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1. INTRODUCTION 
 

Modelling airport choice of passengers has been a subject of 

interest for air transport scientists and airport managers already 

for a while. Wilken, Berster and Gelhausen have reported of a 

market segment specific model approach to airport choice in 

Germany in a paper entitled “Airport Choice in Germany - New 

Empirical Evidence of the German Air Traveller Survey 2003” 

presented at the Air Transport Research Society World Confer-

ence 2005 in Rio de Janeiro, Brazil [15]. In continuation of the 

analysis of airport choice, based on the evidence coming from 

the data of the survey mentioned, this paper deals with a model 

of combined airport and access mode choice in Germany by 

market segment. 

 

The question arises why to model airport and access mode 

choice simultaneously. The underlying hypothesis is that airport 

and access mode choice are closely interrelated. Air travellers 

typically have a strong preference to choose the nearest airport 

as the aforementioned survey reveals. In Germany, 67% of the 

air travellers choose on average the nearest airport, however, 

travel time not only depends on distance covered, but also on the 

accessibility of fast access modes, such as for instance high 

speed intercity trains, to reduce travel time [15]. Access time and 

access cost play a major role in airport choice, which in turn 

depend on access mode choice. The availability of access modes 

is again airport specific. Because of the strong dependence of 

airport and access mode choice on each other a combined model 

approach seems more sensible than two separate models. The 

combined approach allows including the aforementioned interre-

lations. 

 

This paper presents a combined airport and access mode choice 

model based on a nested logit approach, first presented at the 

Air Transport Research Society World Conference 2006 in 

Nagoya, Japan [3], [7]. It is called a “generalized nested logit 

model for airport and access mode choice” as it is not restricted 

to specific airports or a certain number of airport and access 

mode combinations, but allows to evaluate airport plans like the 

future Berlin-Brandenburg International Airport (BBI) in the 

southeast of Berlin or the introduction of new access modes, like 

a direct high speed intercity train access at already existing 

airports as this was the case between Cologne and Frankfurt 

airport in 2002. The case study concluding the paper is a modi-

fied excerpt of a study dealing with different future scenarios 

relating to airport and access mode choice in the Cologne region 

conducted by the author [5], [6]. 

 

As a means to achieve a general applicability of the model 

airports have been grouped into “airport categories”. Airports 

are categorised from a demand-oriented point of view to form 

clusters of homogenous airports regarding their general picture 

of their flight plan. 

 

The model has been developed as a part of the doctoral thesis of 

the author, Marc Ch. Gelhausen [4]. The model is of particular 

interest for airport managers as well as high speed rail providers 

since it shows the dependence between the market share of an 

airport and access mode combination and its quality regarding 

their attributes, e.g. travel time, travel cost and weekly flight 

frequency to a given destination. 

 

2. THE CONCEPT OF ALTERNATIVE GROUPS 
 

The fundamental hypothesis of discrete choice models is the 

assumption of individual utility maximisation. Alternatives are 

evaluated by means of a utility function and the one with the 

highest utility is supposed to be chosen. From an external point 

of view the utility of an alternative for a specific individual is a 

random variable, so that the utility Ui of alternative i is de-

scribed as a function composed of a deterministic component Vi 

and a random component εi 
[10]: 

 

(2.01) 

 

The random component of the utility function is introduced for 

various reasons, i.e. a lack of observability of relevant attributes 

of alternatives or their incomplete measurability [10]. 

 

From an external point of view, only evidence in terms of the 

probability of an alternative being the one with the highest 

utility can be given, because of the random component in the 

utility function. Specific discrete choice model concepts differ in 

terms of their assumptions of the random component. The most 

prominent member of this class of models is the logit-model 

with independently and identically distributed random compo-

nents; the choice probability of an alternative i is computed as 
[14]: 

 

 

(2.02) 

 

 

As a consequence of the independently and identically distrib-

uted random components of the utility functions the ratio of two 

choice probabilities is solely dependent on the utility of those 

two alternatives [1]: 

 

 

 

 

(2.03) 

 

 

 

 

This property of the logit-model is called “Independence from 

Irrelevant Alternatives” (IIA) and may be regarded as both a 
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weakness and a strength of the model. Due to the distribution 

assumptions of the random component of the utility function it 

is not possible to model correlations among alternatives owing 

to unobserved factors. A major advantage of the IIA-property is 

the possibility to estimate the model parameters, excluding 

alternative-specific variables, on a subset of the alternatives [11], 

[12], [13], [14] and the possibility of an evaluation of new alterna-

tives without the need to re-estimate alternative-unspecific 

model parameters [2]. The problem of estimating alternative-

specific variables from a subset of alternatives will be discussed 

below. 

 

The nested logit-model relaxes the IIA-restriction to some extent 

without losing the closed-form expression of the choice prob-

abilities. For this purpose the random component in (2.01) is 

split up into a part 
a

iε , which varies over all alternatives i and a 

part 
c

kε , which is identical for all alternatives of a nest k [10]: 

 

 

(2.04) 

 

 

It is possible to model correlations due to unobserved factors 

among subsets of the alternatives by partitioning the choice set 

into clusters with highly correlated alternatives. (2.05) is an 

example of a covariance matrix for four alternatives partitioned 

into two clusters with the first two belonging to cluster one and 

the last two assigned to cluster two. 

 

 

 

 

(2.05) 

 

 

 

 

Each cluster k is characterized by an individual scale parameter 
c

kμ  and an identical non-negative covariance for all alternatives 

i within a cluster k. Alternatives of different clusters are as-

sumed not to be correlated. 

 

For modelling reasons, the choice probabilities P(ai = aopt) are 

decomposed into an unconditional choice probability P(ck = copt) 

that cluster k is chosen, and a conditional choice probability P(ai 

= aopt | ai ∈ ck), that alternative i from cluster k is chosen [10]: 

 

(2.06) 

 

The conditional choice probabilities are equal to the logit-model 

with the choice set being restricted to the alternatives of the 

appropriate nest. The choice probability of a nest k is deter-

mined by its maximum utility 
c

kV  [10]: 

 

 

 

(2.07) 

 

 

The choice probability of an alternative i in nest k can be written 

as [10]: 

 

 

 

 

 

 

(2.08) 

 

 

The hierarchical structure of (2.08) does not imply a sequential 

decision process. An extension to more than two levels is possi-

ble [1]. 

In the nested logit-model the IIA-property does only hold for 

two alternatives of the same cluster: 

 

 

 

 

 

 

 

(2.09) 

 

 

 

 

 

 

 

The ratio of the choice probabilities for two alternatives of 

different clusters depends on the characteristics of all alterna-

tives of those two clusters: 

 

 

 

 

 

 

 

(2.10) 

 

 

 

 

 

 

 

As the nested logit-model lacks the IIA-property for some pairs 

of alternatives, model estimation on a subset of the choice set, as 

is feasible for the simpler logit-model, is not possible. 

 

If it is feasible to form groups of at least approximatively similar 

clusters and to assign an identical covariance matrix to all clus-

ters of the same group, an estimation of alternative-unspecific 

model-parameters on a subset of alternatives equal to the logit-

model is possible. Each group of clusters must be represented by 

at least one member in this subset to enable the estimation of all 

cluster-specific scale parameters. Formula (2.11) shows a co-

variance-matrix of six alternatives belonging to three groups, 

with two alternatives per group. Figure 2.01 shows the relation-

ship between a group and a cluster for this example. 

 

 

 

 

(2.11) 
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Cluster 1 

Group 1 Group 2 Group 3 

Cluster 5 Cluster 2 Cluster 3 Cluster 4 Cluster 6 

Attributes (Abbreviation) Definition

Number of Domestic Low-Cost Flights (LCBRD) Flights per Week 

Number of Domestic Charter Flights (CCBRD) Flights per Week 
Number of Domestic Full Service Flights (FSBRD) Flights per Week 
Number of European Low-Cost Flights (LCEUR) Flights per Week 
Number of European Charter Flights (CCEUR) Flights per Week 
Number of European Full Service Flights (FSEUR) Flights per Week 
Number of Intercontinental Low-Cost Flights (LCINT) Flights per Week 
Number of Intercontinental Charter Flights (CCINT) Flights per Week 
Number of Intercontinental Full Service Flights (FSINT) Flights per Week 
Number of Domestic Destinations(NUMBRD) Number of Destinations

Number of European Destinations (NUMEUR) Number of Destinations

Number of Intercontinental Destinations (NUMINT) Number of Destinations

 

The letters A, B and C represent the covariance structure of a 

cluster; same letters indicate an equal covariance structure for 

different clusters. Figure 2.01 illustrates the assignment of clus-

ters to groups. 

 

 

 

 

 

 

 

 

 

 

 
FIG. 2.01: Dependence between Clusters and Groups 

 

If identical alternative-specific model-parameters, especially 

alternative-specific constants, can be assumed reasonably well 

for different clusters of the same group, an estimation of all 

model-parameters is feasible on a subset of all alternatives as 

described above. 

 

Applying the concept of grouping in the logit-model is possible, 

however, serves only to estimating alternative-specific variables, 

as there are no different scale parameters due to independently 

and identically distributed random components in the utility 

function. 

 

The main advantage of this approach does not only lie in the 

reduction of computational costs for very large choice sets, as 

many econometric software packages limit the maximum num-

ber of clusters and alternatives for nested logit estimations, but 

also in a better way of developing a more generally applicable 

choice model beyond the alternatives of the estimation dataset, 

e.g. in the context of scenario analysis. 

 

3. AIRPORT CATEGORIES 
 

Clusters of the same group are characterised by an identical 

covariance-matrix and alternative-specific parameters, espe-

cially alternative-specific constants. As correlations among 

alternatives and alternative-specific constants represent unob-

served factors, a grouping of clusters corresponds to an aggrega-

tion in terms of similarity of those unobserved factors. Airport 

and access mode choice is a two-dimensional choice problem, 

so that a categorisation in respect of both dimensions is neces-

sary, however, as the access mode choice is sufficiently general, 

only airports need to be categorised. 

 

Airports have been categorised from a demand-oriented point of 

view whereby the general “picture” of flight services at an air-

port serves as a quality criterion. The flight service of an airport 

is measured on the basis of the number of flights per destination 

type and flight type and the number of different destinations 

segmented by type of destination. Three types of destinations 

are defined: 

 

• Domestic 

• Europe 

• Intercontinental 

 

Flight types are divided into: 

 

• Low-Cost 

• Charter 

• Full Service 

Table 3.01 summarises the relevant attributes retained for cate-

gorising airports. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TAB. 3.01: Attributes of Airport Categories 

 

Clusters are identified by means of Kohonen’s Self-Organizing 

Map [9]. Figure 3.01 is a schematic illustration of a Self-

Organizing Map. Neurons are defined as simple computational 

units connected by weighted edges. Computations in a neuron 

are performed according to a simple transfer function. Input 

neurons correspond to clustering attributes and output neurons 

represent the clusters. The transfer function of the input neurons 

is the identical function f(x) = x. The output neurons have a 

“winner-takes-all” transfer function. The neuron with the small-

est distance between the input vector and its synaptic weight 

vector wins the competition and is activated. In the learning 

process of a Self-Organizing Map, the synaptic weight vector of 

the output neurons approaches the corresponding cluster cen-

troid as the right part of figure 3.01 illustrates. 

 

 

 

 

 

 

 

 

 

 

 
FIG. 3.01: Self-Organizing Map 

 

Table 3.02 shows the parameters for optimal cluster identifica-

tion. The Self-Organizing Map is not highly sensitive with 

regard to parameter variations. 

 

Three airport categories have been identified. The output neu-

rons are arranged in a linear grid and the distance between an 

input vector and synaptic weight vector of the corresponding 

output neuron is measured Euclidean. A linear neighbourhood 

function is used and the neighbourhood contains all output 

neurons at the beginning of the learning process and shrinks to 

zero within 1 000 iterations. The number of learning iterations is 

10 000 and the learning rate is chosen rather small with 0.01. 

Each element of the input vector is normalised to the interval [-

1; 1]. 

 

Table 3.03 shows the synaptic weights for the trained Self-

Organizing Map. The colour of the columns equals the colour of 

the synaptic weights in figure 3.03. 
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    Airport   

Attributes Category 1 Category 2 Category 3 

LCBRD 0.054281 0.026181 -0.973566 

CCBRD 0.63343 -0.23698 -0.902359 

FSBRD 0.820399 -0.16164 -0.810737 

LCEUR -0.814996 -0.248973 -0.717447 

CCEUR 0.673964 0.145995 -0.811895 

FSEUR 0.767974 -0.596754 -0.967617 

LCINT -0.999997 -0.507511 -0.862715 

CCINT 0.459986 -0.679604 -0.986041 

FSINT 0.128171 -0.975403 -0.999997 

NUMBRD 0.810002 0.570222 -0.409338 

NUMEUR 0.791409 -0.012681 -0.737397 

NUMINT 0.314031 -0.817745 -0.991489 

Parameter Value 

Topology of output neurons Linear 

Measure of distance Euclidean 

Neighbourhood function linear: 2 - 0.002*Iteration 

Learning rate 0.01 

Number of iterations 10 000 

Data normalisation yes, [-1; 1] 

Number of input neurons 12 

Number of output neurons 3 

Category Airport (IATA-Code) 

AP 1 Frankfurt a. M. (FRA) 

AP 1 Munich (MUC) 

AP 2 Düsseldorf (DUS) 

AP 2 Hamburg (HAM) 

AP 2 Cologne (CGN) 

AP 2 Stuttgart (STR) 

AP 3 Bremen (BRE) 

AP 3 Dortmund (DTM) 

AP 3 Dresden (DRS) 

AP 3 Erfurt (ERF) 

AP 3 Frankfurt Hahn (HHN) 

AP 3 Friedrichshafen (FDH) 

AP 3 Hanover (HAJ) 

AP 3 Karlsruhe/Baden (FKB) 

AP 3 Leipzig/Halle (LEJ) 

AP 3 Lübeck (LBC) 

AP 3 Münster/Osnabrück (FMO) 

AP 3 Niederrhein (NRN) 

AP 3 Nuremberg (NUE) 

AP 3 Paderborn/Lippstadt (PAD) 

AP 3 Saarbrücken (SCN) 
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AP 1 3.18 0.43 20.39 0.87 5.83 55.81 0 1.24 12.25 8.31 60.27 31.42

AP 2 8.97 0.58 28.27 11.65 11.76 37.24 0.02 0.71 0.79 16.23 74.62 9.16

AP 3 1.29 0.86 39.22 32.57 15.57 10.05 0.02 0.42 0 19.94 78.9 1.16
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AP 1 106 16 756 32 225 2138 0 49 517 19 144 83

AP 2 104 7 348 129 153 487 0 11 11 17 80 12

AP 3 3 1 80 47 25 39 0 0 0 6 22 1
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AP 1 96 3.5 75 8.5 37.5 279 0 18 396 1 16.5 43

AP 2 77 0 32 164.5 66.5 162 0.5 2 1.5 2.5 5.5 1

AP 3 0 0 68 9 21 29.5 0 0 0 2.5 10.5 0

 

 

 

 

 

 

 

 

 

 

 
TAB. 3.02: Parameters of a SOM for Airport Categorisation 

 

Table 3.04 shows the result of assigning airports, contained in 

the German Air Traveller Survey 2003, to identified categories. 

Although the service characteristics of the three Berlin airports 

vary substantially, they had been interviewed as one single 

airport; it is for this reason that they have not been included in 

the sample for model estimation and were not considered in the 

airport categorisation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TAB. 3.03: Cluster Centroids of Airport Categories 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TAB. 3.04: Assignment of Airports to Categories 

 

Table 3.05 and table 3.06 illustrate some properties of the three 

identified airport categories in per cent and absolute values. The 

three, respectively two highest values concerning the flight 

frequency and the number of different destinations are high-

lighted in colour. 

 

 

 

 

 

 

 
TAB. 3.05: Structure of Flights per Airport Category (in %) 

 

 

 

 

 

 

 
TAB. 3.06: Structure of Flights per Airport Category (absolute) 

 

Airports of the first category represent hubs. They offer mainly 

full service flights. Their focus is mainly on European and inter-

continental destinations. The number of domestic destinations is 

relatively low, but they are served with higher frequency. Hub 

airports offer the highest number of flights and destinations. 

Airports of the second category serve mainly domestic and 

European destinations with full service flights. The share of 

European low-cost and tourism flights is approximately equal 

but much smaller than the share of full service flights. The 

structure of flights and destinations of airports of the third cate-

gory is similar to those of the second category, but their focus is 

shifted more on domestic full service flights and European low-

cost and tourism traffic. These airports are the smallest in terms 

of number of flights and destinations. 

 

Table 3.07 shows the standard deviation of each attribute for 

each airport category. Airports of the first category exhibit the 

greatest heterogeneity, while airports of the third category show 

the smallest diversity. 

 

 

 

 

 

 

 
TAB. 3.07: Standard Deviation of Attributes by Category 

 

4. MODEL ESTIMATION AND RESULTS 
 

4.1 Preparing the Data Set for Model Estimation 

 

For model estimation the data set is partitioned into several 

disjoint data subsets. Each data subset contains only a subset of 

the full set of airport and access mode alternatives of just one 

airport of each category and its access modes. Each data subset 

includes observations of individuals, who have chosen one of 

the alternatives of the reduced alternative set. By a suitable 

definition of data subsets, it is possible to estimate a model with 

the full set of seven access modes for all three airport categories. 

For this purpose, the airports of Frankfurt a. M., Düsseldorf and 

Leipzig/Halle have to be included, as these have been the only 

airports of their category with an access by train in 2003. The 

individual data subsets are merged into a single new estimation 

data set, thereby reducing the number of alternatives from 122 to 

21. By weighting each observation the estimation data set re-

mains statistically representative. Figure 4.01 shows the geo-

graphical definition of the data subsets. The nearest airport of 
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Data Subset Airport (IATA-Code)

BRE FRA, HAM, BRE

DTM FRA, DUS, DTM

FDH MUC, STR, FDH

FKB FRA, STR, FKB

HHN FRA, DUS, HHN

LBC FRA, HAM, LBC

LEJ FRA, HAM, LEJ

NUE MUC, STR, NUE

PAD FRA, DUS, PAD

 

Grouping of Alternatives 

Definition of Data Subsets and 

a Reduced Set of Alternatives 

Merging of Data Subsets into a 

new Estimation Data Set 

Estimation of Group-Specific 

Model Parameters 

Selection of Airports and  

Access Modes 

Assignment of Airports and 

Access Modes to Groups

Model Application 

Model Estimation Model Application 

Specific Application Case 

 

 

 Car Kiss and Ride Rental Car Taxi Bus Urban Railway Train 

Berlin x x x x x x  

Bremen x x x x  x  

Dortmund x x x x x   

Dresden x x x x x x  

Düsseldorf x x x x x x x 

Erfurt x x x x x   

Frankfurt a. M. x x x x x x x 

Frankfurt Hahn x x x x x   

Friedrichshafen x x x x x x  

Hamburg x x x x x   

Hanover x x x x x x  

Karlsruhe-Baden x x x x x   

Cologne x x x x x   

Leipzig/Halle x x x x x  x 

Lübeck x x x x x   

Munich x x x x x x  

Münster/Osnabrück x x x x x   

Niederrhein x x x x x   

Nuremberg x x x x x x  

Paderborn/Lippstadt x x x x x   

Saarbrücken x x x x x   

Stuttgart x x x x x x  

 

each category is assigned to each data set, which is marked in 

different colours. Every subset is named according to its airport 

of the third category. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIG. 4.01: Data Subsets and Assignment of Airports 

 

4.2 General Model Estimation and Application 

 

After selecting airports and access modes for a specific applica-

tion case, they are assigned to categories with the appropriate 

model parameters. The model can be applied to any number of 

airports. As a result of the grouping of clusters an application of 

the estimated model to airports and airport/access mode combi-

nations other than those of the estimation data set is possible. 

Figure 4.02 summarises the general process of model estimation 

and its application. The next chapter deals with the estimation of 

the group-specific model parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIG. 4.02: Estimation and Application Process of Airport and Access 

Mode Choice Model 

 

4.3 Model Definition and Estimation Results 

 

According to the length and purpose of journeys seven different 

market segments are defined: 

 

• Journeys to domestic destinations, subdivided into 

private and business trip purpose 

• Journeys to European destinations for business trip 

purpose 

• Journeys to European destinations for private short 

stay reasons with up to four days 

• Journeys to European destinations for holiday reasons 

with five days or longer 

• Journeys to intercontinental destinations, subdivided 

into private and business trip purpose 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TAB. 4.01: Airports and Available Access Modes 

 

Table 4.01 illustrates the actual availability of access modes to 

the airports of the German Air Traveller Survey 2003 indicated 

by a cross in the appropriate field. Only the access mode “car” 

includes parking at the airport for the duration of the journey. 

For “kiss and ride” the number of trips is doubled compared to 

all other access modes as the car is parked at the trip origin. The 

“taxi” alternative includes taxis and private bus services operat-

ing on demand only. The access mode “bus” contains scheduled 

public-transit buses. “Urban railway” and “train” are distin-

guished in terms of the tariff paid. If the tariff of the Deutsche 

Bahn applies, it is a train; otherwise it is an urban railway. 

 

Access time and access costs are defined for the double trip 

length between the origin of the journey and departure airport, 

so that there is no need for an arbitrary allocation of any parking 

fees at the airport to either the outbound or the return trip. Ac-

cess frequency is defined as the daily frequency. Its inverse 

multiplied by 0.5 equals the average waiting time in the case of 

a uniformly distributed arrival time. Population density is cho-

sen as a measure for the access time to public transport. The 

evaluation of the access quality from the access mode terminal 

to the air terminal is measured binary because of a lack of in-

formation on the chosen parking site and air terminal. The fare 

level of a direct flight connection to a specific destination is 

estimated in relation to the airline competition on that link. It is 

assumed that a higher degree of competition indicates a lower 

fare level. For stop-over flights a maximum of competition is 

reached because of the great number of possible flights between 

any origin and destination. The time advantage of a direct flight 

connection is measured via its existence, its quality is assessed 

by means of its weekly flight frequency. To consider different 

price levels, low-cost- and tourism flights are taken into account 

separately. By reasons of a lack of information exact air fares 

are not considered. Table 4.02 summarises the explanatory 

variables and their definitions. 
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Variable (Abbreviation) Definition 

Access Cost (COST) Cost in € per Person incl. Parking Fees, Double 

Trip Length 

Access Time (TIME) Time in Minutes, Double Trip Length 

Waiting Time (WAIT) Inverse of the Daily Frequency 

Inverse of the Population Density (INVPD) Inverse of Residents per km
2
 

Competition on a Direct Flight Connection(COMP) Inverse of the Number of Alliances and 

Independent Airlines on that O-D Link 

Quality of Terminal Access (AAS) binary (good/bad) 

Existence of a Direct Flight Connection (DIRECT) binary (good/bad) 

Frequency of a Direct Flight Connection (DFREQ) Number Flights per week 

Existence of a Low-Cost Connection (LC) binary (yes/no) 

Frequency of a Low-Cost Connection(LCFREQ) Number Low-Cost Flights per week 

Existence of a Charter Flight Connection (CC) binary (yes/no) 

Frequency of a Charter Flight Connection (CCFREQ) Number Charter Flights per week 

 

Alternative Abbreviation 

AP 1/Car AP1CAR 

AP 1/Kiss and Ride AP1KAR 

AP 1/Rental Car AP1RC 

AP 1/Taxi AP1TAXI 

AP 1/Bus AP1BUS 

AP 1/Urban Railway AP1UR 

AP 1/Train AP1TR 

AP 2/Car AP2CAR 

AP 2/Kiss and Ride AP2KAR 

AP 2/Rental Car AP2RC 

AP 2/Taxi AP2TAXI 

AP 2/Bus AP2BUS 

AP 2/Urban Railway AP2UR 

AP 2/Train AP2TR 

AP 3/Car AP3CAR 

AP 3/Kiss and Ride AP3KAR 

AP 3/Rental Car AP3RC 

AP 3/Taxi AP3TAXI 

AP 3/Bus AP3BUS 

AP 3/Urban Railway AP3UR 

AP 3/Train AP3TR 

 

 

 

 

 

 

 

 

 

 
TAB. 4.02: Definition of Explanatory Variables 

 

Table 4.03 shows the reduced alternative set as used for model 

estimation, based on the aforementioned airport categories. Each 

alternative is composed of both an airport category and one of 

the seven access modes to the airport. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TAB. 4.03: Reduced Alternative Set 

 

Figure 4.03 illustrates the nesting structure of airport categories 

and access modes. Each nest consists of one airport category at 

the top and seven access modes below, subdivided into private 

(PR) and public (PU) transport. 

 

 

 

 

 

 

 

 

 

 

 

 
FIG. 4.03 Nesting Structure 

 

The deterministic part of the utility function is of a linear form: 

 

(4.01) 

 

with 

 alti: Alternative-specific constant of alternative i 

 bk: Coefficient of attribute k 

 xk, i: Value of attribute k for alternative i 

 

Alternative specific constants are denominated according to 

their alternative abbreviation. One alternative-specific constant 

has to be arbitrarily chosen the value of which is set to zero. In 

this study the constant of the alternative AP 3/Train has been 

selected to be set to zero. Scale parameters are normalized on 

the lowest level of the nesting structure to a value of one. Model 

parameters are estimated using the maximum-likelihood estima-

tion method, and the BFGS-algorithm is applied for numerical 

optimisation [8]. The covariance matrix of the estimated parame-

ters is computed by means of the BHHH-estimator [14]. The 

significance of model parameters is evaluated by the t-ratio and 

p-value. The goodness-of-fit is assessed by means of the 

pseudo-R2. Benchmark is a model without any variables 

(R2null) and a market share model (R2const). Tables 4.04 - 4.10 

show the estimated model parameters, t-ratios and p-values for 

the seven market segments as defined above. Alternative-

specific constants and scale parameters are separated by a 

dashed line. 
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APiCAR APiKAR APiRC APiTAXI APiBUS APiUR APiTR
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Variable Coefficient Standard Deviation t-ratio p-value 

COST -0.0263035 7.47E-05 -352.091 2.89E-15 

TIME -0.0081889 3.65E-05 -224.172 2.89E-15 

WAIT -28.8061 0.0521136 -552.755 2.89E-15 

INVPD -187.86 2.74598 -68.4127 2.89E-15 

COMP -0.158635 0.0204772 -7.74689 9.33E-15 

AAS 0.920627 0.0109263 84.2575 2.89E-15 

DIRECT 2.29637 0.0252162 91.0672 2.89E-15 

DFREQ 0.00682913 0.00016972 40.2374 2.89E-15 

AP1CAR -0.89308 0.0299652 -29.8039 2.89E-15 

AP1KAR -0.935515 0.0312753 -29.9123 2.89E-15 

AP1RC -4.1011 0.0360866 -113.646 2.89E-15 

AP1TAXI -1.66527 0.0317124 -52.5116 2.89E-15 

AP1BUS -0.0749869 0.0448874 -1.67055 0.0948097 

AP1UR 0.671661 0.0431181 15.5772 2.89E-15 

AP1TR -0.289548 0.0422378 -6.85519 7.12E-12 

AP2CAR -1.42599 0.0497169 -28.6823 2.89E-15 

AP2KAR -0.969869 0.0508523 -19.0723 2.89E-15 

AP2RC -4.31713 0.0554302 -77.884 2.89E-15 

AP2TAXI -1.66024 0.0511273 -32.4727 2.89E-15 

AP2BUS -2.0108 0.0755529 -26.6145 2.89E-15 

AP2UR -0.561955 0.0722517 -7.77775 7.33E-15 

AP2TR -0.628393 0.0717579 -8.75712 2.89E-15 

AP3CAR -2.32656 0.0266369 -87.3434 2.89E-15 

AP3KAR -2.28413 0.0265816 -85.9291 2.89E-15 

AP3RC -4.56071 0.0611955 -74.527 2.89E-15 

AP3TAXI -3.28287 0.0273826 -119.889 2.89E-15 

AP3BUS -5.74305 0.150649 -38.1219 2.89E-15 

AP3UR -2.56922 0.0464991 -55.2532 2.89E-15 

PR1 1.07092 0.0100494 106.566 2.89E-15 

PU1 0.745385 0.00715937 104.113 2.89E-15 

PR2 0.492518 0.00595683 82.6813 2.89E-15 

PU2 0.390636 0.00358923 108.835 2.89E-15 

PR3 0.817955 0.0174313 46.9245 2.89E-15 

PU3 0.428619 0.0104805 40.8967 2.89E-15 

AP1 1.81029 0.0161987 111.755 2.89E-15 

AP2 2.10174 0.0240208 87.4967 2.89E-15 

AP3 2.35248 0.0467621 50.3075 2.89E-15 

     

   R2(null) 57.41% 

   R2(const) 43.82% 

 

Variable Coefficient Standard Deviation t-ratio p-value 

COST -0.0204609 1.08E-05 -1900.36 2.89E-15 

TIME -0.0152572 2.79E-05 -546.331 2.89E-15 

WAIT -18.935 0.0524438 -361.053 2.89E-15 

INVPD -21.8829 1.08584 -20.1529 2.89E-15 

AAS 1.12781 0.00482371 233.805 2.89E-15 

DIRECT 3.64119 0.0137238 265.318 2.89E-15 

DFREQ 0.00601159 8.99E-05 66.8909 2.89E-15 

AP1CAR 0.821324 0.0249217 32.9562 2.89E-15 

AP1KAR -0.205879 0.0254374 -8.09355 2.89E-15 

AP1RC -1.86138 0.0256406 -72.5952 2.89E-15 

AP1TAXI -0.3315 0.0251872 -13.1615 2.89E-15 

AP1BUS -1.47598 0.0298635 -49.4241 2.89E-15 

AP1UR -0.361618 0.0277497 -13.0315 2.89E-15 

AP1TR -1.53084 0.0277493 -55.1667 2.89E-15 

AP2CAR 0.448667 0.0240099 18.6868 2.89E-15 

AP2KAR -1.03968 0.0243685 -42.6648 2.89E-15 

AP2RC -1.5527 0.024637 -63.023 2.89E-15 

AP2TAXI -0.475198 0.0243418 -19.5219 2.89E-15 

AP2BUS -1.74549 0.0306954 -56.8649 2.89E-15 

AP2UR -0.554791 0.0284689 -19.4876 2.89E-15 

AP2TR -0.771201 0.0283786 -27.1755 2.89E-15 

AP3CAR -0.625039 0.0221069 -28.2735 2.89E-15 

AP3KAR -1.73868 0.0222633 -78.0963 2.89E-15 

AP3RC -2.23438 0.025964 -86.0567 2.89E-15 

AP3TAXI -1.82039 0.0224969 -80.9173 2.89E-15 

AP3BUS -3.74058 0.0331825 -112.728 2.89E-15 

AP3UR -2.3761 0.0182418 -130.256 2.89E-15 

PR1 1.02375 0.00561628 182.283 2.89E-15 

PU1 0.978059 0.00470008 208.094 2.89E-15 

PR2 1.00829 0.0054788 184.035 2.89E-15 

PU2 0.992109 0.00421163 235.564 2.89E-15 

PR3 1.00988 0.011452 88.1839 2.89E-15 

PU3 0.999286 0.00799378 125.008 2.89E-15 

AP1 1.01119 0.00545905 185.231 2.89E-15 

AP2 1.00887 0.00552003 182.766 2.89E-15 

AP3 1.01164 0.011702 86.45 2.89E-15 

     

   R2(null) 54.10% 

   R2(const) 40.47% 

 

Variable Coefficient Standard Deviation t-ratio p-value 

COST -0.0138527 2.31E-05 -600.751 2.89E-15 

TIME -0.00541014 1.71E-05 -316.804 2.89E-15 

WAIT -18.7546 7.06E-05 -265589 2.89E-15 

INVPD -25.6109 1.1622 -22.0365 2.89E-15 

AAS 0.840462 0.00491188 171.108 2.89E-15 

DIRECT 1.85847 0.00516084 360.109 2.89E-15 

AP1CAR -1.67803 0.0043471 -386.012 2.89E-15 

AP1KAR -0.675255 0.00641839 -105.206 2.89E-15 

AP1RC -4.52249 0.0104444 -433.006 2.89E-15 

AP1TAXI -2.24118 0.00699765 -320.276 2.89E-15 

AP1BUS -2.76277 0.0150412 -183.68 2.89E-15 

AP1UR -0.567135 0.00827126 -68.5669 2.89E-15 

AP1TR -0.628369 0.00965685 -65.0698 2.89E-15 

AP2CAR -2.55593 0.00563923 -453.241 2.89E-15 

AP2KAR -0.781095 0.0063191 -123.609 2.89E-15 

AP2RC -5.48899 0.0179425 -305.921 2.89E-15 

AP2TAXI -1.9829 0.00663292 -298.949 2.89E-15 

AP2BUS -1.93506 0.0254801 -75.9441 2.89E-15 

AP2UR -1.75212 0.0212681 -82.3822 2.89E-15 

AP2TR -48.5491 8.61E+10 -5.64E-10 1 

AP3CAR -2.09268 0.00426141 -491.077 2.89E-15 

AP3KAR -0.470189 0.00543666 -86.485 2.89E-15 

AP3RC -3.52639 0.00769235 -458.428 2.89E-15 

AP3TAXI -1.13561 0.00554722 -204.716 2.89E-15 

AP3BUS -1.95589 0.00957575 -204.254 2.89E-15 

AP3UR -0.418627 0.00539374 -77.6136 2.89E-15 

PR1 1.13266 0.00734164 154.278 2.89E-15 

PU1 0.983045 0.00675649 145.496 2.89E-15 

PR2 1.06067 0.0131951 80.3838 2.89E-15 

PU2 0.927296 0.0110789 83.6991 2.89E-15 

PR3 0.813943 0.00281214 289.44 2.89E-15 

PU3 0.137029 0.00165706 82.6942 2.89E-15 

AP1 1.10489 0.00678013 162.959 2.89E-15 

AP2 1.19742 0.0144386 82.9317 2.89E-15 

AP3 1.23031 0.00474654 259.201 2.89E-15 

     

   R2(null) 48.89% 

   R2(const) 32.86% 

 

Variable Coefficient Standard Deviation t-ratio p-value 

COST -0.00936472 1.59E-05 -589.728 2.89E-15 

TIME -0.00535887 3.15E-05 -170.349 2.89E-15 

WAIT -35.7591 0.0277649 -1287.92 2.89E-15 

INVPD -32.2589 2.8701 -11.2397 2.89E-15 

AAS 0.382595 0.012889 29.6838 2.89E-15 

DIRECT 0.439344 0.00441956 99.4091 2.89E-15 

AP1CAR -0.059388 0.0754859 -0.786742 0.431433 

AP1KAR 1.17409 0.0772982 15.1891 2.89E-15 

AP1RC -0.823745 0.0767846 -10.728 2.89E-15 

AP1TAXI 1.05928 0.076873 13.7796 2.89E-15 

AP1BUS 2.01162 0.233108 8.62957 2.89E-15 

AP1UR 2.67192 0.232672 11.4836 2.89E-15 

AP1TR 1.3506 0.232603 5.80647 6.38E-09 

AP2CAR -1.04963 0.102518 -10.2385 2.89E-15 

AP2KAR 0.0612584 0.103547 0.591601 0.554118 

AP2RC -2.32606 0.103863 -22.3954 2.89E-15 

AP2TAXI -0.229266 0.103265 -2.22016 0.0264076 

AP2BUS -1.54098 0.174892 -8.81106 2.89E-15 

AP2UR -0.460972 0.169567 -2.71853 0.00655733 

AP2TR -0.625187 0.1686 -3.70811 0.00020881 

AP3CAR -2.00291 0.098986 -20.2342 2.89E-15 

AP3KAR -1.11849 0.0987287 -11.329 2.89E-15 

AP3RC -3.06497 0.10039 -30.5306 2.89E-15 

AP3TAXI -1.18451 0.0991565 -11.9459 2.89E-15 

AP3BUS -3.09884 0.0707277 -43.8137 2.89E-15 

AP3UR -1.9117 0.0408988 -46.7422 2.89E-15 

PR1 1.03073 0.00684748 150.526 2.89E-15 

PU1 0.32899 0.00387138 84.9801 2.89E-15 

PR2 1.3532 0.0265898 50.8917 2.89E-15 

PU2 0.832438 0.0120304 69.1943 2.89E-15 

PR3 0.91783 0.0320818 28.6091 2.89E-15 

PU3 0.718249 0.0410799 17.4842 2.89E-15 

AP1 2.10553 0.0154688 136.115 2.89E-15 

AP2 1.16102 0.0217542 53.3699 2.89E-15 

AP3 1.73837 0.0551256 31.5348 2.89E-15 

     

   R2(null) 47.46% 

   R2(const) 28.30% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TAB. 4.04: Domestic Private Travel (BRD P) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TAB. 4.05: Domestic Business Travel (BRD B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TAB. 4.06: Intercontinental Private Travel (INT P) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TAB. 4.07: Intercontinental Business Travel (INT B) 
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Variable Coefficient Standard Deviation t-ratio p-value 

COST -0.0199987 6.35E-05 -315.076 2.89E-15 

TIME -0.0061063 3.08E-05 -197.958 2.89E-15 

WAIT -8.33078 0.101522 -82.0589 2.89E-15 

INVPD -215.876 3.45959 -62.3992 2.89E-15 

COMP -1.22176 0.0143873 -84.9193 2.89E-15 

AAS 0.20336 0.0105667 19.2453 2.89E-15 

DIRECT 3.63327 0.0204966 177.262 2.89E-15 

DFREQ 0.0104684 0.00020263 51.6641 2.89E-15 

LC 0.0863075 0.0103855 8.31037 2.89E-15 

LCFREQ 0.0631856 0.00061005 103.575 2.89E-15 

AP1CAR -0.498688 0.0666011 -7.48768 7.02E-14 

AP1KAR 0.318789 0.0674283 4.72781 2.27E-06 

AP1RC -3.33871 0.0706322 -47.269 2.89E-15 

AP1TAXI -0.435522 0.06765 -6.43788 1.21E-10 

AP1BUS 0.210693 0.0906689 2.32377 0.020138 

AP1UR 1.50982 0.0897749 16.8179 2.89E-15 

AP1TR 0.122875 0.0904775 1.35807 0.174442 

AP2CAR -0.303182 0.0680182 -4.45737 8.30E-06 

AP2KAR 0.278229 0.0686423 4.05333 5.05E-05 

AP2RC -3.171 0.0716133 -44.2795 2.89E-15 

AP2TAXI -0.0993231 0.0688372 -1.44287 0.149057 

AP2BUS 0.65932 0.0990006 6.65975 2.74E-11 

AP2UR 1.27978 0.0981204 13.043 2.89E-15 

AP2TR 0.98543 0.0983198 10.0227 2.89E-15 

AP3CAR 0.40639 0.0634284 6.40707 1.48E-10 

AP3KAR 0.538874 0.0643244 8.37744 2.89E-15 

AP3RC -3.70737 0.0712379 -52.0421 2.89E-15 

AP3TAXI -0.131292 0.0646538 -2.0307 0.0422853 

AP3BUS 0.528475 0.127801 4.13513 3.55E-05 

AP3UR 0.71755 0.126304 5.68113 1.34E-08 

PR1 0.764486 0.0087763 87.1079 2.89E-15 

PU1 0.593257 0.00626677 94.6671 2.89E-15 

PR2 0.767123 0.00715629 107.196 2.89E-15 

PU2 0.543582 0.00583578 93.1464 2.89E-15 

PR3 0.821821 0.00996985 82.4306 2.89E-15 

PU3 0.395656 0.00806925 49.0325 2.89E-15 

AP1 1.80601 0.0199672 90.4489 2.89E-15 

AP2 1.76862 0.0162451 108.871 2.89E-15 

AP3 1.74828 0.0226854 77.0664 2.89E-15 

     

   R2(null) 52.40% 

   R2(const) 41.94% 

 

Variable Coefficient Standard Deviation t-ratio p-value 

COST -0.0173617 2.08E-05 -835.813 2.89E-15 

TIME -0.00857067 1.13E-05 -759.386 2.89E-15 

WAIT -4.40982 0.0215587 -204.549 2.89E-15 

INVPD -235.641 1.1008 -214.064 2.89E-15 

COMP -1.13258 0.00417551 -271.244 2.89E-15 

AAS 0.46823 0.00313156 149.52 2.89E-15 

DIRECT 3.31697 0.00579373 572.511 2.89E-15 

DFREQ 0.0153856 7.51E-05 204.84 2.89E-15 

LC 0.563633 0.00232754 242.158 2.89E-15 

AP1CAR -0.783801 0.0163485 -47.9432 2.89E-15 

AP1KAR 1.19964 0.0166094 72.2267 2.89E-15 

AP1RC -3.24672 0.0176445 -184.008 2.89E-15 

AP1TAXI -0.153202 0.0166854 -9.1818 2.89E-15 

AP1BUS 0.46742 0.0277141 16.8658 2.89E-15 

AP1UR 1.96562 0.0272271 72.1935 2.89E-15 

AP1TR 0.850638 0.027015 31.4876 2.89E-15 

AP2CAR -1.02568 0.0149567 -68.5768 2.89E-15 

AP2KAR 0.903728 0.0152148 59.398 2.89E-15 

AP2RC -3.10541 0.0159476 -194.726 2.89E-15 

AP2TAXI -0.187646 0.0152637 -12.2936 2.89E-15 

AP2BUS -1.32489 0.0236498 -56.0211 2.89E-15 

AP2UR -0.154352 0.0227366 -6.7887 1.13E-11 

AP2TR -0.359231 0.0226828 -15.8371 2.89E-15 

AP3CAR -0.377357 0.0132672 -28.4428 2.89E-15 

AP3KAR 0.315622 0.0135114 23.3597 2.89E-15 

AP3RC -4.37193 0.0182017 -240.194 2.89E-15 

AP3TAXI -0.628438 0.013613 -46.1644 2.89E-15 

AP3BUS -1.77275 0.0123277 -143.803 2.89E-15 

AP3UR -1.44559 0.00937011 -154.277 2.89E-15 

PR1 0.61189 0.00189196 323.417 2.89E-15 

PU1 0.3847 0.00150032 256.412 2.89E-15 

PR2 0.570138 0.0018957 300.753 2.89E-15 

PU2 0.437515 0.0014318 305.569 2.89E-15 

PR3 0.610065 0.00342601 178.069 2.89E-15 

PU3 0.551239 0.00290076 190.033 2.89E-15 

AP1 1.65075 0.0049926 330.639 2.89E-15 

AP2 1.92646 0.00606395 317.691 2.89E-15 

AP3 1.99236 0.0108685 183.315 2.89E-15 

     

   R2(null) 52.29% 

   R2(const) 38.22% 

 

Variable Coefficient Standard Deviation t-ratio p-value 

COST -0.0216885 2.66E-05 -816.759 2.89E-15 

TIME -0.00795957 1.99E-05 -399.792 2.89E-15 

WAIT -9.94709 0.0352918 -281.853 2.89E-15 

COMP -0.182127 0.00715126 -25.4678 2.89E-15 

AAS 0.504623 0.00472046 106.901 2.89E-15 

DIRECT 1.43564 0.00850917 168.717 2.89E-15 

DFREQ 0.0177437 0.00010425 170.208 2.89E-15 

LC 0.275153 0.00504501 54.5396 2.89E-15 

LCFREQ 0.0761092 0.00037252 204.307 2.89E-15 

AP1CAR 0.72216 0.0296247 24.3769 2.89E-15 

AP1KAR 0.233292 0.0300636 7.75995 8.44E-15 

AP1RC -0.661771 0.0301596 -21.9423 2.89E-15 

AP1TAXI 0.750386 0.030056 24.9663 2.89E-15 

AP1BUS -0.436805 0.0640814 -6.8164 9.33E-12 

AP1UR 1.33854 0.063386 21.1173 2.89E-15 

AP1TR -0.0557889 0.0635451 -0.877942 0.379975 

AP2CAR 0.393121 0.0291205 13.4998 2.89E-15 

AP2KAR -0.260475 0.0294758 -8.83691 2.89E-15 

AP2RC -0.671533 0.0296515 -22.6475 2.89E-15 

AP2TAXI 0.415442 0.029515 14.0756 2.89E-15 

AP2BUS -1.76693 0.0359288 -49.1786 2.89E-15 

AP2UR -0.855622 0.0343798 -24.8873 2.89E-15 

AP2TR -0.848627 0.0343025 -24.7395 2.89E-15 

AP3CAR -0.300282 0.0223921 -13.4102 2.89E-15 

AP3KAR -0.698722 0.0227567 -30.7041 2.89E-15 

AP3RC -1.05248 0.0239982 -43.8567 2.89E-15 

AP3TAXI -0.609462 0.0226451 -26.9137 2.89E-15 

AP3BUS -2.26991 0.0401428 -56.5459 2.89E-15 

AP3UR -1.49274 0.0246333 -60.5983 2.89E-15 

PR1 0.808397 0.00380609 212.396 2.89E-15 

PU1 0.386155 0.00263013 146.82 2.89E-15 

PR2 0.783306 0.00371673 210.751 2.89E-15 

PU2 0.708662 0.00269609 262.848 2.89E-15 

PR3 0.937914 0.0123815 75.7514 2.89E-15 

PU3 0.805435 0.0108905 73.9574 2.89E-15 

AP1 1.61072 0.00814231 197.821 2.89E-15 

AP2 1.67197 0.0073826 226.474 2.89E-15 

AP3 1.77295 0.0232875 76.1333 2.89E-15 

     

   R2(null) 48.58% 

   R2(const) 35.96% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TAB. 4.08: European Private Short Stay Travel (EUR S) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TAB. 4.09: European Holiday Travel (EUR H) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TAB. 4.10: European Business Travel (EUR B) 

 

4.4 Interpretation of the Estimation Results 

 

Airport managers might be interested e.g. to know about the 

enlargening of the catchment area due to one additional flight 

per week to a given destination. Mobility providers like railway 

companies may be interested in the trade-off between travel time 

and travel cost to determine the nature of their supply to meet 

their customers’ needs and preferences as optimal as possible. 

 

Various trade-offs, in particular between quality measures and 

costs, may be computed by means of the estimated model coef-

ficients. They describe the subjective value perceived of an 

alternative attribute in units of a different alternative attribute 

from the viewpoint of an air traveller, e.g. access time in units of 

access costs. Table 4.11 lists some ratios of variable coefficients 

values, which correspond to key trade-offs, ordered by market 

segment. 

 

A key figure to describe air travellers’ preferences regarding 

their access mode to the airport is the “TIME/COST” ratio 

describing the value of access time in Euro. In general, private 

air travellers are more sensitive to access cost than business 

travellers. According to the choice model, one minute in access 

time equals e.g. 0.31 Euro for private air travellers and 0.75 

Euro for business travellers in domestic air travel. In general, 

business travellers prefer faster access modes to the airport, 

while private air travellers tend to choose cheaper modes of 

transportation. An exception is the market segment of European 

holiday travel with travellers showing a relative high sensitivity 

to access time compared to business travellers. This might be 

due to the high importance of holidays to Germans and their low 

propensity to save money in holidays. 
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BRD P BRD B EUR S EUR H EUR B INT P INT B

TIME/COST 0.31 0.75 0.31 0.49 0.37 0.39 0.57

DIRECT/TIME -280.42 -238.65 -595.00 -387.01 -180.37 -343.52 -81.98

DFREQ/TIME -0.83 -0.39 -1.71 -1.80 -2.23 x x

LC/TIME x x -14.13 -65.76 -34.57 x x

LCFREQ/TIME x x -12.06 x -11.79 x x

Frankfurt a. M. Düsseldorf Cologne

Access Mode BRD P EUR S EUR H INT P BRD P EUR S EUR H INT P BRD P EUR S EUR H INT P

Car 0.03% 0.17% 0.12% 5.00% 1.14% 19.62% 3.36% 0.99% 14.37% 2.11% 2.80% 2.79%

Kiss and Ride 0.02% 0.15% 0.32% 10.57% 3.23% 30.61% 27.28% 9.57% 54.35% 5.72% 31.84% 20.83%

Rental Car 0.00% 0.00% 0.01% 0.37% 0.02% 0.44% 0.37% 0.06% 0.22% 0.06% 0.27% 0.09%

Taxi 0.00% 0.01% 0.05% 0.84% 0.72% 15.72% 10.23% 2.65% 23.83% 3.89% 12.35% 6.55%

Urban Railway 0.00% 0.00% 0.00% 0.00% 1.98% 21.24% 10.41% 1.14% 0.00% 0.00% 0.00% 0.00%

Train 0.07% 0.22% 0.60% 17.29% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Airport 0.12% 0.55% 1.10% 34.06% 7.10% 87.64% 51.64% 14.41% 92.77% 11.79% 47.25% 30.26%

TAB. 4.11: Ratio Values of Variable Coefficients 

 

An important ratio of model coefficients to describe the influ-

ence of the quality of the flight plan on the catchment area of an 

airport is “DIRECT/TIME”, describing the additional access 

time, which is worth having a direct flight connection instead of 

a stop-over flight to a given destination. As its absolute ratio 

value is lower for private than for business travellers, access 

time is thus more important than a direct flight connection to the 

desired destination for air passengers travelling for business 

purpose than for those travelling for private reasons. As men-

tioned earlier in this paper, access time is measured as double 

trip length. Halving these values produces the equivalent ratios 

for the single distance between the trip origin and the airport. 

The perceived value of a direct flight connection to the desig-

nated destination equals e.g. the value of about 387 minutes 

access time to the airport and back to the trip origin for a holiday 

traveller. Measured in single trip length, this comes up to about 

194 minutes from the trip origin to the airport. The ratio 

“DFREQ/TIME” describes the impact of one additional weekly 

direct flight connection to the designated destination. As table 

4.11 shows, the importance of the weekly flight frequency is 

relatively low compared to the existence of a direct flight con-

nection. The value of one additional flight per week represents 

e.g. 1.8 minutes access time to the airport and back to the trip 

origin. 

 

 

 

The ratios “LC/TIME” and “LCFREQ/TIME” are a measure to 

describe the influence of a direct low-cost flight connection to a 

given destination on the catchment area of an airport. These 

values have to be added to the aforementioned ratios. In Euro-

pean holiday travel, the value of a direct flight connection meas-

ured in access time (double trip length) increases by about 66 

minutes to 453 minutes, if it is a low-cost flight. This equals 227 

minutes travel time to the airport from the trip origin. In Euro-

pean holiday travel the influence of additional weekly flights to 

a given destination on the catchment area of an airport is inde-

pendent of the fact whether these are low-cost flights or not. 

This is not the case for European short stay and business travel. 

For example, the value of one additional flight per week to the 

desired destination of the air passenger travelling for private 

short stay reasons increases by about 12 minutes access time to 

nearly 14 minutes measured in double trip length. 

 

5. AIRPORT CHOICE IN THE COLOGNE REGION 
 

For an exemplary application of the combined model, the case 

of air passengers from the Cologne region travelling for private 

reason and choosing between airports and 

access modes has been chosen. The region 

of Cologne is characterized by the two air-

ports of Düsseldorf and Cologne in close 

proximity and the airport of Frankfurt a. M. 

as the next hub airport with a large supply of 

intercontinental flights. A high speed inter-

city connection between Cologne main station and Frank-

furt a. M. airport reduces travel time to less than 85 minutes. 

These three airports serve almost the whole air transport demand 

of the Cologne region in domestic and European air travel and a 

good deal of intercontinental air travel. The residual demand is 

served by some smaller airports like e.g. Dortmund and Weeze. 

 

Airport and access mode choice of private air travellers is ana-

lyzed for a domestic, a European and an intercontinental desti-

nation. Berlin in Germany represents a domestic, Barcelona in 

Spain a European and Dallas in the USA an intercontinental 

destination. Scenario data like transport supply data have been 

taken from schedules and other surveys and apply for 2005; the 

bus alternative is omitted for reasons of lack of data availability 

for this year. This is no constraint concerning the applicability of 

the model as described above and furthermore, from a practical 

point of view, the bus alternative is of minor importance in the 

chosen scenario cases. 

 

Table 5.01 displays airport and access mode choice of air pas-

sengers travelling to the domestic, European and intercontinen-

tal destination mentioned for a base scenario. The base scenario 

is characterised by an airport and access mode availability as 

displayed in table 4.01 and flight plans of 2005. 

 

 

TAB. 5.01: Base Scenario with High Speed Train Connection between 

Cologne and Frankfurt a. M. Airport 

 

Nearly 93% of the air passengers travelling to Berlin (abbrevi-

ated BRD P in table 5.01) choose Cologne airport as departure 

airport, because it offers both the shortest access time and the 

highest frequency of direct flights to Berlin. Access time meas-

ured in single trip length is about 20 minutes and the weekly 

frequency of direct flights to Berlin is 132. Most air travellers 

choose “kiss and ride” or the taxi to get to the airport, as these 

access modes are much cheaper than parking the car at the 

airport for the duration of the trip due to the short distance to the 

airport. Because of the increased access time of about 50 min-

utes from Cologne and a weekly direct flight frequency of only 

94 a much smaller portion of demand (7%) departs from 

Düsseldorf airport. “Kiss and ride” and the urban railway are the 

preferred access modes to the airport, because there is no need 

to pay parking fees and the distance to the airport is still short. 

As a result of the much longer access time of less than 85 min-

utes via high speed intercity train or 130 minutes by car from 

Cologne the share of passengers departing from the airport of 

Frankfurt a. M. is negligible. The frequency of 106 direct flights 

per week to Berlin is not so much better than from Düsseldorf 
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Frankfurt a. M. Düsseldorf Cologne

Access Mode BRD P EUR S EUR H INT P BRD P EUR S EUR H INT P BRD P EUR S EUR H INT P

Car 0.02% 0.15% 0.08% 5.31% 1.14% 19.64% 3.37% 1.07% 14.38% 2.12% 2.81% 3.00%

Kiss and Ride 0.01% 0.13% 0.22% 11.22% 3.24% 30.64% 27.39% 10.31% 54.37% 5.72% 31.97% 22.44%

Rental Car 0.00% 0.00% 0.01% 0.39% 0.02% 0.45% 0.37% 0.06% 0.22% 0.06% 0.27% 0.10%

Taxi 0.00% 0.01% 0.03% 0.89% 0.72% 15.73% 10.27% 2.85% 23.84% 3.90% 12.40% 7.06%

Urban Railway 0.00% 0.00% 0.00% 0.00% 1.98% 21.26% 10.45% 1.23% 0.00% 0.00% 0.00% 0.00%

Train 0.03% 0.16% 0.36% 11.17% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Airport 0.07% 0.46% 0.70% 28.97% 7.11% 87.72% 51.85% 15.52% 92.82% 11.80% 47.44% 32.60%

Frankfurt a. M. Düsseldorf Cologne

Access Mode BRD P EUR S EUR H INT P BRD P EUR S EUR H INT P BRD P EUR S EUR H INT P

Car 0.03% 0.17% 0.12% 2.28% 1.14% 19.62% 3.36% 4.28% 14.37% 2.11% 2.80% 1.27%

Kiss and Ride 0.02% 0.15% 0.32% 4.83% 3.23% 30.61% 27.28% 41.18% 54.35% 5.72% 31.84% 9.51%

Rental Car 0.00% 0.00% 0.01% 0.17% 0.02% 0.44% 0.37% 0.24% 0.22% 0.06% 0.27% 0.04%

Taxi 0.00% 0.01% 0.05% 0.38% 0.72% 15.72% 10.23% 11.39% 23.83% 3.89% 12.35% 2.99%

Urban Railway 0.00% 0.00% 0.00% 0.00% 1.98% 21.24% 10.41% 3.82% 0.00% 0.00% 0.00% 0.00%

Train 0.07% 0.22% 0.60% 7.89% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Airport 0.12% 0.55% 1.10% 15.55% 7.10% 87.64% 51.64% 60.92% 92.77% 11.79% 47.25% 13.82%

and even lower than from Cologne airport and thus cannot offset 

the longer access time to Frankfurt a. M. airport. 

 

The picture is similar for air passengers travelling for short stay 

(EUR S) or holiday (EUR H) reasons to Barcelona, Spain, with 

the airports of Cologne and Düsseldorf switching positions. This 

is due to the much better frequency of 28 direct flights per week 

compared to Cologne airport with only seven direct flights to 

Barcelona per week, so that the longer access time is more than 

balanced by the higher direct flight frequency to the desired 

destination. On top of this, Düsseldorf airport offers twice as 

many low cost flights per week to Barcelona as Cologne airport. 

Frankfurt a. M. airport offers the greatest number of direct 

flights per week to Barcelona, but because of the absence of any 

low cost flights its share is only marginal again. 

 

 

However, for intercontinental flights to Dallas, USA, Frank-

furt a. M. airport is first choice, as it is the only airport with a 

direct flight connection. About 34% of the private purpose air 

passengers from the Cologne region choose Frankfurt a. M. 

airport, closely followed by the airport of Cologne with a market 

share of about 30%. This example shows the trade-off between 

the value of the existence of a direct flight connection and ac-

cess time, as has been outlined already in table 4.11 in a more 

general manner. The value of a direct flight connection is in the 

upper range for intercontinental private air travel and equals 

about 170 minutes access time between the origin and the depar-

ture airport measured in single trip length. Düsseldorf airport is 

only chosen by round about 15% of the air travellers, as it has 

neither a direct flight connection to Dallas nor a better access 

time than Cologne airport, so it is caught between two stools in 

this case. There are other reasons why some passengers choose 

Düsseldorf airport for the Dallas link. 

 

Table 5.02 displays a scenario with a normal train on the ICE 

track instead of a high speed intercity connection between Co-

logne main station and Frankfurt a. M. airport as it was the case 

before 2002; however, on the Rhine track. Access costs decrease 

from 35 € to 27 € but access time increases form less than 85 

minutes to about two hours for the single trip length. 

Tab. 5.02: Scenario without High Speed Intercity Connection between 

Cologne and Frankfurt a. M. Airport 

 

Because of the small market share of Frankfurt a. M. airport in 

domestic and European travel to Berlin respectively Barcelona 

major changes only occur in intercontinental travel to Dallas. 

The market share of Frankfurt a. M. airport falls from 34% to 

29%, while the share of Düsseldorf and Cologne airport rises 

between about one respectively two points. 

 

Table 5.03 displays the effects of a direct intercontinental flight 

connection from Düsseldorf airport to Dallas. As one would 

expect, Düsseldorf is now first choice with a market share of 

about 61% as it is much closer to Cologne than Frankfurt a. M. 

airport. The market shares of Cologne and Frankfurt a. M. air-

port are approximately halved. With about 16%, the market 

share of Frankfurt a. M. airport is relatively high compared to 

Cologne and Düsseldorf airport, due to its hub function and 

therefore being a category one airport. 

 

 

 

TAB. 5.03: Scenario with a Direct Flight Connection from Düsseldorf 

Airport to Dallas 

 

 

6. SUMMARY AND IMPLICATIONS 
 

The purpose of this paper is to present a novel approach in 

discrete choice modelling to estimate an airport and access mode 

choice model based on a generalized nested logit model ap-

proach. The model is applicable to airport and access mode 

choice combinations of any nature and number, so that an 

evaluation of new airport/access mode combinations or airports 

is possible. 

 

A main feature of this approach is the clustering of airports from 

a demand oriented point of view by means of artificial neural 

networks, so-called Kohonen’s Self-Organizing Maps. Three 

airport categories are identified in terms of the general picture of 

their flight offer: Hub airports, medium-sized airports serving 

mostly domestic and European Destinations by full service 

flights and small regional airports focusing mainly on domestic 

full service flights and European low-cost and tourism flights. 

 

 

 

 

 

To better simulate travel behaviour in the model, seven market 

segments as homogenous traveller groups are distinguished 

according to destination type and trip purpose. The destination 

type is divided into domestic, European and intercontinental 
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destination and trip purpose into private und business trip with 

private trips to European destinations further subdivided into 

short stay and holiday purpose depending on trip duration. 

 

Decision-relevant attributes determining airport and access 

mode choice by air travellers can roughly be divided into more 

access mode-specific attributes like access time and access cost 

and more airport-specific attributes like weekly flight frequency 

to a given destination. However, this classification is not as 

clear-cut as it may seem. These attributes determine airport and 

access mode choice in a complex way, which can be analysed 

by different trade-offs between attributes with different dimen-

sions such as access time versus the existence of a direct flight 

connection or access time versus access cost. 

 

To demonstrate the model ability of simulating travellers’ com-

bined choices, case studies of airport and access mode choice of 

air travellers with private trip purposes from the Cologne region 

have been studied for different scenarios. On the one hand, the 

impact of the high speed intercity connection between Cologne 

main station and Frankfurt a. M. airport has been analysed; on 

the other hand, the effects of a better supply of intercontinental 

direct flights at Düsseldorf airport have been evaluated by 

means of the example of Dallas in the USA. 

 

As a result of model application, air travellers tend to choose the 

nearest airport, however, they are willing to travel to airports 

further away, if they can get a direct flight connection to their 

destination in this way. This is notably true for air passengers 

travelling for private purposes to European and intercontinental 

destinations. A direct flight connection equals roughly the value 

of three hours in access time for the single distance between the 

trip origin and the departure airport. This value increases to even 

five hours for air passengers travelling for short stay reasons. 

This segment includes the low-cost market, where travellers 

avoid more expensive transfer flights of full service carriers and 

are willing to travel longer in order to get cheap flights. Busi-

ness travellers are more sensitive to access time. Depending on 

the destination type a direct flight connection is worth between 

about 40 and 190 minutes access time for the single distance 

between the trip origin and the departure airport. 

 

With the exception of air passengers travelling for holiday pur-

pose to European destinations, business travellers are more 

access time sensitive, while private air travellers tend to choose 

cheaper modes of transport to the airport. One minute in access 

time is worth between 0.31 € and 0.49 € for private travellers 

and 0.37 € to 0.75 € for business travellers. 

 

The size of the catchment area of an airport depends both on the 

supply of direct flight connections and on the availability of 

attractive access modes such as high speed trains. The supply of 

low-cost flights plays a major role in European air travel, both 

for private and business purpose. The attractiveness of an airport 

has two sides: A “land-side” and an “air-side”. Although the 

latter is still more important to air travellers, the impact of the 

access quality should not be underestimated as the exemplary 

application case in this study has demonstrated. 
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