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Abstract

According to theories of cultural neuroscience, Westerners and East-
erners may have distinct styles of cognition (e.g., different allocation of
attention). Previous research has shown that Westerners and Easterners
tend to utilize analytical and holistic cognitive styles, respectively. On the
other hand, little is known regarding the cultural differences in neuroe-
conomic behavior. For instance, economic decisions may be affected by
cultural differences in neurocomputational processing underlying atten-
tion; however, this area of neuroeconomics has been largely understudied.
In the present paper, we attempt to bridge this gap by considering the
links between the theory of cultural neuroscience and neuroeconomic the-
ory of the role of attention in intertemporal choice. We predict that (i)
Westerners are more impulsive and inconsistent in intertemporal choice
in comparison to Easterners, and (ii) Westerners more steeply discount
delayed monetary losses than Easterners. We examine these predictions
by utilizing a novel temporal discounting model based on Tsallis’ statis-
tics (i.e. a q-exponential model). Our preliminary analysis of temporal
discounting of gains and losses by Americans and Japanese confirmed the
predictions from the cultural neuroeconomic theory. Future study direc-
tions, employing computational modeling via neural networks, are briefly
outlined and discussed.

Keywords: Cultural neuroscience, neuroeconomics, intertemporal choice,
attention allocation, Tsallis’ statistics, neural networks.



1 Introduction

People discount future events both by preferring to obtain an immediate gain
(even if it is smaller than the one that may be obtained in the future), and
by trying to avoid an immediate loss, even if it is smaller than the one that
may incur in the future (Frederick, Loewenstein, & O’ Donoghue, 2002). In this
paper we propose that this phenomenon is likely to take different forms across
cultures because of cultural biases in attention allocation.

Consistent with recent work on cultural psychology (Markus & Kitayama,
1991; Masuda & Nisbett, 2001), we assume that people engaging in Western cul-
tures (Westerners) tend to focus their attention on the magnitude of a reward in
lieu of its context, including both a delay until receipt and a distant object. Ac-
cordingly, these individuals may be much more strongly affected by a proximal
object than by the distant one with respect to the near future. Moreover, they
may be relatively impervious to the exact length of the time interval between
the two objects, because they may tend to focus on each temporal fragment
(a divided portion of the time interval between more delayed rewards) sepa-
rately, rather than focusing on the undivided time-interval between rewards. In
contrast, individuals engaging in Eastern cultures (Easterners) tend to allocate
their attention more holistically to both an immediate and a distant object,
as well as to the time interval between them. When compared to Westerners,
Easterners may then be expected to discount the future less, and moreover, even
when they do it, they may do so as a steady function of the length of the time
interval.

In the present paper, we first formulate these conceptual predictions in terms
of a mathematical model of future discounting based on Tsallis’ statistics, and
we report a cross-cultural experiment designed to test the specific derivations
of the model. Finally, we propose future directions in cultural neuroeconomics
employing neurocomputational models based on Tsallis’ statistics.

2 Intertemporal choice model based on Tsallis’

statistics and psychophysics of time

When given a choice between two possible times at which an outcome can oc-
cur, people usually prefer to receive it earlier if it is a good outcome, and
later if it is a bad one (Frederick et al., 2002). This phenomenon of temporal
discounting has been the subject of much research in neuroeconomics and neu-
ropsychopharmacology, which has revealed how the strength of the preference
for earlier outcomes over later ones is influenced by factors including the mag-
nitude and sign of the outcomes (Frederick et al., 2002) and temporal cognition
(Takahashi, 2005, 2006; Wittmann & Paulus, 2008). Specifically, (i) people are
patient with respect to the distant future but impulsive with respect to the
near future, when they choose between smaller sooner rewards and larger later
ones (preference reversal due to ”hyperbolic discounting”, also referred to as
”present bias”; for details see Soman et al., 2005), and (ii) people make more
impulsive choice when the length of delay is perceived as a sum of shorter time-
intervals (”subadditive discounting”; see Read & Roelofsma, 2003). We provide
examples of time-inconsistency and impulsivity in temporal discounting in Ap-
pendix A. These inconsistencies in intertemporal choice cannot be accounted



for by a conventional model of temporal discounting in microeconomic theory
(”exponential discounting”; see Frederick et al., 2002). As a consequence, both
impulsivity (strong discounting) and inconsistency in temporal discounting (i.e.,
hyperbolic and subadditive discounting) have extensively been investigated in
neuroeconomic studies by employing neuroimaging techniques (Boettiger et al.,
2007; Hariri et al., 2006; Kable & Glimcher, 2007; McClure et al., 2004; Mc-
Clure et al., 2007; Monterosso et al., 2007; Wittmann, Leland, & Paulus, 2007),
stimulating thereby much further research and debate.

Recently, behavioral neuroeconomic and econophysical studies established
discount models in order to better describe neural and behavioral correlates of
impulsivity and inconsistency in intertemporal choice. In order to analyze hu-
man and animal intertemporal choice behavior in a manner that would allow
for a dissociation between impulsivity and inconsistency, recent econophysical
studies (Cajueiro 2006; Takahashi, Oono, & Radford, 2007) proposed and ex-
amined the following q-exponential discount function for subjective value V (D)
of a delayed reward:

V (D) =
A

expq(kqD)
=

A

[1 + (1 − q)kqD]1/(1−q)
(1)

where expq(x) := [1 + (1 − q)x]1/(1−q) is a q-exponential function, D is a delay
until receipt of a reward, A is the value of a reward at D = 0, and kq is a param-
eter of impulsivity at delay D = 0 (q-exponential discount rate). We can easily
see that this generalized q-exponential function approaches the usual exponen-
tial function in the limit of q → 1. The q-exponential function has extensively
been utilized in econophysics, where the application of Tsallis’ non-extensive
thermostatistics (Tsallis et al., 2003) may possibly explain income distributions
following power functions (Michael & Johnson, 2003). It needs to be noted
here that when q = 0, the equation (1) becomes the same as the ”hyperbolic”
discount function (i.e., V (D) = A/(1 + kqD)), while in the limit of q → 1, it
reduces to the ”exponential” discount function (i.e., V (D) = A exp(−kqD)). In
exponential discounting (when q → 1 in equation (1)), intertemporal choice is
consistent, because the discount rate := −(dV/dD)/V = kq is time-independent
when q → 1. The q-exponential discount function is capable of continuously
quantifying human subjects’ inconsistency in intertemporal choice (Takahashi
et al., 2007). Namely, human agents with smaller q values are more inconsistent
in intertemporal choice. If q is less than 0, the intertemporal choice behavior is
more inconsistent than hyperbolic discounting. Thus, 1 − q can be utilized as
an inconsistency parameter. Moreover, it is possible to examine neuropsycho-
logical modulation of kq (impulsivity in temporal discounting) and q (dynamic
consistency) in the q-exponential discount model. It is now important to note
that in any continuous time-discounting functions, a discount rate (preference
for sooner rewards over later ones) is defined as −(dV (D)/dD)/V (D), inde-
pendently of functional forms of discount models, with larger discount rates
indicating more impulsive intertemporal choice. In the q-exponential discount
model, the q-exponential discount rate qEDR (”impulsivity”) is then defined as:

qEDR =
kq

[1 + kq(1 − q)D]
(2)

We can see that when q = 1, the discount rate is independent of delay D, corre-
sponding to the exponential discount model (consistent intertemporal choice);



while for q < 1, the discount rate is a decreasing function of delay D, resulting
in preference reversal over time. This can be seen by a direct calculation of the
time-derivative of the q-exponential discount rate:

(d/dD) qEDR = −
k2

q(1 − q)

[kq(1 − q)D + 1]2
(3)

which is negative for q < 1, indicating ”decreasing impatience” for q smaller than
1. Also, impulsivity at delay D = 0 is equal to kq irrespective of q. Therefore, kq

and q can parameterize impulsivity and consistency, respectively, in a distinct
manner.

Regarding the neuropsychological processing underlying the q-exponential
discounting (i.e., inconsistent intertemporal choice), Takahashi (2005) proposed
that exponential discounting with logarithmic time-perception, τ(D) = α log(1+
βD), may explain dynamic inconsistency in intertemporal choice. If a subject
tries to discount a delayed reward exponentially with the logarithmic time-
perception (i.e., Weber-Fechner law in psychophysics), then F (τ) = exp(−kτ) =
1/(1+βD)kα, which has the q-exponential functional form. Intuitively, subjects
try to discount exponentially (rationally and consistently), but actual intertem-
poral choice behavior may be hyperbolic and dynamically inconsistent, due to
a distortion in time-perception. This may also explain subadditive discount-
ing, because τ(D) is concave in delay D (i.e., the subjective delay length is
larger when the delay is divided into shorter time-intervals than when the delay
is perceived as a single time-interval; for details see Takahashi, 2006). There-
fore, it can be expected that the non-linear psychophysical effects of temporal
cognition on intertemporal choice may be reflected in the q parameter in the
q-exponential discount function. However, to our knowledge, no study has yet
examined how psychological factors, such as attention to a time-interval between
sooner and later rewards, modulate intertemporal choice behavior by utilizing
the q-exponential function, although recent studies reported attention effects on
time modulated dynamic consistency in temporal discounting (Ebert & Prelec,
2007; Zauberman et al., 2008).

In the present study, we address the question of how cultural differences
in attention allocation (i.e., ”analytic” versus ”holistic” allocation) modulate
intertemporal choice behavior between American and Japanese decision makers.

3 Cultural neuroscience of attention and thought

In recent years, cultural psychologists have begun to show that there are sys-
tematic cultural variations in human (neuro)psychological processes (Markus &
Kitayama, 1991). These researchers assume that neuropsychological processes
are by nature socially driven. According to their theories, the neuropsycho-
logical processes are shaped through their interaction with cultural, social and
environmental factors. Based on this assumption, it has often been examined
how particular cognitive processes (e.g., attention allocation) could be mani-
fested in particular cultural contexts and how different cultural environments
in turn lead to the development of different patterns of ability. These studies
reported that East Asians’ patterns of attention were in general ”context depen-
dent”, whereas Westerners’ patterns of attention were ”context independent”.



Accordingly, Westerners are more likely to focus on some salient objects or con-
tents (”analytic” attention), whereas East Asians are more likely to attend to
the global context (”holistic” attention) of an object, and its broad spectrum of
perceptual and conceptual fields, in addition to its local characteristics (see e.g.
Masuda & Nisbett, 2001; Kitayama, Duffy, Kawamura, & Larsen, 2003; Chua,
Boland, & Nisbett, 2005).

Chiao & Ambady (2007) have recently proposed a ”cultural neuroscience”
approach in order to integrate biological perspectives into endeavors of cultural
psychology. This approach employs both biological (e.g., neurophysiological,
neurogenetic, and neuroendocrinological methods) and cultural psychological
experiments, in a manner similar to neuroeconomics unifying biopsychology and
economics (Glimcher & Rustichini, 2004; Lee, 2005; Loewenstein et al., 2008;
Sanfey et al., 2006; Zak, 2004). Furthermore, a recent neuroimaging study (Hed-
den et al., 2008) identified neural correlates of cultural differences in attention
control in simple visual attention tasks. Therefore, it is highly important for fur-
ther neuroeconomic investigations to incorporate neurocomputational processes
mediating attention in order to establish neuroeconomically plausible models of
decision-making.

4 Attention and perception in neural valuation

of delayed rewards

In neuroeconomic studies of the valuation of delayed rewards, it has been re-
ported that (i) immediate rewards activate midbrain regions (McClure et al.,
2004, 2007), and (ii) subjective value of the delayed reward is encoded as the
midbrain dopaminergic activities (Kable & Glimcher, 2007). Regarding the
role of temporal cognition in intertemporal choice, Wittmann and colleagues re-
ported that the psychological time is represented in the striatum (Wittmann et
al., 2007); while no neuroimaging study to date examined the neural correlates
of attention allocation during intertemporal choice.

Recent behavioral economics studies (Ebert & Prelec, 2007; Zauberman et
al., 2008) have demonstrated that modulation of attention to time perspectives
(time-sensitivity) changes the human intertemporal choice behavior by shifting
the functional form of the psychophysical time-perception from a logarithmic to
a linear function. This is consistent with the psychophysical account of hyper-
bolic discounting (Takahashi, 2005, 2006). Together, these studies suggest that
control of attention allocation to time explains both hyperbolic and subadditive
discounting.

Specifically, (i) if a subject pays more attention to the delayed reward but less
attention to the time-length of delay (”time-insensitivity”), her/his temporal
discounting may be inconsistent due to non-linearly distorted time-perception
(i.e., hyperbolic discounting), and (ii) if a subject focuses her/his attention
on each temporal ”segment” along the future time (i.e., ”analytic” temporal
cognition) rather than overviews the future time perspective as a whole (i.e.,
”holistic” temporal cognition), her/his temporal discounting may be exagger-
ated (i.e., subadditive discounting). In both cases, it can be predicted that
narrower allocation of attention should be associated with more impulsive and
inconsistent temporal discounting behavior.



In social psychology literature, the ”temporal construal” theory has been
proposed for explaining time-inconsistency in discounting behavior (Trope &
Liberman, 2003). This theory claims that temporal horizons change people’s
responses to future events by changing the manner they psychologically repre-
sent those future events. More specifically, people may form more abstract rep-
resentations (”high-level construals”) of distant-future events than near-future
events. High-level construals consist of decontextualized and central features
(”content” in terms of cultural neuroscience) that convey the essence of infor-
mation about future events (e.g., the type and size of a delayed reward), while
low-level construals include more contextual and peripheral details (”context”
in terms of cultural neuroscience). Hence, a subject with narrow attention allo-
cation (i.e., primarily paying her/his attention to either ”content” or ”context”)
may experience preference reversal in decision over time (e.g., procrastination
of formerly planned actions), whereas a subject with wide attention allocation
(i.e., paying attention to both ”content” and ”context”) may not change her/his
preference in decision over time.

Taken together, these behavioral economic and social psychological theories
and findings hypothesize that narrower allocation of attention may be associated
with more impulsive and inconsistent temporal discounting. With respect to cul-
tural differences in temporal discounting, we propose that Westerners are more
impulsive and inconsistent in inter-temporal choice behavior in comparison to
Easterners, for cultural neuroscience studies have demonstrated that Westerners
have more analytic attention allocation than Easterners. This prediction is also
supported by psychophysical accounts of hyperbolic and subadditive discount-
ing, as stated above (i.e., association between ”analytic”, rather than ”holistic”,
attention allocation and hyperbolic/subadditive discounting).

5 Cultural differences in temporal discounting

behavior

In order to examine the cultural differences in temporal discounting, we com-
pared intertemporal choices for monetary gains and losses by American and
Japanese subjects, by utilizing the q-exponential discount model based on Tsal-
lis’ statistics. For discounting behavioral data by Americans, we analyzed Estle
et al’s raw data obtained from students (N=27) at Washington University (Es-
tle et al., 2006). Japanese subjects were students at the University of Tokyo
and Hokkaido University (N=21).

In order to avoid the magnitude effect on temporal discounting (i.e., small re-
wards are more rapidly discounted than large ones), we compared time-discounting
behavior for gains and losses of 100 dollars and 10,000 yen (about 100 US dol-
lars) between American and Japanese subjects. Our experimental procedure
was exactly the same as in our previous study (Takahashi, Ikeda, & Hasegawa,
2007; also see Appendix B for experimental details). In order to parameterize
impulsivity and inconsistency in intertemporal choices, we employed kq and q
parameters in the q-exponential discount model (equation (1)). We fitted the q-
exponential function to the behavioral data by utilizing a non-linear least square
algorithm implemented in R statistical computing software (The R Project for



Statistical Computing). We note here that larger kq and smaller q correspond
to more impulsive and inconsistent temporal discounting. The major results are
summarized in Table 1.

Gain Loss

American Japanese American Japanese
kq (impulsivity) 0.021 0.0053 0.073 0.0
q (consistency) 0.520 0.78 0.82 0.99

Table 1: Impulsivity and inconsistency in temporal discounting for gain and
loss: Americans (N=27, Estle et al., 2006) discounted delayed outcomes more
steeply and inconsistently than Japanese (N=21).

For both gains and losses, Americans discounted the delayed outcomes more
steeply (larger kq ) and inconsistently (smaller q < 1 values). The present
observations are consistent with predictions from cultural neuroeconomic theory,
combining findings from behavioral neuroeconomics, cultural neuroscience, and
social psychology.

6 Discussions and future directions

This study is the first one to (i) propose a cultural neuroeconomic theory of
intertemporal choice based on cultural neuroscience theory of attention and
neuroeconomics, and (ii) it demonstrates that Westerners tend to discount de-
layed outcomes more rapidly and inconsistently than Easterners. Our present
findings are in line with (i) the reported role of attention allocation in neu-
rocomputational processes involved in intertemporal choice and with (ii) the
effects of attention allocation strategies (i.e., ”analytic” versus ”holistic”) on
temporal discounting. Although a previous study examined cross-cultural dif-
ferences in discounting behavior by American, Chinese, and Japanese students
in the United States, the study did not analyze time-consistency and impulsivity
separately (Wanjiang, Green, & Myerson, 2002).

Incorporating cultural differences in neuroeconomic decision processes may
be important for establishing more efficient economic policies, because the world
has become a highly multicultural place these days. Within the context of
the ongoing expansion of the European Union, future studies should focus on
measurements and models of temporal and probability discounting in Western,
Central, and Southeast European countries. One could thereby monitor the
differences in impulsivity and inconsistency in inter-temporal choice behavior
between the individuals coming from the old EU member states, from the re-
cently included countries, and those who still have the status of a candidate
member. The estimated values of kq and q parameters would then provide the
relevant information about the cross-cultural differences in impulsivity and in-
consistency in choice behavior in Europe. This information could further be
used when extending other computational models, such as neural networks, so
as to enable process-based, continuous modeling of cultural aspects of economic
decision making in Europe, and moreover, to provide more details on how these



aspects affect the European economy at a more global level.
Some generalizations of neural network models à la Tsallis were already pre-

viously reported (Cannas, Stariolo, & Tamarit, 1996; Hadzibeganovic & Can-
nas, 2007; submitted). These generalizations are based on analogies between
the properties of neural network models and those found in statistical physics
and thermodynamics. As discussed by Hopfield (1982) and then applied to at-
tractor networks by Amit and colleagues (1985), neural network models have
direct analogies in statistical physics, where the investigated system consists
of a large number of units each contributing individually to the overall, global
dynamic behavior of the system. The characteristics of individual units rep-
resent the microscopic quantities that are usually not directly accessible to
the observer. However, there are macroscopic quantities, defined by parame-
ters that are fixed from the outside, such as the temperature T = 1/β and
the mean value of the total energy. The main aim of statistical physics is to
provide a link between the microscopic and the macroscopic levels of an inves-
tigated system. An important development in this direction was Boltzmann’s
finding that the probability of occurrence for a given state {x} depends on
the energy E({x}) of this state through the well-known Boltzmann-Gibbs dis-
tribution P ({x}) = 1

Z exp[−βE({x})], where Z is the normalization constant
Z =

∑

{x} exp[−βE({x})].
In the context of neural networks, statistical physics can be applied to study

learning behavior in the sense of a stochastic dynamical process of synaptic
modification (Watkin, Rau, & Biehl, 1993). In this case, the dynamical vari-
ables {x} represent synaptic couplings, while the error made by the network
(with respect to the learning task for a given set of values of {x} ) plays the
role of the energy E({x}). The usage of a gradient descent dynamics as a
synaptic modification procedure leads then to a stationary Boltzmann-Gibbs
distribution for the synapses (Watkin et al., 1993). However, the gradient de-
scent dynamics corresponds to a strictly local learning procedure, while non
local learning dynamics may lead to a synaptic couplings distribution different
from the Boltzmann-Gibbs one (Stariolo, 1994; Cannas, Stariolo, & Tamarit,
1996).

Here, we briefly report an implementation of the Tsallis entropy1 formalism
in a simple neural network model which has been used for simulation of learning
behavior in adults. In this model, a generalization of the gradient descent
dynamics is realized via a nonextensive cost function (Stariolo, 1994) defined
by the map

V =
1

β(q − 1)
ln [1 + β(q − 1)V ] (4)

where the index q is an arbitrary real number such that q ≥ 1; V is a monoton-
ically increasing function of V , and therefore it preserves its minima structure.
The Langevin equation, which governs the (local) gradient descent dynamics
that is usually applied in neural networks, is here replaced by:

dJij

dt
= −

1

1 + β(q − 1)V

∂V

∂Jij
+ ηij(t). (5)

1Tsallis’ entropy Sq =
1−

∑

i
p

q

i

q−1
(q ∈ R) is a nonlogarithmic (generalized) entropy, which

reduces to standard Boltzmann-Gibbs-Shannon entropy SBGS = −
∑

i
pi ln pi as the nonex-

tensive entropic index q approaches unity. See Appendix C for a proof and details.



The advantages of the presented q-generalized learning rule in a neural net-
work model (Cannas, Stariolo, & Tamarit, 1996; Hadzibeganovic & Cannas,
2007; submitted) span beyond classical learning applications. The model may
also help in studying other problems in cognitive (neuro)science such as neuro-
logical impairments. Moreover, the model could serve as an example of how to
generalize and improve other neural networks that have regularly been used in
several different areas of economics.

By means of estimating the index q in the presented q-exponential discount
model, the inconsistency in choice behavior may be expressed in a continuous
manner (where a whole spectrum of q indices may be obtained corresponding
to different inconsistencies in choice; with smaller q values indicating more in-
consistent choices). Future studies should also examine and model the behavior
of alcohol or drug addicted patients, people with orbitofrontal lesion, patho-
logical gamblers, and other individuals who were previously shown to have
impaired decision-making behavior in inter-temporal choice. By utilizing the
q-exponential discount function, one could diagnose the degree of inconsistency
in choice in these patients with greater sensitivity and accuracy than with many
currently available methods.

Finally, we note that no neuroeconomic theory of temporal discounting is
going to be complete until it can fully incorporate the cultural aspects of im-
pulsivity and inconsistency in decision making, the underlying cognitive and
neurocomputational processes, emotionally driven choice aspects, and other
(neuro)biological properties in humans that may drive the dynamics of eco-
nomic behavior.
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A Appendix

There are two distinct behavioral tendencies in intertemporal choice: Impulsiv-
ity and inconsistency. First, suppose the following Example 1 for demonstrating
impulsivity. Agent A who prefers ”one glass of beer available one year later”
over ”two glasses of beer available (one year plus one week) later” is more im-
pulsive than agent B who prefers ”two glasses of beer available (one year plus
one week) later” over ”one glass of beer available one year later”. In this Ex-
ample 1, most people tend to behave as the patient (less impulsive) agent B.
It is to be noted that both impulsive agent A and patient agent B may be
”rational” in terms of economic theory, because, in this example alone, there is
no inconsistency even in impulsive agent A’s behavior. Next, suppose the fol-
lowing Example 2 for intertemporal choice. There are two options: ”one glass
of beer available now” and ”two glasses of beer available one week later”. In
Example 2, most people (who planned to choose the larger but more delayed
option in Example 1) simultaneously tend to prefer smaller but immediate op-
tion: ”one glass of beer available now” over ”two glasses of beer available one
week later”. This phenomenon is referred to as ”preference reversal” over time,
and an instance of time-inconsistency in decision over time. It is important to
note that impulsivity and inconsistency corresponds to a large time-discount
rate and time-dependency of the time-discount rate, respectively.

B Appendix

Participants (N=9 male, N=12 female, mean age=21.4) were requested to select
among alternatives based solely on their free will, as if choices were about real
money. Instructions were written on the top of each page of the questionnaire
and expressed the temporal distance of delay (i.e., delays of 1 week, 2 weeks, 1
month, 6 months, 1 year, 5 years, 25 years, where each page included all delays
presented in exactly this order). Two columns of hypothetical money amounts
were listed below the instructions. The right column (standard amount) con-
tained 40 rows of a fixed magnitude of monetary gain or loss (10,000 yen, i.e.,
about 100 US dollars). The left column (adjusting amount) listed ascending or
descending magnitudes of money in 2.5% increments (= 10,000 yen × 0.025 =
250 yen) of the alternative in the right column. Participants were instructed
to choose between the two alternatives in each row of the questionnaire. Fur-
thermore, participants were directed to attend to the directions on the top of
each page (containing each delay) of the questionnaire, as the temporal dis-
tance would change over the course of the experiment. Thus, subjects chose
between the delayed-standard amount and the immediate-adjusted amount of
money. The order of the descending and ascending conditions was counterbal-
anced. The indifference points of delay discounting tasks were defined as the
means of the largest adjusting value in which the standard alternative was pre-
ferred and the smallest adjusting value in which the adjusting alternative was
preferred. Next, the mean of the indifference point in ascending and descending
adjusting amounts were calculated for the delay conditions (gain and loss) for
each participant.



C Appendix

Researchers with a professional background that is different from (statistical)
physics cannot easily spot the correspondence between the two basic equa-
tions that were crucial in the formulation of Tsallis’ entropy: The standard
Boltzmann-Gibbs-Shannon (BGS) entropy formula and the generalized nonex-
tensive entropy formula. It is therefore our intention here to mathematically
clarify this relationship. More specifically, it will be shown that the Tsallis’

entropy Sq =
1−
∑

i
pq

i

q−1 (q ∈ R) reduces to BGS entropy SBGS = −
∑

i pi ln pi

as the nonextensive entropic index q approaches unity. The proof is based on
(Bernoulli-)L’Hôpital’s rule.

The rule named after the French mathematician Guillaume de l’Hôpital em-
ploys derivatives to calculate limits with indeterminate forms. In this sense,
using this rule, one can convert an indeterminate form (e.g. 0

0 or ∞
∞ ) into a

determinate form with an easy computation of the limit.

Let

Sq =
1 −

∑

i pq
i

q − 1
.

When q → 1, the numerator of Sq tends to 1 −
∑

i pi = 0 (
∑

i pi = 1). Since
the denominator also tends to 0, Sq has the indeterminate behavior 0

0 as q → 1.
Therefore, L’Hôpital’s Rule can be applied to the limit limq→1 Sq:

lim
q→1

Sq = lim
q→1

(1 −
∑

i pq
i )

′

(q − 1)′
, (1)

where ′ indicates the derivative with respect to q, i.e. ′ = d
dq . Since we can

differentiate term by term, we obtain

(

1 −
∑

i

pq
i

)′

= (1)′ −
∑

i

(pq
i )

′
= −

∑

i

pq
i ln pi

and
(q − 1)′ = (q)′ − (1)′ = 1.

We use above the following differentiation rules: (1)′ = 0, (q)′ = 1, and the rule
for differentiating the exponential function aq (the base a is a constant and the
variable q is in the exponent), which reads (aq)

′
= aq ln a (in our case a = pi).

Therefore, from (1) we get

lim
q→1

Sq = lim
q→1

−
∑

i pq
i ln pi

1
= −

∑

i

pi ln pi.


