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Abstract

Con�dence intervals based on penalized maximum likelihood estima-
tors such as the LASSO, adaptive LASSO, and hard-thresholding are an-
alyzed. In the known-variance case, the �nite-sample coverage properties
of such intervals are determined and it is shown that symmetric inter-
vals are the shortest. The length of the shortest intervals based on the
hard-thresholding estimator is larger than the length of the shortest in-
terval based on the adaptive LASSO, which is larger than the length of
the shortest interval based on the LASSO, which in turn is larger than
the standard interval based on the maximum likelihood estimator. In
the case where the penalized estimators are tuned to possess the �spar-
sity property�, the intervals based on these estimators are larger than
the standard interval by an order of magnitude. Furthermore, a simple
asymptotic con�dence interval construction in the �sparse� case, that also
applies to the smoothly clipped absolute deviation estimator, is discussed.
The results for the known-variance case are shown to carry over to the
unknown-variance case in an appropriate asymptotic sense.

MSC Subject Classi�cations: Primary 62F25; secondary 62C25,
62J07.
Keywords : penalized maximum likelihood, Lasso, adaptive Lasso, hard-

thresholding, con�dence set, coverage probability, sparsity, model selec-
tion.

1 Introduction

Recent years have seen an increased interest in penalized maximum likelihood
(least squares) estimators. Prominent examples of such estimators are the
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LASSO estimator (Tibshirani (1996)) and its variants like the adaptive LASSO
(Zou (2006)), the Bridge estimators (Frank and Friedman (1993)), or the smoothly
clipped absolute deviation (SCAD) estimator (Fan and Li (2001)). In linear
regression models with orthogonal regressors, the hard- and soft-thresholding
estimators can also be reformulated as penalized least squares estimators, with
the soft-thresholding estimator then coinciding with the LASSO estimator.
The asymptotic distributional properties of penalized maximum likelihood

(least squares) estimators have been studied in the literature, mostly in the con-
text of a �nite-dimensional linear regression model; see Knight and Fu (2000),
Fan and Li (2001), and Zou (2006). Knight and Fu (2000) study the asymptotic
distribution of Bridge estimators and, in particular, of the LASSO estimator.
Their analysis concentrates on the case where the estimators are tuned in such
a way as to perform conservative model selection, and their asymptotic frame-
work allows for dependence of parameters on sample size. In contrast, Fan
and Li (2001) for the SCAD estimator and Zou (2006) for the adaptive LASSO
estimator concentrate on the case where the estimators are tuned to possess
the �sparsity� property. They show that, with such tuning, these estimators
possess what has come to be known as the �oracle property�. However, their
results are based on a �xed-parameter asymptotic framework only. Pötscher
and Leeb (2007) and Pötscher and Schneider (2009) study the �nite-sample dis-
tribution of the hard-thresholding, the soft-thresholding (LASSO), the SCAD,
and the adaptive LASSO estimator under normal errors; they also obtain the
asymptotic distributions of these estimators in a general �moving parameter� as-
ymptotic framework. The results obtained in these two papers clearly show that
the distributions of the estimators studied are often highly non-normal and that
the so-called �oracle property� typically paints a misleading picture of the actual
performance of the estimator. [In the wake of Fan and Li (2001) a considerable
literature has sprung up establishing the so-called �oracle property� for a variety
of estimators. All these results are �xed-parameter asymptotic results only and
can be very misleading. See Leeb and Pötscher (2008) and Pötscher (2007) for
more discussion.]
A natural question now is what all these distributional results mean for con�-

dence intervals that are based on penalized maximum likelihood (least squares)
estimators. This is the question we address in the present paper in the con-
text of a normal linear regression model with orthogonal regressors. In the
known-variance case we obtain formulae for the �nite-sample in�mal coverage
probabilities of �xed-width con�dence intervals based on one of the following es-
timators: hard-thresholding, LASSO (soft-thresholding), and adaptive LASSO.
We show that among those intervals the symmetric ones are the shortest, and we
show that hard-thresholding leads to longer intervals than the adaptive LASSO,
which in turn leads to longer intervals than the LASSO. All these intervals are
longer than the standard con�dence interval based on the maximum likelihood
estimator, which is in line with Joshi (1969). In case the estimators are tuned
to possess the �sparsity� property, explicit asymptotic formulae for the length
of the con�dence intervals are furthermore obtained, showing that in this case
the intervals based on the penalized maximum likelihood estimators are larger
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by an order of magnitude than the standard maximum likelihood based inter-
val. This re�nes, for the particular estimators considered, a general result for
�sparse� estimators (Pötscher (2007)). Additionally, in the �sparsely� tuned case
a simple asymptotic construction of con�dence intervals is provided that also
applies to other penalized maximum likelihood estimators such as the SCAD
estimator. Furthermore, we show how the results for the known-variance case
carry over to the unknown-variance case in an asymptotic sense.

2 The Model and Estimators

For a normal linear regression model with orthogonal regressors, distributional
properties of penalized maximum likelihood (least squares) estimators with a
separable penalty can be reduced to the case of a Gaussian location problem;
for details see, e.g., Pötscher and Schneider (2009). Since we are only interested
in con�dence sets for individual components of the parameter vector in the
regression that are based on such estimators, we shall hence suppose that the
data y1; : : : ; yn are independent identically distributed as N(�; �

2), � 2 R, 0 <
� < 1. [This entails no loss of generality in the known-variance case. In the
unknown variance case an explicit treatment of the orthogonal linear model
would di¤er from the analysis in the present paper only in that the estimator
�̂2 de�ned below would be replaced by the usual residual variance estimator
from the least-squares regression; this would have no substantial e¤ect on the
results.] We shall be concerned with con�dence sets for � based on penalized
maximum likelihood estimators such as the hard-thresholding estimator, the
LASSO (reducing to soft-thresholding), and the adaptive LASSO estimator.
The hard-thresholding estimator ~�H is given by

~�H := ~�H(�n) = �y1(j�yj > �̂�n)

where the threshold �n is a positive real number, �y denotes the maximum
likelihood estimator, i.e., the arithmetic mean of the data, and �̂2 = (n �
1)�1

Pn
i=1(yi � �y)

2. Also de�ne the infeasible estimator

�̂H := �̂H(�n) = �y1(j�yj > ��n)

which uses the value of �. The LASSO (or soft-thresholding) estimator ~�S is
given by

~�S := ~�S(�n) = sign(�y)(j�yj � �̂�n)+

and its infeasible version by

�̂S := �̂S(�n) = sign(�y)(j�yj � ��n)+:

Here sign(x) is de�ned as �1, 0, and 1 in case x < 0, x = 0, and x > 0,
respectively, and z+ is shorthand for maxfz; 0g. The adaptive LASSO estimator
~�A in this simple model is given by
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~�A := ~�A(�n) = �y(1� �̂
2�2n=�y

2)+ =

�
0 if j�yj � �̂�n

�y � �̂2�2n=�y if j�yj > �̂�n;

and its infeasible counterpart by

�̂A := �̂A(�n) = �y(1� �
2�2n=�y

2)+ =

�
0 if j�yj � ��n

�y � �2�2n=�y if j�yj > ��n:

It coincides with the nonnegative Garotte in this simple model. For the feasible
estimators we always need to assume n � 2, whereas for the infeasible estimators
also n = 1 is admissible.
Note that �n plays the rôle of a tuning parameter and it is most natural

to let the estimators depend on the tuning parameter only via ��n and �̂�n,
respectively, in order to take account of the scale of the data. This makes the es-
timators mentioned above scale equivariant. We shall often suppress dependence
of the estimators on �n in the notation. In the following let Pn;�;� denote the
distribution of the sample when � and � are the true parameters. Furthermore,
let � denote the standard normal cumulative distribution function.

3 Con�dence Intervals: Known Variance Case

In this section we consider the case where the variance �2 is known, n � 1
holds, and we are interested in the �nite-sample coverage properties of intervals
of the form [�̂ � �an; �̂ + �bn] where an and bn are nonnegative real numbers

and �̂ stands for any one of the estimators �̂H = �̂H(�n), �̂S = �̂S(�n), or �̂A =

�̂A(�n). We shall also consider one-sided intervals (�1; �̂+�cn] and [�̂��cn;1)

with 0 � cn < 1. Let pn(�;�; �n; an; bn) = Pn;�;�

�
� 2 [�̂ � �an; �̂ + �bn]

�

denote the coverage probability. Due to the above-noted scale equivariance of
the estimator �̂, it is obvious that

pn(�;�; �n; an; bn) = pn(�=�; 1; �n; an; bn)

holds, and the same is true for the one-sided intervals. In particular, it follows
that the in�mal coverage probabilities inf�2R pn(�;�; �n; an; bn) do not depend
on �. Therefore, we shall assume without loss of generality that � = 1 for the
remainder of this section and we shall write Pn;� for Pn;�;1.

3.1 Soft-thresholding

Let CS;n denote the interval [�̂S � an; �̂S + bn]. We �rst determine the in�mum
of the coverage probability pS;n(�) := pS;n(�; 1; �n; an; bn) = Pn;� (� 2 CS;n) of
this interval.
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Proposition 1 For every n � 1, the in�mal coverage probability of the interval
CS;n is given by

inf
�2R

pS;n(�) =

�
�(n1=2(an � �n))� �(n

1=2(�bn � �n)) if an � bn
�(n1=2(bn � �n))� �(n

1=2(�an � �n)) if an > bn:
(1)

Proof. Using the expression for the �nite sample distribution of n1=2(�̂S � �)
given in Pötscher and Leeb (2007) and noting that this distribution function
has a jump at �n1=2� we obtain

pS;n(�) = [�(n1=2(an � �n))� �(n
1=2(�bn � �n))]1(� < �an)

+ [�(n1=2(an + �n))� �(n
1=2(�bn � �n))]1(�an � � � bn)

+ [�(n1=2(an + �n))� �(n
1=2(�bn + �n))]1(bn < �): (2)

It follows that inf�2R pS;n(�) is as given in the proposition.
As a point of interest we note that pS;n(�) is a piecewise constant function

with jumps at � = �an and � = bn.

Remark 2 (i) If we consider the open interval CoS;n = (�̂S � an; �̂S + bn) the
formula for the coverage probability becomes

Pn;�
�
� 2 CoS;n

�
= [�(n1=2(an � �n))� �(n

1=2(�bn � �n))]1(� � �an)

+ [�(n1=2(an + �n))� �(n
1=2(�bn � �n))]1(�an < � < bn)

+ [�(n1=2(an + �n))� �(n
1=2(�bn + �n))]1(bn � �):

As a consequence, the in�mal coverage probability of CoS;n is again given by (1).

A fortiori, the half-open intervals (�̂n � an; �̂n + bn] and [�̂n � an; �̂n + bn) then
also have in�mal coverage probability given by (1).

(ii) It is not di¢cult to see that the one-sided intervals (�1; �̂S + cn],

(�1; �̂S + cn), [�̂S � cn;1), and (�̂S � cn;1), with cn a nonnegative real
number, have in�mal coverage probability �(n1=2(cn � �n)).

3.2 Hard-thresholding

Let CH;n denote the interval [�̂H � an; �̂H + bn]. The in�mum of the coverage
probability pH;n(�) := pH;n(�; 1; �n; an; bn) = Pn;� (� 2 CH;n) of this interval
has been obtained in Proposition 11 in Pötscher (2007), which we repeat for
convenience.

Proposition 3 For every n � 1, the in�mal coverage probability of the interval
CH;n is given by

inf
�2R

pH;n(�) (3)

=

8
<

:

�(n1=2(an � �n))� �(�n
1=2bn) if �n � an + bn and an � bn

�(n1=2(bn � �n))� �(�n
1=2an) if �n � an + bn and an > bn

0 if �n > an + bn:
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For later use we observe that the interval CH;n has positive in�mal coverage
probability if and only if the length of the interval an + bn is larger than �n.
As a point of interest we also note that the coverage probability pH;n(�) is
discontinuous (with discontinuity points at � = �an and � = bn). Furthermore,
as discussed in Pötscher (2007), the in�mum in (3) is attained if �n > an + bn,
but not in case �n � an + bn.

Remark 4 (i) If we consider the open interval CoH;n = (�̂H � an; �̂H + bn) the
coverage probability satis�es

Pn;�
�
� 2 CoH;n

�
= Pn;� (� 2 CH;n)

� [1(� = bn) + 1(� = �an)][�(n
1=2(�� + �n))� �(n

1=2(�� � �n))]:

Inspection of the proof of Proposition 11 in Pötscher (2007) then shows that
CoH;n has the same in�mal coverage probability as CH;n. However, now the

in�mum is always a minimum. Furthermore, the half-open intervals (�̂H �

an; �̂H+bn] and [�̂H�an; �̂H+bn) then a fortiori have in�mal coverage probability
given by (3); for these intervals the in�mum is attained if �n > an+ bn, but not
necessarily if �n � an + bn.

(ii) Using the reasoning in Pötscher (2007), the one-sided intervals (�1; �̂H+

cn], (�1; �̂H + cn), [�̂H � cn;1), and (�̂H � cn;1), with cn a nonnegative real
number, can be shown to have in�mal coverage probability �(n1=2(cn � �n)).

3.3 Adaptive LASSO

Let CA;n denote the interval [�̂A � an; �̂A + bn]. The in�mum of the coverage
probability pA;n(�) := pA;n(�; 1; �n; an; bn) = Pn;� (� 2 CA;n) of this interval is
given next.

Proposition 5 For every n � 1, the in�mal coverage probability of CA;n is
given by

inf
�2R

pA;n(�) = �(n
1=2(an��n))��

�
n1=2

�
(an � bn)=2�

p
((an + bn)=2)2 + �2n

��

if an � bn, and by

inf
�2R

pA;n(�) = �(n
1=2(bn��n))��

�
n1=2

�
(bn � an)=2�

p
((an + bn)=2)2 + �2n

��

if an > bn.

Proof. The distribution function FA;n;�(x) = Pn;�(n
1=2(�̂A � �) � x) of the

adaptive LASSO estimator is given by

1(x+ n1=2� � 0)�

�
�((n1=2� � x)=2) +

q
((n1=2� + x)=2)2 + n�2n

�
+

1(x+ n1=2� < 0)�

�
�((n1=2� � x)=2)�

q
((n1=2� + x)=2)2 + n�2n

�
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(see Pötscher and Schneider (2009)). Hence, the coverage probability pA;n(�) =
FA;n;�(n

1=2an)� limx!(�n1=2bn)� FA;n;�(x) is

pA;n(�) =

8
<

:

�
�
n1=2(�)(�;�an)

�
� �

�
n1=2(�)(�; bn)

�
if � < �an

�
�
n1=2(+)(�;�an)

�
� �

�
n1=2(�)(�; bn)

�
if � an � � � bn

�
�
n1=2(+)(�;�an)

�
� �

�
n1=2(+)(�; bn)

�
if � > bn:

(4)
Here

(�)(�; x) = �((� + x)=2)�
p
((� � x)=2)2 + �2n

(+)(�; x) = �((� + x)=2) +
p
((� � x)=2)2 + �2n;

which are clearly smooth functions of (�; x). Observe that (�) and (+) are
nonincreasing in � 2 R (for every x 2 R). As a consequence, we obtain for
�an � � � bn the lower bound

pA;n(�) � �
�
n1=2(+)(bn;�an)

�
� �

�
n1=2(�)(�an; bn)

�

= �
�
n1=2

�
(an � bn)=2 +

p
((an + bn)=2)2 + �2n

��

��
�
n1=2

�
(an � bn)=2�

p
((an + bn)=2)2 + �2n

��
: (5)

Consider �rst the case where an � bn. We then show that pA;n(�) is nonin-
creasing on (�1;�an): The derivative dpA;n(�)=d� is given by

dpA;n(�)=d� =

n1=2[�(n1=2(�)(�;�an))@
(�)(�;�an)=@� � �(n

1=2(�)(�; bn))@
(�)(�; bn)=@�]

where � denotes the standard normal density function. Using the relation an �
bn, elementary calculations show that

@(�)(�;�an)=@� � @
(�)(�; bn)=@� for � 2 (�1;�an).

Furthermore, given an � bn, it is not too di¢cult to see that
��(�)(�;�an)

�� ���(�)(�; bn)
�� for � 2 (�1;�an) (cf. Lemma 13 in the Appendix), which implies

that
�(n1=2(�)(�;�an)) � �(n

1=2(�)(�; bn)):

The last two displays together with the fact that @(�)(�;�an)=@� as well as
@(�)(�; bn)=@� are less than or equal to zero, imply that dpA;n(�)=d� � 0 on
(�1;�an). This proves that

inf
�<�an

pA;n(�) = lim
�!(�an)�

pA;n(�) = c

with

c = �
�
n1=2(an � �n)

�
��

�
n1=2

�
(an � bn)=2�

p
((an + bn)=2)2 + �2n

��
: (6)
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Since the lower bound given in (5) is not less than c, we have

inf
��bn

pA;n(�) = inf
�<�an

pA;n(�) = c:

It remains to show that pA;n(�) � c for � > bn. From (4) and (6) after rear-
ranging terms we obtain for � > bn

pA;n(�)� c =
h
�(n1=2(+)(�;�an))� �(n

1=2(�)(�an;�an))
i
�

h
�(n1=2(+)(�; bn))� �(n

1=2(�)(�an; bn))
i
:

It is elementary to show that (+)(�;�an)) � (�)(�an;�an) = an � �n and
(+)(�; bn)) � 

(�)(�an; bn). We next show that

(+)(�;�an)� 
(�)(�an;�an)) � 

(+)(�; bn)� 
(�)(�an; bn): (7)

To establish this note that (7) can equivalently be rewritten as

f(0) + f((� + an)=2) � f((� � bn)=2) + f((an + bn)=2) (8)

where f(x) = (x2+�2n)
1=2. Observe that 0 � (��bn)=2 � (�+an)=2 holds since

0 � an � bn < �. Writing (� � bn)=2 as �(� + an)=2 + (1� �)0 with 0 � � � 1
gives (an + bn)=2 = (1� �)(�+ an)=2+ �0. Because f is convex, the inequality
(8) and hence (7) follows.
Next observe that in case an � �n we have (using monotonicity of 

(+)(�; bn))

0 � (�)(�an;�an)) = an � �n � bn � �n = �
(+)(bn; bn) � �

(+)(�; bn) (9)

for � > bn. In case an < �n we have (using 
(�)(�; x) = (�)(x; �) and

monotonicity of (�) in its �rst argument)

(�)(�an; bn) � 
(�)(�an;�an) = an � �n < 0; (10)

and (using monotonicity of (+))

(�)(�an; bn) � �
(+)(bn;�an) � �

(+)(�;�an) (11)

for � > bn. Applying Lemma 14 in the Appendix with � = n
1=2(�)(�an;�an),

� = n1=2(+)(�;�an),  = n
1=2(�)(�an; bn), and � = n

1=2(+)(�; bn) and using
(7)-(11), establishes pA;n(�)� c � 0. This completes the proof in case an � bn.
The case an > bn follows from the observation that (4) remains unchanged

if an and bn are interchanged and � is replaced by ��.
We note that pA;n is continuous except at � = bn and � = �an and that the

in�mum of pA;n is not attained which can be seen from a simple re�nement of
the above proof.
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Remark 6 (i) If CoA;n denotes the open interval (�̂A�an; �̂A+bn), the formula
for the coverage probability becomes

Pn;�
�
� 2 CoA;n

�
=

8
<

:

�
�
n1=2(�)(�;�an)

�
� �

�
n1=2(�)(�; bn)

�
if � � �an

�
�
n1=2(+)(�;�an)

�
� �

�
n1=2(�)(�; bn)

�
if � an < � < bn

�
�
n1=2(+)(�;�an)

�
� �

�
n1=2(+)(�; bn)

�
if � � bn:

Again this is continuous except at � = bn and � = �an (and is continuous
everywhere in the trivial case an = bn = 0). It is now easy to see that the in�mal
coverage probability of CoA;n coincides with the in�mal coverage probability of the
closed interval CA;n, the in�mum of the coverage probability of C

o
A;n now always

being a minimum. Furthermore, the half-open intervals (�̂A � an; �̂A + bn] and

[�̂A � an; �̂A + bn) a fortiori have the same in�mal coverage probability as CA;n
and CoA;n.

(ii) The one-sided intervals (�1; �̂A+cn], (�1; �̂A+cn), (�̂A�cn;1), and

[�̂A�cn;1), with cn a nonnegative real number, have in�mal coverage probability
given by �(n1=2(cn� �n)). This follows by similar, but simpler, reasoning as in
the proof of Proposition 5.

3.4 Symmetric intervals are shortest

For the two-sided con�dence sets considered above, we next show that given
a prescribed in�mal coverage probability the symmetric intervals are shortest.
We then show that these shortest intervals are longer than the standard interval
based on the maximum likelihood estimator and quantify the excess length of
these intervals.

Theorem 7 For every n � 1 and every � satisfying 0 < � < 1 we have:
(a) Among all intervals CS;n with in�mal coverage probability not less than

� there is a unique shortest interval C�S;n = [�̂S � a
�
n;S ; �̂S + b

�
n;S ] characterized

by a�n;S = b
�
n;S with a

�
n;S being the unique solution of

�(n1=2(an � �n))� �(n
1=2(�an � �n)) = �: (12)

The interval C�S;n has in�mal coverage probability equal to � and a
�
n;S is positive.

(b) Among all intervals CH;n with in�mal coverage probability not less than

� there is a unique shortest interval C�H;n = [�̂H�a
�
n;H ; �̂H+b

�
n;H ] characterized

by a�n;H = b
�
n;H with a�n;H being the unique solution of

�(n1=2(an � �n))� �(�n
1=2an) = �: (13)

The interval C�H;n has in�mal coverage probability equal to � and a
�
n;H satis�es

a�n;H > �n=2.
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(c) Among all intervals CA;n with in�mal coverage probability not less than

� there is a unique shortest interval C�A;n = [�̂A� a
�
n;A; �̂A+ b

�
n;A] characterized

by a�n;A = b
�
n;A with a

�
n;A being the unique solution of

�(n1=2(an � �n))� �
�
�n1=2

p
a2n + �

2
n

�
= �: (14)

The interval C�A;n has in�mal coverage probability equal to � and a
�
n;A is positive.

Proof. (a) Since � is positive, any solution to (12) has to be positive. Now
the equation (12) has a unique solution a�n;S , since (12) as a function of an 2
[0;1) is easily seen to be strictly increasing with range [0; 1). Furthermore, the
in�mal coverage probability (1) is a continuous function of the pair (an; bn) on
[0;1) � [0;1). Let K � [0;1) � [0;1) consist of all pairs (an; bn) such that

(i) the corresponding interval [�̂S �an; �̂S + bn] has in�mal coverage probability
not less than �, and (ii) the length an + bn is less than or equal 2a

�
n;S . Then K

is compact. It is also nonempty as the pair (a�n;S ; a
�
n;S) belongs to K. Since the

length an+bn is obviously continuous, it follows that there is a pair (a
o
n; b

o
n) 2 K

having minimal length within K. Since con�dence sets corresponding to pairs
not belonging to K always have length larger than 2a�n;S , the pair (a

o
n; b

o
n) gives

rise to an interval with shortest length within the set of all intervals with in�mal
coverage probability not less than �. We next show that aon = bon must hold:
Suppose not, then we may assume without loss of generality that aon < b

o
n, since

(1) remains invariant under permutation of aon and b
o
n. But now increasing a

o
n

by " > 0 and decreasing bon by the same amount such that a
o
n+" < b

o
n�" holds,

will result in an interval of the same length with in�mal coverage probability

�(n1=2(aon + "� �n))� �(n
1=2(�(bon � ")� �n)):

This in�mal coverage probability will be strictly larger than

�(n1=2(aon � �n))� �(n
1=2(�bon � �n)) � �

provided " is chosen su¢ciently small. But then, by continuity of the in�mal
coverage probability as a function of an and bn, the interval [�̂S � a

o
n � "; �̂S +

b0n�"] with " < b
0
n < b

o
n will still have in�mal coverage probability not less than

� as long as b0n is su¢ciently close to b
o
n; at the same time this interval will be

shorter than the interval [�̂S � a
o
n; �̂S + b

o
n]. This leads to a contradiction and

establishes aon = b
o
n. By what was said at the beginning of the proof, it is now

obvious that aon = b
o
n = a

�
n;S must hold, thus also establishing uniqueness. The

last claim is obvious in view of the construction of a�n;S .
(b) Since � is positive, any solution to (13) has to be larger than �n=2.

Now equation (13) has a unique solution a�n;H , since (13) as a function of an 2
[�n=2;1) is easily seen to be strictly increasing with range [0; 1). Furthermore,
de�ne K similarly as in the proof of part (a). Then, by the same reasoning as
in (a), the set K is compact and non-empty, leading to a pair (aon; b

o
n) that gives

rise to an interval with shortest length within the set of all intervals with in�mal
coverage probability not less than �. We next show that aon = bon must hold:

10



Suppose not, then we may again assume without loss of generality that aon < b
o
n.

Note that aon + b
o
n > �n must hold, since the in�mal coverage probability of

the corresponding interval is positive by construction. Since all this entails
jaon � �nj < b

o
n, increasing a

o
n by " > 0 and decreasing b

o
n by the same amount

such that aon + " < bon � " holds, will result in an interval of the same length
with in�mal coverage probability

�(n1=2(aon + "� �n))� �(�n
1=2(bon � ")) >

�(n1=2(aon � �n))� �(�n
1=2bon) � �

provided " is chosen su¢ciently small. By continuity of the in�mal coverage
probability as a function of an and bn, the interval [�̂S � a

o
n � "; �̂S + b

0
n � "]

with " < b0n < bon will still have in�mal coverage probability not less than �
as long as b0n is su¢ciently close to b

o
n; at the same time this interval will be

shorter than the interval [�̂S � a
o
n; �̂S + b

o
n], leading to a contradiction thus

establishing aon = b
o
n. As in (a) it now follows that a

o
n = b

o
n = a

�
n;H must hold,

thus also establishing uniqueness. The last claim is then obvious in view of the
construction of a�n;H .
(c) Since � is positive, it is easy to see that any solution to (14) has to be

positive. Now equation (14) has a unique solution a�n;A, since (14) as a function
of an 2 [0;1) is strictly increasing with range [0; 1). Furthermore, the in�mal
coverage probability as given in Proposition 5 is a continuous function of the pair
(an; bn) on [0;1)� [0;1). De�ne K similarly as in the proof of part (a). Then
by the same reasoning as in (a), the set K is compact and non-empty, leading
to a pair (aon; b

o
n) that gives rise to an interval with shortest length within the

set of all intervals with in�mal coverage probability not less than �. We next
show that aon = b

o
n must hold: Suppose not, then we may again assume without

loss of generality that aon < b
o
n. But now increasing a

o
n by " > 0 and decreasing

bon by the same amount such that a
o
n+" < b

o
n�" holds, will result in an interval

of the same length with in�mal coverage probability

�(n1=2(aon + "� �n))� �
�
n1=2

�
"+ (aon � b

o
n)=2�

p
((aon + b

o
n)=2)

2 + �2n

��
>

�(n1=2(aon � �n))� �
�
n1=2

�
(aon � b

o
n)=2�

p
((aon + b

o
n)=2)

2 + �2n

��
� �;

provided " is chosen su¢ciently small. This is so since aon < b
o
n implies

jaon � �nj <
���(aon � b

o
n)=2�

p
((aon + b

o
n)=2)

2 + �2n

���

as is easily seen. But then, by continuity of the in�mal coverage probability as a
function of an and bn, the interval [�̂S�a

o
n�"; �̂S+b

0
n�"] with " < b

0
n < b

o
n will

still have in�mal coverage probability not less than � as long as b0n is su¢ciently
close to bon; at the same time this interval will be shorter than the interval

[�̂S � a
o
n; �̂S + b

o
n]. This leads to a contradiction and establishes a

o
n = bon. As

in (a) it now follows that aon = bon = a�n;A must hold, thus also establishing
uniqueness. The last claim is obvious in view of the construction of a�n;A.
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In the statistically uninteresting case � = 0 the interval with an = bn = 0
is the unique shortest interval in all three cases. However, for the case of the
hard-thresholding estimator also any interval with an = bn and an � �n=2 has
in�mal coverage probability equal to zero.
The above theorem shows that given a prespeci�ed � (0 < � < 1), the

shortest con�dence set with in�mal coverage probability equal to � based on
the soft-thresholding (LASSO) estimator is shorter than the corresponding in-
terval based on the adaptive LASSO estimator, which in turn is shorter than
the corresponding interval based on the hard-thresholding estimator. All three
intervals are longer than the corresponding standard con�dence interval based
on the maximum likelihood estimator. That is,

a�n;H > a
�
n;A > a

�
n;S > n

�1=2��1((1 + �)=2):

Figure 1 below shows n1=2 times the half-length of the shortest �-level con�dence
intervals based on hard-thresholding, adaptive LASSO, soft-thresholding, and
the maximum likelihood estimator, respectively, as a function of n1=2�n for
various values of �. The graphs illustrate that the intervals based on hard-
thresholding, adaptive LASSO, and soft-thresholding substantially exceed the
length of the maximum likelihood based interval except if n1=2�n is very small.
For large values of n1=2�n the graphs suggest a linear increase in the length of
the intervals based on the penalized estimators. This is formally con�rmed in
Section 3.4.1 below.
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Figure 1: n1=2a�n;H , n
1=2a�n;A, n

1=2a�n;S as a function of n
1=2�n for coverage

probabilities � = 0:5, 0:8, 0:9, 0:95. The horizontal line at height
��1((1 + �)=2) indicates n1=2 times the half-length of the standard maximum

likelihood based interval.
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3.4.1 Asymptotic behavior of the length

It is well-known that as n!1 two di¤erent regimes for the tuning parameter
�n can be distinguished. In the �rst regime �n ! 0 and n1=2�n ! e, 0 < e <1.

This choice of tuning parameter leads to estimators �̂S , �̂H , and �̂A that perform
conservative model selection. In the second regime �n ! 0 and n1=2�n ! 1,

leading to estimators �̂S , �̂H , and �̂A that perform consistent model selection
(also known as the �sparsity property�); that is, with probability approaching 1,
the estimators are exactly zero if the true value � = 0, and they are di¤erent
from zero if � 6= 0. See Pötscher and Leeb (2007) and Pötscher and Schneider
(2009) for a detailed discussion. We now discuss the asymptotic behavior, under
the two regimes, of the half-length a�n;S , a

�
n;H , and a

�
n;A of the shortest intervals

C�S;n, C
�
H;n, and C

�
A;n with a �xed in�mal coverage probability �, 0 < � < 1.

If �n ! 0 and n1=2�n ! e, 0 < e <1, then it follows immediately from The-
orem 7 that n1=2a�n;S , n

1=2a�n;H , and n
1=2a�n;A converge to the unique solutions

of
�(a� e)� �(�a� e) = �;

�(a� e)� �(�a) = �;

and
�
�p

a2 + e2
�
� �(�a+ e) = �;

respectively. Hence, while a�n;H , a
�
n;A, and a

�
n;S are larger than the half-length

n�1=2��1((1+ �)=2) of the standard interval, they are of the same order n�1=2.
The situation is di¤erent, however, if �n ! 0 but n1=2�n !1. In this case

Theorem 7 shows that
�(n1=2(a�n;S � �n))! �

since n1=2(�a�n;S � �n) � �n
1=2�n ! �1. In other words,

a�n;S = �n + n
�1=2��1(�) + o(n�1=2): (15)

Similarly, noting that n1=2a�n;H > n
1=2�n=2!1, we get

a�n;H = �n + n
�1=2��1(�) + o(n�1=2); (16)

and since n1=2
p
a2n + �

2
n � n

1=2�n !1 we obtain

a�n;A = �n + n
�1=2��1(�) + o(n�1=2): (17)

Hence, the intervals C�S;n, C
�
H;n, and C

�
A;n are asymptotically of the same length.

They are also longer than the standard interval by an order of magnitude: the
ratio of each of a�n;S (a

�
n;H , a

�
n;A, respectively) to the half-length of the stan-

dard interval is n1=2�n, which diverges to in�nity. Hence, when the estimators

�̂S , �̂H , and �̂A are tuned to possess the �sparsity property�, the corresponding
con�dence sets become very large. For the particular intervals considered here
this is a re�nement of a general result in Pötscher (2007) for con�dence sets
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based on arbitrary estimators possessing the �sparsity property�. [We note that
the sparsely tuned hard-thresholding estimator or the sparsely tuned adaptive
LASSO (under an additional condition on �n) are known to possess the so-called
�oracle property�. In light of the �oracle property� it is sometimes argued in the
literature that valid con�dence intervals based on these estimators with length
proportional to n�1=2 can be obtained. However, in light of the above discus-
sion such intervals necessarily have in�mal coverage probability that converges
to zero and thus are not valid. This once more shows that �xed-parameter
asymptotic results like the �oracle� property can be dangerously misleading.]

3.5 A simple asymptotic con�dence interval

The results for the �nite-sample con�dence intervals given in Sections 3.1-3.3
required a detailed case by case analysis based on the �nite-sample distribution
of the estimator on which the interval is based. If the estimators �̂S , �̂H , and
�̂A are tuned to possess the �sparsity property�, i.e., if the tuning parameter
satis�es �n ! 0 and n1=2�n !1, a simple asymptotic con�dence interval con-
struction relying on asymptotic results obtained in Pötscher and Leeb (2007)
and Pötscher and Schneider (2009) is possible as shown below. An advantage of
this construction is that it easily extends to other estimators like the smoothly
clipped absolute deviation (SCAD) estimator when tuned to possess the �spar-
sity property�.
As shown in Pötscher and Leeb (2007) and Pötscher and Schneider (2009),

the uniform rate of consistency of the �sparsely� tuned estimators �̂S , �̂H , and
�̂A is not n

1=2, but only ��1n ; furthermore, the limiting distributions of these
estimators under the appropriate ��1n -scaling and under a moving-parameter
asymptotic framework are always concentrated on the interval [�1; 1]. These
facts can be used to obtain the following result.

Proposition 8 Suppose �n ! 0 and n1=2�n ! 1. Let �̂ stand for any of the

estimators �̂S(�n), �̂H(�n), or �̂A(�n). Let d be a real number, and de�ne the

interval Dn = [�̂� d�n; �̂+ d�n]. If d > 1, the interval Dn has in�mal coverage
probability converging to 1, i.e.,

lim
n!1

inf
�2R

Pn;�(� 2 Dn) = 1.

If d < 1,
lim
n!1

inf
�2R

Pn;�(� 2 Dn) = 0.

Proof. Let
c = lim inf

n!1
inf
�2R

Pn;�

�
�d � ��1n (�̂ � �) � d

�
:

By de�nition of c, we can �nd a subsequence nk and elements �nk 2 R such that

Pnk;�nk

�
�d � ��1nk (�̂ � �nk) � d

�
! c
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for k ! 1. Now, by Theorem 17 (for �̂ = �̂H), Theorem 18 (for �̂ = �̂S),

and Remark 12 in Pötscher and Leeb (2007), and by Theorem 6 (for �̂ = �̂A)
and Remark 7 in Pötscher and Schneider (2009), any accumulation point of the

distribution of ��1nk (�̂ � �nk) w.r.t. weak convergence is a probability measure
concentrated on [�1; 1]. Since d > 1, it follows that c = 1 must hold, which
proves the �rst claim. We next prove the second claim. In view of Theorem 17
(for �̂ = �̂H) and Theorem 18 (for �̂ = �̂S) in Pötscher and Leeb (2007), and in

view of Theorem 6 (for �̂ = �̂A) in Pötscher and Schneider (2009) it is possible

to choose a sequence �n 2 R such that the distribution of �
�1
n (�̂� �n) converges

to point mass located at one of the endpoints of the interval [�1; 1]. But then
clearly

Pn;�n

�
�d � ��1n (�̂ � �n) � d

�
! 0

for d < 1 which implies the second claim.
The asymptotic distributional results in the above proposition do not provide

information on the case d = 1. However, from the �nite-sample results in
Sections 3.1-3.3 we see that in this case the in�mal coverage probability of Dn
converges to 1=2.
Since the interval Dn for d > 1 has asymptotic in�mal coverage probability

equal to one, one may wonder how much cruder this interval is compared to the
�nite-sample intervals C�S;n, C

�
H;n, and C

�
A;n constructed in Section 3.4, which

have in�mal coverage probability equal to a prespeci�ed level �, 0 < � < 1: The
ratio of the half-length of Dn to the half-length of the corresponding interval
C�S;n, C

�
H;n, and C

�
A;n is

d(1 +O(n�1=2��1n )) = d(1 + o(1))

as can be seen from equations (15), (16), and (17). Since d can be chosen
arbitrarily close to one, this ratio can be made arbitrarily close to one. This may
sound somewhat strange, since we are comparing an interval with asymptotic
in�mal coverage probability 1 with the shortest �nite-sample con�dence intervals
that have a �xed in�mal coverage probability � less than 1. The reason for this
phenomenon is that, in the relevant moving-parameter asymptotic framework,
the distribution of �̂ � � is made up of a bias-component which in the worst
case is of the order �n and a random component which is of the order n�1=2.
Since �n ! 0 and n1=2�n ! 1, the deterministic bias-component dominates
the random component. This can also be gleaned from equations (15), (16), and
(17), where the level � enters the formula for the half-length only in the lower
order term.
We note that using Theorem 19 in Pötscher and Leeb (2007) the same proof

immediately shows that Proposition 8 also holds for the smoothly clipped ab-
solute deviation (SCAD) estimator when tuned to possess the �sparsity prop-
erty�. In fact, the argument in the proof of the above proposition can be applied
to a large class of post-model-selection estimators based on a consistent model
selection procedure.
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Remark 9 (i) Suppose D0
n = [�̂ � d1�n; �̂ + d2�n] where �̂ stands for any of

the estimators �̂S, �̂H , or �̂A. If min(d1; d2) > 1, then the limit of the in�mal
coverage probability of D0

n is 1; if max(d1; d2) < 1 then this limit is zero. This
follows immediately from an inspection of the proof of Proposition 8.
(ii) Proposition 8 also remains correct if Dn is replaced by the corresponding

open interval. A similar comment applies to the open version of D0
n.

4 Con�dence Intervals: Unknown Variance Case

In this section we consider the case where the variance �2 is unknown, n �
2, and we are interested in the coverage properties of intervals of the form
[~� � �̂an; ~� + �̂an] where an is a nonnegative real number and ~� stands for any
one of the estimators ~�H = ~�H(�n),

~�S = ~�S(�n), or
~�A = ~�A(�n). For brevity

we only consider symmetric intervals. A similar argument as in the known
variance case shows that we can assume without loss of generality that � = 1,
and we shall do so in the sequel; in particular, this argument shows that the
in�mum w.r.t. � of the coverage probability does not depend on �.

4.1 Soft-thresholding

Consider the interval ES;n =
h
~�S � �̂an; ~�S + �̂an

i
where an is a nonnegative

real number and ~�S = ~�S(�n). We then have

Pn;� (� 2 ES;n) =

Z 1

0

Pn;� (� 2 ES;n j�̂ = s )hn(s)ds

where hn is the density of �̂, i.e., hn is the density of the square root of a chi-
square distributed random variable with n�1 degrees of freedom divided by the
degrees of freedom. In view of independence of �̂ and �y we obtain the following
representation of the �nite-sample coverage probability

Pn;� (� 2 ES;n) =

Z 1

0

Pn;�

�
� 2

h
�̂S(s�n)� san; �̂S(s�n) + san

i�
hn(s)ds

=

Z 1

0

pS;n (�; 1; s�n; san; san)hn(s)ds (18)

where pS;n is given in (2). It follows from (2), the dominated convergence
theorem, and symmetry of the standard normal distribution that

inf
�2R

Pn;� (� 2 ES;n) � lim
�!1

Z 1

0

pS;n (�; 1; s�n; san; san)hn(s)ds

=

Z 1

0

lim
�!1

pS;n (�; 1; s�n; san; san)hn(s)ds

=

Z 1

0

[�(n1=2s(an � �n))� �(n
1=2s(�an � �n))]hn(s)ds

= Tn�1(n
1=2(an � �n))� Tn�1(n

1=2(�an � �n)); (19)
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where Tn�1 is the cdf of a Student t-distribution with n� 1 degrees of freedom.
Furthermore, (1) shows that

pS;n (�; 1; s�n; san; san) � �(n
1=2s(an � �n))� �(n

1=2s(�an � �n))

holds and whence we obtain from (18) and (19)

inf
�2R

Pn;� (� 2 ES;n) = Tn�1(n
1=2(an � �n))� Tn�1(n

1=2(�an � �n)) (20)

for every n � 2. Remark 2 shows that the same relation is true for the corre-
sponding open and half-open intervals.
Relation (20) shows the following: suppose 1=2 � � < 1 and a�n solves (12),

i.e., the corresponding interval C�S;n has in�mal coverage probability equal to �.
Let a��n be the (unique) solution to

Tn�1(n
1=2(an � �n))� Tn�1(n

1=2(�an � �n)) = �;

i.e., the corresponding interval E��S;n =
h
~�S � �̂a

��
n ;
~�S + �̂a

��
n

i
has in�mal cov-

erage probability equal to �. Then a��n � a�n holds in view of Lemma 16 in
the Appendix. I.e., given the same in�mal coverage probability � � 1=2, the
expected length of the interval E��S;n based on

~�S is not smaller than the length

of the interval C�S;n based on �̂S .
Since k�� Tn�1k1 = supx2R j�(x)� Tn�1(x)j ! 0 for n ! 1 holds by

Polya�s theorem, the following result is an immediate consequence of (20),
Proposition 1, and Remark 2.

Theorem 10 For every sequence an of nonnegative real numbers we have with

ES;n =
h
~�S � �̂an; ~�S + �̂an

i
and CS;n =

h
�̂S � an; �̂S + an

i
that

inf
�2R

Pn;� (� 2 ES;n)� inf
�2R

Pn;� (� 2 CS;n)! 0

as n!1. The analogous results hold for the corresponding open and half-open
intervals.

We discuss this theorem together with the parallel results for hard-thresholding
and adaptive LASSO based intervals in Section 4.4.

4.2 Hard-thresholding

Consider the interval EH;n =
h
~�H � �̂an; ~�H + �̂an

i
where an is a nonnegative

real number and ~�H = ~�H(�n). We then have analogously as in the preceding
subsection that

Pn;� (� 2 EH;n) =

Z 1

0

pH;n (�; 1; s�n; san; san)hn(s)ds:

18



Note that pH;n (�; 1; s�n; san; san) is symmetric in � and for � � 0 is given by
(see Pötscher (2007))

pH;n (�; 1; s�n; san; san)

=
n
�(n1=2(�� + s�n))� �(n

1=2(�� � s�n))
o
1 (0 � � � san)

+max
h
0;�(n1=2san)� �(n

1=2(�� + s�n))
i
1 (san < � � s�n + san)

+
n
�(n1=2san)� �(�n

1=2san)
o
1 (s�n + san < �)

in case �n > 2an, by

pH;n (�; 1; s�n; san; san)

=
n
�(n1=2(�� + s�n)� �(n

1=2(�� � s�n))
o
1 (0 � � � s�n � san)

+
n
�(n1=2san)� �(n

1=2(�� � s�n))
o
1 (s�n � san < � � san)

+
n
�(n1=2san)� �(n

1=2(�� + s�n))
o
1 (san < � � s�n + san)

+
n
�(n1=2san)� �(�n

1=2san)
o
1 (s�n + san < �)

if an � �n � 2an, and by

pH;n (�; 1; s�n; san; san)

=
n
�(n1=2san)� �(�n

1=2san)
o
f1 (0 � � � san � s�n) + 1 (s�n + san < �)g

+
n
�(n1=2san)� �(n

1=2(�� � s�n))
o
1 (san � s�n < � � san)

+
n
�(n1=2san)� �(n

1=2(�� + s�n))
o
1 (san < � � s�n + san)

if �n < an. In the subsequent theorems we consider only the case where �n ! 0
as this is the only interesting case from an asymptotic perspective: note that
any of the penalized maximum likelihood estimators considered in this paper is
inconsistent for � if �n does not converge to zero.

Theorem 11 Suppose �n ! 0. For every sequence an of nonnegative real num-

bers we have with EH;n =
h
~�H � �̂an; ~�H + �̂an

i
and CH;n =

h
�̂H � an; �̂H + an

i

that
inf
�2R

Pn;� (� 2 EH;n)� inf
�2R

Pn;� (� 2 CH;n)! 0

as n!1. The analogous results hold for the corresponding open and half-open
intervals.

Proof. We prove the result for the closed interval. Inspection of the proof to-
gether with Remark 4 then gives the result for the open and half-open intervals.
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Step 1: Observe that for every s > 0 and n � 2 we have from the above
formulae for pH;n that

lim
�!1

pH;n (�; 1; s�n; san; san) = �(n
1=2san)� �(�n

1=2san):

By the dominated convergence theorem it follows that for � !1

Pn;� (� 2 EH;n) =

Z 1

0

pH;n (�; 1; s�n; san; san)hn(s)ds

!

Z 1

0

h
�(n1=2san)� �(�n

1=2san)
i
hn(s)ds

= Tn�1(n
1=2an)� Tn�1(�n

1=2an):

Hence,

inf
�2R

Pn;� (� 2 CH;n) � lim
�!1

pH;n (�; 1; �n; an; an) = �(n
1=2an)� �(�n

1=2an)

and

inf
�2R

Pn;� (� 2 EH;n) � Tn�1(n
1=2an)�Tn�1(�n

1=2an) � �(n
1=2an)��(�n

1=2an);

(21)
the last inequality following from well-known properties of Tn�1, cf. Lemma 16
in the appendix. This proves the theorem in case n1=2an ! 0 for n!1.
Step 2: For every s > 0 and n � 2 we have from (3)

inf
�2R

Pn;� (� 2 CH;n) = inf
�2R

pH;n (�; 1; �n; an; an)

= max
h
�(n1=2an)� �(�n

1=2(an � �n)); 0
i
(22)

and

inf
�2R

pH;n (�; 1; s�n; san; san) = max
h
�(n1=2san)� �(n

1=2(�san + s�n)); 0
i
:

Furthermore,

inf
�2R

Pn;� (� 2 EH;n) �

Z 1

0

inf
�2R

pH;n (�; 1; s�n; san; san)hn(s)ds

=

Z 1

0

max
h
�(n1=2san)� �(n

1=2(�san + s�n)); 0
i
hn(s)ds

= max

�Z 1

0

h
�(n1=2san)� �(n

1=2(�san + s�n))
i
hn(s)ds; 0

�

= max
h
Tn�1(n

1=2an)� Tn�1(�n
1=2(an � �n)); 0

i
: (23)

If n1=2(an��n)!1, then the far right-hand sides of (22) and (23) converge to
1, since k�� Tn�1k1 ! 0 as n ! 1 by Polya�s Theorem and since n1=2an �
n1=2(an � �n). This proves the theorem in case n1=2(an � �n)!1.
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Step 3: If n1=2�n ! 0, then (22) and the fact that � is globally Lipschitz
shows that inf�2R Pn;� (� 2 CH;n) di¤ers from �(n1=2an)��(�n

1=2an) only by
a term that is o(1). Similarly, (21), (23), the fact that k�� Tn�1k1 ! 0 as
n!1 by Polya�s theorem, and the global Lipschitz property of � show that the
same is true for inf�2R Pn;� (� 2 EH;n), proving the theorem in case n

1=2�n ! 0.
Step 4: By a subsequence argument and Steps 1-3 it remains to prove the

theorem under the assumption that n1=2an and n
1=2�n are bounded away from

zero by a �nite positive constant c1, say, that n
1=2(an � �n) is bounded by a

�nite constant c2, say. It then follows that an=�n is bounded by a �nite positive
constant c3, say. For given " > 0 set �n(") = an(1+2c(")n

�1=2) where c(") is the
constant given in Lemma 15. We then have for s 2 [1�c(")n�1=2; 1+c(")n�1=2]

san < �n(") � s(�n + an)

whenever n > n0(c("); c3). Without loss of generality we may choose n0(c("); c3)
large enough such that also 1 � c(")n�1=2 > 0 holds for n > n0(c("); c3). Con-
sequently, we have (observing that max(0; x) has Lipschitz constant 1 and �
has Lipschitz constant (2�)�1=2) for every s 2 [1� c(")n�1=2; 1+ c(")n�1=2] and
n > n0(c("); c3)

jpH;n (�n("); 1; s�n; san; san)� pH;n (�n("); 1; �n; an; an)j

=
���max(0;�(n1=2san)� �(n1=2(��n(") + s�n)))�max(0;�(n

1=2an)� �(n
1=2(��n(") + �n)))

���

�
���
h
�(n1=2san)� �(n

1=2(��n(") + s�n))
i
�
h
�(n1=2an)� �(n

1=2(��n(") + �n))
i���

� (2�)�1=2n1=2(an + �n) js� 1j � (2�)
�1=2c(")(an + �n) � (2�)

�1=2c(")(c3 + 1)�n:

It follows that for every n > n0(c("); c3)

inf
�2R

Z 1

0

pH;n (�; 1; s�n; san; san)hn(s)ds

�

Z 1

0

pH;n (�n("); 1; s�n; san; san)hn(s)ds

=

Z 1+c(")n�1=2

1�c(")n�1=2
pH;n (�n("); 1; s�n; san; san)hn(s)ds

+

Z

fs:js�1j�c(")n�1=2g
pH;n (�n("); 1; s�n; san; san)hn(s)ds

= B1 +B2:

Clearly, 0 � B2 � " holds, cf. Lemma 15, and for B1 we have

jB1 � pH;n (�n("); 1; �n; an; an)j

�

�����

Z 1+c(")n�1=2

1�c(")n�1=2
[pH;n (�n("); 1; s�n; san; san)� pH;n (�n("); 1; �n; an; an)]hn(s)ds

�����
+ "

� (2�)�1=2c(")(c3 + 1)�n + "
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for n > n0(c("); c3). It follows that

inf
�2R

Z 1

0

pH;n (�; 1; s�n; san; san)hn(s)ds

� pH;n (�n("); 1; �n; an; an) + (2�)
�1=2c(")(c3 + 1)�n + 2"

holds for n > n0(c("); c3). Now

pH;n (�n("); 1; �n; an; an) = max(0;�(n1=2an)� �(n
1=2(��n(") + �n)))

= max(0;�(n1=2an)� �(n
1=2(�an(1 + 2c(")n

�1=2) + �n))):

But this di¤ers from inf�2R Pn;� (� 2 CH;n) = max(0;�(n
1=2an)��(n

1=2(�an+
�n))) by at most

����(n1=2(�an + �n))� �(n
1=2(�an(1 + 2c(")n

�1=2) + �n))
���

� (2�)�1=22c(")an � (2�)
�1=22c(")c3�n:

Consequently, for n > n0(c("); c3)

inf
�2R

Pn;� (� 2 EH;n) = inf
�2R

Z 1

0

pH;n (�; 1; s�n; san; san)hn(s)ds

� max(0;�(n1=2an)� �(n
1=2(�an + �n))) + (2�)

�1=2c(")(3c3 + 1)�n + 2"

= inf
�2R

Pn;� (� 2 CH;n) + (2�)
�1=2c(")(3c3 + 1)�n + 2":

On the other hand,

inf
�2R

Pn;� (� 2 EH;n) = inf
�2R

Z 1

0

pH;n (�; 1; s�n; san; san)hn(s)ds

�

Z 1

0

inf
�2R

pH;n (�; 1; s�n; san; san)hn(s)ds

=

Z 1

0

max(0;�(n1=2san)� �(n
1=2s(�an + �n)))hn(s)ds

= max(0; Tn�1(n
1=2an)� Tn�1(n

1=2(�an + �n)))

� max(0;�(n1=2an)� �(n
1=2(�an + �n)))� 2 k�� Tn�1k1

= inf
�2R

Pn;� (� 2 CH;n)� 2 k�� Tn�1k1 :

Since �n ! 0 and k�� Tn�1k1 ! 0 for n ! 1 and since " was arbitrary the
proof is complete.

4.3 Adaptive LASSO

Consider the interval EA;n = [~�A � �̂an; ~�A + �̂an] where an is a nonnegative

real number and ~�A = ~�A(�n). We then have analogously as in the preceding
subsections that

Pn;�(� 2 EA;n) =

Z 1

0

pA;n(�; 1; s�n; san; san)hn(s)ds

22



where pA;n is given in (4).

Theorem 12 Suppose �n ! 0. For every sequence an of nonnegative real num-

bers we have with EA;n =
h
~�A � �̂an; ~�A + �̂an

i
and CA;n =

h
�̂A � an; �̂A + an

i

that
inf
�2R

Pn;� (� 2 EA;n)� inf
�2R

Pn;� (� 2 CA;n)! 0

as n!1. The analogous results hold for the corresponding open and half-open
intervals.

Proof. We prove the result for the closed interval. Inspection of the proof to-
gether with Remark 6 then gives the result for the open and half-open intervals.
Step 1: Observe that for every s > 0 and n � 2 we have from (4) that

lim
�!1

pA;n (�; 1; s�n; san; san) = �(n
1=2san)� �(�n

1=2san):

Then exactly the same argument as in the proof of Theorem 11 shows that
inf�2R Pn;� (� 2 CA;n) as well as inf�2R Pn;� (� 2 EA;n) converge to zero for n!
1 if n1=2an ! 0, thus proving the theorem in this case. For later use we note
that this reasoning in particular gives

inf
�2R

Pn;� (� 2 EA;n) � Tn�1(n
1=2an)�Tn�1(�n

1=2an) � �(n
1=2an)��(�n

1=2an):

(24)
Step 2: By Proposition 5 we have for every s > 0 and n � 1

inf
�2R

pA;n (�; 1; s�n; san; san) = �(n
1=2s

p
a2n + �

2
n)� �(n

1=2s(�an + �n)):

Arguing as in the proof of Theorem 11 we then have

inf
�2R

Pn;� (� 2 CA;n) = inf
�2R

pA;n (�; 1; �n; an; an)

= �(n1=2
p
a2n + �

2
n)� �(n

1=2(�an + �n)) (25)

and

inf
�2R

Pn;� (� 2 EA;n) �

Z 1

0

inf
�2R

pA;n (�; 1; s�n; san; san)hn(s)ds

= Tn�1(n
1=2
p
a2n + �

2
n)� Tn�1(n

1=2(�an + �n)):(26)

If n1=2(an � �n) ! 1, then the far right-hand sides of (25) and (26) con-
verge to 1, since k�� Tn�1k1 ! 0 as n ! 1 by Polya�s Theorem and since

n1=2
p
a2n + �

2
n � n1=2an ! 1 and n1=2(�an + �n) ! �1. This proves the

theorem in case n1=2(an � �n)!1.
Step 3: Analogous to the corresponding step in the proof of Theorem 11, us-

ing (25), (24), (26), and additionally noting that 0 � n1=2
p
a2n + �

2
n�n

1=2an �
n1=2�n, the theorem is proved in the case n1=2�n ! 0.
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Step 4: Similar as in the proof of Theorem 11 it remains to prove the theorem
under the assumption that n1=2an � c1 > 0, n

1=2�n � c1, and that n
1=2(an �

�n) � c2 < 1. Again, it then follows that 0 � an=�n � c3 < 1. For given
" > 0 set �n(") = an(1+2c(")n

�1=2) where c(") is the constant given in Lemma
15. We then have for s 2 [1� c(")n�1=2; 1 + c(")n�1=2]

san < �n(")

for all n. Choose n0(c(")) large enough such that 1 � c(")n
�1=2 > 1=2 holds

for n > n0(c(")). Consequently, for every s 2 [1 � c(")n
�1=2; 1 + c(")n�1=2]

and n > n0(c(")) we have from (4) (observing that � has Lipschitz constant
(2�)�1=2)

jpA;n(�n("); 1; s�n; san; san)� pA;n(�n("); 1; �n; an; an)j

� (2�)�1=2n1=2
�
js� 1j an +

���
p
(�n(") + san)2=4 + s2�2n �

p
(�n(") + an)2=4 + �2n

���+
���
p
(�n(")� san)2=4 + s2�2n �

p
(�n(")� an)2=4 + �2n

���
�
:

We note the elementary inequality
��x1=2 � y1=2

�� � 2�1z�1=2 jx� yj for posi-
tive x, y, z satisfying min(x; y) � z. Using this inequality with z = (1 �
c(")n�1=2)2�2n twice, we obtain for every s 2 [1� c(")n

�1=2; 1 + c(")n�1=2] and
n > n0(c("))

jpA;n(�n("); 1; s�n; san; san)� pA;n(�n("); 1; �n; an; an)j

� (2�)�1=2n1=2js� 1j

�
an +

h
(1� c(")n�1=2)2�2n

i�1=2 �
�n(")an=2 + (s+ 1)

�
(a2n=4) + �

2
n

���
:

Since 1 � c(")n�1=2 > 1=2 for n > n0(c(")) by the choice of n0(c(")) and
since an=�n � c3 we obtain

jpA;n(�n("); 1; s�n; san; san)� pA;n(�n("); 1; �n; an; an)j

� (2�)�1=2c(")
�
an + 2�

�1
n

�
a2n + (5=2)((a

2
n=4) + �

2
n)
��

� (2�)�1=2c(")
�
c3 + (13=4)c

2
3 + 5

�
�n = c4(")�n (27)

for every n > n0(c(")) and s 2 [1� c(")n
�1=2; 1 + c(")n�1=2].

Now,

inf
�2R

Z 1

0

pA;n(�; 1; s�n; san; san)hn(s)ds

�

Z 1

0

pA;n(�n("); 1; s�n; san; san)hn(s)ds

=

Z 1+c(")n�1=2

1�c(")n�1=2
pA;n(�n("); 1; s�n; san; san)hn(s)ds

+

Z

js�1j�c(")n�1=2
pA;n(�n("); 1; s�n; san; san)hn(s)ds

=: B1 +B2:
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Clearly, 0 � B2 � " holds by the choice of c("), see Lemma 15. For B1 we have
using (27)

jB1 � pA;n(�n("); 1; �n; an; an)j

�

Z 1+c(")n�1=2

1�c(")n�1=2
jpA;n(�n("); 1; s�n; san; san)� pA;n(�n("); 1; �n; an; an)jhn(s)ds+ "

� c4(")�n + "

for n > n0(c(")). It follows that

inf
�2R

Z 1

0

pA;n(�; 1; s�n; san; san)hn(s)ds

� pA;n(�n("); 1; �n; an; an) + c4(")�n + 2"

holds for n > n0(c(")). Furthermore, the absolute di¤erence between pA;n(�n("); 1; �n; an; an)
and inf�2R Pn;� (� 2 CA;n) can be bounded as follows: Using Proposition 5, (4),
observing that � has Lipschitz constant (2�)�1=2, and using the elementary
inequality noted earlier twice with z = �2n we obtain

���pA;n(�n("); 1; �n; an; an)� �
�
n1=2

p
a2n + �

2
n

�
+�

�
n1=2(�an + �n)

����

� (2�)�1=2n1=2
�����anc(")n

�1=2 +
q
a2n(1 + c(")n

�1=2)2 + �2n �
p
a2n + �

2
n

����

+(2�)�1=2n1=2
����

q
(anc(")n�1=2)2 + �2n �

q
(anc(")n�1=2 + �n)

2

����

� (2�)�1=2
�
2anc(") + (2�n)

�1a2n(2c(") + c(")
2n�1=2)

�

� (2�)�1=2
�
2c3c(") + 2

�1c23(2c(") + c(")
2)
�
�n = c5(")�n:

Consequently, for n > n0(c("))

inf
�2R

Z 1

0

pA;n(�; 1; s�n; san; san)hn(s)ds

� �(n1=2
p
a2n + �

2
n)� �(n

1=2(�an + �n))

+ (c4(") + c5(")) �n + 2":

On the other hand,

inf
�2R

Z 1

0

pA;n(�; 1; s�n; san; san)hn(s)ds

�

Z 1

0

inf
�2R

pA;n(�; 1; s�n; san; san)hn(s)ds

=

Z 1

0

h
�(n1=2s

p
a2n + �

2
n)� �(n

1=2s(�an + �n))
i
hn(s)ds

= Tn�1(n
1=2
p
a2n + �

2
n)� Tn�1(n

1=2(�an + �n))

� �(n1=2
p
a2n + �

2
n)� �(n

1=2(�an + �n))� 2k�� Tn�1k1:
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Since �n ! 0 and k�� Tn�1k1 ! 0 for n ! 1 and since " was arbitrary the
proof is complete.

4.4 Discussion

Theorems 10, 11, and 12 show that the results in Section 3 carry over to the
unknown variance case in an asymptotic sense. For example, if 0 < � < 1
and an;S (an;H , an;A, respectively) is such that ES;n (EH;n, EA;n, respec-
tively) has in�mal coverage probability converging to �, it then follows that
lim infn!1 an;S=a

�
n;S � 1 (lim infn!1 an;H=a

�
n;H � 1, lim infn!1 an;A=a

�
n;A �

1, respectively) must hold, where a�n;S (a
�
n;H , a

�
n;A, respectively) is the half-

length of the interval C�S;n (C
�
H;n, C

�
A;n, respectively) that has in�mal coverage

probability equal to �. That is, the expected length of ES;n (EH;n, EA;n, re-
spectively) is asymptotically at least as large as the length of C�S;n (C

�
H;n, C

�
A;n,

respectively). Furthermore, Theorems 10, 11, and 12 show that Proposition 8
immediately carries over to the unknown variance case.

A Appendix

Lemma 13 Suppose an � bn. Then
��(�)(�;�an)

�� �
��(�)(�; bn)

�� holds for
� 2 (�1;�an).

Proof. Squaring both sides of the claimed inequality shows that the claim is
equivalent to

a2n=2� (an � �)
p
((an + �)=2)2 + �2 � b

2
n=2 + (bn + �)

p
((bn � �)=2)2 + �2:

But, for � < �an, the left-hand side of the preceding display is not larger than

a2n=2 + (an + �)
p
((an � �)=2)2 + �2:

Since a2n=2 � b
2
n=2, it hence su¢ces to show that

�(an + �)
p
((an � �)=2)2 + �2 � �(bn + �)

p
((bn � �)=2)2 + �2

for � < �an. This is immediately seen by distinguishing the cases where �bn �
� < �an and where � < �bn, and observing that an � bn.
The following lemma is elementary to prove.

Lemma 14 Suppose �, �, , and � are real numbers satisfying � � �,  � �,
and � � � � � � . If 0 � � � ��, or if  � � � 0 and  � ��, then
�(�)� �(�) � �(�)� �().

Lemma 15 Suppose � = 1. Then for every " > 0 there exists a c = c(") > 0
such that Z 1+cn�1=2

max(0;1�cn�1=2)

hn(s)ds � 1� "

holds for every n � 2.
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Proof. By the central limit theorem and the delta-method we have that
n1=2(�̂ � 1) converges to a normal distribution. It follows that n1=2(�̂ � 1)
is (uniformly) tight. In other words, for every " > 0 we can �nd a real number
c > 0 such that for all n � 2 holds

Pr
����n1=2(�̂ � 1)

��� � c
�
� 1� ":

Lemma 16 Suppose n � 2 and x � y � 0. Then

Tn�1(x) � �(x)

and
Tn�1(x� y)� Tn�1(�x� y) � �(x� y)� �(�x� y):

Proof. The �rst claim is well-known, see, e.g., Kagan and Nagaev (2008). The
second claim follows immediately from the �rst claim, since by symmetry of �
and Tn�1 we have

�(x� y)� �(�x� y)� (Tn�1(x� y)� Tn�1(�x� y))

= [�(x� y)� Tn�1(x� y)] + [�(x+ y)� Tn�1(x+ y)] � 0:
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