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Abstract 
 

This paper is concerned with the evaluation of the performance of the normality tests to ensure the 
validity of the t-statistics used for assessing significance of regressors in a regression model. For 
this purpose, we have explored 40 distributions to find the most damaging distribution on the t-
statistic. Power comparisons are conducted to find the best performing test against these 
distributions. It is found that Anderson-Darling statistic is the best option among the five normality 
tests, Jarque-Bera, Shapiro-Francia, D’Agostino & Pearson, Anderson-Darling & Lilliefors. 
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1.  Introduction 
 

The normality of error terms is a basic assumption of the linear regression model. Most of 
the inferential procedures currently used are based on this assumption (Bartolucci & Scaccia, 
2005). Zaman et al. (2001) give several examples of published regression results where testing 
reveals lack of normality of errors, and this results changes the findings of these papers. Thus, 
diagnostic tests for normality are important for validating inferences made from regression 
models (Onder & Zaman, 2003). Several such tests have been devised (see, for example Geary, 
1947; Hogg, 1972; D’Agostino & Pearson, 1973; Pearson et al., 1977; Jarque and Bera, 1987; 
Urzua, 1996; Cho & Im, 2002, Bonett & Seier, 2002; Bry et. al., 2004; Onder and Zaman, 2005, 
Gel et. al., 2007). Availability of such a large number of normality tests has generated a large 
number of simulation studies to find a best performing test (see, for example Shapiro et al., 
(1968); Pearson et al., (1977); Thadewald et al., (2004) and Yazici & Yolacan (2007). However, 
normality tests are based on different characteristics of the normal distribution and the power of 
these tests differs depending on the nature of non-normality (Seier, 2002). For any two good 
tests, we can find alternatives to normality such that either one outperforms the other. See, for 
example, Shapiro et al., 1968 Thadewald & Büning, 2004, Yazici & Yolacan, 2007.  This leads 
to a dilemma: how can we choose a best test in practical situations? 

 
We propose to solve this dilemma by focusing on the purpose of testing.  In regression 

model, one important goal of testing normality is to make sure that our t-statistic is giving us the 
right message (i.e. whether the independent variable is a significant explanatory variable or 
not?). Similarly there are many other goals such as forecast encompassing, general validity of 
confidence intervals, inference, etc. By focusing on a goal one may be able to find a best test for 
that goal. We evaluated different tests and alternative distributions used in major simulation 
studies with respect to how well they “protect’ the t-statistic. In contrast to the simulation studies 
which lead to inconclusive results, we find that the Anderson-Darling test is the unique best test, 
over the entire range of alternatives and tests studied,   

 

2.  Distributions which Damage the t-statistic 
  

To protect t-statistic in the best way, we should know how much a distribution can 
damage our t-statistic. We used the asymptotic expansion of T by Yanagihara, (2003) to 
calculate how much a distribution can damage the t-statistic. So, based on the probability 
formula: 

 

where n is number of observations, h is number of restrictions,  is the distribution function 

and  is the density function of a central chi-squared distribution with h degrees of freedom 

and the coefficients  are given in Yanagihara (2003, p.234). 

By using this asymptotic expansion formula, we calculated the following deviations:  

DEVIATION = P( T ≤  x | t i.i.d Normal ) - P( T ≤  x | t i.i.d K ) 
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where, K is any i.i.d non-normal distribution. K is a less damaging distribution if the deviation is 
small, and K is a more damaging distribution if the deviation is large. If the errors are exactly 
normal, deviation will be zero. 

Table: 1 Deviation from normal probabilities 

Distributions n=30  n=50  n=100  

 Probability Deviations Probability Deviations Probability Deviations 

Normal(0,1) 0.9478 ------ 0.9489 ------- 0.9497 ------ 

Chi
2
(2) 0.9400 0.0078 0.0126 0.0050 0.9472 0.0025 

Gamma(0.05,1) 0.7820 0.1658 0.8505 0.0984 0.9040 0.0457 

Gamma(0.1,1) 0.8721 0.0757 0.8977 0.0512 0.9290 0.0207 

Beta(2,0.05) 0.9035 0.0443 0.9212 0.0277 0.9370 0.0127 

Beta(5,0.05) 0.8643 0.0835 0.8963 0.0526 0.9237 0.0260 

Logn(1,1.1) 0.7989 0.1489 0.8541 0.0948 0.9051 0.0446 

Logn(1,1.3) 0.5728 0.3750 0.7100 0.2389 0.8374 0.1123 

Exp(2) 0.9396 0.0082 0.9437 0.0052 0.9473 0.0024 

Weibull(0.5,0.5) 0.8373 0.1105 0.8787 0.0702 0.9168 0.0329 

NCt(5,5) 0.9221 0.0257 0.9364 0.0125 0.9386 0.0092 
Note: Ten out of forty distributions are listed. Rests of the thirty distributions have not shown significant deviations.  

In this study, 40 distributions have been analyzed which cover the majority of the 
distributions used in the major power studies done so far in the literature. Among these, the most 
damaging ones appear to be the lognormal distributions, as shown in Table 1. The tests we have 
chosen are the most representative of their respective class of tests. 

Test Class of Test 

Anderson-Darling (A2) & Lilliefors (L) ECDF 

Jarque-Bera (JB) & D’Agostino & Pearson (K2) Moment 

Shapiro-Francia (SF) Correlation/Regression 

 

We set  and generated from a standard normal distribution. 

The regressors were fixed throughout the study. Note that the specific values of the means and 
variances of these regressors have no effect on the simulation results. This invariance property 
follows from the fact that, for a linear model with regressor matrix X the ordinary least-squares 
residuals are the same as those of a linear model with regressor matrix XR, where R is any  

nonsingular matrix of constants (Weisberg, 1980, p.20)*. Our study shows that our concept is 
valid. We are able to pick out a unique best test from among the numerous alternatives, by 
finding the one which works best for the ‘least favorable’ or most damaging distribution. 

  

 

                                                           
*
 See Jarque & Bera, 1987 
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3.  Simulation Study 

In the first part of the simulation study, we have calculated the finite sample critical values 
for all five tests in our study for sample size n=30, 50 & 100 and for nominal level α = 0.01, 0.05 
& 0.1 by using 100, 000 Monte Carlo replications.  

In second part, we have performed the normality tests on the most damaging 
distributions; Lognormal (1, 1.3) & Weibull (0.5, 0.5). Power calculations are based on 10,000 
Monte Carlo replications.  Table 2 summarizes the empirical powers of the tests for sample size 
n = 30, 50 & 100 at α = 0.01, 0.05 & 0.1. 

 

Table: 2 Power results against the most damaging distributions 

Distribution Test N α =0.01 α =0.05 α =0.1 

Logn(1,1.3) A
2
 30 0.9931 0.9988 0.9996 

  50 0.9999 1 1 

  100 1 1 1 

 SF 30 0.9926 0.9989 0.9993 

  50 1 1 1 

  100 1 1 1 

 K
2
 30 0.9194 0.9757 0.9914 

  50 0.9944 0.9996 1 

  100 1 1 1 

 JB 30 0.9198 0.9937 0.9994 

  50 0.9939 1 1 

  100 1 1 1 

 L 30 0.9527 0.9894 0.9961 

  50 0.9989 0.9999 0.9999 

  100 1 1 1 

Weibull(0.5,0.5) A
2
 30 1 1 1 

  50 1 1 1 

  100 1 1 1 

 SF 30 0.9996 1 1 

  50 1 1 1 

  100 1 1 1 

 K
2
 30 0.9558 0.9914 0.9992 

  50 0.9991 1 1 

  100 1 1 1 

 JB 30 0.9548 0.9991 1 

  50 0.9993 1 1 

  100 1 1 1 

 L 30 0.9957 0.9995 0.9999 

  50 1 1 1 

  100 1 1 1 
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 Among all distributions studied, the least favorable distribution was the Lognormal (1, 
1.3). We found that the Anderson-Darling (AD) test was the best among the five tests studied for 
this case. Our concept was that the test which was best for the least favorable case would also 
work well in the other cases. This is borne out by the fact that the AD test is also the best for next 
worse distribution, which is the Weibull (0.5, 0.5). For other distributions which do not cause 
deviations in the probabilities associated with the t-statistic, it does not matter how well a 
normality test does at picking up the deviation from normality.  

 Jarque-Bera (JB-test) is the most popular and widely use test in the field of economics 
but our results suggests the overall superiority of Anderson-Darling (AD-test) to Jarque-Bera 
(JB-test). So, AD-test is recommended for use if the goal is to protect the t-statistic.  

 

4.  Conclusion 

We have explored 40 distributions and calculated how much they can be damaging for t-
statistic. Lognormal (1, 1.3) is the worst distribution for t-statistic among the 40 distributions in 
our study with 37.5% deviation. Among the tests studied, Anderson-Darling test is the best 
choice not only against this distribution but also for all other distributions in question to ensure 
the validity of inferences based on t-statistic. This study has been confined to tests and 
alternative distributions appearing in the literature, but the approach can easily be generalized.  
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