strategy. The classical strategy o for
example is selected by appointing θ = 0 and ϕ = 0 :

ô := Û(0, 0) =

(

1 0

0 1

)

, (3)

whereas the strategy ø is selected by choosing θ = π and
ϕ = 0 :

ø̂ := Û(π, 0) =

(

0 1

−1 0

)

. (4)

The tree of the open access quantum game is dis-
played in Fig. 2. After the two players have chosen
their individual quantum strategies (ÛA := Û(θA, ϕA)

A

B

B

|o〉A

|ø〉A

Open Access

Non-Open Access

|o〉B

|ø〉B

|o〉B

|ø〉B

Game Basis

|oo〉

|oø〉

|øo〉

|øø〉

Two Players
Quantum State



































































































































|Ψ〉

= Ĵ †
(

ÛA ⊗ ÛB
)

Ĵ |oo〉

FIG. 2: Tree of the open access quantum game.

and ÛB := Û(θB, ϕB)) the disentangling operator Ĵ † is
acting to prepare the measurement of the scientists’ state.
The entangling and disentangling operator (Ĵ , Ĵ †; with

Ĵ ≡ Ĵ †) is depending on one additional single parameter
γ which is a measure of the entanglement of the system:

Ĵ := ei
γ
2
(ø̂⊗ ø̂) , γ ∈ [0,

π

2
] . (5)

The final state prior to detection therefore can be formu-
lated as follows:

|Ψf 〉 = Ĵ †
(

ÛA ⊗ ÛB

)

Ĵ |oo〉 . (6)

The expected payoff of the two scientists within the quan-
tum version of the open access game depends on the pay-
off matrix (see Table I) and on the joint probability to
observe the four possible outcomes of the game:

$A = (r + δ)Poo + (r − α)Poø + (r + β)Pøo + r Pøø

$B = (r + δ)Poo + (r + β)Poø + (r − α)Pøo + r Pøø

with: Pσσ, = | 〈σσ,|Ψf〉 |
2
, σ, σ, = {o, ø} .

To visualize the payoffs in a three dimensional diagram it
is neccessary to reduce the set of parameters in the final
state: |Ψf 〉 = |Ψf (θA, ϕA, θB, ϕB)〉 → |Ψf(tA, tB)〉. We
have used the same specific parameterization as Eisert et
al. [20], where the two strategy angles θ and ϕ depend
only on a single parameter t ∈ [−1, 1]. In our model
tA, tB = 1 corresponds to strategy ø, and tA, tB = 0
corresponds to strategy o. Negative t-values correspond
to quantum strategies, where ϕ > 0.

Fig. 3 shows the general structure of the separation
of strategy regions. The whole strategy space is sepa-
rated into four regions, namely the absolute classical re-
gion (CC: tA, tB ≥ 0), the absolute quantum region (QQ:
tA, tB < 0) and the two partially classical-quantum re-
gions (CQ: tA ≥ 0 ∧ tB < 0 and QC: tA < 0 ∧ tB ≥ 0).
In the following subsection we will present the main re-
sults of the different game settings of the open access
quantum game. The outcomes of the different games are
illustrated by visualizing the payoff surfaces of scientist
A and scientist B as a function of their strategies tA and
tB.
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QQ

CC

QC
CQ

$A, $B

tAtB

FIG. 3: Separation of the strategy space in four different re-
gions; namely the absolute classical region CC, the absolute
quantum region QQ, and the partially classical-quantum re-
gions CQ and QC.

B. Potential Game Settings

1. Open Access as a Zero Sum Quantum Game

Using the simple payoff matrix (Table II) and the quan-
tum game formulation of section III A we have calculated
the expected payoff for the two scientists with and with-
out entanglement. Fig. 4 depicts the expected payoff
for scientist A ($A, intransparent surface) and scientist
B ($B, wired surface) as a function of their strategies
tA and tB in a separable quantum game (γ = 0). The
outcome of this separable quantum game is similar to
the classical solution outlined in section II B 1. To illus-
trate this, we recall the definitions of dominant strategies
and Nash equilibria and formulate them in respect to our
possible quantum choices:

(θ⋆
A, ϕ

⋆
A; θ⋆

B, ϕ
⋆
B) is a dominant quantum strategy if

$A(Û⋆
A, ÛB) ≥ $A(ÛA, ÛB) ∀ ÛA ∧ ÛB (7)

$B(ÛA, Û
⋆
B) ≥ $B(ÛA, ÛB) ∀ ÛA ∧ ÛB .

(θ⋆
A, ϕ

⋆
A; θ⋆

B, ϕ
⋆
B) is a quantum Nash equilibrium if

$A(Û⋆
A, Û

⋆
B) ≥ $A(ÛA, Û

⋆
B) ∀ ÛA (8)

$B(Û⋆
A, Û

⋆
B) ≥ $B(Û⋆

A, ÛB) ∀ ÛB .

In the classical version of the game there exists one
dominant strategy, namely (ø,ø), which corresponds to
the parameter set (θ⋆

A = π, ϕ⋆
A = 0 , θ⋆

B = π, ϕ⋆
B = 0).

The expected payoff in this dominant strategy is equal
to zero for both players ($A(1, 1) = $B(1, 1) = 0, see Fig.

$A, $B

tAtB

FIG. 4: Expected payoff of scientists A and B in a separable
quantum game (payoff setting see Table II).

4). Because of the validity of the following conditions,
(ø,ø) is also a dominant strategy in the separable game:

$A(tA = 1, ÛB) = cos
(

θB

2

)2
≥ $A(ÛA, ÛB) =

= sin
(

θA

2

)2
cos
(

θB

2

)2
− cos

(

θA

2

)2
sin
(

θB

2

)2
, (9)

$B(ÛA, tB = 1) = cos
(

θA

2

)2
≥ $B(ÛA, ÛB) =

= sin
(

θB

2

)2
cos
(

θA

2

)2
− cos

(

θB

2

)2
sin
(

θA

2

)2
. (10)

The conditions (9) and (10) are easy to illustrate if one
examines Fig. 4. To visualize condition (9) for example,
one shall look at the intransparent surface and fix an
arbitrary point on the surface, which is located on the
curve $A(1, tB) (with tB ∈ [−1, 1]). Condition (9) means,
that if one varies tA between all possible strategies (tA ∈
[−1, 1]), while keeping tB fixed, the payoff of player A
($A) will always decrease. In a similar way, condition
(10) can be illustrated by considering the wired surface
$B(tA, tB).

Recapitulating the separable zero sum open access
quantum game, one can say that no changes to the classi-
cal game are observable. Due to the dominance of strat-
egy (ø,ø), both scientists will not perform open access.

The situation is entirely different in the maximally
entangled version of the game. In Fig. 5(a) the ex-
pected payoff for scientist A ($A, intransparent surface)
and scientist B ($B, wired surface) is visualized; in con-
trast to Fig. 4 the players are maximally entangled
(γ = π

2 ). Because of the change in the payoff surfaces,
the strategy (ø,ø) is neither a dominant strategy nor a
Nash equilibrium any more. For example, if player B
chooses the strategy ø, it would be advisable for player
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$A, $B

tAtB

(a)

$A, $B

tAtB

(b)

FIG. 5: Expected payoff of scientists A and B in a maximally entangled quantum game ((a): γ = π

2
) and in a partially entangled

quantum game ((b): γ = π

4
). Payoff setting see Table II.

A to select the strategy ÛA(0, π/2) =̂ (tA = −1). In
contrast to the disappearance of the former Nash equi-
librium (ø,ø), new Nash equilibria are observed in the
maximally entangled game. The pure quantum strategy
Q̂ := Û(0, π/2) =̂ (t = −1) for instance is a Nash equilib-
rium because of the following conditions:

$A(tA = −1, tB = −1) = 0 ≥

−sin
(

θA

2

)2
= $A(ÛA, tB = −1) ∀ θA ∈ [0, π] ,

$B(tA = −1, tB = −1) = 0 ≥

−sin
(

θB

2

)2
= $B(tB = −1, ÛA) ∀ θB ∈ [0, π] .

By examining Fig. 5(a) one can see that all quantum
strategies with t ≤ −0.5 belong to the set of possible
Nash equilibria.

The results of the maximally entangled game show,
that if quantum strategies are allowed, the scientists are
not longer trapped in the strategy set (ø,ø). Nash equilib-
ria exist only if both players choose a quantum strategy
with tA, tB ≤ −0.5.

For partially entangled situations (0 < γ < π
2 ), a

boundary entanglement γ1 = π
4 can be specified, where

the Nash equilibrium (ø,ø) fades to the quantum equi-
libria tA, tB ≤ −0.5. Fig. 5(b) depicts the partially
entangled quantum game, which is right at the edge of
dissolving the Nash equilibrium (ø,ø). For all γ ≤ π

4
the Nash equilibrium of the game is (ø,ø), whereas for
γ > π

4 the outcome of the game is similar to the maxi-
mally entangled situation, although the range of the set
of quantum Nash equilibria is smaller and varies from
(γ = π

4 : tA, tB = −1) to (γ = π
2 : −1 ≤ (tA, tB) ≤ −0.5).

2. The Open Access Quantum Game as a Prisoners’

Dilemma

We now focus on an open access game with a payoff
matrix similar to a prisoners’ dilemma (see Table III). In
difference to the zero sum game, discussed in the previous
subsection, a dilemma occurs for both scientists. The
players again are imprisoned in the strategy set (ø,ø),
although a choice of (o,o) would be better for both of
them. Fig. 6 illustrates this quandary in a graphic way
(separable game with γ = 0).

$A, $B

tAtB

FIG. 6: Expected payoff of scientists A and B in a separable
prisoners’ dilemma quantum game (payoff setting see Table
III).
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$A, $B

tAtB

FIG. 7: Expected payoff of scientists A and B in partially
entangled prisoners’ dilemma quantum game (payoff setting

see Table III, γ = 2arctan(
√

3−1
√

3+1
)).

In contrast to Fig. 4, where the strategy sets (o,o) and
(ø,ø) are on the same payoff level ($A(o, o) = $A(ø, ø) =
0; same for player B), the payoff magnitudes are now
different ($A(o, o) = 4, $A(ø, ø) = 3; same for player
B). The plane of the quantum-quantum region in Fig. 6
(tA, tB ≤ 0) has moved upwards and has a higher pay-
off than the dominant strategy (ø,ø). There is again no
difference between the classical outcome of the game and
the separable quantum version: (ø,ø) remains to be a
dominant strategy.

Increasing the entanglement factor γ to higher values
leads to a qualitative change in the outcome of the game,

if its value overruns γ1 := 2 arctan(
√

3−1√
3+1

). For γ1 < γ the

strategy (ø,ø) ceases to be a unique dominant strategy,
however (ø,ø) remains to be a Nash equilibrium if the
entanglement-factor lies in the range γ1 < γ ≤ γ2 := π

4 .
In this range, there exist two Nash equilibria, namely the
former Nash equilibrium (ø,ø) and a new quantum Nash

equilibrium (Q̂A, Q̂B), which corresponds to (tA = −1,
tB = −1). Fig. 7 shows the payoff surfaces for both
players at the entanglement barrier γ1. If one further
increases γ, the strategy (ø,ø) even ceases to be a Nash
equilibrium. For example, if γ > γ2 and player B chooses
the strategy ø, the best reward for player A would be the
quantum strategy Q̂A. Fig. 8 depicts the payoff surfaces
for both players for γ = γ2. For γ > γ2 there exists only
the quantum Nash equilibrium (Q̂A, Q̂B), as one can see
by looking at the maximally entangled situation (Fig. 9).

It should be mentioned, that our results are differ-
ent from the results presented in [20] and [24], which
is due to a different payoff matrix. For the separable
and maximally entangled game there is no qualitative
difference in the outcomes, whereas we want to point

$A, $B

tAtB

FIG. 8: Expected payoff of scientists A and B in partially
entangled prisoners’ dilemma quantum game (payoff setting
see Table III, γ = π

4
).

$A, $B

tAtB

FIG. 9: Expected payoff of scientists A and B in a maximally
entangled prisoners’ dilemma quantum game (payoff setting
see Table III).

out, that we find different Nash equilibria for the par-
tially entangled games (see Fig. 7, 8). J. Du et al.

found the two Nash equilibria ((Q̂,ø) and (ø,Q̂)) for

arcsin(
√

1
5 ) < γ ≤ arcsin(

√

2
5 ) [24], which is in clear

contrast to our results. We therefore want to emphasize,
that if one extends a prisoners’ dilemma into a quantum
region, the structure of the payoff matrix is important
and seems to separate different types of quantum prison-
ers’ dilemmas when varying the systems’ entanglement.
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$A, $B

tAtB

(a)

$A, $B

tB

Mixed Strategy

Nash Equilibrium
✁

✁
✁

✁
✁

✁
✁

✁✁☛

(b)

FIG. 10: (a) shows the expected payoff of scientists A and B in a separable stag hunt quantum game (payoff setting see Table
IV). (b) depicts the projection of figure (a) onto the $-tB plane.

3. Open Access as a Stag Hunt Quantum Game

In contrast to the other separable games discussed in
the previous subsections, the stag hunt quantum version
of the open access game even shows advantages of us-
ing quantum strategies in the separable situation, where
the strategical operations of the scientists are not en-
tangled. In this case the QQ-plane of the payoffs for
both players always lies above or equal to all other pay-
off values (see Fig. 10(a)). In addition to the three clas-
sical Nash equilibria ((ø,ø), (o,o) and 2

3 (o,o)), a set of
new quantum Nash equilibria can be observed within
the separable quantum game (tA, tB < 0). All quan-
tum strategies that lie on the QQ-plane of Fig. 10(a),
ensure an identical, rather high payoff for both players
($A(QQ) = $B(QQ) = 4). Because of the absence of
a dominant strategy and the complex structure of Nash
equilibria, it is difficult to predict the outcome of the
game. A risk conducted player may prefer the strategy
ø, because this will guarantee him a payoff of 3. A payoff
conducted player might be guided by the possibility of
getting a greater payoff, and therefore will prefer either
strategy o, or a quantum strategy t < 0. The mixed
strategy Nash equilibrium 2

3 (o,o) can be visualized if one
examines the surfaces from a viewpoint parallel to the
strategy space of player A (see Fig. 10(b)). The char-
acter of a mixed Nash equilibrium (t⋆A, t⋆B) is that the
gradients of the payoff surfaces vanish:

∂ $A

∂ tA
(tA, tB)

∣

∣

∣

∣

tB=t⋆
B

≡ 0 , ∀ tA ∈ [−1, 1] (11)

∂ $B

∂ tB
(tA, tB)

∣

∣

∣

∣

tA=t⋆
A

≡ 0 , ∀ tB ∈ [−1, 1] .

t⋆B for example can be observed in the special projection
of Fig. 10(b), where the whole payoff surface of player A
($A) contracts to one single point. From our calculations
we get the following mixed strategy Nash equilibrium
(t⋆ = t⋆A = t⋆B = 2

π
arcsin( 1√

3
)), which corresponds to the

strategy 2
3 (o,o).

The maximally entangled stag hunt quantum game is
displayed in Fig. 11.

$A, $B

tAtB

FIG. 11: Expected payoff of scientists A and B in a maximally
entangled stag hunt quantum game (payoff setting see Table
IV).

In this version of the game three Nash equilibria oc-
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$A, $B

γθA

(a)

$A, $B

γθA

(b)

FIG. 12: Expected payoff of scientists A and B versus θA and γ. Player B has selected the classical strategy ø, whereas player
A selects a quantum strategy ÛA = Û(θA, π

2
). (a) shows the prisoners’ dilemma case whereas (b) depicts the stag hunt quantum

game.

cur, namely (ø,ø), 2
3 (o,o) and (Q̂A, Q̂B). Although (ø,ø)

technically remains to be a Nash equilibrium, no rational
acting player would choose such a strategy, because the
alternative of the quantum strategy Q̂ would give him in
any case a better or equal payoff:

Quantum Strategy:

$A(Q̂A, tB) ≥ 3 ∧ $B(tA, Q̂B) ≥ 3 ∀ tA, tB ∈ [−1, 1]

Non-Open Access:

$A(ø, tB) ≤ 3 ∧ $B(tA, ø) ≤ 3 ∀ tA, tB ∈ [−1, 1]

Furthermore it should be mentioned, that for all types of
entanglement the mixed strategy Nash equilibrium 2

3 (o,o)
persists at its former position.

In summary, we conclude that the players of a maxi-
mally entangled stag hunt quantum game will be in favor
of performing the quantum strategy Q̂ over the non-open
access strategy ø.

C. Manifestation of Quantum Strategies

We want to point out, that the measurable choice of
the quantum strategy Q̂ in reality does not necessarily
appear as the strategy o – albeit, if both players will
choose Q̂, the measured outcome will be (o,o). To illus-
trate the role of entanglement and the nature of quantum
strategies, we have fixed the strategy of scientist B to
ÛB = Û(π, 0) = ø, whereas we choose the strategy of sci-

entist A to be a quantum strategy ÛA = Û(θA,
π
2 ). Fig.

12 displays the payoff for the players A and B as a func-
tion of θA and γ. Fig. 12(a) depicts the calculations for
the prisoners’ dilemma game, whereas Fig. 12(b) shows

the results within the stag hunt quantum game. If the
scientists’ strategies are not entangled (γ = 0), the best
respond for player A in the prisoners’ dilemma game is
the choice of θA = π, which would result in the classical
Nash equilibrium (ø,ø), giving both players the payoff 3.
In contrast, if we focus on a situation where the scien-
tists’ strategies are maximally entangled (γ = π

2 ), the
best respond for scientist A is θA = 0, giving him a pay-
off of 5 and player B a payoff of 1. Player B could be
amazed about his little payoff. To understand the real
cause, we need to examine the joint probabilities of the
measurable outcomes of the game. If player B selects the
classical strategy ø and player A chooses the quantum
strategy Q̂, the joint probabilities result in the following
outcomes:

| 〈oo|Ψf〉 |
2

= | 〈øø|Ψf 〉 |
2

= 0 , (12)

| 〈oø|Ψf〉 |
2 = cos (γ)2 , | 〈øo|Ψf〉 |

2 = sin (γ)2 .

In Fig. 13 the non-zero probabilities | 〈oø|Ψf 〉 |
2 and

| 〈øo|Ψf 〉 |
2

are plotted against the scientists’ entangle-
ment γ. The cause of the amazement of player B is that
even though he chooses the strategy ø, the probability of
measuring ø is zero if the entanglement γ is maximal. By
using the quantum strategy Q̂ player A is able to switch
the choice of player B. Within an entangled quantum
game, it is not feasible to insist on a classically chosen
strategy.
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| 〈oø|Ψf〉 |
2

✁
✁

✁
✁✁☛

| 〈øo|Ψf〉 |
2

✲

γ

FIG. 13: Joint probabilities of the measurable outcomes as a
function of γ. Player B chooses strategy ø, whereas Player A
chooses Q̂.

IV. SUMMARY

This article focuses the question why the open access
model is only successfully adopted by a few scientific
disciplines. We have constructed a game theoretical
model, where the scientists’ incentives where described
with a reputation dependent payoff matrix. Three game
settings where addressed, namely a zero sum game, the
prisoners’ dilemma and a stag hunt version of the open

access game. By calculating the outcome of the games
within a classical game theoretical framework, we have
shown that in all cases the scientists face a dilemma
situation: Considering a potential loss in reputation,
incentives to perform open access are missing. These
findings change, if quantum strategies are allowed. If
the entanglement overruns a certain barrier, quantum
strategies become superior to the former Nash equilib-
rium strategies. In none of the three different game
settings the choice of traditional publishing remains to
be a rational strategy for the players, if their strategical
choices are maximally entangled. The results of this
article therefore indicate one possible explanation of the
differing publishing methods of scientific communities.
In quantum game theory parlance one would say, that
scientific disciplines, like mathematics and physics,
which had been successful in realizing the open access
model, consist of scientists, whose strategical operations
are strongly entangled. In contrast, if a scientific
community is still imprisoned in the Nash equilibrium of
non-open access, there would be a lack of entanglement
between the strategical choices of the related scientists
of the community.
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