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Abstract

Starting from inhomogeneous time scaling and linear decorrelation between successive price

returns, Baldovin and Stella recently proposed a way to build a model describing the time evolution

of a financial index. We first make it fully explicit by using Student distributions instead of power

law-truncated Lévy distributions; we also show that the analytic tractability of the model extends

to the larger class of symmetric generalized hyperbolic distributions and provide a full computation

of their multivariate characteristic functions; more generally, the stochastic processes arising in this

framework are representable as mixtures of Wiener processes. The Baldovin and Stella model, while

mimicking well volatility relaxation phenomena such as the Omori law, fails to reproduce other

stylized facts such as the leverage effect or some time reversal asymmetries. We discuss how to

modify the dynamics of this process in order to reproduce real data more accurately.
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I. HOW SCALING AND EFFICIENCY CONSTRAINS RETURN DISTRIBU-

TION

Finding a faithful stochastic model of price time series is still an open problem. Not

only should it replicate in a unified way all the empirical statistical regularities, often called

stylized facts, (cf e.g. Bouchaud and Potters [15], Cont [21]), but it should also be easy to

calibrate and analytically tractable, so as to facilitate its application to derivative pricing and

financial risk assessment. Up to now none of the proposed models has been able to meet all

these requirements despite their variety. Attempts include ARCH family (Bollerslev et al.

[10], Tsay [50] and references therein), stochastic volatility (Musiela and Rutkowski [41]

and references therein), multifractal models (Bacry et al. [1], Borland et al. [13], Eisler and

Kertész [27], Mandelbrot et al. [39] and references therein), multi-timescale models (Borland

and Bouchaud [12], Zumbach [54], Zumbach et al. [56]), Lévy processes (Cont and Tankov

[22] and references therein), and self-similar processes (Carr et al. [18]).

Recently Baldovin and Stella (B-S thereafter) proposed a new way of addressing the

question. We advise the reader to refer to the original papers Baldovin and Stella [4, 5, 6]

for a full description of the model as we shall only give a brief account of its main underlying

principles. Using their notation let S(t) be the value of the asset under consideration at time

t, the logarithmic return over the interval [t, t+ δt] is given by rt,δt = lnS(t+ δt)− lnS(t);

the elementary time unit is a day, i.e., t = 0, 1, . . . and δt = 1, 2, . . . days. In order to

accommodate for non-stationary features, the distribution of rt,δt is denoted by Pt,δt(r)

which contains an explicit dependence on t. The most impressive achievement of B-S is to

build the multivariate distribution P
(n)
0,1 (r0,1, . . . , rn,1) of n consecutive daily returns starting

from the univariate distribution of a single day provided that the following conditions hold:

1. No trivial arbitrage: the returns are linearly independent, i.e. E(ri,1, rj,1) = 0 for

i 6= j, with the standard condition E(ri,1) = 0.

2. Possibly anomalous scaling of the return distribution with respect to the time interval

δt, with exponent D:

P0,δt(r) =
1

δtD
P0,1

(
r

δtD

)

.

3. Identical form of the unconditional distributions of the daily returns up to a possible
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dependence of the variance on the time t, i.e.

Pt,1(r) =
1

at
P0,1

(
r

at

)

.

As shown in the addendum of Baldovin and Stella [5] these conditions admit the solution

f
(n)
0,1 (k1, . . . , kn) = g̃(

√

a2D1 k
2
1 + · · ·+ a2Dn k2

n), (1)

where f
(n)
0,1 is the characteristic function of P

(n)
0,1 , g̃ the characteristic function of P0,1, and

a2Di = i2D − (i − 1)2D. In this way the full process is entirely determined by the choice of

the scaling exponent D and the distribution P0,1. Therefore the characteristic function of

Pt,δt(r) is

ft,T (k) = f
(n)
0,1 (0, . . . , 0

︸ ︷︷ ︸

t terms

, k, . . . , k
︸ ︷︷ ︸

δt terms

, 0, . . . , 0) = g̃(k
√

(t+ δt)2D − t2D),

i.e.

Pt,δt(r) =
1

√

(t+ δt)2D − t2D
P0,1




r

√

(t+ δt)2D − t2D



 .

The functional form of g̃ in Eq. (1) introduces a dependence between the unconditional

marginal distributions of the daily returns by the means of a generalized multiplication ⊗
in the space of characteristic functions, i.e.,

f
(n)
0,1 (k1, . . . , kn) = g̃(aD1 k1)⊗g̃ · · · ⊗g̃ g̃(aDn kn),

with ⊗g̃ defined by

x⊗g̃ y = g̃
(√

[g̃−1(x)]2 + [g̃−1(y)]2
)

. (2)

At first sight this last equation may seem a trivial identity, but it does hide a powerful

statement. Suppose indeed that instead of starting with the probability distribution g̃, one

takes a general distribution with finite variance σ2 = 2 and characteristic function p̃1, then

it is shown in Baldovin and Stella [4] that

lim
N→∞
p̃1

(

k√
N

)

⊗g̃ · · · ⊗g̃ p̃1
(

k√
N

)

︸ ︷︷ ︸

N terms

= g̃(k). (3)

This means that in this framework the return distribution at large scales is independent

of the distribution of the returns at microscopic scales: it is completely determined by

3



the correlation introduced by the multiplication ⊗g̃, with fixed point g̃. Note that if g̃ is

the characteristic function of the Gaussian distribution, then ⊗g̃ reduces to the standard

multiplication and one recovers the standard Central Theorem Limit.

As the volatility of the model shrinks in an inexorable way, Baldovin and Stella propose

to restart the whole shrinking process after a critical time τc long enough for the volatility

autocorrelation to fall to the noise level. In this way one recovers a sort of stationary time

series when their length is much greater than τc. In this case one expects that the empirical

distribution of the return P̄δt(r) over a time horizon δt≪ τc, evaluated with a sliding window

satisfies

P̄δt(r) =
1

τc

τc−1∑

t=0

Pt,δt(r). (4)

In the original papers no market mechanism is proposed for modeling the restart of the

process; it is simply stated that the length of different runs and the starting points of the

processes could be stochastic variables. In their simulations the length of the processes was

fixed to τ = 500, which corresponds to slightly more than two years of daily data.

II. A FULLY EXPLICIT THEORY WITH STUDENT DISTRIBUTIONS

In Baldovin and Stella [5] a power law truncated Lévy distribution is chosen to describe

the returns

g̃(k) = exp

(

−Bk2

1 + Cαk2−α

)

. (5)

In Sokolov et al. [47] it is shown that this expression is indeed the characteristic function

of a probability density with power law tails whose exponent is exponent 5 − α. How-

ever, this choice is problematic in two respects: its inverse Fourier cannot be computed

explicitly, which prevents a fully explicit theory. In addition, for Eq. (1) to be consistent,

g̃(
√

k2
1 + · · ·+ k2

n) must be the characteristic function of a multivariate probability density

for all n. In Baldovin and Stella [5] only numerical checks are performed to verify this prop-

erty. But as discussed for example in Bouchaud and Potters [15] both truncated Lévy and

Student distributions yield acceptable fits of the returns on medium and small time scales.

In the present context, the Student distribution, sometimes referred to as q-Gaussian in the

case of non-integer degrees of freedom, is a better choice; it provides analytic tractability

while fitting equally well real stock market prices (see alsoOsorio et al. [44]). The fit of the

daily returns of the S&P 500 index in the period with a Student distribution
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Figure 1: Centered distribution of the 14956 daily returns of the S&P 500 index (January,

3th 1950 - June, 11th 2009), and the corresponding fitting with Student (ν = 3.21,

λ = 0.0109) and Gaussian distribution (σ = 0.0095).

g1(x) =
Γ(ν

2
+ 1

2
)

π1/2λΓ(ν
2
)

1

(1 + x2

λ2 )
ν
2

+ 1

2

is reported in Fig. 1[57].

The characteristic function of the Student density is

g̃(k) =
21− ν

2

Γ(ν
2
)
k
ν
2K ν

2
(k), (6)

whereKα is the modified Bessel function of third kind. As demonstrated in the appendix, the

inverse Fourier transform of g̃(
√

k2
1 + · · ·+ k2

n) for any integer n is simply the multivariate

Student distribution (see also Vignat and Plastino [52]). The general form of this distribution

can be written as

g(ν)n (x,Λ) =
Γ(ν

2
+ n

2
)

πn/2(det Λ)1/2Γ(ν
2
)

1

(1 + xtΛ−1x)
ν
2

+n
2

, (7)

where ν > 1 is the exponent of the power law of the tails, P(r > R) ∝ 1/Rν and Λ is a

positive definite symmetric matrix governing the variance-covariance matrix E(xi, xj) = Λij
ν−2

,

which does exist provided that ν > 2.
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In passing, the same properties are shared by multivariate symmetric generalized hyper-

bolic distributions introduced in finance by Eberlein and Keller [26] (see also Bingham and

Kiesel [8]). The general case is obtained by an affine change of variable, but for the sake of

brevity let us restrict to

f(x) =
α
n
2

(2π)
n
2K ν

2
(α)

1

(1 + r2)
ν
4

+n
4

K ν
2

+n
2
(α
√

1 + r2)

for x ∈ R
n and r the usual euclidean norm of x. Student distributions are recovered in the

limit α→ 0+. As shown in the appendix, its characteristic function is given for any n by

f̃n(k) =
K ν

2
(
√
α2 + k2)

K ν
2
(α)

(α2 + k2)
ν
4

α
ν
2

with k =
√
∑n
i=1 k

2
i .

In the following we restrict the discussion to the Student distributions. Hence we assume

that the distribution of the return is given by Eq. (7) with characteristic function given by

Eq. (6), where Λ is a diagonal matrix

k =
√

ktΛk = λ
√

k2
0 + (22D − 1)k2

1 + · · ·+ (n2D − (n− 1)2D)k2
n−1

and λ2 governs the variance of the returns on the time scale chosen as a reference. Thanks

to the fact that the diagonal elements of Λ form a telescoping series the process is indeed

consistent for any number of discrete steps. Moreover it can be generalized to the continuous

time by setting, in the same consistent way,

P(r0,∆t0 , rt1,∆t1 , . . . , rtn−1,∆tn−1
)

= g(ν)n (r0,∆t0 , rt1,∆t1 , . . . , rtn−1,∆tn−1
,Λ = diag(t2D1 , t

2D
2 − t2D1 , . . . , t2Dn − t2Dn−1)), (8)

where tj =
∑j−1
i=0 ∆ti, j ≥ 1 and now Λ = diag(t2D1 , t

2D
2 − t2D1 , . . . , t2Dn − t2Dn−1). The existence

of the continuum process is then guaranteed by the Kolmogorov extension theorem. Starting

from this expression a wider class of processes can be generated by suitable transformations

of the time, i.e., by substituting the function ti → t2Di for any monotonically increasing

continuous function ti → T (ti). The process followed by the price x(t) = lnS(t) is a Student

process too, with same exponent ν and non diagonal matrix Λij = (−1)i+jT (tmin(i,j)).

The Student setting makes easier to interpret the correlations induced by the pointwise

non-standard product of (2) in the characteristic function space. If we consider two variables
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Figure 2: Student copula density with ν = 3 and trivial correlation matrix.

x1 and x2 distributed according to g1(x), the joint probability function will be g2(x1, x2).

The variables Xi = G(xi) =
✁ xi
−∞
dx g1(x) are distributed uniformly on the interval [0, 1]; by

definition, the copula function c(X1, X2) (cf. e.g. Nelsen [43] for a general theory) is

c(X1, X2) = g2(G
−1(X1), G

−1(X2))
dx1

dX1

dx2

dX2

=
g2(G

−1(X1), G
−1(X2))

g(G−1(X1)) g(G−1(X2))
.

In our case c is none other than the Student copula function, generally applied in finance for

describing the correlation among asset prices (Cherubini et al. [20], Malevergne and Sornette

[38]). A picture of this copula density with ν = 3 and Λ the identity matrix is given in

Fig. 2. Although Student and generalized hyperbolic distributions are usually adopted for

modeling returns of several assets over the same time intervals, the framework proposed by

Baldovin and Stella allow them to model the returns of a single asset over different time

intervals.
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III. THE BALDOVIN-STELLA PROCESS AS MULTIVARIATE NORMAL VARI-

ANCE MIXTURES

According to the B-S framework we have to look for functions φ : R → C, such that

g̃n : R
n → C with g̃n(k1, k2, . . . , kn) = φ(k2

1 +k2
2 + · · ·+k2

n) is the characteristic function of a

probability distribution for any n. Then from Eq. (8) we obtain a unique stochastic process

with a well-defined continuous limit.

B-S processes can be fully characterized if one regards their finite dimensional marginals

as instances of multivariate normal variance mixtures U = σN , where σ is an univariate

random variable with positive values, σ2 having cumulative distribution G, and N is an

n-dimensional normal random variable independent from σ. Leaving aside trivial affine

changes of variables, we can assume that the covariance matrix of N is the identity matrix.

By first conditioning its evaluation on the value of σ, and then computing its mean over σ,

it is immediate to see that the characteristic function g̃Un (k1, k2, . . . , kn) of U is

g̃Un (k1, k2, . . . , kn) = φσ2

(
1

2
(k2

1 + k2
2 + · · ·+ k2

n)
)

,

where φσ2(s) is the Laplace transform associated to G

φσ2(s) =

✂ ∞
0

dx e−sxdG(x).

As this construction is independent from n, an admissible choice for φ is φ(s) = φσ2( s
2
), where

φσ2 is the Laplace transform associated to any random variable σ2 with positive values.

The crucial point is that by Schoenberg’s theorem in Schoenberg [46] (see also the self-

contained discussion about normal variance mixtures in Bingham and Kiesel [9]) this family

exhausts all the possible choices, i.e. φ(k2
1 + k2

2 + · · · + k2
n) is a characteristic function of a

probability distribution for any n if and only if φ(s) is the Laplace transform a univariate

random variable with positive values.

Hence a multivariate distribution for the returns can be built in the B-S framework if

and only if it admits a representation as a normal variance mixture.

In passing we note that the choice of B-S in their original papers for the distribution (5)

is indeed admissible, as in Sokolov et al. [47] it is shown that

φS(s) = exp
( −Bs

1 + Cαs1−α/2

)
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is completely monotone, hence a Laplace transform by the virtue of Bernstein’s theorem.

Now it is immediate to see that all the stochastic processes Xσt (ω) that can arise in the

B-S framework admit the following representation on a suitably chosen filtered probability

space (Ω,F ,P), over which a positive random variable σ(ω) and a Wiener process Wt(ω)

independent from σ are defined:

Xσt (ω) = σ(ω)Wt2D(ω) . (9)

We only have to show that the finite dimensional marginal laws of Xσt (ω) are the same as

those arising from (8). Indeed if we first evaluate the expectations over W , conditional on

σ, we will obtain a Gaussian multivariate distribution

P(Xt1 , Xt2 , . . . , Xtn | σ)

=
1

(2πσ2)
n
2

exp

[

− 1

2σ2

(

X2
t1

t2D1
+

(Xt2 −Xt1)2

t2D2 − t2D1
+ · · ·+ (Xtn −Xtn−1

)2

t2Dn − t2Dn−1

)]

;

the eventual average over σ will then lead to the same multivariate normal variance mixtures

as in (8), with the appropriate covariance matrix (just note that ∆ti = ti+1 − ti, and

ri,∆ti = Xti+1
− Xti). In particular, the processes introduced in Sec. II correspond to an

inverse Gamma distribution of σ2 in the Student case, and a Generalized Inverse Gaussian

distribution in the hyperbolic case.

The stochastic differential equation obeyed by (9) is

dXσt (ω) = σ(ω)tD−
1

2dWt ,

This equation shows that the volatility of the processes admissible in the B-S framework

has a deterministic time dynamic, and that its source of randomness is just ascribable to its

initial value.

Eventually we can conclude that a stochastic process is compatible with the B-S frame-

work if and only if it is a variance mixture of Wiener processes whose variance is distributed

according an arbitrary positive law, with a deterministic power law time change. This ex-

plains why using use this framework to model real price returns, one inevitably has to assume

that the real price dynamics is composed by sequences of different realizations, as done by

B-S. This is necessary not only because otherwise the model would predict a persistent and

deterministic volatility decay for D < 1/2, but also because σ is fixed in each realization.

9



The limitations of this kind of models in describing real returns will be made more manifest

in the following section, but now we already know their mathematical foundations.

The asset prices can be modeled in an obvious arbitrage free way

S(t, ω) = S0 exp
(

rt+ σ(ω)Wt2D(ω)− 1

2
σ2(ω)t2D

)

,

with r the fixed default free interest rate, and where we left the dependence on ω explicit in

order to emphasise the fact that σ is a random variable. The pricing of options is then the

same as in the Black-Scholes model, with an additional average over σ(ω). For instance the

price C(T,K) of a call option with maturity T and strike K is

C(T,K) = S0Eσ(N(d1))− e−rTKEσ(N(d2)) ,

with as usual N is the normal cumulative distribution,

d1 =
ln S0

K
+ rt+ 1

2
σ2t2D

σtD
,

d2 =
ln S0

K
+ rt− 1

2
σ2t2D

σtD
,

and the additional expectation Eσ has to be evaluated according to the distribution of σ.

IV. APPLICABILITY OF THIS FRAMEWORK TO REAL MARKETS

The axiomatic nature of the derivation of Baldovin and Stella is elegant and powerful:

its ability to build mathematically multivariate price return distributions from a univariate

distribution using only a few reasonable assumptions is impressive. Nevertheless, as stated

in the introduction, a model of price dynamics must meet many requirements in order to be

both relevant and useful. In this section, we examine its dynamics thoroughly.

A. Volatility dynamics

In Fig. 3.a we report the results of three simulations of the return process, each one of

500 steps and with parameters ν = 3.2 and D = 0.20. In each run the volatility decays

ineluctably, as explained in the previous section. Indeed by fixing the time interval δti = 1,

we see from Eq. (8) that the unconditional volatility of the rt,1 returns is proportional to
√

(t+ 1)2D − t2D, i.e., to tD−1/2 for t≫ 1: the unconditional volatility decreases if D < 1/2
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Figure 3: Process simulation with ν = 3.2, D = 0.20, and λ = 0.107.

and increases if D > 1/2, in both cases according to a power law. This appears quite clearly

in Fig. 3.b, where we have computed the mean volatility decay, measured as the absolute

values of the return, over 10000 process simulations. The parameters of the distributions

have been chosen close to those representing real returns (see below).

The conditional volatility can be easily computed: the distribution of the return rn,1

conditioned to the previous return realizations r0,1, . . . , rn−1,1 is again a Student distribution

with exponent ν′ = ν + n and conditional variance

[(n+ 1)2D − n2D]

(

1 +
n−1∑

i=0

r2i,1
(i+ 1)2D − i2D

)

.

From this expression it is clear that volatility spikes in a given realisation of the process

tend to be persistent (see Fig. 3.a); this is the main reason why fluctuation patterns differ

much from one run to an other. This can be also understood by appealing to the character-

ization of this kind of processes we did in Sec. III: each single run is just a realization of a

Wiener process, whose variance is chosen at the beginning according to an Inverse Gamma
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distribution RΓ(ν
2
, λ

2
), and that decays in time according to the deterministic law tD−

1

2 .

B. Decreasing volatility and restarts

The very first model introduced by B-S has constant volatility, which corresponds to Λ

being a multiple of the identity matrix. This unfortunate feature is the main reason behind

the introduction of weights, whose effect is akin to an algebraic stretching of the time, or, as

put forward by B-S, to a time renormalization. This in turn causes a deterministic algebraic

decrease of the expectation of the volatility, as explained above and depicted in Fig. 3.b;

hence the need for restarts, each attributed to an external cause.

Although this dynamics may seem quite peculiar, such restarts are found at market

crashes, like the recent one of October 2008, which are followed by periods of algebraically

decaying volatility. This leads to an analogous of the Omori law for earthquakes, as reported

in Lillo and Mantegna [36] and Weber et al. [53]. The B-S model, by construction, is able

to reproduce this effect in a faithfully way. In Fig. 4 the cumulative number of times the

absolute value of the returns N(t) exceeds a given thresholds is depicted, for a single simu-

lation of the process and three different value of the threshold. The fit with the prediction

of the Omori law N(t) = K(t+ t0)
α −Ktα0 is evident.

Crashes are good restart candidates: they provide clearly defined events that synchronize

all the traders’ actions. In that view, they provide an other indirect way to measure the

distribution of timescales of traders, which are thought to be power-law distributed (Lillo

[35]).

Another example of algebraically decreasing volatility was recently reported by McCauley

et al. [40] in foreign exchange markets in which trading is performed around the clock. Under-

standably, when a given market zone (Asia, Europe, America) opens, an increase of activity

is seen, and vice-versa. Specifically, this work fits the decrease of activity corresponding to

the afternoon trading session in the USA with a power-law and finds an algebraic decay with

exponent η = 0.35; this is exactly the same behavior as the one of B-S model between two

restarts, with D = 1−2η = 0.3. No explanation of why the trading activity should result in

this specific type of decay has been put forward in our knowledge. In this case the starting

time of the volatility decay corresponds to the maximum of activity of US markets.
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cumulative number the absolute value of the return exceeds a given thresholds. Three

different values of the threshold l have been chosen, measured with respect to the standard
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N(t) = K(t+ t0)
α −Ktα0 .

C. Apparent multifractality

The Baldovin and Stella model is able to reproduce the apparent multifractal character-

istics of the real returns, i.e. the shape of ζ(q) where 〈|rδt|q〉 = δtζ(q).

The expectation is evaluated according the distribution (4), i.e. taking the mean over

independent runs of the process. Hence the expectation of the qth moment in this model is

〈|r|q〉P̄δt =
〈|r|q〉Pt=0,δt=1

τc

τc−1∑

t=0

[(t+ δt)2D − t2D]q/2 (10)

(see the addendum to Baldovin and Stella [5]). The exponents ζ(q) are evaluated as the

slopes of the linear fitting of ln(〈|r|q〉P̄δt) with respect to ln(δt). Hence in our case they are

determined by the expression ln
∑τc−1
t=0 [(t+ δt)2D− t2D]q/2, and depend only on D and τc. In

Fig. 5.a is depicted the fitting of the S&P 500 exponents with the model (10). The best fit

is obtained with D = 0.212 and τc = 5376. Unfortunately a value of τc that large is difficult

to justify, as in the case of S&P 500 we have only 14956 daily returns, i.e. less than three
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Figure 5: Scaling exponents: S&P 500 data and simulations compared with theoretical

prediction. All the simulations have been done with the same parameters: 30 runs of 500

steps, with ν = 3.2, D = 0.220

runs of a process with such a length. The other fit is obtained by first fixing τc = 500, as in

Baldovin and Stella [5] and yields D = 0.220.

The statistical significance of this approach seems anyway questionable. In Fig. 5.b we

compare the theoretical expectation of the exponents with simulations. We choose the

parameters τc = 500, D = 0.220 both for simulations and analytic model, with ν = 3.22.

The number of restarts in the simulation is 30 in order to have a number of data points

similar to the S&P 500. It is evident that the exponents evaluated from the simulated data

have a really large variance.

The problem is that if the tail exponent ν = 3.22, from an analytic perspective the mo-

ments with q > 3.22 are infinite, hence, should not be taken into account in the multifractal

analysis (for an analytic treatment of multifractal analysis see Jaffard [32, 33], Riedi [45]).

The situation is somehow different in the case of multifractal models of asset returns (Bacry
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et al. [2], Mandelbrot et al. [39]), where the theoretical prediction of the tail exponents of the

return distribution is relatively high (see the review of Borland et al. [13]), and the moments

usually empirically measured do exist even from the analytic point of view. For attempts

to reconcile the theoretical predictions of the multifractal models with real data see Bacry

et al. [3] and Muzy et al. [42].

It is worth remembering that the anomalous scaling of the empirical return moments

does not imply that the return series has to be described by a multifractal model, as already

pointed out some time ago in Bouchaud [14] and Bouchaud et al. [16]: the long memory of

the volatility is responsible at least in part for the deviation from trivial scaling. A more

detailed analysis of real data reported in Jiang and Zhou [34] seems indeed to exclude evident

multifractal properties of the price series.

V. MISSING FEATURES

Since in this model the volatility is constant in each realization and bound to decrease

unless a restart occurs, it is quite clear that it does not contain all the richness of financial

market price dynamics. Restarting the whole process is not entirely satisfactory, as in

reality the increase of volatility is not always due to an external shock. Volatility does

often gradually build up through a feedback loop that is absent from the B-S mechanism.

Thus, large events and crashes can also have a endogenous cause, e.g. due to the influence of

traders that base their decisions on previous prices or volatility, such as technical analysts

or hedgers. A quantitative description of this kind of phenomena is attempted for instance

in Sornette [48], Sornette et al. [49], by appealing to discrete scale invariance (see also the

viewpoint expressed in Chang and Feigenbaum [19] and references therein). This kind of

effect is completely missing from the original B-S mechanism.

Volatility build-ups can be simulated with D > 1/2, getting at constant D the equivalent

of the inverse Omori law for earthquakes [29]. This kind of dynamics has been reported

to happen prior to some financial market crashes [49]. At a smaller time scale, foreign

exchange intraday volatility patterns have a systematically increasing part whose fit to a

possibly arbitrary power-law, as performed in McCauley et al. [40] (η = 0.22), corresponds

indeed to choosing D = 0.56. To our knowledge, volatility build-ups either do not follow a

particular and systematic law, or perhaps have not yet been the objects of a thorough study.
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Because of the symmetric nature of all the distributions derived above, all the odd mo-

ments are zero, hence, the skewness of real prices cannot be reproduced. This shows up well

in Fig. 3 of Baldovin and Stella [6]. Another consequence is that it is impossible to replicate

the leverage effect, i.e. the negative correlation between past returns and future volatility,

carefully analyzed in Bouchaud et al. [17].

In any case, the decrease of the fluctuations in the B-S process is a deterministic outcome

of the anomalous scaling law tD withD < 1/2, and results in a strong temporal asymmetry of

the corresponding time series. But quite remarkably it misses the time-reversal asymmetry

reported in Lynch and Zumbach [37] and Zumbach [55]. Indeed real financial time series

are not symmetric under time reversal with respect to even-order moments. For instance,

there is no leverage effect in foreign exchange rates, and their time series are not as skewed

as indices, but they do have a time arrow. One of the indicators proposed in Lynch and

Zumbach [37] is the correlation between historical volatility σ
(h)
δth

(t) and realized volatility

σ
(r)
δtr

(t). The historical volatility series σ
(h)
δth

(t) represents the volatility computed using the

data in the past interval [t− δth, t], and σ
(r)
δtr

(t) represents the volatility computed using the

data in the future interval [t, t+ δtr]; the correlation between the two series is then analyzed

as a function of both δtr and δth. Real financial time series present an asymmetric graph with

respect the change δth ↔ δts, with a strong indication that historical volatility at a given

time scale δth is more likely correlated to realized volatility with time scale δtr < δth, with

peaks of correlation at time scales related to human activities. The asymmetry characteristic

is absent in the Baldovin and Stella model, as showed in Fig. 6.

The strong correlation between returns guarantees the slow decay of the volatility but

induces some side effects. The distribution of the returns in the model is essentially the

same with identical power law exponent for the tails. This happens independently of the

time interval δt over which the returns are evaluated, as long as δt≪ τc, with τc of the order

of hundreds days. Hence the weekly returns are distributed as the daily returns, while in

real data the tail exponent begins to increase in a remarkable way already at the intraday

level (Drozdz et al. [25]). The strong correlation also slows down the convergence to the

Gaussian distribution of the returns when measured on larger time scale. Even if the kurtosis

is not defined analytically in principle, it is possible to measure the empirical kurtosis of the

returns of a simulated time series and compare with the kurtosis of real data. In Fig. 7 we

show the kurtosis of the return distribution among simulations and daily return of the S&P
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Figure 6: Correlation between historical and realized volatility of the simulated process,

over different time interval δt. The analyzed time series was composed by 1000 runs of the

basic process, each one with 200 steps, and parameter ν = 3.22, D = 0.20.

500 index; the kurtosis has been computed for the returns over different interval δt, and the

simulated processes had the same length (30 runs of 500 steps) of the real series.

VI. SUGGESTED IMPROVEMENTS

The main limitations of the model proposed by Baldovin and Stella are poor volatility

dynamics, lack of skewness, some unwanted symmetry with respect to time, and extremely

slow convergence to a Gaussian. In this final section we put forward briefly some qualitative

proposals of how these issues can be addressed.

The volatility dynamics can be improved by introducing an appropriate dynamics for

the exponent D, i.e. introducing a dynamic D(t) controlling the diffusive process. This

is equivalent to starting with a model with constant volatility, i.e. with Λ proportional to

the identity matrix, and then introducing an appropriate evolution for the time t. This

technique is employed for instance in the Multifractal Random Walk model (Bacry et al.
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Figure 7: Comparison of the kurtosis of the returns evaluated over a time interval δt. Each

one of the three simulations are composed by 30 runs, 500 steps long, in order to have a

length comparable with that of the S&P 500 returns. The parameters are ν = 3.2,

D = 0.20, λ = 0.1.

[2]), where the time evolution is driven by a multifractal process, or when the time evolution

is modeled by an increasing Lévy process (see e.g. Cont and Tankov [22]). In this last case

we would obtain a mixing of Wiener processes driven by a subordinator.

The lack of skewness is a common problem of stochastic volatility models: one usually

writes the return at time t as rt,δt = ǫ(t)σ(t), where ǫ(t) is sign of the return and σ(t) its

amplitude, a symmetric setting if the distribution of ǫ(t) is even. One remedy found for

instance in Eisler and Kertész [27] is to bias the sign probabilities while enforcing a zero

expectation; more precisely,

P

(

ǫ = ± 1/
√

2

1/2± ǫ

)

= 1/2± ǫ.

Another possibility for introducing skewness is that of considering normal mean-variance

mixtures, instead of simply normal variance ones. For instance, this would have implied the

use of the multivariate skewed Student distribution in the model described in Sec. II.

The decay of the tail exponent of the return distribution, represented in Fig. 7, could be
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implemented by introducing two different Student distributions: a univariate with exponent

νr for modeling the daily returns, and a multivariate one with a much larger exponent νc

for modeling the correlations among them. By taking into account the generalized central

limit theorem expressed in Eq. (3), the distribution of returns at intermediate time scales

will interpolate between the two exponents, yielding the desired feature.

The Zumbach mugshot is one of the most difficult stylized facts to reproduce. To our

knowledge the best results in that respect was achieved in Borland and Bouchaud [12], where

a specific realization of a quadratic GARCH model is introduced, motivated by the different

activity levels of traders with different investment time horizons, which take into account

the return over a large spectrum of time scales. More specifically Borland and Bouchaud

use

σ2
i = σ2

0

[

1 +
∞∑

δt=1

g∆t

r2i,δt
σ2

0τδt

]

,

with τ fixing the time scale, rt,δT = lnS(t+ δT )− lnS(t), gδt measuring the impact on the

volatility by traders with time horizon δt, and chosen by the authors gδt = g/(δt)α. This

expression is rewritten also in the form

σ2
i = σ2

0 +
∑

j<i,k<i

M(i, j, k)
rjrk
τ
,

with

M(i, j, k) =
∞∑

∆t=max(i−j,i−k)

gδt
δt
.

In the present framework this would correspond to use a highly non-trivial matrix Λ,

introducing linear correlation among returns at any time lag. This means that the B-S

process would no longer be a model of returns, but of stochastic volatility.

VII. DISCUSSION AND CONCLUSIONS

When employed with self-decomposable distributions like the Student or the Generalized

Hyperbolic as introduced in Sec. II, the resulting description of the process return is different

than that of other models in the literature. First our Student process is not stationary, hence

different from the class of Student processes discussed in Heyde and Leonenko [30], where the

main focus is on stationary ones. The processes (9) are also different from the one studied
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in Borland [11]: the latter too are continuous and based on the Student distributions, but

defined by the stochastic differential equation

dXt = tD−
1

2

√

2Dc0
ν − 1

√

1 +
X2
t

c0t2D
dW ;

apart from the striking difference with Eq. (9), in Vellekoop and Nieuwenhuis [51] it is shown

that not all the marginal distribution laws of Xt are of Student type.

Instead in Eberlein and Keller [26] the Generalized Hyperbolic laws are adopted for

describing the returns at a fixed time scale; these laws are then extended to the other time

scales using the standard Lévy process construction: in this case the distributions at the

other time scales are no more of Generalized Hyperbolic type.

The Baldovin and Stella model is also intrinsically simpler than the ones described in

Barndorff-Nielsen and Shephard [7], where the volatility has a dynamic modeled by Ornstein-

Uhlenbeck type processes,

dσ2
t = −λσ2

t dt+ dLt

driven by an arbitrary Lévy process Lt. In this case, according to the choice of Lt, any self-

decomposable distribution (like the Generalized Inverse Gaussian, or any of its special cases,

like the Inverse Gamma) can arise as the distribution of σ2
t for any t. But this simplification

comes at a high price: while in Barndorff-Nielsen σ is truly dynamic, it is fixed in B-S for

any single process realization.

In addition, the models analyzed in Carr et al. [18] are of a different type, even if there

are some analogies in the underlying principles. In Carr et al. [18] indeed an anomalous

scaling is introduced by considering self-similar processes, and in that framework any self-

decomposable distribution can employed for modeling returns, but once again only at a

fixed time scale, as in the standard case of Lévy processes. The main difference is that in

Carr et al. [18] the returns at different times are assumed to be totally independent, but

not identically distributed: instead Baldovin and Stella assume that the returns are only

linearly independent, but now with identical distributions at all the time scales, up to a

simple rescaling.

In conclusion, despite its current inability to reproduce all the needed stylized facts, the

new framework proposed by Baldovin and Stella introduces a new mechanism for modeling

returns, based on a few reasonable first principles. We therefore think that, once suitably
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modified for instance along the lines proposed above, the B-S framework can provide a new

tool for building models of financial price dynamics from reasonable assumptions.

Appendix: Some Useful Facts About Student and Symmetric Generalized Hyper-

bolic Distributions

Characteristic function of Student distributions

The standard form of univariate Student distribution is

g1(x) =
Γ(ν

2
+ 1

2
)

π1/2Γ(ν
2
)

1

(1 + x2)
ν
2

+ 1

2

,

while the multivariate one is

gn(x) =
Γ(ν

2
+ n

2
)

πn/2Γ(ν
2
)

1

(1 + r2)
ν
2

+n
2

with r =
√
∑n
i=1 x

2
i and P(r > R) ∝ 1/Rv.

Using some standard relationships involving Bessel functions one can compute analyti-

cally the corresponding characteristic function:

g̃1(k1) =

✂ +∞

−∞

dx1 e
ik1x1g1(x1)

=
2Γ(ν

2
+ 1

2
)

π1/2Γ(ν
2
)
kν

✂ +∞

0

dx (k2 + x2)−
ν
2
− 1

2 cos(x) =
21− ν

2

Γ(ν
2
)
k
ν
2K ν

2
(k),

with k = |k1|, Kα the modified Bessel function of third kind, and the employ of identity

7.12.(27) of Erdélyi [28]

Kν(z) =
(2z)ν

π1/2
Γ(ν +

1

2
)

✂ ∞
0

dt (t2 + z2)−ν−1/2 cos(t)

ℜ(ν) > −1

2
, | arg(z) |< π

2
.

For an alternative derivation we refer to Hurst [31] and to the discussion in Heyde and

Leonenko [30]. An alternative expression is found in Dreier and Kotz [24].

For general n we obtain again the same expression. Indeed
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g̃n(k) =

✂
Rn

dnx eik·xgn(x)

=
Γ(ν

2
+ n

2
)

πn/2Γ(ν
2
)

✂
dn−2Ω

✂ +∞

0

dr rn−1

✂ π
0

dφ sinn−2(φ)eikr cosφ(1 + r2)−
ν
2
−n

2

=
2n/2Γ(ν+n

2
)

Γ(ν
2
)
k1−n/2

✂ +∞

0

dr rn/2(1 + r2)−
ν
2
−n

2 Jn/2−1(kr)

=
21− ν

2

Γ(ν
2
)
k
ν
2K ν

2
(k),

with k =
√
∑n
i=1 k

2
i , d

n−2Ω the surface element of the sphere Sn−2, φ the angle between k

and x and the employ of identities 7.12.(9)

Γ(ν +
1

2
)Jν(z) =

1

π1/2
(
z

2
)ν
✂ π

0

dφ eiz cosφ(sinφ)2ν

ℜ(ν) > −1

2
, (11)

and 7.14.(51) of Erdélyi [28],
✂ ∞

0

dt Jµ(bt)(t
2 + z2)−νtµ+1 = (

b

2
)ν−1 z

1+µ−ν

Γ(ν)
Kν−µ−1(bz)

ℜ(2ν − 1

2
) > ℜ(µ) > −1, ℜ(z) > 0.

Eventually one finds

g̃n(k) = g̃1

(√

k2
1 + · · ·+ k2

2

)

.

With the linear change of variables x→ C−1x, setting Λ−1 = (CT )−1C−1, i.e. Λ = CCT ,

one obtains the following generalizations:

gn(x) =
Γ(ν

2
+ n

2
)

πn/2(det Λ)1/2Γ(ν
2
)

1

(1 + xtΛ−1x)
ν
2

+n
2

, (12)

with characteristic function

g̃n(k) =
21− ν

2

Γ(ν
2
)
(ktΛk)

ν
4K ν

2
((ktΛk)1/2).

In the univariate case Λ is substituted by the scalar λ2 and the previous expressions

reduce to

g1(x) =
Γ(ν

2
+ 1

2
)

π1/2λΓ(ν
2
)

1

(1 + x2

λ2 )
ν
2

+ 1

2

(13)

and

g̃1(k) =
21− ν

2

Γ(ν
2
)
(λk)

ν
2K ν

2
(λk).
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Moments of Student distributions

Due to the symmetry under reflection all the odd moments vanish. For the second

moments we have, provided that ν > 2,

E(xi, xj) =
Λij
ν − 2

.

The moments of order 2n exist provided that ν > 2n ; as happens for Gaussian distributions,

they can be expressed in term of the second moments,

E(xj1 , xj2 , . . . , xj2n) =
Γ(ν

2
− n)

2nΓ(ν
2
)

∏

all the pairings

Λji1ji2 · · ·Λji2n−1
ji2n
.

In the univariate case these formulas reduce to E(x2) = λ2

ν−2
and

E(x2n) =
(2n− 1)!!Γ(ν

2
− n)

2nΓ(ν
2
)

λ2n.

The kurtosis is then κ = 3ν−2
ν−4

, provided that ν > 4.

Simulation of multivariate Student distributions

The simulation is a standard application of the technique used in the case of rotational

invariance. From

gn(x)dnx =
Γ(ν

2
+ n

2
)

πn/2Γ(ν
2
)
rn−1(1 + r2)

1

1−q dn−1Ωdr,

with r ≥ 0, we see that the density of the angular variables is uniform, while setting y = r2

1+r2
,

with 1 > y ≥ 0 and r =
√

y/(1− y), the density of y is given by

1

B(n
2
, ν

2
)
y
n
2
−1(1− y) ν2−1dy,

i.e. by the beta distribution with parameters n
2

and ν
2
. Eventually we can simulate the

multivariate n dimensional distribution by

1. Simulating y according to Bx(
n
2
, ν

2
) and setting r =

√
y

1−y
.

2. Simulating n i.i.d. Gaussian variables ui and settings n = (u1, . . . , un)/
√

u2
1 + · · ·+ u2

n.

3. Returning xn.

The more general case (12) is simulated using the same algorithm and then returning Cx,

where Λ−1 = (CT )−1C−1, i.e. Λ = CCT .
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Characteristic function of symmetric generalized hyperbolic distributions

We start from the expression

fn(x) =
α
n
2

(2π)
n
2K ν

2
(α)

K ν
2

+n
2
(α
√

1 + r2)

(1 + r2)
ν
4

+n
4

,

with r =
√
∑n
i=1 x

2
i ; the general case is obtained simply with an affine transformation x →

µ+ δRx, with µ ∈ R
n, δ ≥ 0 a scale parameter, and R an orthogonal transformation in R

n.

The central expression we need is an integral of the Sonine-Gegenbauer type, cf. identity

7.14.(46) of Erdélyi [28]:
✂ ∞

0

dt Jµ(bt)Kν(a
√
t2 + z2)(t2 + z2)−

ν
2 tµ+1

= bµa−νzµ−ν+1(a2 + b2)
ν
2
−
µ
2
− 1

2Kν−µ−1(z
√
a2 + b2)

ℜ(µ) > −1, ℜ(z) > 0.

For n = 1, considering that J− 1

2

(x) =
√

2
πx

cos(x), we obtain

f̃1(k1) =

✂ +∞

−∞

dx1 e
ik1x1f1(x1) =

2α
1

2

(2π)
1

2K ν
2
(α)

✂ +∞

0

dx1

K ν
2

+ 1

2

(α
√

1 + x2
1)

(1 + x2
1)
ν
4

+ 1

4

cos(k1x1)

=
α

1

2k
1

2

1

K ν
2
(α)

✂ +∞

0

dx1J− 1

2

(k1x1)K ν
2

+ 1

2

(α
√

1 + x2
1)(1 + x2

1)
− ν

4
− 1

4x
1

2

1

=
K ν

2
(
√

α2 + k2
1)

K ν
2
(α)

(α2 + k2
1)
ν
4

α
ν
2

.

For alternative derivations in the univariate case see Hurst [31] and the references therein.

In our setting the computation is exactly the same for general n, with k =
√
∑n
i=1 k

2
i ,

dn−2Ω the surface element of the sphere Sn−2, φ the angle between k and x, using identity

(11)

f̃n(k) =

✂
Rn

dnx eik·xfn(x)

=
α
n
2

(2π)
n
2K ν

2
(α)

✂
dn−2Ω

✂ +∞

0

dr rn−1

✂ π
0

dφ sinn−2(φ)eikr cosφ
K ν

2
+n

2
(α
√

1 + r2)

(1 + r2)
ν
4

+n
4

=
k1−n

2α
n
2

K ν
2
(α)

✂ +∞

0

dr Jn
2
−1(kr)K ν

2
+n

2
(α
√

1 + r2)(1 + r2)−
ν
4
−n

4 r
n
2

=
K ν

2
(
√
α2 + k2)

K ν
2
(α)

(α2 + k2)
ν
4

α
ν
2

.
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Hence the eventual result f̃n(k) = f̃1(k).
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