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Abstract

Tools and approaches are provided for nonlinear time series modelling in economet-
rics. A wide range of topics is covered, including probabilistic properties, statistical
inference and computational methods. The focus is on the applications but the ideas
of the mathematical arguments are also provided. Techniques and concepts are il-
lustrated by various examples, Monte Carlo experiments and a real application. 1

1 Introduction

For the modelling and prediction of data collected sequentially in time, prac-
titioners possess a well-established methodology based on linear time series
models. This is the so-called Box-Jenkins methodology, which consists in fit-
ting autoregressive moving-average (ARMA) models by model selection and
estimation followed by model criticism through significance tests and diagnos-
tic checks on the adequacy of the fitted model (see e.g. the comprehensive
book [29]). A univariate time series (Yt) satisfies an ARMA model when

Yt −
p
∑

i=1

aiYt−i = ν + ǫt −
q
∑

i=1

biǫt−i,

1 This document is an extended version of : A. Amendola, C. Francq, Concepts and
tools for nonlinear time series modelling, Handbook of Computational Econometrics,
Edts: D. Belsley and E. Kontoghiorghes, Wiley (2009).



where the ǫt are errors terms. The popularity of these models is certainly due
to their relatively simple mathematical tractability and also to the existence of
computer software incorporating the above-mentioned Box-Jenkins method-
ology. The ARMA models appear however insufficient because they are not
able to take into account important features of many observed data, such as
the conditional heteroscedasticity of the financial times series. The autore-
gressive conditional heteroscedastic (ARCH) models have been introduced by
Engle [51] to allow stationarity (in particular a time invariant unconditional
variance) with time-varying conditional variance through an equation of the
form

ǫt = σtηt, σ2
t = ω +

Q
∑

i=1

αiǫ
2
t−i. (1)

where ηt is an independent and identically distributed (iid) sequence of random
variables with mean 0 and variance 1. Numerous other parametric specifica-
tions of the conditional variance have been proposed in the literature. The
most widely used ARCH-type models are today the GARCH models of [21].
In these models the term

∑P
i=1 βiσ

2
t−i is added to the right-hand side of (1),

which allows for long run effects of the shocks. The EGARCH of [97], the GJR-
GARCH of [64], the APARCH of [50], the QGARCH of [107] or the TARCH
of [128] are also widely employed to take into account the asymmetric impacts
of the shocks on the volatility. Figure 1 compares the news impact curve (i.e.
the function ǫt 7→ σ2

t+1) of 3 different ARCH-type models (see [54] for details
on the concept of news impact curve). Note that the TARCH and QARCH
models allow good news (i.e. positive returns ǫt > 0) and bad news (i.e. nega-
tive returns ǫt < 0) to have a different impact on the future volatility σt+1, and
that for the QARCH model the volatility is not minimal at 0. The stochastic
volatility models of [110] have been introduced to allow a more flexible form,
specifying σt itself as a stochastic process which is not only driven by past
observable variables.

It should be noted that the specification of σ2
t := Var(ǫt | ǫu, u < t) does not

affect the conditional mean E(Yt | Yu, u < t), which in the simple AR(p) case
is the linear function ν +

∑p
i=1 aiYt−i. A natural extension of the linear AR

model is the general non linear model

Yt = Fθ(Xt, Yt−1, . . . , Yt−k) + ǫt, (2)

where Fθ is a function which may be nonlinear and Xt is a vector of exogenous
variables. One of the most popular non-linear model belonging to the general
specification (2) is the self-exciting threshold autoregressive (SETAR) model
(see [121] and the monograph [120]). A two-regime SETAR model is defined
by

Yt =

{

ν(1) +
p
∑

i=1

a
(1)
i Yt−i + ǫ

(1)
t

}

+

{

ν(2) +
p
∑

i=1

a
(2)
i Yt−i + ǫ

(2)
t

}

1{Yt−d>r}, (3)
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Figure 1. News impact curves of the ARCH(1) model ǫt =
√

1 + 0.38ǫ2t−1ηt,

the TARCH(1) model ǫt = (1 − 0.5ǫ−t−1 + 0.2ǫ+t−1)ηt, and the QARCH(1) model

ǫt =
√

1 + 0.38ǫ2t−1 − ǫt−1ηt.

where 1A is the indicator function of the event A, r is the threshold parameter
and d is the threshold delay. The explanation of the term "self-exciting" is
that the dynamics switches from one to the other AR regime according to the
past of (Yt) itself. The formulation can be extended to the SETARMA model
(see [119]), including a moving average component.

To model periodic phenomena it may be more natural to assume that the
AR parameter changes deterministically over time. This leads to the so-called
time-varying models (see [13], [18] and the references therein).

It has been suggested (see [111] and the references therein) to modify (3) in
order to allow smooth transitions between the regimes. The transition is driven
by a transition function G(γ, c, st) in which (st) is a transition variable, which
is not necessarily of the form st = Yt−d, but can be a more general function
of the variables Xt, Yt−1, . . . , Yt−p. An example of transition function is the
logistic function

G(γ, c, st) =
1

1 + exp {−γ(st − c)} ,

where γ > 0 is a slope parameter and c is a location parameter (see Figure 2).
In its simplest form the smooth transition regression (STR) can be written as

Yt = β ′
1Wt + {β ′

2Wt}G(γ, c, st) + ǫt

where Wt = (1, Yt−1, . . . , Yt−p, X
′
t)

′.

The exponential autoregressive (EXPAR) models introduced by [70] are de-
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Figure 2. Logistic smooth transition function x→ G(γ, c, x).

fined by

Yt =
p
∑

i=1

{

ai + bi exp(−γY 2
t−1)

}

Yt−i + ǫt

with γ > 0. These models are able to account for limit cycles and can be con-
sidered as particular smooth transition autoregressive (STAR) models. Indeed,
the dynamics is close to that of an AR(p) model with coefficients (a1, . . . , ap)
when Y 2

t−1 is large, and with coefficients tending to (a1 + b1, . . . , ap + bp) when
Y 2
t−1 decreases. The EXPAR models can also be viewed as particular cases

of more general random coefficient autoregressive (RCA) models (see [98]) or
functional autoregressive (FAR) models (see [33]).

Another class of models with regime changes is obtained when the transition
variable is an unobserved random process. If one assumes the existence of
several AR regimes, and that the dynamics switches from one regime to an-
other regime according to a non-observed Markov chain, we obtain a Markov-
switching model of the form

Yt = c(∆t) +
p
∑

i=1

ai(∆t)Yt−i + σt(∆t)ǫt, (4)

where (∆t) is a Markov chain with finite state-space E = {1, 2, ..., d}. An in-
creasing interest for this class has been shown in the econometric literature
since the seminal paper by Hamilton [72] who introduced a business cycle
model of the form Yt = c(∆t)+Xt where Xt is an AR(p) model. These models
extend the class of hidden Markov models (HMM), in which the observations
are assumed to be independent conditional on the hidden Markov chain ∆t.
The HMM have been introduced by [16] and have found numerous applica-
tions, for instance in speech recognition (see e.g. [103]).

The bilinear models (see [67] and [109]) constitute another very popular class
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of nonlinear models, defined by

Yt = ǫt +
p
∑

i=1

aiYt−i +
q
∑

j=1

bjǫt−j +
P
∑

i=1

Q
∑

j=1

cijYt−iǫt−j . (5)

When P = Q = 0, the product terms Yt−iǫt−j disappear and one obtains a
linear ARMA(p, q) model.

Tong [120] first suggested to combine a nonlinear model for the conditional
mean with a model for the conditional variance. For this purpose, models such
as TAR-ARCH and BL-ARCH have been used in practical application. The
empirical evidence on the presence of asymmetry, both in the level and in the
conditional variance, leads to DTARCH (Double Threshold Autoregressive
Conditionally Heteroscedastic) models, first proposed by Li and Li [85] and
further investigated in [87]. A DTARCH model is given by



























Yt =
∑k
j=1(ν

(j) +
∑pj

i=1 a
(j)
i Yt−i + ǫt)1{rj−1<Yt−d≤rj}

ǫt = σtηt

σ2
t =

∑k
j=1(ω

(j) +
∑Qj

i=1 α
(j)
i ǫ2t−i)1{cj−1<ǫt−s≤cj}

where the threshold values, rj and cj , are such that r0 < r1 < ... < rk,
r0 = −∞, rk = +∞, and c0 < c1 < ... < ck, c0 = −∞, ck = +∞; d and s are
the delay parameters for the conditional mean and the conditional variance.

There are many other classes of parametric nonlinear models. Non parametric
methods (see [75]) and semiparametric models (see [55]) are also very useful
to forecast and analyze nonlinear time series.

The aim of the paper is to examine some of the key issues in nonlinear time
series analysis, limiting ourselves to univariate and stationary series. A large
number of papers and books are also devoted to this topic (see [39], [55],
[62], [69], [102], [108], [112], [113], [120], [123] and the references therein).
The approach chosen in the present paper is to concentrate on tools and
methods, rather than on models themselves. This choice was done for two
reasons. First the number of imaginable nonlinear models is virtually infinite,
whereas fundamental concepts like stationarity and ergodicity are of interest
for all these models. Second, comprehensive reviews of the nonlinear models
used in financial and macroeconomic time series are already contained in the
above mentioned works.

We tried to make the text as self-consistent as possible, and to give the main
ideas of the mathematical arguments whenever that was not too difficult.
The concepts are illustrated by original examples and Monte Carlo simula-
tions. This paper is intended for a broad public of researchers in statistics or
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econometrics, coming either from theoretical domains or from applied areas,
but who are not familiar with all the aspects of nonlinear time series mod-
elling. For example, a probabilist will learn nothing from the section devoted
to the probabilistic tools, but could be interested by the importance of the
geometric ergodicity for the Markov chains generated by the MCMC methods.
Conversely, an applied analyst using MCMC algorithms could be glad to see
that, at least for some simple models, it is possible to find mild conditions for
geometric ergodicity. This is why we decided not to concentrate on only one
aspect of non linear time series analysis, such as for instance the computational
methods.

The rest of this chapter is organized as follows. In Section 2 we give the defi-
nitions of linear and nonlinear data generating processes, and we discuss the
concept of model. We argue that linear and non-linear models are not incom-
patible and can often be complementary. Section 3 presents parametric and
nonparametric tests statistics that can discriminate linear series from nonlin-
ear ones. Section 4 provides tools for deriving the main probabilistic properties
of nonlinear time series models. Section 5 is devoted to the statistical infer-
ence. Section 6 concerns forecasting issues. Section 7 is devoted to numerical
and computational aspects. Section 8 concludes.

It is not necessary to read sequentially the different sections, according to the
topic, a "nonlinear" reading is recommended.

2 Nonlinear data generating processes and linear models

In this section we make the distinction between a data generating process
(DGP) and a model. A model is generally insufficient to determine the whole
distribution of the data, but is simply an equation which can indeed be satisfied
by processes of all types.

2.1 Linear and nonlinear processes

It is not so obvious to define the notion of linear and nonlinear process. These
concepts are sometimes used in a different sense from the one adopted here.
The process (Xt)t∈Z is said to be a linear process with mean 0 if for all t ∈ Z

Xt = ηt +
∞
∑

i=1

ψiηt−i,
∞
∑

i=1

ψ2
i <∞, (ηt) is IID(0, σ2), (6)
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and

Xt = ηt +
∞
∑

i=1

πiXt−i,
∞
∑

i=1

π2
i <∞, (7)

where IID(0, σ2) denotes an iid sequence of random variables with mean 0 and
common variance σ2 > 0. Such a sequence is sometimes called a strong white
noise. A weak white noise is a stationary sequence of centered and uncorrelated
random variables with common variance σ2 > 0, and will be denoted by
WN(0, σ2). Obviously a strong white noise is also a weak white noise, because
independence entails uncorrelatedness, but the reverse is not true. We will see
that the distinction between strong and weak white noises is fundamental in
nonlinear time series analysis.

Under standard assumptions (see Examples 1 and 2 below), the ARMA pro-
cesses, and also processes with long memory, satisfy (6)-(7). It is shown in [27]
and [34] that the "two-sided" linear representation

Xt = ηt +
∞
∑

i=−∞

ψiηt−i,
∞
∑

i=−∞

ψ2
i <∞, (ηt) ∼ IID(0, σ2), (8)

is essentially unique when (Xt) is not gaussian and when the spectral density of
(Xt) is positive almost everywhere (more precisely if Xt = η∗t +

∑∞
i=−∞ ψ∗

i η
∗
t−i,

with
∑∞
i==−∞ ψ∗2

i < ∞, and (η∗t ) ∼ IID(0, σ∗2), then η∗t = cηt−s and ψ∗
i =

ψi+s/c for some s ∈ Z and some c > 0). Thus, when the spectral density
of (Xt) is positive almost everywhere, the linear representation (6) is unique,
except in the gaussian case.

Example 1 Consider a MA(1) process of the form Xt = ηt − bηt−1 with |b| > 1
and ηt IID(0, σ2). This representation is said to be noninvertible because ηt can
not be expressed as a function of {Xu, u ≤ t}. Instead one has the "anticipative"
representation ηt = −∑i≥1 b

−iXt+i. It is easy to see that ǫt :=
∑

i≥0 b
−iXt−i =

ηt +
∑

i≥1 b
−i(1− b2)ηt−i is a WN(0, b2σ2). Thus (Xt) also satisfies the "invertible"

MA(1) representation Xt = ǫt− b−1ǫt−1. When (Xt) is Gaussian, the processes (ηt)
and (ǫt) are also Gaussian, and ǫt is IID(0, b2σ2) because for gaussian processes the
two concepts of white noise coincide. A nontrivial consequence of the uniqueness of
(6) in the non-Gaussian case is that the ǫt’s are not independent when (Xt) is not
Gaussian.

Example 2 As in the previous example, it can be shown that the non causal AR(1)
equation

Xt − aXt−1 = ηt, |a| > 1, (ηt) ∼ IID(0, σ2)

admits an anticipative stationary solution. This solution also satisfies the causal
AR(1) equation Xt − a−1Xt−1 = ǫt, where ǫt is a weak white noise. Except in the
Gaussian case, this noise is not strong.

We will say that a process (Xt) is nonlinear if (6)-(7) does not hold. With this
definition, some noncausal ARMA processes (as in Example 2) are considered
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as nonlinear. This is also the case for the so-called all-pass models, which
are causal ARMA models in which the roots of the AR polynomial are the
reciprocals of the roots of the MA polynomial (see [28] and the references
therein for details about all-pass models). The following example corresponds
to the simplest all-pass model.

Example 3 Consider the process defined by

Xt − aXt−1 = ηt −
1

a
ηt−1, |a| < 1 (ηt) ∼ IID(0, σ2). (9)

It is easy to see that the spectral density of Xt is constant, equal to σ2/(a22π). Thus
Xt is WN(0, σ2/a2) and, in view of the previous arguments, Xt is IID(0, σ2/a2)
if and only if ηt is Gaussian. Figure 3 shows that, when ηt is not gaussian, the
simulated trajectories of (Xt) may share common features with financial returns :
uncorrelation of the observed values, but strong correlations of the squares or of the
absolute values, and volatility clustering. Thus the non-Gaussian all-pass models are
not strong white noises, though they are weak white noises.

A trajectory of length 100 ACF of a simulation of length 1000

ACF of the absolute values ACF of the squares

100
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Figure 3. Simulation of the all-pass model (9) where a = 0.5 and ηt follows a Student
distribution with 3 degrees of freedom, sample autocorrelations of Xt, of |Xt|, and
of X2

t for t = 1, . . . , n = 1000.

Condition (8) is sometimes taken as definition of a linear process. In this case,
the all-pass models are considered as linear. This does not seem desirable
because, as we have seen, the behavior of the all-pass models (uncorrelatedness
of the observations and correlation of their squares) is often considered as a
typical nonlinearity feature.
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2.2 Linear representation of nonlinear processes

Wold [126] has shown that any purely non deterministic, second-order station-
ary process admits an infinite MA representation of the form

Xt = ǫt +
∞
∑

i=1

ψiǫt−i,
∞
∑

i=1

ψ2
i <∞, (ǫt) ∼ WN(0, σ2), (10)

where (ǫt) is the linear innovation process of (Xt). Comparing (6) and (10),
one can see that

(Xt) is linear when its innovation process (ǫt) is a strong white noise. (11)

Note that (10) is just a representation, a model, but is not sufficient to entirely
define the process (Xt). Several linear or nonlinear DGP may admit the same
linear model of the form (10).

Example 4 Consider the simple bilinear process Xt = ηt+bXt−1ηt−2, where b2 < 1
and (ηt) is IID(0, 1). The stationary solution writes

Xt = ηt + bηt−1ηt−2 +
∞
∑

k=2

bkηt−2ηt−3 . . . ηt−k+1η
2
t−kηt−k−1.

One can easily check that E(Xt) = 0, γ(0) = 1 + b2 + µ4b
4/(1 − b2), γ(1) =

b3µ3, γ(2) = 0, γ(3) = b2, and γ(h) = 0 for all h > 3, where µ3 = Eη3
t ,

µ4 = Eη4
t and γ(h) = Cov(Xt,Xt−h). When µ3 = 0, Xt satisfies the MA(3)

representation Xt = ǫt + α3ǫt−3, where α3 is obtained by solving α3/(1 + α2
3) =

b2(1 − b2)/(1 − b4 + b4µ4), |α3| < 1. Note that from this weak MA(3) representation
the optimal linear prediction of Xt given its past takes the form α3Xt−3 −α2

3Xt−6 +
α3

3Xt−9 + · · · whereas the optimal prediction is bXt−1Xt−2 − b2Xt−1Xt−3Xt−4 +
b3Xt−1Xt−3Xt−5Xt−6 + · · · , provided this expansion exists.

Numerous other examples of nonlinear processes admitting weak ARMA rep-
resentations can be found in [61] and the references therein.

3 Testing linearity

Most of the classes of nonlinear models encompass linear ones. This is clearly
the case for the bilinear models (5). Thus, it may be argued that a bilinear
model can always provide forecasts at least as good as those of an ARMA
model. The problem is obviously that the parameters have to be estimated.
This is why a simple model, though often incomplete, may outperform a more

9



complicated model. This leads the practitioner to adopt the principle of parsi-
mony, by preferring the simplest models and rejecting the unnecessarily com-
plicated specifications. Many nonlinear models are not identified when the
DGP is linear. This is the case, for instance, with the SETAR model (3).
When there is only one regime, one can take the threshold r = +∞ and arbi-
trary values for the parameters ν(2), σ(2) and a

(2)
i . It will be seen in Section 3.3

that such identifiability problems entail difficulties to determine the behavior
of estimators of nonlinear models when the DGP is linear. As a consequence,
a building-model strategy "from general to specific" (beginning with the esti-
mation of a very large nonlinear model, followed by successive cancelation of
non significant coefficients) is not always a good idea.

For these reasons, one can recommend to begin the specification stage by
testing the linearity hypothesis.

3.1 Weak white noise and strong white noise testing

In view of (11), nonlinearities can be detected by testing if the linear innova-
tions are iid or simply uncorrelated. We begin in Section 3.1.1 by testing if a
sequence of observations (or the errors of a linear model) is a weak white noise
or displays autocorrelation. In Section 3.1.2 we test if a weak white noise is
strong or not.

3.1.1 Detection of autocorrelations

Assume that (ǫt) is a weak white noise WN(0, σ2). The sample autocorrelations

ρ̂(h) = γ̂(h)/γ̂(0), where γ̂(h) = n−1∑n−|h|
t=1 ǫtǫt+|h|, are expected to be close to

ρ(h) = Cov(ǫt, ǫt−h) = 0 for all h 6= 0. When a central limit theorem (CLT)
applies (see Section 4 below for conditions ensuring the CLT), any vector of
sample autocorrelations ρ̂m = {ρ̂(1), . . . , ρ̂(m)}′ satisfies, as n→ ∞,

√
nρ̂m

L→ N (0,Σm), Σm(i, j) =
1

σ4

∞
∑

ℓ=−∞

Eǫtǫt+iǫt+ℓǫt+ℓ+j . (12)

Note that for a strong white noise IID(0, σ2), the asymptotic variance Σm is
the identity matrix Im. In this case the approximated 5% significance limits
of the sample autocorrelations are ±1.96/

√
n (as dotted line in Figure 4).

These significance limits are also used extensively as a diagnostic check on
the residuals of a fitted ARMA model. It is however important to note that
these limits are not (asymptotically) valid when (ǫt) is only WN(0, σ2), but
not IID(0, σ2).

Example 5 Consider the ARCH(1) model ǫt = σtηt, with ηt IID(0, 1), κ = Eη4
t

10



and σ2
t = ω + αǫ2t−1. Straightforward computations show that Σm(i, i) = 1 + (κ −

1)αi(1 − κα2)−1 which may be quite different from the value Σm(i, i) = 1 obtained
in the IID(0, σ2) case.

For checking the whiteness of a series, it is customary to test the assumption
H0 : ρ(1) = · · · = ρ(m) = 0 by the so-called portmanteau tests, based on the
Box and Pierce [25] statistic QBP

m = n
∑m
i=1 ρ̂

2(i) and on the Ljung-Box [88]
statistic QLB

m = n(n + 2)
∑m
i=1 ρ̂

2(i)/(n − i). Under the assumption that ǫt is
IID(0, σ2), the asymptotic distribution of these portmanteau statistics is χ2

m,
but this is not true for a general WN(0, σ2). One can however work with a
modified portmanteau statistic Qm = nρ̂′mΣ̂−1

m ρ̂m which converges in law to a
χ2
m whenever (12) holds and Σ̂m is a consistent estimator of the nonsingular

matrix Σm. The problem with the standard portmanteau tests based on QLB
m

is that the white noise hypothesis can be rejected because the observations,
though uncorrelated, are not independent (see Example 6 below).

The same difficulties hold when the portmanteau tests are applied to
ARMA(p, q) residuals. The conventional χ2

m−(p+q) distribution is no more valid
in the presence of nonindependent innovations. In other words, the standard
portmanteau goodness-of-fit tests are not reliable when the model is ARMA
and the DGP is nonlinear. Is is however possible to modified these tests to
take into account conditional heteroscedasticity or any other dependence in
the linear innovations (see [89] and [59]).

Example 6 The left graph of Figure 4 displays the autocorrelations of a simulation
of length n = 5000 of an iid N (0, 1) sequence. The right graph is analogous, but it
concerns the GARCH(1,1) process







ǫt = σtηt, ηt ∼ N (0, 1)

σ2
t = 1 + 0.3ǫ2t−1 + 0.55σ2

t−1.
(13)

The thick dotted lines correspond to the true asymptotic 5% significance limits for
the sample autocorrelations, whereas the fine horizontal dotted lines ±1.96/

√
n cor-

respond to the asymptotic 5% significance limits for the sample autocorrelations of a
strong white noise. In concrete applications the true significance limits are unknown,
but can be estimated (see [105], [89] and [61]).

Table 1 reports the results of the standard and modified portmanteau tests, for a
simulation of length n = 5000 of the GARCH(1,1) model (13). The standard port-
manteau tests indicate that the strong white noise assumption must be rejected. One
could think that this is due to the existence of non zero autocorrelations, and one
could erroneously draw the conclusion that an ARMA model should be fitted to take
into account these autocorrelations. The right conclusion is given by the modified
portmanteau tests, which do not find strong evidence against the WN(0, σ2) hypoth-
esis.
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Figure 4. Autocorrelation of a strong white noise IID(0, σ2) (left graph) and of the
weak white noise WN((0, σ2) defined by (13) (right graph).

Table 1
Portmanteau tests on a simulation of the GARCH(1,1) process (13).

Weak white noise tests based on Qm

m 1 2 3 4 5 6

ρ̂(m) 0.00 -0.06 -0.03 0.05 -0.02 0.00

σ̂ρ̂(m) 0.025 0.028 0.024 0.024 0.021 0.026

Qm 0.00 4.20 5.49 10.19 10.90 10.94

P (χ2
m > Qm) 0.9637 0.1227 0.1391 0.0374 0.0533 0.0902

Usual white noise tests

m 1 2 3 4 5 6

ρ̂(m) 0.00 -0.06 -0.03 0.05 -0.02 0.00

σ̂ρ̂(m) 0.014 0.014 0.014 0.014 0.014 0.014

QLBm 0.01 16.78 20.59 34.18 35.74 35.86

P (χ2
m > QLBm ) 0.9365 0.0002 0.0001 0.0000 0.0000 0.0000

3.1.2 Detection of serial dependence

We have seen that a process is linear if its innovation process (ǫt) is a strong
IID(0, σ2) noise. It is well known that the two random variables ǫt and ǫt−h
are independent if and only if Cor {ϕ(ǫt), ϑ(ǫt−h)} = 0 for all functions ϕ and
ϑ such that Eϕ2(ǫt) < ∞ and Eϑ2(ǫt) < ∞. It is thus natural to test the as-
sumption that (ǫt) is a strong white noise by inspecting whether the squared
process (ǫ2t ), or other transformed processes of the form {ϕ(ǫt)}, is correlated
or not. McLeod and Li [91] showed that, when ρ̂ǫ2(·) is the sample autocorre-
lation function of the squared residuals ǫ̂21, . . . , ǫ̂

2
n of a strong ARMA model,

the portmanteau statistics QLB
ǫ2,m = n(n + 2)

∑m
i=1 ρ̂

2
ǫ2(i) is asymptotically χ2

m

distributed. Note that, contrary to QLB
m , the asymptotic distribution of QLB

ǫ2,m

does not depend on the number p + q of estimated parameters. Numerous
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other linearity tests are now available (see the book [83] or the paper [79] for
recent references).

3.2 Testing linearity against a specific nonlinear model

Consider a nonlinear model which nests the linear model. Assume that the
unknown parameter θ0 = (β ′

0, ψ
′
0)

′ is such that the linearity hypothesis reduces
to H0 : ψ0 = 0, with ψ0 ∈ R

s. Hypothesis testing is often based on the Wald,
Score or Likelihood Ratio principle (see [52] and [65] for general references
on these tests). The score test, also called Lagrange multiplier (ML) test or
Rao test, is often very convenient because it does not require the estimation
of the nonlinear model (which, in view of the identifiability problem already
mentioned, is often difficult when H0 holds true). This test only requires the
estimation of the constrained estimator under H0, denoted by θ̂c = (β̂c

′

, 0′)′.
This estimator is often very simple, and sometimes coincides with an ordinary
least-squares estimator of the form β̂c

′

= (X′
X)−1

XY.

3.2.1 General form of the LM test statistic

Under standard assumptions which will be discussed in Section 5, the condi-
tional (quasi) log-likelihood takes the form

ℓn(θ)
oP (1)
=

n
∑

t=1

log fθ(Yt | Xt, Yt−1, . . . ),

where θ = (β ′, ψ′)′ and a
c
= b stands for a = b + c. Moreover the score vector

satisfies a CLT, and we have

1√
n

∂

∂θ
ℓn(θ0)

L→N











0, I :=







I11 I12

I21 I22

















,

√
n(θ̂ − θ0)

L→N











0, I−1 :=







I11 I12

I21 I22

















, I22 =
(

I22 − I21I
−1
11 I12

)−1
,

where θ̂ denotes the unconstrained quasi-maximum likelihood estimator
(QMLE). Under H0, a Taylor expansion yields

1√
n

∂

∂θ
ℓn(θ̂)

oP (1)
=

1√
n

∂

∂θ
ℓn(θ̂

c) +
1

n

∂2

∂θ∂θ′
ℓn(θ0)

√
n(θ̂ − θ̂c). (14)

The left-hand size is 0 when θ̂ is an interior point of the parameter space,
and ∂ℓn(θ̂

c)/∂θ′ = (0′, ∂ℓn(θ̂
c)/∂ψ′) for the same reason. Assume that
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n−1∂2ℓn(θ0)/∂θ∂θ
′ converges to −I. Then, under H0, the first rows of (14)

yield
√
n(β̂c − β̂)

oP (1)
= I−1

11 I12
√
nψ̂

L→ N
(

0, I−1
11 I12I

22I21I
−1
11

)

and the last s rows of (14) yield

∆c
n :=

1√
n

∂

∂ψ
ℓn(θ̂

c)
oP (1)
= I21

√
n(β̂ − β̂c) + I22

√
nψ̂

oP (1)
= (−I21I−1

11 I12 + I22)
√
nψ̂

L→ N (0,Σ∆)

where Σ∆ = (I22)
−1

.

A Rao score-type statistic is then given by LMn = (∆c
n)

′ Σ̂−1
∆ ∆c

n where Σ̂∆

denotes any H0-consistent estimator of Σ∆. This statistic follows asymptoti-
cally a χ2

s distribution under the null. This leads to critical regions of the form
{LMn > χ2

s(1 − α)}.

3.2.2 LM statistic when I21 = 0

The LM test can sometimes be carried out very easily. Consider a general
conditionally homoscedastic nonlinear model of the form Yt = Fθ(Wt) + ǫt,
where Wt = (Xt, Yt−1, . . . ) depends on an exogenous vector Xt and on the
past values of the endogenous variable, and ǫt is IID(0, σ2), so that Wt and ǫt
are independent. We assume that σ2 = σ2(β) does not depend on ψ. With a
Gaussian quasi-likelihood, we have

∆c
n =

1√
nσ̂c 2

n
∑

t=1

ǫt(θ̂
c)
∂

∂ψ
Fθ̂c(Wt) =

1√
nσ̂c 2

F
′
ψÛ

c

with ǫt(θ) = Yt − Fθ(Wt), σ̂
c 2 = σ2(β̂c), ǫ̂ct = ǫt(θ̂

c) and Û
c = (ǫ̂c1, . . . , ǫ̂

c
n)

′.
Under the assumption that the information matrix I is block-diagonal, i.e.
when I12 = σ−2E {∂Fθ0(Wt)/∂β} {∂Fθ0(Wt)/∂ψ

′} = 0, the asymptotic distri-
bution of ∆c

n is equal to that of n−1/2σ−2∑n
t=1 ǫt∂Fθ0(Wt)/∂ψ, and one can

take Σ̂∆ = n−1 (σ̂c)−4
Û
c ′
Û
c
(

n−1
F

′
ψFψ

)

oP (1)
= F

′
ψFψ/(Û

c ′
Û
c) as a consistent

estimator of Σ∆. We then obtain the following simple version of the score
statistic

LMn = n
Û
c ′

Fψ

(

F
′
ψFψ

)−1
F

′
ψÛ

c

Ûc ′Ûc
, (15)

which is n times the uncentered coefficient of determination of the regression
of ǫ̂ct on the variables ∂Fθ̂c(Wt)/∂ψi for i = 1, . . . , s.
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3.2.3 LM test with auxiliary regressions

When I12 is not assumed to be zero, and when σ2 is a nuisance parameter
which does not depend on the parameter of interest θ = (β ′, ψ′)′, one can
estimate Σ∆ by

Σ̂∗
∆ =

1

nσ̂c 4
Û
c ′
Û
c
(

n−1
F

′
ψFψ − n−1

F
′
ψFβ

(

n−1
F

′
βFβ

)−1
n−1

F
′
βFψ

)

,

where

F
′
β =

(

∂Fθ̂c(W1)

∂β
· · · ∂Fθ̂c(Wn)

∂β

)

.

Because the initial model is linear under the constraint H0, we generally
have Û

c = Y − Fβ β̂
c and σ̂c 2 = Û

c ′
Û
c/n with Y = (Y1, . . . , Yn)

′ and

β̂c =
(

F
′
βFβ

)−1
F

′
βY, up to negligible terms (unknown initial values entail

that the conditional QMLE does not exactly coincide with the least squares
estimator (LSE) under the null).

Now consider the auxiliary linear regression

Y = Fββ
∗ + Fψψ

∗ + U. (16)

In this auxiliary regression, the LM test statistic of the hypothesis H∗
0 : ψ∗ = 0

is equal to

LM∗
n =n−1 (σ̂c)−4

Û
c ′

Fψ

(

Σ̂∗
∆

)−1
F

′
ψÛ

c

= (σ̂c)−2
Û
c ′

Fψ

(

F
′
ψFψ − F

′
ψFβ

(

F
′
βFβ

)−1
F

′
βFψ

)−1

F
′
ψÛ

c,

(see [52] eq. (24)), which is precisely the LM test statistic of the hypothesis
H0 : ψ = 0 in the initial model. It is well known (see [52] eq. (27)) that the
LM statistic which is associated with H∗

0 : ψ∗ = 0 in (16) can also be written
as

LM∗
n = n

Û
c ′

Û
c − Û

′
Û

Ûc ′Ûc
, (17)

where Û = Y−Fβ β̂
∗−Fψψ̂

∗ =: Y−Fθ̂∗, with θ̂∗ = (F′
F)−1

F
′
Y. We finally

obtain the Breusch-Godfrey form of the LM statistic by interpreting LM∗
n in

(17) as n times the coefficient of determination of the new auxiliary linear
regression

Û
c = Fβγ + Fψψ

∗∗ + V, (18)

where Û
c is the vector of the residuals of the regression of Y on the columns of

Fβ . Indeed, in the two regressions (16) and (18), the vector of the residuals is

V̂ = Û, because β̂∗ = β̂c+ γ̂ and ψ̂∗ = ψ̂∗∗. Finally note that the coefficient of
determination is centered (the standard R2 provided by most of the packaged
computer programs) when a column of Fβ is constant.
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Example 7 Consider a stationary process (Yt) satisfying the bilinear model (5)
where (ǫt) ∼ IID(0, σ2), and ǫt is independent of Yt−i for i > 0. The linearity
assumption writes H0 : ψ = 0, with ψ = (c11, . . . , cPQ)′. Note that, with obvious
notations,

∂Fθc(Wt)

∂β
=



1 +

q
∑

j=1

bjB
j





−1

{Yt−1, . . . , Yt−p, ǫt−1(θ
c), . . . , ǫt−q(θ

c)}′

and

∂Fθc(Wt)

∂ψ
=



1 +

q
∑

j=1

bjB
j





−1

{Yt−1ǫt−1(θ
c), . . . , Yt−P ǫt−Q(θc)}′ .

If we assume q = 0 and the symmetry condition Eǫ3t = 0 we have I12 = 0, and
(15) applies. Thus, in the case q = 0 and Eǫ3t = 0 the LM test can be carried out
as follows: 1) fit an AR(p) model and compute the residuals ǫ̂ct , 2) regress ǫ̂ct on
Yt−1ǫ̂

c
t−1, . . . , Yt−P ǫ̂

c
t−Q and compute the uncentered R2 of this regression. We then

reject H0 when LMn = nR2 > χ2
PQ(1 − α).

If we no longer assume Eǫ3t = 0 but we still assume q = 0 (as in [120] or [113]),
then (17) holds and the LM test can be implemented as follows: 1’) fit an AR(p)
model, compute the residuals ǫ̂ct and the residual sum of squares RSSc, 2’) regress
ǫ̂ct on Yt−1, . . . , Yt−p and Yt−1ǫ̂

c
t−1, . . . , Yt−P ǫ̂

c
t−Q, and compute the residual sum of

squares RSS. We then reject H0 when

LMn = n(RSSc − RSS)/RSSc > χ2
PQ(1 − α).

The F test is an alternative which is asymptotically equivalent but might perform
better in finite sample. With this test we reject H0 when

Fn = (n− p− PQ)PQ−1(RSSc − RSS)/RSS

is greater than the 1−α quantile of the Fisher-Snedecor F(PQ,n− p−PQ) distri-
bution.

3.3 Testing linearity when the model is not identified under the null

Many nonlinear models contain nuisance parameters which are not identified
under the null assumption of linearity. As an illustrative example, consider a
SETAR model of the form

Yt = ν(1) + a
(1)
1 Yt−1 +

(

ν(2) + a
(2)
1 Yt−1

)

1{Yt−1>r} + ǫt, (19)

where (ǫt) is IID(0, σ2). The null assumption of interest is that Yt is a station-
ary strong AR(1) process. This assumption can be written as

H0 : ν(2) = a
(2)
1 = 0.
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Under H0 the threshold parameter r does not exist. As a consequence the
usual estimators, in particular the quasi-maximum likelihood (QML) and least
squares (LS) estimators, have nonstandard behaviors. In particular any rea-
sonable estimator r̂ of r should be consistent under the alternative H1 of a
SETAR model, but should not converge to any value under H0. The usual
tests, such as the LM test defined in Section 3.2, are also affected by the lack
of identification of the parameter r under the null. A coarse solution is ob-
tained by fixing an arbitrary value for the threshold r. We then work with the
pointwise LM statistic

LMn(r) = n
σ̂c 2 − σ̂2

r

σ̂c 2
,

where σ̂c 2 is the mean of the squares of the residuals of the AR(1) model
implied by the null, and σ̂2

r is the residual mean square of the SETAR model
(19) with given threshold r. One can also employ pointwise Wald or likelihood
ratio (LR) statistics of the form

Wn(r) = n
σ̂c 2 − σ̂2

r

σ̂2
r

and LRn(r) = n log
σ̂c 2

σ̂2
r

.

Under regularity conditions similar to those discussed in Section 5 below, all
these statistics are asymptotically χ2

2 distributed under H0. The resulting tests
are often consistent, even for alternatives such that the true threshold is not
equal to the chosen value of r. It should however be underlined that the choice
of r is unpleasant, because no a priori reasonable value is generally available.
Moreover the choice of r has an obvious impact on the power of the tests (the
power is likely to be low for alternative models in which the actual threshold
is far from r). The threshold can be estimated by least squares as

r̂ = arg min
r∈[r,r]

σ̂2
r ,

where r and r are given constants such that r < r. In [74], r and r are
chosen to be the 15th and 85th percentiles of the empirical distribution of the
observations. The standard Wald, LM and LR test statistics then satisfy

Wn = Wn(r̂), LMn = LMn(r̂), LRn = LRn(r̂).

Figure 5 shows that, under the null the distribution of Wn is completely dif-
ferent from that of a χ2

2. This is a consequence of the nonstandard behaviour
of r̂ under H0. Following [45], [46] and [74] the common asymptotic distribu-
tion of the 3 statistics Wn, LMn and LRn is a functional of a continuous-time
gaussian process under H0.

Since Wn = supr∈[r,r] Wn(r), the standard Wald statistic can be viewed as a
supremum test statistic. The same interpretation holds for the LM and LR
statistics. Other functionals of the pointwise statistics are suggested in [9].
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Figure 5. Density of the χ2
2 distribution in full line, kernel density estimator of the

distribution of Wn(0) in dotted line and of Wn in dashed line. The two density
estimators are obtained by computing the statistics on N = 1, 000 independent
replications of simulations of length n = 200 of an iid N (0, 1) sequence.
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Figure 6. Distribution of some test statistics under H0 (N = 1, 000 independent
simulations of length n = 100 of the AR(1) model Yt = 0.7Yt−1 + ǫt where (ǫt) is
IIDN (0, 1)) and H1 (N = 1, 000 independent simulations of length n = 100 of the

SETAR model (19) with (ν(1), a
(1)
1 , ν(2), a

(2)
1 , r) = (0, 0.9,−2,−0.7,−2)).

The test proposed by [90] (hereafter LST) is the most commonly used for
testing linearity against smooth transition autoregressive models. It also makes
sense to use the LST test for testing linearity against SETAR models. For
instance, the model (19) can be approximated by a logistic smooth transition
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Table 2
Relative frequency of rejection of the linearity hypothesis H0 for tests with nominal
level α = 5%, based on N = 1, 000 independent replications of simulations of length
n = 100.

Design Wald, score and Likelihood Ratio LST tests

tests r = r̂ r = 1 r = 0 r = −1 r = −2 1-LST 3-LST

Wn(r) 5.6 5.7 4.6 4.7 4.4 3.1 4.0

H0 LMn(r) 3.3 4.1 3.7 3.4 3.9 2.8 3.0

LRn(r) 4.7 4.8 4.4 4.0 4.1 3.0 3.5

Wn(r) 70.3 0.3 6.1 34.7 82.0 65.0 61.2

H1 LMn(r) 64.8 0.3 5.4 31.3 79.1 64.5 59.7

LRn(r) 67.8 0.3 5.9 33.0 80.3 64.7 60.6

Design H0: AR(1) model Yt = 0.9Yt−1 + ǫt, ǫt ∼ N (0, σ2)

Design H1: SETAR model (19) with r = −2, as defined in Figure 6

autoregressive model

Yt = ν(1) + a
(1)
1 Yt−1 +

(

ν(2) + a
(2)
1 Yt−1

)

G(γ, r, Yt−1) + ǫt,

when, in the logistic function G(γ, r, x) = [1 + exp{−γ(x− r)}]−1, the slope
parameter γ is large. In its simplest version, the LST test consists in testing
φ = 0 in the auxiliary model

Yt = ν(1) + a
(1)
1 Yt−1 + φY 2

t−1 + ǫt. (20)

The auxiliary model is obtained by using the Taylor expansion G(γ, r, x) =
1/2+(x−r)γ/4+o(γ) and a reparameterization of the model (see [90]). Using
a third-order Taylor expansion, instead of a first-order one, the LST approach
leads to test φ1 = φ2 = φ3 = 0 in the auxiliary model

Yt = ν(1) + a
(1)
1 Yt−1 + φ1Y

2
t−1 + φ2Y

3
t−1 + φ3Y

4
t−1 + ǫt. (21)

The test based on the auxiliary model (20) is denoted by 1-LST, and the one
based on (21) is denoted by 3-LST. At the asymptotic level α, the critical
values of these tests are respectively the quantiles χ2

1(1 − α) and χ2
3(1 − α).

Note that the 2-LST version does not exist because, around 0, the second-order
Taylor expansion of G(·, r, x) coincides with the first-order one.

Figure 6 and Table 2 summarize the results of simulation experiments which
compare the behavior of the different tests. In Table 2, the critical values of
the supremum tests have been determined by means of simulations. Figure
6 shows that, as expected, for any fixed value r the 3 pointwise statistics
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Wn(r), LMn(r) and LRn(r) have similar behaviors under the null and local
alternatives, but may be quite different for alternatives which are far from
the null. The same remark holds for the supremum statistics Wn, LMn and
LRn. The behavior of the statistics based on the data dependent value r = r̂
is completely different from that of the pointwise statistics based on a data
independent value of r. Table 2 shows that the supremum tests are much
more powerful than the pointwise tests when the latter are based on a value r
which is far from the true alternative (r = −2 for the displayed experiments),
but they are of course less powerful than the pointwise tests based on the
true value r = −2. We also note that, although the LST tests are extremely
simple and easy to implement, their performance is comparable with that
of the supremum tests, at least on the set of Monte Carlo experiments we
considered.

4 Probabilistic tools

In this section we present some probabilistic tools which may be useful in
nonlinear model analysis.

4.1 A strict stationarity condition

In [22] (see also [26] and [23]), Bougerol and Picard derived a necessary and
sufficient condition for the existence of a strictly stationary solution to the
linear stochastic recurrent equation

Zt = AtZt−1 +Bt, t ∈ Z, (22)

where At is a d×d random matrix, Bt is a random vector, and (At, Bt)t∈Z is an
iid sequence. Under mild assumptions, the exists a nonanticipative stationary
solution to (22) if and only if

γ := inf
n∈N∗

1

n
E (log ‖AnAn−1 · · ·A1‖) a.s.

= lim
n→∞

1

n
log

∥

∥

∥

∥

∥

n
∏

i=1

At−i

∥

∥

∥

∥

∥

< 0. (23)

Under this condition the solution is ergodic, which means that the law of large
numbers applies: as n→ ∞

1

n

n
∑

t=1

ϕ(. . . , Zt−1, Zt, Zt+1, . . . ) → Eϕ(. . . , Zt−1, Zt, Zt+1, . . . ) (24)

provided the last expectation exists (see [20]). The coefficient γ is called the
top Lyapounov exponent of the sequence (At), and can be evaluated by simu-
lations (see [40] and [41]). The condition (23) is sufficient when (At, Bt)t∈Z is
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strictly stationary and ergodic. This condition is directly applicable for pro-
cesses (Yt) having a state-space representation of the form Yt = HZt with
(22).

Example 8 Consider a nonlinear model of the form

Yt = ǫt + c1Yt−1ǫt + c2Yt−2ǫ
2
t , (ǫt) ∼ IID(0, σ2). (25)

We have (22) with

Zt =





Yt

Yt−1



 , At =





c1ǫt c2ǫ
2
t

1 0



 , Bt =





ǫt

0



 .

We deduce that (25) admits a nonanticipative strictly stationary solution if and only
if the top-Lyapounov exponent γ of (At) is strictly negative. Figure 7 displays an
estimation of the strict stationarity region, obtained by evaluating γ from simulations
of (At). The strict stationary curve passes at the points (c1, c2) = (±e−E log |ǫt|, 0)
and (c1, c2) = (0,±e−E log ǫ2t ). Other computations show that, when ǫt is gaussian,
the second order stationarity region is given by the constraint c21Eǫ

2
t + c22Eǫ

4
t < 1.

c2

c1
-1.5 -1 -0.5 0.5 1 1.5

-3

-2

-1

1

2

3

B

C

A

Figure 7. Strict and second-order stationarity regions of the model (25) with
ǫt ∼ N (0, 1). A: second order stationarity, A ∪ B: strict stationarity, B ∪ C: non sec-
ond-order stationarity, and C: non strict stationary.

4.2 Second order stationarity and existence of moments

Under the condition γ < 0, the strict stationary solution to (22) writes

Zt = Bt +
∞
∑

k=1

At · · ·At−k+1Bt−k a.s.
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From the Cauchy criterion, the vector is well-defined in L2 if
‖At · · ·At−k+1Bt−k‖2 exists and converges to 0 at an exponential rate as
k → ∞. Using the iid assumption made on (At, Bt) and elementary matrix
manipulations, we have

E‖At · · ·At−k+1Bt−k‖2 =E
(

B′
t−kA

′
t−k+1 · · ·A′

tAt · · ·At−k+1Bt−k

)

=E
{

B′
t−k ⊗ B′

t−k

}

{E (A′
t ⊗ A′

t)}k vec I,

where I denotes the identity matrix of size equal to the dimension of Zt.
Denoting by ρ(M) the spectral radius of a square matrix M , we deduce that,
provided E‖Bt‖2 <∞,

ρ {E (At ⊗ At)} < 1 (26)

is a sufficient condition for the existence of a second order stationary solution.
In the previous argument, we check that (26) entails (23), using the Jensen
inequality. The same elementary technique can be used to obtain conditions
for the existence of higher order moments, and can sometimes be adapted in
cases where (At, Bt) is not iid (see e.g. [60]).

Example 9 Consider the simple Markov-switching model

Yt = ǫt + a(1)Yt−11∆t=1 + a(2)Yt−11∆t=2, (27)

where ǫt is a strong white noise and ∆t is an irreducible and aperiodic stationary
Markov chain with state-space {1, 2}, transition probabilities p(i, j) = P (∆t = j |
∆t−1 = i) and stationary probabilities π(i) = P (∆t = i). It is easy to check that
∑2

i=1 π(i) log |a(i)| < 0 is a sufficient condition for strict stationary. This condition
can be interpreted as an average of the stationarity constraint over the 2 regimes, and
involves the transition probabilities p(i, j) only through the stationary probabilities
π(i). The (necessary and sufficient) second order stationarity condition (see [60]) is

ρ(A) < 1, A =





p(1, 1)a2(1) p(2, 1)a2(1)

p(1, 2)a2(2) p(2, 2)a2(2)



 .

Figure 8 displays these stationarity regions. It can be checked that ρ(A) < 1 is
equivalent to (26) when p(i, j) = π(j) for all j (i.e. when (∆t) is iid).

4.3 Mixing coefficients

For statistical inference, strict stationarity and ergodicity are generally not
sufficient assumptions, and it may be useful to know if a given process pos-
sesses mixing properties. Mixing is one way to characterize the decrease of
dependence when the variables become sufficiently far apart (see e.g. [44]).
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p(1, 1) = 0.8 and p(2, 2) = 0.95.
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p(1, 1) = p(2, 2) = 0.05.

Figure 8. Stationarity regions of the Markov-switching model (27). The second-order
stationarity region is the bounded region containing the square [−1, 1]× [−1, 1] (dis-
played as dotted line). The unbounded region delimited by the 4 curves corresponds
to strict stationary models.

More precisely the (strong) α-mixing coefficients of a process (Zt) are defined
by

αZ(k) = sup
t

sup
A∈σ(Zs,s≤t), B∈σ(Zs ,s≥t+k)

|P (A ∩B) − P (A)P (B)|, (28)

where σ(Zs, s ≤ t) denotes the information set generated by the past at the
time t, and σ(Zs, s ≥ t + k) denotes the information set generated by the
future at the time t + k. There exist other mixing coefficients, in particular
the β-mixing coefficients which are defined by

βZ(k) = sup
t

E

{

sup
B∈σ(Zs,s≥t+k)

|P {B | σ(Zs, s ≤ t)} − P (B)|
}

. (29)

When (Zt) is stationary, the term supt can be omitted in the definitions
(28) and (29). The process is said to be α-mixing (resp. β-mixing) if
limk→∞ αZ(k) = 0 (resp. limk→∞ βZ(k) = 0). We have αZ(k) ≤ βZ(k),
so that β-mixing implies α-mixing. If Y = (Yt) is a process such that
Yt = f(Zt, . . . , Zt−r) for some measurable function f and some integer r ≥ 0,
then σ (Yt, t ≤ 0) ⊂ σ (Zt, t ≤ 0) and σ (Yt, t ≥ s) ⊂ σ (Zt, t ≥ s− r). Thus

αY (k) ≤ αZ(k − r) and βY (k) ≤ βZ(k − r) for all k ≥ r.

The α-mixing coefficient between two σ-fields A and B is defined by

α (A,B) = sup
A∈A, B∈B

|P (A ∩B) − P (A)P (B)|.
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Let p, q and r be 3 positive numbers such that p−1 + q−1 + r−1 = 1. Davydov
[47] showed the following inequality

|Cov(U, V )| ≤ K0‖U‖p‖V ‖q [α {σ(U), σ(V )}]1/r , (30)

where ‖U‖pp = EUp and K0 is an universal constant. Davydov [47] proposed
K0 = 12. Rio [106] obtained a sharper inequality involving the quantile func-
tions of U and V , and showed that one can take K0 = 4 in (30). Note that
(30) entails that the autocovariance function ΓZ(h) → 0 as |h| → ∞, when Z
is a stationary α-mixing process (with moments of order greater than 2).

In statistical applications, the α-mixing assumption is convenient because it
implies a central limit theorem. Herrndorf [77] showed that that under the
assumptions EZt = 0 and

sup
t

‖Zt‖2+ν <∞,
∞
∑

h=0

{αZ(h)}ν/(2+ν) <∞ for some ν > 0,

we have

n−1/2
n
∑

t=1

Zt
L→ N (0, σ2), when σ2 = lim

n→∞
Var

(

n−1/2
n
∑

t=1

Zt

)

> 0.

4.4 Geometric ergodicity and mixing properties

A way to check mixing properties, or to find out stationarity conditions, is to
use the Markov chain theory (see the papers by [116] and [56], and the book
by [95]).

Consider a Markov chain (Zt)t∈N with state space (E, E), where E is a subset
of Rd and E is a Borel σ-field on E. Let P t(x,B) = P (Zt ∈ B | Z0 = x) be
the t−step transition probability of moving from x ∈ E to the set B ∈ E in t
steps. The Markov chain (Zt) is said to be geometrically ergodic if there exist
ρ ∈ (0, 1) and a measure π such that

∀x ∈ E, ρ−t‖P t(x, ·) − π(·)‖ → 0 as t→ ∞,

where ‖ · ‖ is the total variation norm. A consequence of geometric ergodicity
is β-mixing, and hence α-mixing, with geometric rate. Moreover (Zt)t∈N is
stationary when the distribution of Z0 is the invariant probability π.

Let φ be a non trivial σ-finite measure on (E, E). The chain (Zt) is φ-irreducible
if for all x ∈ E and all B ∈ E such that φ(B) > 0 there exists t ∈ {1, 2, . . .}
such that P t(x,B) > 0. We say that (Zt) is a Feller Markov chain when
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the function x 7→ E {g(Zt)|Zt−1 = x} is continuous for every bounded and
continuous function g on E.

Feigin and Tweedie ([56], Theorem 1) showed that (Zt) is geometrically ergodic
when (i) (Zt) is a Feller Markov chain, (ii) (Zt) is φ-irreducible for some non
trivial σ-finite measure φ on (E, E), (iii) there exists a compact set C ⊂ E
such that φ(C) > 0 and a non-negative continuous function V : E → R such
that

V (x) ≥ 1, ∀x ∈ C (31)

and for some c > 0

E {V (Zt)|Zt−1 = x} ≤ (1 − c)V (x), ∀x /∈ C. (32)

As a consequence of Theorem 2 in Feigin and Tweedie ([56]), we have
EπV (Zt) <∞ when, in addition to (i)-(iii), the test function V satisfies

iv) supE {V (Zt)|Zt−1 = x} <∞, x ∈ C. (33)

Example 10 Consider an EXPAR(1) model of the form

Yt =
{

a+ b exp(−γY 2
t−1)

}

Yt−1 + ǫt (ǫt) ∼ IID(0, σ2), (34)

where γ > 0 and |a| < 1. It is clear that (Yt)t∈N is a Markov chain with state space
(R,BR). Assume that ǫt has a strictly positive density over R and that E|ǫt| <∞. We
will show that (Yt) is geometrically ergodic, by checking (i)-(iii) above. The result
being well known for b = 0, we assume b 6= 0. We have E {g(Yt) | Yt−1 = y} =

E g
{

ǫt +
(

a+ be−γy
2
)

y
}

. The dominated convergence theorem then shows that

(Yt) is a Feller chain, so that (i) is checked. Given Y0 = y, the law of Y1 = ǫ1 +
(

a+ be−γy
2
)

y admits a strictly positive density with respect to the Lebesgue measure

λ. Thus (Yt) is λ-irreducible and (ii) is checked. Let V (y) = 1 + |y|, a constant c
such that

0 < c < min

{

1 − |a|
2

, |b|
}

and the compact interval

C =

{

y : y2 ≤ max

{

−1

γ
log

(

c

|b|

)

,

(

E|ǫt| + c

1 − |a| − 2c

)2
}}

.

Clearly (31) holds. For y 6∈ C, we have

E {V (Yt)|Yt−1 = y}≤ 1 + E|ǫt| +
(

|a| + |b|e−γy2
)

|y|
< 1 + E|ǫt| + (|a| + c)|y|
< (1 − c)V (y), (35)

which shows (iii). Thus (34) admits a stationary solution with geometrically decreas-
ing β-mixing coefficients, whenever |a| < 1, whatever b ∈ R and γ > 0. This is not
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surprising because (34) can be interpreted as a model which can pass smoothly from
an AR(1) model with parameter a + b when Y 2

t−1 is small to an AR(1) model with
parameter a when Y 2

t−1 is large.

From the second inequality in (35), one can see that iv) given in (33) is satisfied, and
thus the stationary solution admits a finite moment of order 1, whenever E|ǫt| <∞.
Similar arguments show that E|Yt|k <∞ whenever E|ǫt|k <∞.

5 Identification, estimation and model adequacy checking

The quasi-maximum likelihood (QML) and nonlinear least squares (NLS) es-
timators are widely used for the statistical inference of nonlinear time series
models. For an extensive discussion of the asymptotic theory of the QML and
NLS estimators in a very general framework, the reader is referred to [100]
and the references therein. Of course, numerous other estimation methods are
useful in nonlinear time series analysis.

We will focus on the QML estimator (QMLE) for univariate models of the
form

Yt = mθ0(Yt−1, Yt−2, . . . ) + σθ0(Yt−1, Yt−2, . . . )ηt, (36)

where θ0 is an unknown parameter belonging to a subset Θ of Rs, and (ηt) is
IID(0, 1), with ηt independent of Yt−i for i > 0. Under these assumptions, we
have

mt(θ0) := mθ0(Yt−1, Yt−2, . . . ) = E(Yt | Yt−1, Yt−2, . . . )

and

σ2
t (θ0) := σ2

θ0
(Yt−1, Yt−2, . . . ) = Var(Yt | Yt−1, Yt−2, . . . ).

Assume that ηt has density f . Given initial values Y0, Y−1, . . . the (conditional)
likelihood of the observations Y1, . . . , Yn evaluated at θ ∈ Θ is equal to

Ln(θ;Y1, . . . , Yn) =
n
∏

t=1

1

σt(θ)
f

(

Yt −mt(θ)

σt(θ)

)

,

assuming σt(θ) 6= 0. This objective function is not operational because f and
the initial values are generally unknown. The QML is obtained by replacing the
density f(x) by the N (0, 1) density, and the conditional moments mt(θ) and
σ2
t (θ) by measurable approximations m̃t(θ) and σ̃2

t (θ). One can take m̃t(θ) =
Eθ(Yt | Yt−1, . . . , Y1) and σ̃2

t (θ) = Varθ(Yt | Yt−1, . . . , Y1) when these quantities
are available. It is often simpler to work with approximations of the form
m̃t(θ) = mθ(Yt−1, . . . , Y1, 0, . . . ) and σ̃2

t (θ) = σ2
θ(Yt−1, . . . , Y1, 0, . . . ). A QML

estimator of θ0 is defined as any measurable solution θ̂n of

θ̂n = arg inf
θ∈Θ

Q̃n(θ) (37)
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where, omitting several "(θ)" to lighten the notations,

Q̃n(θ) = n−1
n
∑

t=1

ℓ̃t, and ℓ̃t = ℓ̃t(θ) =
(Yt − m̃t)

2

σ̃2
t

+ log σ̃2
t . (38)

The NLS estimator is obtained by assuming that the conditional variance σ̃2
t

is constant. The existence of a solution to (37) is guaranteed when

(i) Θ is compact and the functions θ → m̃t(θ) and θ → σ̃2
t (θ) > 0 are

continuous.

5.1 Consistency of the QMLE

Assume that

(ii) (Yt) is a non anticipative strictly stationary and ergodic solution of (36).

Then (mt), (σ2
t ) and (ℓt), with ℓt = (Yt−mt)

2σ−2
t + log σ2

t , are also stationary
ergodic processes. In view of the ergodic theorem (24), the theoretical criterion
Qn(θ) = n−1∑n

t=1 ℓt thus converges almost surely to the asymptotic criterion

Q∞(θ) = Eθ0ℓt(θ),

provided the expectation is well defined. Note that this expectation exists in
R ∪ {+∞} for all θ, and in R for θ = θ0, under the mild moment assumption

(iii) E log− σ2
t (θ) <∞ for all θ ∈ Θ, and E log+ σ2

t (θ0) <∞.

The initial values are often uniformly negligible, in the sense that

(iv) supθ∈Θ

∣

∣

∣ℓt − ℓ̃t
∣

∣

∣→ 0 a.s. as t→ ∞.

We then have

Q̃n(θ) −Qn(θ) → 0 a.s. uniformly in θ, (39)

and the operational criterion Q̃n(θ) also converges to the asymptotic criterion
Q∞(θ).

We now need an identifiability assumption

(v) if θ 6= θ0 then mt(θ) 6= mt(θ0) or σ2
t (θ) 6= σ2

t (θ0)

with non zero probability. SinceQ∞(θ0) = 1+E log σ2
t (θ0) is finite, log x ≤ x−1

for all x > 0, and log x = x− 1 if and only if x = 1, we have
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Q∞(θ) −Q∞(θ0) =Eθ0 log
σ2
t (θ)

σ2
t (θ0)

+ Eθ0

{

Yt −mt(θ)

σt(θ)

}2

− 1

=Eθ0 log
σ2
t (θ)

σ2
t (θ0)

+ Eθ0

{

mt(θ0) −mt(θ)

σt(θ)

}2

+Eθ0

{

σt(θ0)ηt
σt(θ)

}2

− 1

≥Eθ0

{

log
σ2
t (θ)

σ2
t (θ0)

+ log
σ2
t (θ0)

σ2
t (θ)

}

= 0

with equality if and only if mt(θ0) = mt(θ) and σ2
t (θ0)/σ

2
t (θ) = 1 Pθ0-a.s. In

view of (v), this latter condition is equivalent to θ = θ0. Thus we have shown
that the asymptotic criterion is minimum at the true value θ0. This is not
sufficient to claim the consistency. Indeed we have shown that

θ0 = arg inf
θ∈Θ

lim
n→∞

Q̃n(θ) a.s.

whereas we would like to show that

θ0 = lim
n→∞

arg inf
θ∈Θ

Q̃n(θ) a.s. (40)

The problem can be solved as follows. Let θ1 6= θ0 and Vd(θ1) the open sphere

with center θ1 and radius 1/d. The process
{

infθ∈Vd(θ1)∩Θ ℓt(θ)
}

t
is stationary

and ergodic. Applying once again the ergodic theorem, we have

inf
θ∈Vd(θ1)∩Θ

Qn(θ)≥
1

n

n
∑

i=1

inf
θ∈Vd(θ1)∩Θ

ℓt(θ)
p.s.→ E inf

θ∈Vd(θ1)∩Θ
ℓt(θ).

In view of the continuity of ℓt(·), the sequence infθ∈Vd(θ1)∩Θ ℓt(θ) increases to
ℓt(θ1) when d→ ∞. By the Beppo-Levi theorem,

lim
d→∞

↑ E inf
θ∈Vd(θ1)∩Θ

ℓt(θ) =E lim
d→∞

↑ inf
θ∈Vd(θ1)∩Θ

ℓt(θ) = Eℓt(θ1) > Q∞(θ0).

Thus we have shown that for all θi 6= θ0 there exists a neighborhood V (θi)
such that

lim inf
n→∞

inf
θ∈V (θi)∩Θ

Qn(θ) > lim
n→∞

Qn(θ0). (41)

The compact set Θ is covered by a finite number of open sets V (θ1), . . . , V (θm)
and V (θ0), where V (θ0) is any neighborhood of θ0, and the neighborhoods
V (θi) i = 1, . . . , m satisfy (41). With probability 1 we then have

inf
θ∈Θ

Qn(θ) = min
i=0,1,...,m

inf
θ∈V (θi)

Qn(θ) = inf
θ∈V (θ0)

Qn(θ)
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for n large enough. Since V (θ0) can be an arbitrarily small neighborhood of
θ0, using (39), the consistency result (40) is shown.

5.2 Asymptotic distribution of the QMLE

In addition to the previous assumptions, assume that

(vi) θ0 belongs to the interior
◦

Θ of Θ,

(vii) θ → mt(θ) and θ → σt(θ) admit continuous third order derivatives, and

E sup
θ∈Θ

∣

∣

∣

∣

∣

∂3ℓt(θ)

∂θi∂θj∂θk

∣

∣

∣

∣

∣

<∞ ∀i, j, k.

(viii) I = E ∂ℓt(θ0)
∂θ

∂ℓt(θ0)
∂θ′

and J = E ∂2ℓt(θ0)
∂θ∂θ′

exist and are non singular.

Assumption (vi) is essential to obtain the asymptotic normality of the QLME.
Assumption (vii) is not necessary, but can be used to easily show, by means
of a Taylor expansion, that

∂2Qn(θ
∗
n)

∂θ∂θ′
→ J a.s. for any sequence θ∗n between θ̂n and θ0.

Because Q̃n(θ) is minimized at θ̂n which, at least for n large enough, belongs
to the interior of Θ, we have ∂Q̃n(θ̂n)/∂θ = 0. A Taylor expansion then yields

0 =
√
n
∂Q̃n(θ̂n)

∂θ
=

√
n
∂Q̃n(θ0)

∂θ
+

(

∂2Q̃n(θ
∗)

∂θ∂θ′

)√
n(θ̂n − θ0)

where the matrix
(

∂2Q̃n(θ∗)
∂θ∂θ′

)

has elements of the form
∂2Q̃n(θ∗ij)

∂θi∂θj
, with θ∗ij between

θ0 and θ̂n. The initial values being uniformly negligible, we can often show that

(ix)

∥

∥

∥

∥

∥

1√
n

n
∑

t=1

∂ℓt(θ0)

∂θ
− ∂ℓ̃t(θ0)

∂θ

∥

∥

∥

∥

∥

P→ 0 as t→ ∞, and that (iv) continues to

hold when ℓt and ℓ̃t are replaced by their partial derivatives up to order 3.

We deduce that for n sufficiently large ∂2Q̃n(θ∗)
∂θ∂θ

is invertible, and that

√
n(θ̂n − θ0) = −

(

∂2Q̃n(θ
∗)

∂θ∂θ′

)−1 √
n
∂Q̃n(θ0)

∂θ

oP (1)
= −J−1 1√

n

n
∑

t=1

Zt,
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where

Zt = −2ηt
∂mt(θ0)

∂θ
+
{

1 − η2
t

} 1

σ2
t

∂σ2
t (θ0)

∂θ
.

Note that {Zt, σ (ηu, u ≤ t)}t is a square integrable stationary martingale dif-
ference. The central limit theorem of [19] allows to conclude that

√
n(θ̂n − θ0)

L→ N
(

0,Σ := J−1IJ−1
)

. (42)

Example 11 Let us consider once again the EXPAR(1) model (34) with (ǫt)
IID(0, σ2), adding the subscript "0" to the unknown parameters. The parameter of
interest is θ0 = (a0, b0, γ0), and σ2

0 can be considered as a nuisance parameter. Take
the parameter space of the form Θ = [−a, a]× [−b, b]× [γ, γ] with a ≥ 1, |b0| < b and

0 < γ < γ0 < γ, so that θ0 ∈
◦
Θ. We have m̃1 = 0 and m̃t = mt = (a+ be−γY

2
t−1)Yt−1

for all t > 1. Since σ2
t (θ) ≡ σ2

0 > 0, the QMLE coincides with the NLS estimator.
The conditions (i), (iii) and (iv) are obviously satisfied, and Example 10 shows that
(ii) can be assumed when ǫt has a density f > 0. It can be shown that the iden-
tifiability condition (v) holds if and only if b0 6= 0 (when b0 = 0 the parameter γ0

is not identified). Thus the consistency of the QMLE is ensured when b0 6= 0. The
conditions (vi) is obvious. The vector

sup
θ∈Θ

∣

∣

∣

∣

∂ℓt(θ)

∂θ

∣

∣

∣

∣

= 2 sup
θ∈Θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

(Yt −mt)

σ2











Yt−1

Yt−1e
−γY 2

t−1

−bY 3
t−1e

−γY 2
t−1











∣

∣

∣

∣

∣

∣

∣

∣

∣

admits a finite expectation when EY 2
t <∞ (using the fact that yke−γy

2

is bounded).
Extending the argument to the third-order derivatives, we see that (vii) is satisfied
and I and J exist when EY 4

t < ∞. In view of Example 10, it suffices to assume
that Eǫ4t < ∞. When (c1, c2, c3, c4) 6= 0 and b0 6= 0, the set {y : c1y + c2ye

−γ0y2 +
c3b0y

2e−γ0y
2

= c4} is finite. Since Yt has a continuous distribution, we deduce that
the components of ∂ℓt(θ0)/∂θ are not almost surely linearly dependent. Thus I and
J = I/2 are invertible, and (viii) is shown. Because ℓ̃t = ℓt for t > 1, (ix) holds true.
The asymptotic normality of the QMLE follows. Similar results have been obtained
by [115], under slightly different conditions. Figure 9 summarizes the main results of
a simulation experiment, in which the finite sample distribution of the NLS estimator
is close to the asymptotic one.

The constraint b0 6= 0 is however an important restriction. Indeed we do not know
the behaviour of the QMLE when the DGP is a strong AR(1), so we can not employ
standard strong linearity tests, such as the Wald test.
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Figure 9. NLS estimates of 100 independent replications of simulations of length
n = 500 of the EXPAR model Yt =

{

−0.8 + 2 exp(−0.1Y 2
t−1)

}

Yt−1 + ǫt, where
ǫt ∼ IID with the mixture distribution 0.9N (0, 0.52) + 0.05N (3, 1) + 0.05N (−3, 1).

5.3 Identification and model adequacy

The information matrices I and J can be consistently estimated by their
empirical counterparts

Î =
1

n

n
∑

t=1

∂ℓ̃t(θ̂n)

∂θ

∂ℓ̃t(θ̂n)

∂θ′
and Ĵ =

∂2Q̃n(θ̂n)

∂θ∂θ′
.

Approximating Σ by Σ̂ = Ĵ−1Î Ĵ−1, the asymptotic normality (42) of the
QMLE can be directly exploited to obtain asymptotic confidence region or
to perform tests on the parameters. Consider for instance the null hypothesis
H0 : Rθ0 = r, where R is a matrix of full row rank s0 and r is a vector. The
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Wald test rejects H0 at the asymptotic level α when the statistic

W = n(Rθ̂n − r)′
{

RΣ̂R′
}−1

(Rθ̂n − r) > χ2
s0

(1 − α).

Such tests are generally employed to see whether the model (36) can be simpli-
fied, i.e. if the number s of parameters can be reduced. To see if the model (36)
is sufficiently rich to take into account the dynamics of the series, practitioners
often plot the residuals. Portmanteau tests based on the autocorrelations of
the residuals, or of the squares of the residuals, or of any other transformation
of the residuals, can be performed for model adequacy checking.

The previous steps should lead to the selection of a small set of models which
possess significant estimated parameters and which pass the goodness-of-fit
portmanteau tests. In general, these models are not nested and may have dif-
ferent parameter dimension. The choice between this models is often made by
minimizing information criteria. The most popular criterion for model selec-
tion is the Akaike information criterion (AIC) proposed by [1].

5.3.1 Comparing nonlinear models with the AIC criterion

Assume that, with respect to a σ-finite measure µ, the true density of the
observations Y = (Y1, . . . , Yn) is g, and that some candidate model gives a
density fk(·, θk) to the observations, where θk is a pk-dimensional parameter.
The discrepancy between the (wrong) model and the truth can be measured
by the Kullback-Leibler divergence

∆ {fk(·, θk) | g} = Eg log
g(Y )

fk(Y, θk)
= Eg log g(Y ) +

1

2
d {fk(·, θk) | g} ,

where

d {fk(·, θk) | g} = −2Eg log fk(Y, θk) = −2
∫

{log fk(y, θk)} g(y)µ(dy)

is sometimes called the Kullback-Leibler contrast. The main property of the
Kullback-Leibler divergence is that ∆ {fk(·, θk) | g} ≥ 0 with equality if and
only if fk(·, θk) = g. Minimizing ∆ {fk(·, θk) | g} with respect to fk(·, θk) is
equivalent to minimizing the contrast d {fk(·, θk) | g}. Let

θ0k = arg inf
θk

d {fk(·, θk) | g} = arg inf
θk

−2E log fk(Y, θk)

be an optimal parameter for the model k (assuming that such a parameter
exists). The parameter θ0k being unknown, one can want to find the estimated
model which minimizes

C(k) = −2E log fk(Z, θ̂n,k), (43)
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where the expectation is taken oven Y and Z, where Y and Z are independent
and have the same distribution g, and where θ̂n,k is a QMLE based on Y ,
satisfying

θ̂n,k = arg sup
θk

log fk(Y, θk).

A model minimizing (43) can be interpreted as a model such that its estimated
version will do globally the best job on an independent copy of the DGP.

We have
C(k) = −2E log fk(Y, θ̂n,k) + a1 + a2,

where
a1 = −2E log fk(Y, θ0k) + 2E log fk(Y, θ̂n,k)

and
a2 = −2E log fk(Z, θ̂n,k) + 2E log fk(Y, θ0k).

The QMLE satisfies log fk(Y, θ̂n,k) ≥ log fk(Y, θ0k) almost surely. Thus a1

can be interpreted as the average overfitting of the QMLE. Note that
E log fk(Y, θ0k) = E log fk(Z, θ0k). Thus a2 can be interpreted as an aver-
age cost due to the use of the estimated parameter instead of the optimal
parameter, when the model is applied to an independent replication of the
DGP.

It is shown in [57] that, under some regularity conditions, a1 and a2 are both
equivalent to pk. In this case, the AIC formula

AIC(k) = −2 log fk(Y, θ̂n,k) + 2pk (44)

is an approximately unbiased estimate of the contrast C(k). Model selection
is then obtained by minimizing (44) over the candidate models k.

We now discuss the regularity conditions needed for a1 and a2 be actually
equivalent to pk. Under assumptions similar to those made in Section 5.1 and
5.2, in particular the uniqueness of the optimal parameter θ0k, the estimator
θ̂n,k converges almost surely to θ0k and

√
n
(

θ̂n,k − θ0k
)

L→ N
(

0, J−1
k IkJ

−1
k

)

,

where

Ik = lim
n→∞

1

n
Var

∂

∂θ
log fk(Y, θ0k), Jk

a.s.
= − lim

n→∞

1

n

∂2

∂θ∂θ
log fk(Y, θ0k).

Moreover, a Taylor expansion of the quasi log-likelihood yields

−2 log fk(Y, θ0k)
oP (1)
= −2 log fk(Y, θ̂n,k) +

√
n
(

θ̂n,k − θ0k
)′
Jk
√
n
(

θ̂n,k − θ0k
)

.

Taking the expectation of both sides, and showing that
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En
(

θ̂n,k − θ0k
)′
Jk
(

θ̂n,k − θ0k
)

= trace
{

JkE n
(

θ̂n,k − θ0k
) (

θ̂n,k − θ0k
)′
}

→ trace
(

IkJ
−1
k

)

,

we obtain a1
o(1)
= trace

(

IkJ
−1
k

)

. Now a Taylor expansion of the contrast yields

d
{

fk(·, θ̂n,k) | g
}

oP (1)
= d {fk(·, θ0k) | g} +

(

θ̂n,k − θ0k
)′ ∂d {fk(·, θ) | g}

∂θ

∣

∣

∣

∣

∣

θ=θ0k

+
1

2

(

θ̂n,k − θ0k
)′ ∂2d {fk(·, θ) | g}

∂θ∂θ′

∣

∣

∣

∣

∣

θ=θ0k

(

θ̂n,k − θ0k
)

oP (1)
= d {fk(·, θ0k) | g} + n

(

θ̂n,k − θ0k
)

Jk
(

θ̂n,k − θ0k
)′
,

assuming that the contrast is smooth enough, and that we can take its deriva-
tives under the expectation sign. We deduce that

−2E log fk(Z, θ̂n,k) = EY d
{

fk(·, θ̂n,k) | g
}

oP (1)
= d {fk(·, θ0k) | g} + trace

(

IkJ
−1
k

)

,

which shows that a2 is equivalent to a1. Note that when Ik = Jk, we have
trace

(

IkJ
−1
k

)

= pk and, in this case, the AIC(k) defined by (44) really is an

approximately unbiased estimator of C(k).

6 Forecasting with nonlinear models

The complex structure of the nonlinear models is able to catch specific features
of the time series, typically neglected by linear models. These specificities are
referred to as non linear features, related for example to the nonnormality of
the errors, nonlinear relationships among variables, or bimodality of the gener-
ating process. However empirical studies highlight that the good fitting results
of nonlinear models do not guarantee an equally good performance in terms of
forecast accuracy [39]. This often depends on the sensitivity of predictions to
initial conditions and to the forecast horizon, and on some factors which are
beyond the variables specified in the predictor [127]. The listed aspects have
heavy impact on the generation and evaluation of forecasts from nonlinear
models, and for this purpose a large amount of techniques has been proposed
in the literature. However much remain to be done and further research is
going on in this area. The attention here is mainly restricted to parametric
nonlinear models for the conditional mean. Issues related to the volatility fore-
casting are also mentioned.
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When dealing with forecasting one may be interested in point forecasts, in-
terval forecasts or density forecasts. Furthermore attention must be paid to
forecasts evaluation and to the opportunity of combining forecasts in order
to improve the forecasting performance. Nonlinear forecasting has been ad-
dressed, among the others, in Tong [120], Granger and Teräsvirta [69], Franses
and van Dijk [62], from a financial prospective, and Fan and Yao [55] which
focus on nonparametric issues. For large scale comparison of forecasting per-
formance of linear and nonlinear models, the reader is referred to Stock and
Watson [108] and Marcellino [93]. For a recent survey see Timmermann[112].

6.1 Forecast generation

For most nonlinear models of the conditional mean, the generation of one-
step-ahead forecasts is straightforward, but problems could arise for multi-
step-ahead forecasts. The distribution of the non-linear predictors is often
skewed (even when the errors in the models have a symmetric distribution) and
multimodal. Differently from linear models, predictive uncertainty of nonlinear
models does not necessarily grow as the lead time increases.

Suppose that Ωt = {Y1, . . . , Yt} is an observed time series and h is the lead
time. The least squares predictor of Yt+h is defined as

ft,h(Ωt) = arg inf
f

E[Yt+h − f(Ωt)]
2, (45)

where f(·) denotes a measurable function over Ωt. It is easy to show that

ft,h(Ωt) = E[Yt+h | Ωt] ≡ Yt(h).

When f(·) is a linear function, Yt(h) has some optimal properties in terms of
predictive accuracy and variability as shown in [24].

The same results do not always hold when f(·) has a nonlinear structure [55].

In this framework Tong [118] originally suggests to generate forecasts through
the naïve method which allows to catch the skeleton of the data generating
process setting to zero the error term.

Example 12 Consider the SETAR(k; p1, p2, . . . , pk) model represented as

Yt =

k
∑

j=1

(ν(j) +

pj
∑

i=1

a
(j)
i Yt−i + ǫ

(j)
t )1{rj−1<Yt−d≤rj},
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where ǫ
(j)
t = σ(j)ηt and (ηt) is a noise with unit variance. Let h ≤ d. The h-step-

ahead naïve prediction of the SETAR model, Ŷ n
t (h), is given as a combination of the

estimated and observed values

Ŷ n
t (h) =

k
∑

j=1

{

ν(j) +

h−1
∑

i=1

a
(j)
i Ŷ n

t (h− i) +

pj
∑

i=h

a
(j)
i Yt+h−i

}

1{rj−1<Yt+h−d≤rj}.

However this naïve approach, when used for multi-step-ahead forecasts, gen-
erates biased forecasts and can be misleading [31] [86]. In order to evaluate the
predictive accuracy, it is always useful to have available the predictive distri-
bution [120] which corresponds, in this context, to the conditional distribution
of Yt+h given Ωt. Brown and Mariano [31] underline the role of the forecasts
generated by taking expectation with respect to the know conditional distri-
bution. They refer to this as the closed-form-forecast.

The knowledge of the predictive distribution allows to obtain the conditional
expectation of Yt+h, E[Yt+h|Ωt], using the closed form forecast

Yt(h) =
∫ ∞

−∞
Yt+h g(Yt+h | Ωt) dYt+h,

where g(Yt+h | Ωt) is the distribution of Yt+h conditioned upon the past infor-
mation Ωt.

In general, deriving the analytic expression of nonlinear forecast, when h > 1,
is a challenging task. However, by using the so-called Chapman-Kolmogorov
relationship, exact least squares multi-step-ahead forecasts for general non-
linear AR models can, in principle, be obtained through complex numerical
integration.

Early examples of this approach are Tong and Moeanaddin [122] that use
the recursive formula of the Chapman-Kolmogorov relation to obtain h-step
forecasts from threshold models and Al Qassen and Lane [2] that use it for the
EXPAR models. Later on, de Gooijer and de Bruin [66], derive the conditional
probability density function (p.d.f.) for h-step-ahead forecasts of first order
SETAR models with Gaussian errors. The procedure can be generalized to
higher-order models.

Moeanaddin [96], assuming the Gaussianity of the errors, proposes to generate
the multi-step ahead forecasts of a SETAR(2;1,1) as a weighted mean of the
naïve predictions obtained from each regime. Let Ŷ 1

t (h) and Ŷ 2
t (h) be the

h-step-ahead forecasts generated from the first and the second regime. We
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have

Ŷ 1
t (h) = ν(1) + a

(1)
1 Ŷt(h− 1) and Ŷ 2

t (h) = ν(2) + a
(2)
1 Ŷt(h− 1),

where Ŷt(h) is obtained as the weighted mean

Ŷt(h) = ph−1Ŷ
1
t (h) + (1 − ph−1)Ŷ

2
t (h)

and ph−1 is selected through the cumulative distribution function of the stan-
dardized normal

ph−1 = Φ

{

r1 − Ŷt(h− 1)

σ̂t(h− 1)

}

.

In this regard Potter [101] observes that when the forecast horizon exceeds the
length of the delay lag d, the generation of forecasts from threshold models may
require the use of simulations (which could give a reasonable approximation
of the empirical distribution of Yt+h too). In this case the results given in
Moeanaddin [96] and in de Gooijer and de Bruin [66] can only approximate
the p.d.f. of predictors.

This issue was investigated in Amendola and Niglio [3] who derive the condi-
tional p.d.f. of Yt+h and the exact form of the forecast Ŷ c

t (h) = E[Yt+h | Ωt],
when Yt follows a SETAR model under the Gaussian assumption on the er-
ror term, and assuming known parameters. The local autoregressive structure
makes the Gaussian hypothesis reasonable in the SETAR context. The gen-
eration of forecasts can however be affected by several other aspects, mainly
related to the threshold variable, and the threshold delay, which have important
implications for the form of the predictor and for its distribution [4].

Example 13 For a SETAR(2;1,1) model with d = 1, define the closed form predic-
tor Ŷ c

t (h) at h = 2 by

Ŷ c
t (2) =

∫ r

−∞

(

ν(1) + a
(1)
1 Yt+1

)

g(Yt+1 | Ωt) dYt+1 +

+

∫ ∞

r

(

ν(2) + a
(2)
1 Yt+1

)

g(Yt+1 | Ωt) dYt+1

=
{

ν(1) + a
(1)
1 Yt(1)

}

λ+
{

ν(2) + a
(2)
1 Yt(1)

}

(1 − λ) + (a
(2)
1 − a

(1)
1 )γ,

where
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λ=

∫ {r1−Yt(1)}/σt(1)

−∞

1√
2π

exp

(

−x
2

2

)

dx

γ=
σt(1)√

2π
exp

(

−{r1 − Yt(1)}2

2σ2
t (1)

)

σt(1) = σ(1)
1{Yt≤r1} + σ(2)

1{Yt>r1}

and

Yt(1) =
(

ν(1) + a
(1)
1 Yt

)

1{Yt≤r1} +
(

ν(2) + a
(2)
1 Yt

)

1{Yt>r1}.

It can be shown that Ŷ c
t (2) = Yt(2) = E(Yt+2 | Ωt) under the Gaussian assumption.

The derivation of analytical distributions of non-linear predictors is closely
related to the structure of each class of model, and the difficulty increases for
large values of the forecasting horizon h.

A widely used approach to generate multi-step-ahead forecasts is based on
numerical techniques [69]. A simulation based forecast method is the Monte
Carlo method which, in the framework of Example 12, approximates the con-
ditional expectation Yt(h) for h = 2, 3, . . . by

Ŷt(h) =
1

M

M
∑

ℓ=1





k
∑

j=1

{

ν(j) +
pj
∑

i=1

a
(j)
i Ŷt(h− i) + σ(i)ηℓ

}

1{rj−1<Ŷt(h−d)≤rj}





where the 1-step-ahead forecast is explicitly given by

Ŷt(1) = Yt(1) =
k
∑

j=1

{

ν(j) +
pj
∑

i=1

a
(j)
i Yt+1−i

}

1{rj−1<Yt+1−d≤rj},

the convention Ŷt(k) = Yt+k is used for all k ≤ 0, the number of Monte Carlo
replications is M , and η1, . . . , ηM is a sample from the presumed distribution
of the errors. In practice this distribution is almost always assumed to be
normal.

A closely connected alternative is the Bootstrap approach. In this case the
added error terms are selected by resampling from the estimated residuals
and no assumption on the errors distribution is needed. This leads this latter
approach to be preferred. The h-step-ahead Bootstrap forecast is given by

Ŷt(h) =
1

B

B
∑

ℓ=1





k
∑

j=1

{

ν(j) +
pj
∑

i=1

a
(j)
i Ŷt(h− i) + σ(i)η∗ℓ

}

1{rj−1<Ŷt(h−d)≤rj}




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where B is the number of Bootstrap replicates, and η∗1, . . . , η
∗
B is a sample

from the empirical distribution of the residuals η̂1, . . . , η̂n.

The simulation-based approaches lead to easily generate non-linear multi-step-
ahead forecasts and the popularity of these methods was growing up due to the
increasing computing power of Pcs. However they only give an approximation
of the conditional expectation.

6.2 Interval and density forecasts

In order to investigate on the accuracy of point forecasts or to evaluate the
performance of a single candidate model it could be useful to compute interval
forecasts, which are generally calculated as a symmetric interval around the
mean [32]. In the nonlinear domain, where the predictors are often charac-
terized by asymmetric and multimodal distributions, this procedure can be
unsatisfactory. Finding the entire forecast density can be useful when a single
interval may no longer provide an adequate summary of the expected future. In
this context interesting proposals include fan charts [124] and forecast regions
[80].

The forecast regions can be differently defined in relation to the shape of the
forecast density function. In particular in order to construct a 100(1 − α)%
forecast region Rα, Hyndman has suggested three different approaches:

1) in presence of a symmetric and unimodal distribution

Rα = [µt|h − wα,h, µt|h + wα,h]

where µt|h is the mean of the distribution gt,h(y) of Yt+h given Ωt;

2) with asymmetric and unimodal distribution

Rα = [Qt|h (α/2), Qt|h (1 − α/2)]

where Qt|h (α/2) is the α/2−quantile of gt,h(y);

3) in the presence of an asymmetric and multimodal distribution

Rα = {y : gt,h(y) ≥ g(α)},

with g(α) such that Pr(Yt+h ∈ Rα | Ωt) = 1 − α. The latter forecast region is
called an High Density Region (HDR) [81].
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Figure 10. Two different 100(1 − α)% forecast regions

The use of these graphical summaries has grown rapidly in recent years as
density forecasts have become relatively widely used. However the need of
evaluating the best predictive density requires new instruments and a few
proposal have been done in the last years mainly addressing interval and den-
sity forecast evaluation. The issue is largely concerned with testing the null of
correct dynamic specification. Diebold, Gunther and Tay [49] (hereafter DGT)
first suggest to use the Probability Integral Transform (PIT) to evaluate the
predictive density.

Let gt(y|Ωt) be the sequence of conditional densities of a time series Yt and let
pt(y|Ωt) be the corresponding sequence of 1-step-ahead density forecasts. The
PIT is defined as:

zt =
∫ yt

−∞
pt(u)du = Pt(y) (46)

If the forecasting model is correctly specified, then pt(y) = gt(y) and in this
case the sequence zt is i.i.d. U(0, 1). DGT illustrate their forecasts evalua-
tion mainly through graphical tools used even for investigate on uniformity
and independence. Within this framework different tests have been proposed
([78]; [10]; [17]) that have been recently reviewed in Corradi and Swanson [42].
Clements et al. [38] pointed out, in a simulation exercise, how these tests may
have negligible power to indicate the misspecification of the linear forecast
density. The above procedures can be also extended for evaluate multi-step
ahead density forecasts.
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6.3 Volatility forecasting

If we are interesting in generating the optimal point forecasts, the volatil-
ity prediction does not play any role in the forecast generation, unless the
conditional mean depends directly on the conditional variance [11].

Example 14 The GARCH-M [53] allows to include the time varying conditional
variance in the equation for the mean

Yt = ν +

p
∑

i=1

aiYt−i + θg(σ2
t ) + ǫt,

where g(σ2
t ) is a function of the conditional variance of the error term ǫt = σtηt,

which can follow a GARCH specification. The generation of h-step-ahead forecasts
of Yt+h will require the prediction of future values of the conditional variance.

However, the volatility forecasts are absolutely relevant for assessing the uncer-
tainty of the levels predictions. While the unconditional forecast error might
not be affected by a time varying conditional variance, the conditional squared
forecast error, E[ǫ2t+h|t|Ωt], is varying over time. The convergence of the mean
squared forecast error (MSFE) to the unconditional variance is no more mono-
tone [62]. Furthermore, in order to compute evaluating forecasts criteria, such
as the forecast intervals, h-step-ahead forecasts for the conditional variance
are required. The computation of analytic forecasts for the conditional vari-
ance can be straightforward for many GARCH-type models. The 1-step-ahead
volatility forecasts depend explicitly upon the information up to time t, Ωt.
Multi-step-forecasts can then be obtained recursively (given knowledge of the
model specification and of the parameters values). A recent survey on the field
is [7].

Example 15 Considering the GARCH(1,1) model

ǫt = σtηt, σ2
t = ω + α1ǫ

2
t−1 + β1σ

2
t−1,

the optimal h-step-ahead forecasts of the conditional variance can be computed re-
cursively from

σ̂2
t (h) = ω + α1ǫ̂

2
t+h−1 + β1σ̂

2
t (h− 1),

for h = 1, 2, . . . , with ǫ̂2t+h−1 = σ̂2
t (h− 1) when h > 1, and the initial values

ǫ̂2t = ǫ2t , σ̂2
t (0) =

t−2
∑

i=0

βi(ω + αǫ2t−i−1).
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Whereas forecasting conditional volatility is fairly straightforward, evaluat-
ing the forecasting performance is a more challenging task. Important con-
tributions in assessing the correctness of out-of-sample conditional and un-
conditional interval predictions are Christoffersen [35] and Christoffersen and
Diebold [36]. The main problem is that the volatility cannot be directly ob-
served and hence loss functions such as the MSFE cannot be used unless a
suitable proxy of the conditional variance is defined. A recent work on the ap-
propriateness of certain loss functions in volatility forecast evaluation is due to
Patton [99]. Common approaches are to use the squared returns, and as more
recently suggested, to refer to the realized volatility concept [6]. The attention
to volatility forecasts is mainly due to their important role in some applica-
tion areas such as the financial market. Asset pricing and risk management are
based on measuring and forecasting volatility. In this setting, the increasing
attention paid to volatility forecasting is also due to the impact that accurate
measures of volatility are required for computing measures of financial risk
such as the Value at Risk (VaR).

6.4 Forecast combination

In order to improve the accuracy of the forecasts, combinations of different
predictors have been used in forecasting from linear and nonlinear models.
The literature on forecasts combination dates back to the seminal paper by
Bates and Granger [14]. Given a forecast horizon h, the aim of forecasts
combination is to find an optimal vector of weights such that the new
predictor performs better than the single candidate models, according to an
appropriately chosen loss function.

Formally, let Yt, t = 1, . . . , n, be an observed time series generated by a sta-
tionary stochastic process {Yt}, and let Ŷ i

t (h) be the forecast of Yt+h generated
by the i-th model among k different models (i = 1, . . . , k). The basic idea is
to find a linear combination

Ỹt(h) =
k
∑

i=1

wiŶ
i
t (h)

(0 ≤ wi ≤ 1,
∑k
i=1wi = 1) which performs better than the single candidate

models according to an appropriately chosen criterion function e.g. the MSFE

E(Ỹt(h) − Yt+h)
2.

In the original approach by Bates and Granger [14] a convexity constraint
was imposed on the combination while Granger and Ramanathan [68] showed
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how the accuracy of the combined predictor can be improved removing the
convexity constraint and adding a constant term to the combination. In this
way, even if the candidate predictors are biased their combination can still
yield an unbiased predictor. A recent field of research refers to the combination
of density forecast. The aim is to link two relevant aspects of the forecasting:
the estimation of the density forecast and the forecasts combination. Until
now few works have been published on the topic ([125], [71], [12]) which also
appears to be promising to deal with nonlinear features. For instance, it is
well known that when the single densities are Gaussian, the mixture can have
an asymmetric behavior and/or heavy tails, allowing data with a wide range
of skewness and kurtosis. Further, under proper conditions on the parameters
of the densities, the mixture can even be multimodal, which is often the case
in presence of nonlinearities.

7 Algorithmic aspects

Nonlinear time series analysis often makes use of iterative simulation tech-
niques and optimization procedures. We begin with computational techniques
based on simulations of Markov chains. We review MCMC methods for the
bayesian inference of nonlinear time series models. In particular, an hybrid al-
gorithm, combining Metropolis-Hastings and Gibbs steps, is derived for fitting
a STAR model. We also present several algorithms used to fit models driven
by hidden Markov chains. An application to the French CAC 40 stock market
index is proposed.

7.1 MCMC methods

The Markov Chain Monte Carlo (MCMC) methods, in particular the
Metropolis-Hastings algorithm and the Gibbs sampling, enable to simulate an
ergodic Markov chain whose invariant distribution is a specified distribution.
MCMC methods have become the numerical techniques of choice for many
Bayesians because these methods are extremely powerful to simulate compli-
cated posterior distribution. Most of the applied data analysts also employ
MCMC algorithms for their ability the fit highly complex probability models.

7.1.1 The Metropolis-Hastings algorithm

Let P (θ) be a distribution with support E ⊂ R
d. The "target" distribution P

only needs to be specified up to a constant of proportionality. This is particu-
larly interesting in a Bayesian framework when the target distribution is the
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posterior distribution

π(θ|X) =
f(X | θ)π(θ)

f(X)
,

where π(θ) denotes the prior distribution of the parameter θ and f(X | θ) is
the likelihood of the data X. Interestingly, the Metropolis algorithm, intro-
duced by [94] and extended by [76], does not require the specification of the
complicated constant f(X) =

∫

f(X | θ)π(θ)dθ.

Given an arbitrary Markov transition kernel Q(·, ·), the Metropolis algorithm
generates a Markov chain {θ(t)}t∈N, with state space E and invariant distri-
bution P (θ) as follows:

(1) Choose an initial value θ(0) in E.
(2) For t = 0, 1, . . .

(a) Generate a candidate value θ∗ for the next state θ(t+1),

from the "proposal" distribution Q(θ(t), ·).
(b) Compute the ratio

r =
P (θ∗)

P (θ(t))

Q(θ∗, θ(t))

Q(θ(t), θ∗)
.

(c) With probability min(r, 1), accept θ∗ as the new state so

that θ(t+1) = θ∗, otherwise reject the candidate so that

the chain remains at θ(t+1) = θ(t).

The kernel must satisfy certain regularity conditions in order to guarantee er-
godicity of the chain (see Section 4.4 for the concept of ergodicity). Otherwise
the choice of Q(·, ·) is arbitrary, which is not very surprising if we realize that
many Markov processes may have the same invariant probability P . Because
the algorithm depends on P only through the ratio P (θ∗)/P (θ(t)), as was al-
ready mentioned, it suffices that P be defined as an unnormalized probability.
It is also worth noting that, although the bivariate distribution of (θ(t), θ(t+1))
is not continuous (θ(t) being equal to θ(t+1) with nonzero probability), it is
possible that the marginal distribution P be continuous.

Example 16 The following example is artificial, and useless for the applications,
but allows a better understanding of the algorithm. Assume a discrete target dis-
tribution such that P (0) = 1 − P (1) = p. Take a transition kernel such that
Q(0, 1) = q 6= 0 and assume, for simplicity, that Q(1, 0) = Q(0, 1). We have

p(0, 1) :=P (θ(t+1) = 1 | θ(t) = 0) = P (θ(t+1) = 1, θ∗ = 1 | θ(t) = 0)

= P (θ(t+1) = 1 | θ(t) = 0, θ∗ = 1)P (θ∗ = 1 | θ(t) = 0)

= min {(1 − p)/p, 1} q.

Similarly p(1, 0) := P (θ(t+1) = 0 | θ(t) = 1) = min {p/(1 − p), 1} q. The invariant
distribution satisfying P (0) = {1− p(0, 1)}P (0)+ p(1, 0)P (1) with P (1) = 1−P (0),
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it is then easy to check that P (0) = 1−P (1) = p, whatever the value of q. Of course,
when q is very small, the chain θ(t) stays at the same state for a long time, and
the empirical frequency of the state i (i = 0 or 1) is likely to converge to P (i) very
slowly.

Now consider a slightly more elaborate example.

Example 17 Consider the smooth transition autoregressive model

Yt = a0 + a1Yt−1 +
(b0 − a0) + (b1 − a1)Yt−1

1 + exp{−γ(Yt−1 − c)} + ǫt, ǫt ∼ IID(0, σ2). (47)

We assume γ > 0, so that the regression function E(Yt | Yt−1 = y) smoothly changes
from a0 + a1y to b0 + b1y when y varies from −∞ to +∞. Figure 11 displays a
simulated trajectory of the model.

Time t

y
t

0 50 100 150 200

−
2

2
6

(a) Simulation (Yt) of a  STAR

−2 0 2 4 6

−
2

2
6

y

E
(Y

t|Y
t−

1
=

y
)

 (b) Points (Yt−1,Yt) and regression function

Figure 11. A simulation of length n = 200 of the STAR model (47) with a0 = b0 =
c = 0, a1 = −0.95, b1 = 0.9, γ = 5, and (ǫt) as in Figure 9.

The tsDyn package of the statistical software R (see http://cran.r-project.org/) con-
tains a function called lstar(), which uses a standard frequentist approach to fit
STAR models:

> # fit a STAR model to the time series y

> fittedstar<-lstar(y,m=1,thDelay=0,control=list(maxit=3000))

> names(fittedstar$coefficients)<-c("a0","a1","b0","b1","gamma","c")

> summary(fittedstar)

Fit:

residuals variance = 1.183, AIC = 349, MAPE = 116.4%

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

a0 -0.115184 0.097962 -1.1758 0.23967

a1 -1.029256 0.068614 -15.0007 < 2e-16 ***

b0 -0.068118 0.049227 -1.3838 0.16643

b1 0.922659 0.016743 55.1081 < 2e-16 ***

gamma 9.892915 5.974123 1.6560 0.09773 .

c 0.042477 0.175698 0.2418 0.80896
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---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Non-linearity test of full-order LSTAR model against full-order AR model

F = 403.39 ; p-value = 7.2136e-82

The function metrop() of the R package mcmc (and also the function
MCMCmetrop1R() of the package MCMCpack) can be employed to perform a
Bayesian analysis.

Assume that under the prior distribution, all the parameters are independent, c is
fixed to 0, a0, a1, b0, and b1 are N (0, 1) distributed, γ follows an exponential dis-
tribution with rate 1, and σ2 follows the inverse gamma distribution with shape and
scale parameters equal to 1. We begin to specify (up to an additive constant) the
unnormalized log-density of the posterior distribution:

> logpost<-function(theta, y){

> n<-length(y);a0<-theta[1];a1<-theta[2];b0<-theta[3];b1<-theta[4]

> gamma<-theta[5]; c<-0; sig2<-theta[6]

> if ( gamma<=0 ) return(-Inf); if ( sig2<=0 ) return(-Inf)

> logi <- 1/(1+exp(-gamma*(y[1:(n-1)]-c)))

> ychap <- (a0+a1*y[1:(n-1)])*(1-logi) + (b0+b1*y[1:(n-1)])*logi

> loglike <- -sum((y[2:n]-ychap)^2/(2*sig2))-(n-1)*log(sig2)/2

> logprior<- -(a0^2+a1^2+b0^2+b1^2)/2 - gamma -2*log(sig2)-1/sig2

> return(loglike+logprior)}

The following commands allow to generate a Metropolis algorithm with the random
walk kernel transition Q(x, y) ∼ N (x, scale I6), and with the output of the lstar()

as starting value θ(0).

> theta.init0 <- {as.vector(c(fittedstar$coefficients[1:5],

+ var(residuals(fittedstar),na.rm=T)))}

> mcmcresults <- metrop(logpost, theta.init0, 3000, scale=0.02, y=y)

> mcmcresults$accept

> chaine<-ts(mcmcresults$batch)

> dimnames(chaine)[[2]] <- c("a0","a1","b0","b1","gamma","sigma2")

> plot(chaine, main="Markov chain silumated by Metropolis")

The parameter scale is very important for the performance of the Metropolis algo-
rithm. High values of scale result in low acceptance rates (the candidate is likely
to fall into low-density areas of the posterior distribution, and thus to be rejected,
with high probability). Small values of scale result in high acceptance rate and slow
movements of the chain (in this case the chain is said to be "poorly mixing"). Here
the acceptance rate is mcmcresults$accept=0.37, which can be found acceptable by
practitioners. Figure 12 shows however that the Markov chain generated by the al-
gorithm does not seem to have reached its equilibrium, the component gamma moving
too slowly.
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Figure 12. The Markov chain generated by the algorithm does not look stationary.

Considering the 3 000 previous simulations as "burn-in" values, generating a longer
trajectory of 30 000 values, and tuning the scale parameter, the following command

> mcmcresults <- {metrop(mcmcresults, nbatch=30000,

+ scale=c(0.03,0.03,0.03,0.03,0.4,0.02),y=y)}

generates a more satisfactory Markov chain (see Figure 13). Of course, the time
series plots of Figure 13 are not sufficient to successfully diagnose "convergence" (see
e.g. [30]). Additional diagnostic tools are available in the R package MCMCpack.
The empirical marginal distribution of the Markov chain generated by the Metropolis
algorithm can then be used to approximate the posterior distribution of parameters
(see Figure 14).
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Figure 13. The trajectories do not display obvious nonstationarities.

7.1.2 The Gibbs algorithm

The Gibbs sampler, proposed by [63], allows to generate a Markov chain
{

θ(t)
}

=
{

θ
(t)
1 , . . . , θ

(t)
d

}′
on a product state space E = E1 × · · · × Ed, with

target distribution P (·). It is assume that P (·) has the support E, and that it
is the law of a random vector θ = (θ1, . . . , θd)

′, where each θi has a distribution
Pi with support Ei. For i = 1, . . . , d, let Pi (· | θ−i) be the "full conditional
distribution" of θi given {θj , j 6= i}. The Gibbs sampler proceeds as follows:

(1) Choose an initial value θ(0) in E.
(2) For t = 0, 1, . . ., generate θ(t+1) =

{

θ
(t+1)
1 , . . . , θ

(t+1)
d

}′
by drawing

from the lower-dimensional distributions

(a) θ
(t+1)
1 ∼ P1

(

· | θ(t)
2 , . . . , θ

(t)
d

)

,

(b) θ
(t+1)
i ∼ Pi

(

· | θ(t+1)
1 , . . . , θ

(t+1)
i−1 , θ

(t)
i+1, . . . , θ

(t)
d

)

for i = 2, . . . , d− 1,

(c) θ
(t+1)
d ∼ Pd

(

· | θ(t+1)
1 , . . . , θ

(t+1)
d−1

)

.
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Figure 14. Histogram and kernel estimates of the posterior distributions of the pa-
rameters of the STAR model (47).

Example 18 Let us continue with the STAR(1) model of Example 17. When γ is
given, the model can be written as a linear model of the form Yt = Z ′

t−1β+ ǫt, where
ǫt is iid N (0, σ2), and

Zt =

















1 −Gt(γ)

Yt {1 −Gt(γ)}
Gt(γ)

YtGt(γ)

















, β =

















a0

a1

b0

b1

















, Gt(γ) =
1

1 + exp(−γYt)
.

With the notation

Σn = σ2

(

n
∑

t=2

Zt−1Z
′
t−1

)−1

, β̂ =

(

n
∑

t=2

Zt−1Z
′
t−1

)−1( n
∑

t=2

YtZt−1

)

and other obvious notations, the following full conditional distributions are then
explicitly given by (see e.g. [104]):

P1(β | Y, γ, σ2) ∼ N
{

(

I4 + Σ−1
n

)−1
Σ−1
n β̂,

(

I4 + Σ−1
n

)−1
}

,

P2(σ
2 | Y, β, σ2) ∼ IG

(

1 + (n− 1)/2, 1 +

n
∑

t=2

ǫ2t/2

)

,

where IG(a, b) is the inverse Gamma distribution with shape parameter a and scale
parameter b. The full conditional distributions of γ is not explicit, but satisfies

P3(γ | Y, β, σ2) ∝ exp

{

−
n
∑

t=2

ǫ2t (γ)/(2σ
2) − γ

}

1{γ>0}, ǫt(γ) = Yt − β′Zt−1.
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Using a one-dimensional Metropolis-Hastings step to simulate from the conditional
distribution P3, we obtain an hybrid method based on a combination of Metropolis
and Gibbs sampling steps.

> p3<-function (gam,beta,sig2,y,n) {if ( gam<=0 ) return(-Inf)

+ Zt <- matrix(ncol = n, nrow = 4); Gt<-1/(1+exp(-gam*y))

+ Zt[1,]<- 1-Gt; Zt[2,]<- y*(1-Gt); Zt[3,]<- Gt; Zt[4,]<- y*Gt

+ eps<-c(rep(0,n)); eps[2:n]<-y[2:n]-beta%*%Zt[1:4,1:(n-1)]

+ -gam-sum(eps^2)/(2*sig2) }

>

> gibbsMH<-function (y,nbatch=1000,theta.init=0.1,tun=1) {

+ n<-length(y); eps<-c(rep(0,n)); Zt <- matrix(nrow=4, ncol=n)

+ mat <- matrix(nrow=6, ncol=nbatch); mat[,1] <- theta.init

+ for (i in 2:nbatch) { Gt<-1/(1+exp(-mat[5,i-1]*y))

+ Zt[1,]<- 1-Gt; Zt[2,]<- y*(1-Gt); Zt[3,]<- Gt; Zt[4,]<- y*Gt

+ ZtZ <- Zt[1:4,1:(n-1)]%*%t(Zt[1:4,1:(n-1)])

+ Zty<-{c(sum(y[2:n]*Zt[1,1:(n-1)]),sum(y[2:n]*Zt[2,1:(n-1)]),

+ sum(y[2:n]*Zt[3,1:(n-1)]),sum(y[2:n]*Zt[4,1:(n-1)]))}

+ bhat<-solve(ZtZ,Zty); Sigmaninv<-ZtZ/mat[6,i-1]

+ Sigma<-solve(diag(rep(1,4))+Sigmaninv)

+ mu<-Sigma%*%(Sigmaninv%*%bhat)

+ mat[1:4,i]<-mvrnorm(n=1,as.vector(mu), Sigma)

+ eps[2:n]<-y[2:n]-bhat%*%Zt[1:4,1:(n-1)]

+ mat[6,i]<- rinvgamma(1,shape=1+(n-1)/2,scale=1+sum(eps^2)/2)

+ gamstar <- rnorm(1, mean=mat[5,i-1], sd=tun)

+ unif<-runif(1,0,1)

+ lognum<-p3(gamstar,bhat,mat[6,i],y,n)

+ logden<-p3(mat[5,i-1],bhat,mat[6,i],y,n)

+ if(lognum==-Inf) ratio<-0 else {if (logden==-Inf)

+ ratio<-1 else ratio<-exp(lognum-logden)}

+ mat[5,i] <- if(unif <= ratio) gamstar else mat[5,i-1]

+ }

+ t(mat)}

>

Figure 15 shows the traces and the posterior distributions of γ and σ2, obtained for
a run of length nbatch=1000 of the hybrid MCMC algorithm.

For more information on MCMC methods and on Bayesian statistics the reader
is referred to e.g. [104].

7.2 Optimization algorithms for models with several latent processes

We have seen in Section 5 that the inference of nonlinear time series models
requires the optimization of complicated objective functions of the form (38).
For the models considered in Section 5, Newton-type algorithms are sufficient.
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Figure 15. Trace and posterior distribution of the parameters γ and σ2 of the STAR
model (47), obtained with an hybrid Metropolis-Gibbs algorithm.

The problem is much more difficult for models defined by means of several un-
observable processes. As an illustration, consider the Markov-switching ARCH
model introduced by [72] and defined by











ǫt = σtηt, ǫt ∼ N (0, 1)

σ2
t = σ2

t (∆t) = ω(∆t) +
∑q
i=1 αi(∆t)ǫ

2
t−i

(48)

with the same notation as in (4) and (27) for (∆t), and the positivity con-
straints

for j = 1, . . . , d, ω(j) > 0, αi(j) ≥ 0, 1 ≤ i ≤ q.

The unknown parameter θ contains the ARCH coefficients of the d regimes
and all the non redundant transition probabilities. Assuming that the two
latent processes (∆t) and (ηt) are independent, conditional on initial values
ǫ0, . . . , ǫ1−q, the likelihood of (ǫ1, . . . , ǫn) is given by summing the conditional
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density over all the possible paths (e1, . . . , en) of the Markov chain

L(ǫ1, . . . , ǫn; θ) =
∑

(e1,...,en)∈En

L(e1,...,en)(ǫ1, . . . , ǫn)P (e1, . . . , en), (49)

where

P (e1, . . . , en) = P (∆1 = e1, . . . ,∆n = en) = π(e1)p(e1, e2) . . . p(en−1, en)

and, denoting by φ the N (0, 1) probability density,

L(e1,...,en)(ǫ1, . . . , ǫn)=
n
∏

t=1

φet
(ǫt, . . . , ǫt−q),

φj(ǫt, . . . , ǫt−q)=
1

σt(j)
φ

(

ǫt
σt(j)

)

.

The computation of the likelihood by means of the direct application of (49)
is generally impossible because the number of possible paths is dn, which is a
huge number. When n ≥ 300, the number 2n is greater than the number of
atoms in the universe !

7.2.1 Computation of the likelihood

There exist at least 3 ways to compute the likelihood defined by (49): the
forward-backward algorithm defined by [15] (and improved by [48]), the filter
defined by [72], and the matrix form that we now present.

Let Fk(j) = gk(ǫ1, . . . , ǫk|∆k = j)π(j) where gk(·|∆k = j) is the density of
(ǫ1, . . . , ǫk) given {∆k = j} and the initial values ǫ0, . . . , ǫ1−q. It is easy to
check that

F1(j)= π(j)φj(ǫ1, . . . , ǫ1−q) (50)

Fk(j)=φj(ǫk, . . . , ǫk−q)
d
∑

ℓ=1

Fk−1(ℓ)p(ℓ, j) (51)

and

L(ǫ1, . . . , ǫn) =
d
∑

j=1

Fn(j). (52)

In matrix form we obtain

Fk := (Fk(1), . . . , Fk(d))
′ = M(ǫk, . . . , ǫk−q)Fk−1,
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where, for x = (x1, . . . , xq+1),

M(x) =















p(1, 1)φ1(x) · · · p(d, 1)φ1(x)
...

p(1, d)φd(x) · · · p(d, d)φd(x)















.

Thus, with 1
′ = (1, . . . , 1),

L(ǫ1, . . . , ǫn) = 1
′M(ǫn, . . . , ǫn−q) · · ·M(ǫ2, . . . , ǫ2−q)F1, (53)

which is easily computable (with O(d2n) multiplications). This matrix form is
convenient for studying the asymptotic behavior of the QMLE (see [58]), but
is outperformed by the forward-backward algorithm and by Hamilton’s filter
in terms of computation time, and also in terms of numerical stability. Indeed
the matrix product (53) is likely to produce underflows when n is large.

7.2.2 Optimization of the likelihood

The optimization can be performed by means of Newton-type algorithms. The
optimization is however subject to inequality constraints: positivity constraints
for all the parameters, constraints on the transition probabilities

∑d
j=1 p(i, j) =

1 for i = 1, . . . , d, and the identifiability constraints ω(1) ≤ · · · ≤ ω(d). Such
constraints are easily incorporated in R using the function constrOptim(),
but the optimization is time consuming. The Expectation-Maximization (EM)
algorithm is an interesting alternative which is particularly attractive in the
case q = 0, because it takes the following explicit form : starting from initial
values of the parameters π0 = {P (∆1 = 1), . . . , P (∆1 = d)}′, p(i, j) = P (∆t =
j | ∆t−1 = i) and ω = {ω(1), . . . , ω(d)}′ ,

repeat the following steps until convergence

(1) Set π1|0 = π0 and

πt|t =
πt|t−1 ⊙ φ(ǫt)

1′
{

πt|t−1 ⊙ φ(ǫt)
} , πt+1|t = P

′πt|t, for t = 1, . . . , n.

(2) Compute the smoothed probabilities πt|n(i) = P (∆t = i | ǫ1, . . . , ǫn)

πt−1|n(i)=
d
∑

j=1

p(i, j)πt−1|t−1(i)πt|n(j)

πt|t−1(j)
for t = n, n− 1, . . . , 2.

and the probabilities πt−1,t|n(i, j) = P (∆t−1 = i,∆t = j | ǫ1, . . . , ǫn)
from
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πt−1,t|n(i, j)=
p(i, j)πt−1|t−1(i)πt|n(j)

πt|t−1(j)
.

(3) Replace the previous values of the parameters by π0 = π1|n,

p(i, j) =

∑n
t=2 πt−1,t|n(i, j)
∑n
t=2 πt−1|n(i)

and ω(i) =

∑n
t=1 ǫ

2
tπt|n(i)

∑n
t=1 πt|n(i)

.

In (1)-(3) the symbol ⊙ denotes the Adamar product, P is the matrix of the
transition probabilities, and φ(ǫt) = {φ1(ǫt), . . . , φd(ǫt)}′.

The reader is referred to [73] and [82] for details on this algorithm and its
extensions. In the HMM literature, the part (1) is generally replaced by the
Forward-Backward algorithm, and (2) is then obtained by the Viterbi algo-
rithm, whereas (3) is known as the Baum-Welch algorithm (see e.g. [103]).

Example 19 The considered the French CAC 40 stock index from 1 Mars 1990
to 29 December 2006. On the daily returns (in %), we fitted the Markov-switching
model (48) with q = 0 and d = 4 regimes, using the EM algorithm. The estimated
parameters are

ω̂ =

















0.51

1.19

2.45

8.4

















, P̂ =

















0.993 0.003 0.002 0.002

0.003 0.991 0.003 0.003

0.000 0.020 0.977 0.003

0.004 0.000 0.032 0.963

















.

Note that the estimated probabilities of the regimes are π̂ = (0.26, 0.49, 0.19, 0.06)′ ,
and that the average duration of the regimes are respectively 140, 107, 43, and 27 days
(1/(1 − p(i, i)) for i = 1, . . . , 4). Figure16 confirms that the regime with the highest
volatility is the less frequent and the less persistent, with however an exceptional long
period of high volatility from 4 June 2002 to 8 November 2002. The regime with the
lowest volatility is the most persistent, and the second regime is the most frequent.

8 Conclusion

Most of the real-life time series, in particular those encountered in finance
and macroeconomics, exhibit nonlinearities. Conventional time series models,
like the ARMA processes, are inappropriate for such series. This is the rea-
son why, in econometrics and statistics, the literature on nonlinear time series
models has developed considerably in the last decade. The present work aims
to give an idea of the variety of the methods that are employed in nonlinear
time series analysis. The themes tackled in this chapter have been chosen to
illustrate that nonlinear time series analysis requires the interaction of prob-
ability theory, statistical inference, applied econometrics and computational
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Figure 16. Returns of the CAC 40 index from 2 Mars 1990 to 29 December 2006,
and ±2 times the standard deviation of the regime which maximizes the smoothed
probability.

methods. The paper concentrates on a selection of application-oriented tools
and concepts which covers all the above-mentioned domains. Original exam-
ples and illustrations are given throughout the text. Most of the examples are
deliberately simplistic, the goal being to illustrate the main ideas. An appli-
cation to the regime changes in the volatility of the CAC 40 stock index is
also given. It should be emphasized, however, that in real applications, the
multiplicity of the stylized facts leads to the introduction of highly complex
models for which the modelling issues are far from being obvious. This is why
nonlinear time series modelling is a very active area of academic research, with
numerous exciting problems.
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