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Abstract

In studying the scale invariance of an empirical time series a twofold problem arises: it is
necessary to test the series for self-similarity and, once passed such a test, the goal becomes
to estimate the parameter Hp of self-similarity. The estimation is therefore correct only if the
sequence is truly self-similar but in general this is just assumed and not tested in advance.
In this paper we suggest a solution for this problem. Given the process {X{t),t € T}, we
propose a new test based on the diameter § of the space of the rescaled probability distribution
functions of X{#). Two necessary conditions are deduced which contribute to discriminate self-
similar processes and a closed formula is provided for the diameter of the fractional Brownian
motion (fBm). Furthermore, by properly choosing the distance function, we reduce the measure
of self-similarity to the Smirnov statistics when the one-dimensional distributions of X (t) are
considered. This permits the application of the well-known two-sided test due to Kolmogorov
and Smirnov in order to evaluate the statistical significance of the diameter §, even in the
case of strongly dependent sequences. As a consequence, our approach both tests the series for
self-similarity and provides an estimate of the self-similarity parameter.

Keywords: Distance; Fractional Brownian Motion; Kolmogorev-Smirnov Test; Self-similarity.

1. INTRODUCTION tistical self-similarity, i.e. distributional invariance

Since the pioneering works by Mandelbrot in the  With respect to a proper scaling rule, have been
early 1960s,'? stochastic processes exhibiting sta-  Suggested as models in many fields such as finance,
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geophysics or network traffie modeling (see e.g.
Refs. 49 or 10-12 for a comprehensive bibliogra-
phy). Particularly, in finance an increasing atten-
tion is being paid to the scaling laws of stock returns
because the assumption of self-similarity in strong
sense is implicit both in the standard financial the-
ory (stating that the self-similarity parameter Hy
equals %) and in less consolidate frameworks such as
the fractal Gaussian models (for whom Hy € (0, 1])
or the a-stable models (see, e.g. Ref. 13). The scal-
ing structure of actual data is usually deduced by
analyzing the sample moments, but this approach
could be misleading because of several reasons, the
most “embarassing” being perhaps the assumption
of existence of the analyzed moments; just as an
example it suffices to think of the non-degenerate
o-stable processes, having finite moments of or-
der lower than ! Moreover, even when variance
does exist, the best one can do using the large
class of variance-based estimators is to discriminate
second order self-similar sequences but not truly
self-similar processes.

In order to overcome this problem, in this work
we will focus on distributions: the standard condi-
tion of self-similarity based on the equality of the
finite-dimensional distributions will be given using
the notion of “diameter.” Roughly speaking, this is
the maximum of the set whose elements are the dis-
tances between the distribution functions generated
by the scaling rule which defines the notion of self-
similarity. Being the value of the scaling parameter
Hy a priori unknown, the diameter — which mo-
mentarily we denote by § — will depend on the
variable H.

We first state that a stochastic process is self-
similar with exporent Hp if and only if § equals
zero when H = Hy (Proposition 1). Hence, the ba-
sic idea is to estimate the self-similarity parameter
by solving the equation é = 0 but concretely, when
the empirieal distributions are considered, even the
diameter of a truly self-similar process will be larger
than zero for I = Hy. Therefore, it becomes neces-
sary to evaluate the statistical significance of &, but
in order to do this a candidate Hj, the diameter
of which must have been calculated in advance, is
needed. The problem is solved by a nice property
of the diameter, which for an Hy self-similar pro-
cess is proved to be non-increasing for H < Hy and
non-decreasing for H > Hy (Proposition 2). This
permits the application of a statistical test with re-
spect to min(d}, which for an Hy self-similar process
is unique.

A further necessary condition of self-similarity
is exploited in Proposition 3. In addition, when the
process is the celebrated fractional Brownian mo-
tion (fBm} a closed formula is provided for the
diameter of the space of the rescaled probability
distributions (Proposition 4}.

Finally, just a few words on the statistical test
used to evaluate the significance of min(#): a proper
choice of the norm which defines the diameter allows
to apply the Kolmogorov-Smirnov goodness of fit
test, even in the case of strongly dependent data
(Proposition 5.

S0, the technique we propose both tests scale
invariance and estimates the self-similarity param-
eter. The remainder of the paper is organized as
follows: in Sec. 2 some definitions are given and,
once characterized the behavior of the metric we
will introduce, in Sec. 3 the use of the Kolmogorov-
Smirnov test is motivated. Section 4 provides a
comparative application on simulated data com-
ing from samples of self-similar and non self-similar
processes. Appendix A contains the proofs of the
Propositions.

2. A METRIC FOR
SELF-SIMILARITY

Before introducing the new approach we suggest,
let us recall the definition of self-similarity.

Definition 1. The continuous time, real-valued
process { X {t), t € T'}, with X (0} =0, is self-similar
with index Hp > 0 (concisely, Hy-ss) if, for any a €
B* and any integer k such that t;,...,ty € T, the
following equality holds for its finite-dimensional
distributions

{X(at1), X(ata),..., X{aty)}
2 ratho X (1), a®0 X (ty), ..., X (tx)}. (1)

Recall also that the second-order stationary, real-
valued stochastic process X (t) is said Hg-second
order self-similar if — denoted by Y{t.a} its a-
lagged increments, namely Y (¢, ) = X(t + o) —
X{8), and by Y1, m) = m~ Xy Y 1,
m, t € {1,2,...} the averaged (over blocks of length
m) sequence — it halds

Var(Y (¢, m)) = m2 o~ DVar(Y (¢, 1)) .

Finally, X (t) is said Hg-second order asymptoti-
cally self-similar if

Var(Y (¢, km)) ~ k2o DVar(Y (¢, m))

asm — oo,k e {1,2,...}.




Since equality (1) imp]ieé '
E(IX(1)|7) = t™7B(| X (1))7) (2)

self-similarity is usually tested via the scaling
behavior of the sample moments of X(t) but
this approach has some drawbacks. First, there
is no equivalence between moments and distribu-
tion, therefore (2) does not imply (1). Second,
the moment-based techniques study only particu-
lar moments, usually absolute moments or variance
(see e.g. 15 and 16 for a survey of several methods);
as a consequence, no conclusion can be drawn about
the process’ self-similarity but only about some
weak form of self-similarity, such as, for example,
the second order or the asymptotical self-similarity.
Finally, the analyses are generally lacking from an
inferential (possibly non-parametric) perspective.

A different perspective is to test directly Eq. (1).
To do this, let A be any bounded subset of BT,
a = min(A) and A = max{4) < oc. For any a € A,
congider the set {X(at)} of the alagged rescaled
process and — denoted by @ the k-dimensional dis-
tribution of X — rewrite equality (1) as

Px(a) (%) = Porox(ry (%) {3)

where, with concise notation, we have set X(a) =
(X(aty),...,X(atx)) and x = (z1,...,73) € RF.
A trivially equivalent but insightful way of writing
Eq. (3) uses the variable H as follows. From (3), one
has
Dysry(a) (%)
=Prla ¥ X(at)) < 21, ..,
= by self-similarity
=Pr{a X (1) < 1,...,

a_HX(atk) < xp)

aHO_HX(tk) < )
=& 2Ho—HX(1 (X)
=Pr{X(#) < aH‘HO:r], X)) < aH_Hoxk)
= @xqy{a~Hox;. (4)
Denoted by ¥y = {‘I'ﬂ_gx(a) {x), a € A} the set
of the absolutely continuous k-dimensional prob-
ability distribution functions of {¢~HX(at}} and
considered as distance function p the one induced

by the sup-norm ||- || with respect to the set A, we
assume the diameter® of the metric space (T gy, p)

F(ly) = ;;]Ek a,,Sa.ugA |, -~ (a, y(x)

=, mxap (X (5)
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as a measure of discrepency among the rescaled
distributions.

Given the abave assumptions, the following
proposition holds

Proposition 1. {X(£), t € T'} is Hy-ss if and only
if, for any bounded A C RY and any integer k,
(W) = 0.

{Proof in Appendix A}.

Remark. Notice that combining Proposition 1
and the uniqueness of the self-similarity parame-
ter Ho,'7 for an Hy-ss process 6F(Tp) > 0 for H #
Ho. a

Whenever the process X is Hp-ss, by {4) one has

sup [P ~H % (s (x)

a; # () (X)]
a,6,EA H{az)

= sup |Pyqylal"Hox) - By (af~Hox))

@i,a5E

and, ® being a cumulative distribution function and
thus monotonous, the supremum is reached }){y max-

imizing the dilation of the vector |e; HA—Ho _oH=Hojy
that is the distance between the two terms aH —Ho
and aH H", namely
sup.[{aff ™ — g~y
a,8;€4
= @ gt ()

By (6), the diameter of an Hp-ss process becomes

5"(‘1’H)=Su]£€i%—ﬂx 20 (%) = Pa-nx(w (| (7)

and relationship (7) characterizes the behavier of
X(t) as follows

Proposition 2. Let X(t) be Hg-s5, A > a and
X 20 or x £ 0. Then 8%(Ug) as function of H
is non-increasing for H < Hy and non-decreasing
for H > Hy. (Proof in Appendix A.)

Remark. Proposition 2 is very useful for at least
two reasons: first, being a necessary condition, it
provides a preliminary filter in the analysis of self-
similarity, which can be rejected if the monotonicity
does not oceur; second, as will be seen afterwards,

*We recall that, given the metric space (X, p), the number § = SUpg e x AT, ¥) is called diameter of the set {space) X.
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it gives the value of the diameter for which an in-
ferential test can be performed in order to evaluate
the statistical significance of min(é). O

Proposition 3. Let X(¢) be Hy-58,x 20 orx < 0
and let Ay, ..., An be ¢ sequence of sets such that —
denoted by 0; = min{4,) and by A; = max{4;) <
oo, 1 = 1,...,n — dtisq; £ a; and W; > U

for ¢ > j. Then with respect to the sequence {A,}
|

1 _gHo—H
S (Ty)=4{ Vor /_iuarﬁ
0,
o 2(Ho—H) .
where & = \/212(Ho H)_uZ(Hn m In %. (Proof in

Appendix A).

3. EVALUATING Hp-ss BY THE
KOLMOGOROV-SMIRNOV
GOODNESS-OF-FIT TEST

Proposition 2 and relationship (7) are the core of
this work: the former discriminates if an empiri-
cal realization can come from a self-similar process

and, once checked that the necessary condition is
|

1
TP = g

n(a)

represent the empirical distribution functions cor-
responding to the maximum and the minimum
of A. Owing to empirical errors, even for a true
Hy-ss process the sample diameter will be a non-
negative random variable. Therefore the crucial
point becomes to establish if there exists an Hy
such that the corresponding 8(ly,) is statisti-
cally negligible (here ¥y, denoctes the set of theJ

Null hypothesis®

against

2
exp (— %) du

the diameter 0 is: (i) non-decreasing, provided that
H # Hy; (ii) on identically zero function {f H = Ho.
{(Proof in Appendix A)

Remark. When k =1, inequalities x 2 0orx =0
of Proposition 2 and 3 can be relaxed as can be eas-
ily seen by the proofs. ]

Proposition 4. Let X(t) be a fractional Brounian
motion with parameter Hy. Then

] H%Hﬂ (8)

H=H,.

not violated, the latter provides the way to assess
the statistical significance of the discrepancy be-
tween the distributions. In particular, self-similarity
of X(t) implies that 6*(¥p,) is zero for any real
bounded 4 but this theoretical result must he
stated precisely when the sample distributions are
considered. To be rigorous, consider the case of the
one-dimensional distributions, and momentarity as-
sume to know the scaling parameter Ho. Denoting
by X(a) = (e~ X(at)), & = 1,...,n(a), the
array whose components represent the a-lagged,
Hy-rescaled sample path, the step functions

#{1 <k < n(@): A Ho X (AUt) < 2}

9

1 -
(I)”(u),ii(u)(x) = —#{L <k < nfa) : a7 X (aty) < z}

D1 fe) o) (2)

empirical distributions and é the sample diameter).
The choice p = || - ||o is motivated just by this
aim: setting k& = 1 the problem of evaluating the
significance of 8! ('I'H) for some H can be reduced
by Proposition 2 to the two-sided Kolmogorov-
Smirnov goodness-of-fit test (shortly, KS test),
specified as follows: there exists a value Hop such
that, for any a;, a; € A and any bounded A C Rt

&)n(ﬂj)‘ﬁ(aj)(:r) for each =

n(ﬂi)’ﬁ(a‘_)(m) # ‘i’(a,-),f&(aj)(:"’) for at least one z.

b As will be better observed in the following, if the distribution of X (¢} is completely specified and known, denoted by n(a)

the sample size, the alternatives become (null hypothesis) fbn( a).X(a)(x}
i3 Jeast one @ and the statistics to be used is due to Kolmogoroy.

&{x) for each x against @“(a) x(n)("") # Qix} for



The good news is that, when one deals with
ergodic sequences, the assumption of independence
needed by the KS test to ensure that the empirical
distributions really approximate the unconditional
one can be relaxed. In fact, once the sequences are
rescaled, the equality of the sample distributions is
ensured by the self-similarity itself and one has the
following.

Proposition 5. Let:

(i) X(t) be Hp-ss with stationary increments

Y(t, a) = X(t +a) - X(2);
(i) X(tk)k=1,..N, tk € RT, be one of the trajecto-
ries of X (t);

(iii) X(a) = (a~HoX(aty)) be the a-lagged, Ho-
rescaled sample path of X (t);

(iv) Y(a) = (a=HoY(ty,a)) be the a-lagged, Ho-
rescaled sample path designed by the empirical
increments Y.

Then, denoted by L(z) the distribution derived by
Smirnov,!8

¢ & z
P & - - <
by (1;2271 n,X(l)(l') n,X(a) (.’L‘)| _\/ﬁ)
—oo) E(z) . (10)

(Proof in Appendix A).

We now come to consider another problem: the
KS statistic is a function of one variable (z) whereas
the diameter 4! is a function of z, but also of H and
A; hence, the number of varlables must be reduced.

The choice of the set A is in some ways
determined by exogenous considerations about the
nature of the analyzed process. In the case of
financial stocks, A is a set of trading horizons and
therefore it is constituted by those horizons for
which it makes sense to consider a trading activ-
ity. The negligible relevance of the set A can be
motivated in the light of Proposition 3: when X (t)
is a true Ho-ss the sequence {A,}nen only affects
the values 81(¥p.cp,), since — by definition of
self-similarity and by Proposition 1 — 41 (\i/ Hy) 1S
a non-negative stationary random function with re-
spect to any sequence A, C R*, with empirical
distribution given by (10). Hence, the problem be-
comes to determine the value Hy the KS statistic
must be calculated for and this can be done by
virtue of the diameter’s monotonicity.

Restricting here the interest to non-degenerate
Hy-ss processes with at least the first moment finite
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and to Gaussian processes, in the following it will be
assumed H € (0, 1] (for the details about the range
of H in these cases, see Ref. 14, pp. 316-317). In this
interval H can take any real value and the problem
to choose the right value is addressed by Proposi-
tion 2. When X is Hy-ss we expect the diameter to
be non-increasing for H < Hy and non-decreasing
for H > Hy; as a consequence, fixed the set A, we
will first calculate dpmin = min gr¢ o, 1]{5 (¥g)} and
then the significance will be evaluated for the value

6min'

At this point two cases should be distinguished:

Case 1. The distribution of the process is known
and equals ®(z). This is, for example, the case of
the fractional Brownian motion Bp,(t) (fBm), for
which ®(z) is given by (21) in Appendix A. In this
case the statistic is the one originally defined by
Kolmogorov

Dy, =sup &, o-nx(a)(z) — &(2)],
z€eR
for any fixed positive real a.

As is well known, the exact computation of the
distribution of D, is possible but very toilsome;
hence Kolmogoro!® first and Smirnov!® later pro-
vided the following asymptotical distribution

Pr (Dn < %) = L(2)
=1-2 2:(—1)]._1 exp(—2522?%)
j=1
(11)

an approximation of which, obtained using only the
first term of the series, is satisfactory for n > 35
and leads to

where as usual o denotes the significance level.

Case 2. The distribution of the process is un-
known. In this case we can only observe the dis-
crepancy between the sample distributions. So, the
statistics is the one argued by Smirnov

Drs na = S0P (€, 130y (@) = Loy 150,) (D)

for any fixed a;,a; € RT.

Also in this case the asymptotical distribution (11)
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holds and the approximati(‘)rbbecomes

z ~, /-1 i—}-l In <
annz = 2\n;  ng 2°

Once calculated Smin, we set D, = Smin (or
Dy, ny = Omin, depending on the case) and com-
pare the value with 24 n (O 2an; n,); self-similarity
(with parameter Hy = 5;111n) will be rejected at a
significance level o if Dy, > 2an (Dnyng > Zayng na)-

Although in this paper the continuity of the
distribution function has been assumed, the Kol-
mogorov test can be used even when the continuity
does not hold (as in the case of a-stable processes).

In this case in fact Pr(D, < zqn) >

the test can be used conservatively.20

1 a
—%ln bR SO

4. NUMERICAL SIMULATION

Self-similarity has been tested using as term of com-
parison the celebrated fractional Brownian motion
(fBm), which is the only Gaussian self-similar ran-
dom process with stationary increments. fBm is
widely used in many fields such as finance, insur-
ance, signal processing or geophysics. Furthermore,
in order to show the improvement achieved by our
estimator, examples have been designed where self-
similarity does not hold and the estimates obtained
by using different methods have been compared.
To do this we have considered two further sets
of simulations: first we have generated some sam-
ples of multifractional Brownian motion (mBm),
which is known to be not self-similar, and finally
we have taken into consideration the case of ergodic
sequences based on uniformly distributed random
variables.

4.1. Fractional Brownian Motion
(fBm)

The analysis has been performed through the
following steps:

Step 1. Two hundred independent samples of
fBm of length N = 2000 have been gener-
ated for each of the following parameters: Hy =
0.3, 0.4, 0.5, 0.6, 0.7. The simulations have been
carried out with the circulant matrix method in-
troduced by Wood and Chan.?! The algorithm,
known to be as one of the most stable, provides in
a fast way an excellent approximation of fBm (see

Refs. 22,23 or 24 for a detailed discussion of several
simulating methods).

Step 2. Once fixed the set of lags A =
{1,2,..., 100}, for a € A and for H in the range
(0, 1] with step AH = 0.005, the a-lagged, H-
rescaled sequences have been calculated for each
simulated series.

Step 3. Once calculated the empirical distri-
bution function of each sequence, the distance
0(¥y) = sup, |<I>m’x(1)(m) -9, %@ (z)| has been
computed (for sake of simplicity, we dropped from
the notation the index 1 which reminds that the
one-dimensional diameter is being considered).

Step 4. The significance of JOmin =
ming{6(¥z)} has been evaluated by comparing
it with the KS statistic.

Step 5. Whenever the process is Ho-ss, Propo-
sition 2 ensures that the map Smin is invertible.
Hence, the parameter of self-similarity is estimated
as .FIO = S;uln

The software needed for the analysis has been
developed in S-PLUS® 6.1 for Windows.

When the analysis is performed on samples of
fBm there would be no need to check the monotonic-
ity of § since the diameter is expected to behave as
stated by Proposition 4, where the integral function
(8) is monotonic at left and at right with respect to
Hy. Just as an example, the behavior of é is repro-
duced for one set of realizations in Fig. 1; the sam-
ples are relative to 50 simulated fBm’s with nominal
parameter Hy = 0.6. It is quite apparent that all the
samples: (1) have minima corresponding to abscis-
sae close (centered) to the value 0.6, which is indeed
the nominal generation parameter of the simulated
series; and (2) behave as stated by Proposition 2,
being decreasing for H < Hj and increasing for
H > Hy. Figure 2 shows the diameter’s trend for
increasing values of the maximum lag; as claimed by
Proposition 3, $ is non-decreasing when H is differ-
ent from Hy and substantially constant when H =
Hy (really, 5(@0,505) = 0.0374 for A = {1,...,25},
5(¥oe0) = 0.0396 for A = {1,...,50}, 6(Foe0) =
0.0.0429 for A = {1,...,100} and §(¥g6) = 0.0431
for A = {1,...,200}, but in all cases the diameter
is statistically negligible at the level o = 5%).

Figure 3 shows the comparison between the (av-
eraged) sample and the theoretical diameter for the
same 50 traces of fBm. The latter, calculated by
Proposition 4, has been shifted upward of the quan-
tity 20.05,1900 =~ 0.019854.




Estimated diameter
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0.5

0.6

Fig. 1 Diameter for a set of 50 simulated fBm with nominal parameter Ho = 0.6.

—— A=25 — A=50

e A=100 + A=200

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Fig. 2 Behavior of the estimated diameter of a sampled By g(t) for increasing maximum lag.
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0.5

0.45

Average and Theoretical diameter

e Averaged

= Theoretical

0.5 0.6 0.7 0.8 0.9 1

Fig. 3 Sample (average) and theoretical diameter for fBm with parameter Ho = 0.6.

Table 1 Self-similarity analysis for fBm N = 2000, a = 1, 2 = 100,

200 samples.

(@) (b) (@) (d) (e) | @
Nominal Value | HJ | St. Dev. | &, | St. Dev. | 95% | 99%
Hy =0.30 0.297 0.02493 0.02748* 0.00718 99.5 | 100.0
Hy =0.40 0.395 0.02918 0.02756* 0.00781 95.0 99.5
Hy =0.50 0.500 0.03130 0.03137* 0.00667 95.0 | 100.0
Hy = 0.60 0.603 0.03392 0.03177* 0.00632 95.0 | 100.0
Hy =0.70 0.697 0.03689 0.03304* 0.00595 96.5 | 100.0
*Not significant at level @ = 0.05 of Type 1 error.

TAverage over 200 samples.

The analysis concerning the statistical signifi-
cance of the diameter is summarized in Table 1 and
in Figs. 4 and 5. In detail, for each set of sampled
fBm of nominal parameter displayed in column (a),
Table 1 reproduces the parameter Hy estimated by
averaging 200 estimates [column (b)], the standard
deviations of the estimates [column (c)], the sample
diameters dyi, for which the significance is given at
95% [column (d)] and the respective standard de-
viations [column (e)]. Finally, columns (f) and (g)
display the empirical frequencies of acceptance of
Omin, once fixed the nominal level of the test (for
a = 5% and a = 1%). For all the samples, we

infer that — as expected — self-similarity cannot
be rejected for fBm at a significance level of 5%
(or more). This confirms the robustness of the KS
statistic also in the case of strongly dependent data,
of course provided that the process satisfies the con-
ditions of Proposition 5.

Figures 4 and 5 respectively display the values
of the biases Hy — Ho and the distribution of dmin
for the different nominal self-similarity parameters.
As usual, the two boxplots show lines at the lower
quartile (quantile 25%), median and upper quar-
tile (quantile 75%) values. The whiskers are square
brackets extending from each end of the box to show
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Fig. 5 Boxplot of the estimated diameters for the different Hg’s.

the extent of the rest of the values. Outliers are

marked by bars.

4.2. Non Self-similar Processes

In this section, we want to compare the estimates
of the self-similarity parameter of non self-similar

339

processes obtained with different methods. Even if
this is a clear conceptual contradiction, it should be
considered that — in studying the scale invariance
of an empirical time series — self-similarity is usu-
ally assumed but almost never tested in advance. As
a consequence, the estimates are correct only if the
assumption is correct. Hence, it is a useful exercise
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Table 2 Self-similarity analysis for some traces of mBm.

Hin = 0.30, Hax = 0.70 H phin = 0.35, Hmax = 0.65
Function Function
arctg linear step sin arctg linear step sin
5(50) 0.490 . 0.530 . 0.495 . 0.475 . 0.515 . 0.565 . 0.535 . 0.520 X
0.08770* | 0.08269* | 0.07700 0.08316 0.06640 0.08211 0.09273 0.05685
4(100) 0.540 . 0.580 . 0.510 . 0.495 . 0.550 . 0.545 . 0.540 . 0.515 .
0.11269* | 0.14252* | 0.09215 0.10171 0.11212 0.09704 0.10062* | 0.07167
LR 0.389 0.349 0.332 0.368 0.381 0.432 0.421 0.484
w 0.387 0.392 0.351 0.388 0.406 0.452 0.431 0.456
NC 0.576 0.510 0.529 0.552 0.514 0.545 0.559 0.505
ov 0.403 0.370 0.345 0.382 0.404 0.443 0.434 0.474
GV 0.408 0.370 0.347 0.387 0.407 0.444 0.434 0.471
H nin = 0.40, Himax = 0.60 H in = 0.45, Hmax = 0.55
Function Function
arctg linear step sin arctg linear step sin
5(50) 0.460 . 0.635 . 0.570 . 0.520 ) 0.535 X 0.500 . 0.450 X 0.470 .
0.06209* | 0.16105* | 0.11521 0.06842 0.04262 0.09040 0.09216 0.11054
5(100) 0.465 . 0.720 . 0.505 . 0.515 . 0.555 . 0.525 . 0.460 . 0.450 .
0.06821 0.20011 0.15443 0.10196 0.05930 0.09988 0.11602* | 0.16229
LR 0.393 0.458 0.410 0.434 0.515 0.486 0.428 0.433
w 0.430 0.484 0.440 0.457 0.518 0.501 0.456 0.461
NC 0.524 0.512 0.515 0.513 0.535 0.515 0.535 0.546
ov 0.409 0.461 0.420 0.460 0.527 0.481 0.455 0.458
GV 0.414 0.464 0.425 0.459 0.524 0.484 0.453 0.457

*Significant at level a = 0.05 of Type 1 error.

to check what happens with different estimators
when one tries to calculate the self-similar param-
eter for a non self-similar process. As examples
of non self-similar sequences, we have first con-
sidered several realizations of the multifractional
Brownian motion (mBm), as defined in Péltier and
Lévy Véhel.?> MBm generalizes fBm to the case
where the self-similarity parameter is no longer a
constant, but a function of the time index of the
process. This extension, resulting in the loss of
self-similarity, allows to model non-stationary con-
tinuous processes and is particularly useful in the
study of financial time series. Samples of mBm of
length n = 2000 have been simulated with arct-
angent, linear, step and sinusoidal functional pa-
rameter. In order to appreciate the sensitiveness
of the estimator, for each simulation the func-
tional parameter has been allowed to vary within

the four ranges [0.30, 0.70], [0.35, 0.65], [0.40, 0.60]
and [0.45, 0.55].

For the sequences so generated, the self-similarity
parameter has been estimated using the follow-
ing methods, based on different approaches (see,
e.g. Refs. 22 and 23 for their description):

o distributional approach: our diameter-based esti-
mator, with maximum lag 2 = 50 and 2 = 100;
e spectral approach: the periodogram estima-

tion in the variant of Lobato and Robinson?®
(LR);
e maximum likelihood approach: = Whittle’s

estimator®” (W); and

e temporal approach: number of level crossings?®
(NC) and discrete variations, both with ordinary
(OV) and generalized least squares (GV).%

Table 2 shows the results of the analysis.
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. Table 3 Self-similarity analysis of Sn.

5(50) | LR w | NC | oV | GV

-t 0.497
A} | ooes | 0499 | 0499 | 0519 | 0.500 | 0500
St. dev. | 0.0247 | 0.0209 | 0.0140 | 0.0151 | 0.0165 | 0.0158

*All the sequences are significant at level a = 0.01 (or less) of Type 1

error.
t Average over 100 samples.

In all cases a (senseless) self-similarity parameter
is estimated but there is a conclusive improvement
using the diameter: it is always statistically signifi-
cant at level @ = 5% (the only exception being the
4(50) estimated for the arctangent functional pa-
rameter with Hpyin, = 0.45 and Hyax = 0.55) and
therefore at 95% we can reject self-similarity, even if
a parameter has been calculated in some ways. It is
clear that this is a mere exercise, since applying the
above estimators to mBm is conceptually incorrect.
More, in the case of the diameter the time series is
not ergodic, so no justification can be given for the
use of KS statistic.

More persuasive is therefore the same analysis
performed with respect to some ergodic, non self-
similar stochastic process, such as the sequences
of independent and identically distributed (neither
Gaussian nor stable) random variables. To do this,
we have generated 100 samples of (2000 each) in-
dependent, uniformly distributed random variables
and built the process

3 11
(Sn)n=1,‘..,N = ch So =0, Gj ~ U <_§’ 5) .
Jj=1

Clearly the sequence S, is not self-similar since
S (and S, —Sp—1) is uniform, Sy (and S, —Sp_2) is
triangular and, in general, Sk (and S, —S,_k) tends
to the normal distribution as k tends to infinity. In
spite of this, if self-similarity is tested only with
regard to some moments of the distribution then
one concludes that the sequence is self-similar with
parameter Hy = % (see Table 3) and — by virtue
of the central limit theorem — this result becomes
the more likely the larger the lags are taken. This
is a consequence of the fact that the moment-based
estimators are generally unable to distinguish self-
similarity from second order self-similarity (or from
asymptotic self-similarity). The diameter §(50) is on
the contrary statistically significant for all the gen-
erated sequences, even at the probability level of

1%: the mean diameter is in fact 0.0864 (the stan-
dard deviation is 0.0245), whereas the threshold is
20.01 = 0.0518.

5. CONCLUSIONS

In this paper a new method has been proposed
that both tests scale invariance and estimates
the self-similarity parameter. Our method has two
main remarkable features: being distribution-based
but distribution-free, it is robust with respect to
infinite-moments self-similar stochastic processes
and, when the one-dimensional distributions are
considered, the significance of its estimates can be
evaluated using a standard inferential tool such as
the Kolmogorov-Smirnov goodness-of-fit test, even
in the case of strongly dependent ergodic sequences.
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APPENDIX A: PROOFS

Proof of Proposition 1 (necessity).

Using nota-

tion of (3) for the Ho-ss process X (t), the following
equalities hold

‘I)a;”ox(ai)(x) = ®x(1)(x) (12a)

B ,=Hox(ay) (¥) = Tx(1) () (12b)

for any x € R, any a;, a; € A and any A C R*.

From (12a) and (12b), it follows that the

definition of self-similarity can be equivalently
written as

D oy (%) = B, -tog () (X (13)




Hence, by (13) and by the definition of diameter
it is
‘sk(\I’Ho) = sup sup |(I)a_—H0x(a.)(x)
x€RFk aj,a;€EA : *
- d)a;nox(aj)(xﬂ
=0. (14)
(sufficiency). The proof directly follows from the
condition of self-similarity [equivalent to (1)] given
in the form of (13). In fact, 6¥(¥x,) = 0 implies
- k
@a:HOX(ai)(x) - @a;HOX(aj)(X) = 0 for any x € R,
any a;, aj € A and any A C R*, that is (13). O

Proof of Proposition 2. First assume without loss
of generality that a = 1. This is possible because
A is any subset of Rt such that a = min(A) and
2 = max(A). Therefore, it is always possible to
define the new set A* = {%} with a; € A and,
obviously, min(A*) = 1.

Case (a). For each H' < H" < Hy we have to prove
]

{‘PX(U(QlH'_H"X) < By (A" ~Hox), x20
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that 6% (Ygr) 2 5k(\IlH/I) or, similarly,

sup |(I>m—H'X(Q1) (X) - (I)X(l) (X)l
x€Rk

2> sup |(I>m—H”x(m) (x) - (I)X(l)(x)|~
x€ERF
Since the process is assumed to be self-similar,
equality (4) holds; therefore we can write

sup [®xq) (@A ~Hox) — Dx(r)(x)]
x€eRF

> sup |Px(1) ("~ Hox)
x€ERk

—®x()(x)] - (15)

Notice that, when H < Hp the quantity
@x(l)(QlH"%x) —®xq)(x) is non-positive when x 2
0 and non-negative when x < 0. Therefore inequal-
ity (15) holds because from H' < H" < Ho it
follows that AH' —Hox < H"~Hox for x 2 0 and
QUH'~Hoy > tH"~Hox for x £ 0, that is — & being
a distribution law —

e

Dy (1) (AH ~Hox) > By Hox), x50

{‘I’X(l)(x) — Bxqy(AH ~Hox) > By (g (x) — Pxqr) (@H"-Hox), x20
q)X(l)(mH"Hox) - ®x1)(x) 2 ‘I)Xa)(QlH”_H"X) - ®xqy(x), x=0.

Observe that both the left-hand and right-hand
sides of the two inequalities are positive and hence
the two cases can be parsimoniously gathered using
the modulus as follows

|Bx 1y (A7 ~Hox)
—Bx1)(%) > @y (A~ Hox)

—&x(1)(x)] - (16)

Inequality (16) holds for any x 2 0 or x < 0 and
therefore it holds for the supremum, which com-
pletes the proof of Case (a).

In the same way we discuss Case (b), for which
we assume H' > H" > Hpy. In this case it will be
8 (U p) < 6F(¥yn); in fact using the same argu-
ments of Case (a) and recalling that H' — Ho >

a{{'H"x
u{J_H"x

IA

1\

...éanH_Hox, X

...;_aﬁl_Hox, X

—
H" — Hy > 0, it is easily seen that

sup |Bx) (@7 ~Hox)
xeRk

—®&x(1)(x)| < sup ICDX(l)(QlH"_H"X)
x€ERF
—®x(1)(x)] O

Proof of Proposition 3. We prove only case (i) of
the Proposition, case (ii) being a trivial consequence
of the former. Firstly observe that X (t) being self-
similar both (4) and (7) hold; therefore one has

8% (U y) = sup l‘1>xu)(aH"H"X)‘I’X(l)(QlH_H"X)I-
x€ERk

Case (a): Ho > H. Since a1 2 -+ 2 0 and
Ay < -+ < Ay, for the infimum it will be

1\

0

IIA

0
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By (af ~Hox) < - < By (aflHox), x20

(17)
~Byqy(al~Hox) < o < —Byq(afHox), x<0
and for the supremum it will be
if=Hoy > ... <qi-Hox x>0
-
Qlfl_H‘)x <. Sufi-Hoy  x<0
—Bx (@A THox) <o < By (A Hox), x 20 )

By (@7 ox) < < Oxy@FHox), xS0,
Adding up (17) and (18) and using the compact notation of modulus
[y (@ ~0%) = By (A 00| < -+ < [y (o 0%) = gy (A o)) (19)

Since (19) holds for each non-negative (non-positive) x it holds for the supremum too, which completes
the proof of Case (a).
Case (b): Hy < H. The proof is omitted since it uses the same argument of Case (a). O

Proof of Proposition 4. When X (t) is the fractional Brownian motion (fBm) of parameter Ho, in notation
Bp,(t), one has

{a™H (B, (t + a) — Bro ()} £ N (0, a2Ho~H)g2) (20)

where 02 = E((Bpy,(t + 1) — By, (t))?). Assuming k = 1, due to the stationarity of the increments, it is

By, (t+a) — Bh,(2) C Bpy,(a) and hence, by the same argument used for the general case in Step 1 of the
proof of Proposition 5, (4) can be written in terms of the increments of the fBm, i.e.

Doty (o)(z) = Pr(a™ By (a) < 7)
=Pr(a™# (B, (t + a) — Br,(t)) < z)
= combining with (20)

1 € u?
- afo-Hg /21 /_oo P (_2a2(H°‘H)U2) du

= (by self-similarity)

oH—Ho u?
exp <—W> du. (21)

o'\/ 2

Written as (21), the diameter becomes
1 H-m 1 u?
6" (¥y) =sup sup : —==exp | —55 | du
o€R aija;€A |J s TV2T 20
%

Since the integrand is a positive function, one has the supremum with respect to a taking the maximum
interval of integration, that is, for a; = a (a; = 2) and a; = A (a; = a). Hence

o2 g u?
/ xp( 22)du

6" (U pr) = sup (22)

z€R




Maximizing the integral function (22), one has
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S S R 1 oo (- g
WMo Jar P\ 202 -Hg? ) T g H)g for 0\ 222~ g2 ) =

from which trivially follows

2(Ho—H) 2
. \/ 2(at) o
Q[Q

A
(Ho—H) _ q2(Ho—H) (Ho— H) In <E> :

The theoretical one-dimensional diameter for a fractional Brownian motion with parameter Hy is there-

fore independent on o2 and equals

1

Ve
0,

5 (Uy) =

A 2(Ho—H) A
Wherem—\/wj—_tﬂ_;mlnz. D

Proof of Proposition 5. The proof ensues combin-
ing the following three lemmas and steps. In partic-
ular, Step 1 reduces the analysis of the distribution
of X(a) to the distribution of Y(a). The extension
of the KS statistic to ergodic (dependent) random
variables as deduced in Step 2 is a direct conse-
quence of Lemmas 2 and 3. The convergence of the
diameter of a self-similar process to £(z) is justified
in Step 3.

Lemma 1 (Smirnov). Let Y7,Y5,...,Y, be n
mutually independent continuous random variables
with common distribution function Fy,(z) = F(x)
for all j and let Fy,(z) be the sample cumulative
distribution function drawn by the Y;’s. Then

. z
. _ < 2
nlLrI;oPr <Slip|Fn($) F(z)| < \/ﬁ)

=L(z):=1- 2%(-1)9'—1 exp(—-2j22%). O
Jj=1

Lemma 2 (Glivenko-Cantelli). Let (Y;) be a
stationary ergodic sequence defined on a proba-
bility space (2, F, P) with common distribution
function Fy,(z) = F(x) and empirical distribution
function F,(z) at stage n. Then, with probability
one sup,cg |F(z) — F(z)| — 0. O

Lemma 3. The sequence of the increments
B,(t + 1) — Bp,(t) of an fBm is ergodic (see
e.g. Ref. 30, Theorem 14.2.1). O

—gflo—H u
/ exp| —— | du
—gaHo—H 2

) H#HO

H=H,.

Proof of Step 1. Notice that

~ ~ d ~ ~
|<I>n’)-{(1)(z)— ‘I’n,X(a) (=) = |‘I>n,§{(1) (z)- ‘I)n,y'((a) ()|
In fact, self-similarity of X (t) ensues that
(X (at), X(aty),...,X(ats))
L (X (t)), a0 X (ty),...,aM0 X (t,)). (23)
Since, for each positive real t, X(aty) 4
tkHOX(a), (23) can be written as

X (a), to X (a), ..., tH X (a))

£ ((at1)Ho X (1), (ata) X (1),..., (atn)T0 X (1))
or equivalently as
(a=H0 X (a), a~H0 X (a), ... ,a~Ho X (a))

2(X(1), X(1),...,X(1). (24)
Due to the stationarity of the increments, it is

Y (tk,a) = X(te + a) — X(tx) £ X(a)

and hence, written in terms of increments, (24)
becomes

Y@) £ Y(1).

Finally, we conclude that

‘i’n,Xu)(x) = ‘i)n,X(a) () & @, 54 ()
= (i)n,\'{(a) (z). a

Proof of Step 2. Independence of the random
variables is required in Lemma 1 to guarantee
that F,(z) — F(z) as n tends to infinity as in
classical Bernoulli trials; otherwise, assuming some
form of dependence among the Y;’s, F,(z) would
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approximate a (certain) comditional distribution
rather than the unconditional one. In spite of this,
when Yj,...,Y, forms a stationary ergodic sequence
Lemma 2 holds, which generalizes the case of i.i.d.
random variables. In this way the convergence to
F(z) is ensured as well and this is, for example, the
case of fBm, whose increments are stationary and
ergodic under time shifts, despite the strong corre-
lations shown when H > 1 (Lemma 3). O

Proof of Step 3.  To prove now that the diameter
calculated for a (dependent or independent) Hy self-
similar process distributes for H = Hy as the KS
statistic, we will refer to the argument given in 1951
by Gnedenko and Koroljuk.3! The scheme leads to
the following conclusion: Pr(sup;<,<, lénx(l)(x) -
®, %0 (@) < ﬁ) equals the probability that a
symmetric random walk of length 2n starting and
terminating at the origin does not reach the points
+r, namely the well-known probability of a ran-
dom walk with absorbing barriers, i.e. £(z) (see
e.g. Ref. 32). To show this, it suffices to consider
integral r.

(1) The 2n random variables Y(t,1),.
Y (tn,1),a"HoY (t1,a),...,a"HY (t,,a) are sorted
in order of increasing magnitude and placed in the
vector y = (ys)sc1,...on-

(2) Define the vector r = (rg)s=1,.,2, Where
Ty = Hi{(l)(ys) - HY(a) (ys). So, rs = 1 if the sth ele-

ment of y comes from Y(l) and r; = —1 if the sth
element of y comes from Y(a).

(3) This is the core of the proof. The vector r con-
tains n plus ones and n minus ones and — what is

here of importance — all ( orderings are equally

likely. In fact — by definition of self-similarity —
since a H°Y(tk,a) Y(tk, 1) there is no reason for
a particular displacement to hold when the elements
of y are ordered. This property is trivially true when
conditions of Lemma 1 hold but continues to be
true if self-similarity occurs, whether independence
is assumed or not.

(4) The elements of r are therefore in a one-to-one
correspondence with the paths of length 2n start-
ing and terminating at the origin; this means that
if Zs_ rs = q in the first j positions there are
44 variables of Y(1) and Z;? variables of Y(a).
Hence there exists a point z such that @Y(l)( z) =

5 and @Y( () = 224 and then |®, woy(@) —
cbn,i?(a) (17)' - Ién,X(l)(x) - n,X(a (iL‘)l = u It fol-

lows that sup; <<, |&>n,§£(1)(”3) 3 ()T )] > (ql.
(5) The argument in reverse completes the
proof. O




