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ABSTRACT

The purpose of this paper is to analyze the spatially varying impacts of some classical regressors on
per capita household income in Spanish provinces. The authors model this distribution following both
a traditional global regression and a local analysis with Geographically Weighted Regression (GWR).
Several specifications are compared, being the adaptive bisquare weighting function the more efficient
in terms of goodness-of-fit. We test for global and local spatial instability using some F-tests and other
statistical measures. We find some evidence of spatial instability in the distribution of this variable in
relation to some explanatory variables, which cannot be totally solved by spatial dependence
specifications. GWR has revealed as a better specification to model per capita household income. It
highlights some facets of the relationship completely hidden in the global results and forces us to ask
about questions we would otherwise not have asked. Moreover, the application of GWR can also be of
help to further exercises of micro-data spatial prediction.
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INTRODUCTION

In regional science, the use of linear regression as an analytical technique has been
long widely generalized. However, the explicit incorporation of “space” or “location” has not
been that commonly considered. In this context, there has been recently a surge in
econometric work focusing on the inclusion of spatial effects in econometric models. One
strand of this literature has developed several approaches to incorporate the spatial non-
stability. For a specific model, the assumption of stationarity or structural stability over space
has been recognized highly unrealistic, accepting the possibility that parameters may vary
over the study area. Several methods deal with this issue. Spatial analysis of variance (Griffith
1978, 1992) and models with structural change (Anselin 1988, 1990) are good examples of
methods accounting for discrete spatial regimes, whilst the spatial expansion model (Casetti
1972, 1986) and the spatial adaptative filtering (Foster and Gorr 1986, Gorr and
Olligschlaeger 1994) concern mostly about continuous variation over space. Getis and Ord
(1992) and Openshaw (1993) study local patterns of association (hot spots) and local
instabilities. Locally weighted regression method and kernel regression method (Cleveland
1979, Casetti 1982) focus mainly on the fit of a regression surface to data, using a weighting
system that depends on the location of the independent variables.

Along this line of thinking, in the spatial econometrics literature, McMillen (1996) and
McMillen and McDonald (1997) introduced nonparametric locally linear regression in models
where the cases are geographical location and Brunsdon et al. (1996) labelled them as
“Geographically Weighted Regression” (GWR). Hence, GWR produces locally linear
regression estimates for every point in space. For this purpose, weighted least squares
methodology is used, with weights based on the distances between observations i and all the
others in the sample. GWR allows the exploration of the variation of the parameters as well as
the testing of the significance of this variation.

This methodology has recently received intensive attention (Brunsdon et al. 1996,
1999; Fotheringham and Brunsdon (1999); Fotheringham et al. 1997, 1998, 2002; Leung et
al. 2000a; Huang and Leung 2002, Paez et al. 2002(a,b); Yu and Wu 2004, to name a few).
Furthermore, LeSage (1999) introduces a Bayesian approach (BGWR) that subsumes GWR
as a special case of a much broader class of spatial econometric models. This methodology
overcomes outliers and weak data problems using robust estimates and permitting the
introduction of subjective prior information, improving at the same time the inference
procedure. Some example of the application of GWR methodology can be found in
Fotheringham ef al. (2000), Huang and Leung (2002), Yu and Wu (2004), Mennis and Jordan
(2005), Kentor and Miller (2004), Eckey et al. (2005), Bivand and Brunstad (2005), Yu

(2006), etc.

The purpose of this paper is to analyze the spatially varying impacts of some classical
regressors on per capita household disposable income of Spanish provinces. This variable,
which is considered a good indicator of regional welfare, has frequently been estimated for
microterritorial units (e.g. municipalities) from aggregate data (e.g. provinces, regions). In
some countries with scarce availability of economic macromagnitudes for micro-level units,
such as Spain or Portugal, there is an interesting literature in what are called “indirect
methods of income estimation” (see Chasco 2003, pp. 178 for a broad revision). These are
particular cases of the ecological inference topic, which consists in making inferences about
individual behavior drawn from data about aggregates. Clearly, observations at an aggregated
level of analysis do not necessarily provide useful information about lower levels of analysis,
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particularly when spatial heterogeneity (non-stationarity) is present (Peeters and Chasco
2006%). For that reason, we propose to test spatial variation of the determinants of household
disposable income across Spanish provinces (nut3). If this effect was present, it should be
considered, particularly in future ecological inferences of municipal income.

Therefore, we model the provincial household income distribution following a basic
global regression, which was also re-specified to take into account spatial effects. We found
clear evidence of spatial instability in the distribution of the residuals that could not be totally
solved by global specifications. Since spatial autocorrelation in the residuals may be implied
by some kind of spatial heterogeneity not always correctly modeled by spatial dependence
specifications, we propose the re-specification of the basic model using GWR.

The outline of the paper is as follows. In section 2, we present a theoretical framework
for GWR. Section 3 offers the empirical framework: data, econometric results and spatial
non-stationarity tests are displayed. Finally, section 4 concludes.

1. GEOGRAPHICALLY WEIGHTED REGRESSIONS (GWR)
2.1. Specification

The technique of linear regression estimates a parameter £ that links the independent

variables to the dependent variable. However, when this technique is applied to spatial data,
some issues concerning the stability of these parameters over the space come out/arise. There
have been several approaches to incorporate this spatial non-stability in the model. One of
them, developed by Brundston et al. (1996), has been labelled Geographically Weighted
Regressions (GWR). It is a non-parametric model of spatial drift that relies on a sequence of
locally linear regressions to produce estimates for every point in space by using a sub-
sample of data information from nearby observations. That is to say, this technique allows the
modelling of relationships that vary over space by introducing distance-based weights to
provide estimates of £, for each variable £ and each geographical location i.

An ordinary linear regression model can be expressed by:
M
Vi :ﬂ0+2ﬂk'xki+ui (D
k=1

where y; i=12,..,N are the observation of the dependent variable y, B, (k=12,.,M)

. .. . th .
represents the regression coefficients, xy; is the i value of x; and u; are the independent

normally distributed error terms with zero mean and constant variance.

In matrix notation:

y:ﬂ0+2ﬁkxk+u (2)
k=1

% In this paper, the authors demonstrated the existence of spatial instability in per capita GDP across Spanish
regions (nut2), as well of varying relations in the explanatory variables of a production-function Cobb-Douglas
model.
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with y as vector of the dependent variable, x; as vector of the Kt independent variable and u as
vector of the error term.

In geographically weighted regression the global regression coefficients are replace by
local parameters:

Vi =ﬁ0i+2ﬁkz'xk;+”i 3)
=1

where f,, (k=12,..,M) are the regression coefficients for each location i and each variable

k. It is worth notice that the ordinary linear regression model is actually a special case of the
geographically weighted regression function where the f,, are constant for all i =1,2,..., N .

2.2. Estimation

In this GWR-function, however, there are more unknown parameters than degrees of
freedom. Thus, the local estimates are made using weighted regression, with weights assigned
to observations being function of the distance from point i. Algebraically, the GWR estimator
is then:

B=(Xxwx) xwy 4)

wih f=(Bo v B)

w, ... 0 0
0O w, ... 0
and W, =| | S .
0 0 Wy

where w;; denotes the weight of the data at point j on the calibration of the model around point
i. These weights will vary with i, which distinguishes GWR from traditional Weighted Least
Squares where the weighting matrix is fixed.

2.3. Weight matrix specification

The role of the weighting matrix in GWR is to represent the importance of individual
observations among locations. For that, it is necessary to choose a weighting scheme. It is
commonly assumed that areas close to a location i will exert more influence on the parameter
estimates at location 7 than those farther away from it.

e Inverse distance function

Many options meet this criterion. One possibility is to choose the inverse distance 1/d;;
to represent the weight between location i and location j, where d is the Euclidean distance

d’(i,j)= Zk(xl.k =X, )2 between the location 7 and j. However, one drawback of using this

weight scheme is that the self-weight at location i is unlimited. Another possibility is to
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exclude observations that are further from 7 than a specified radius distance », which is
equivalent to setting a zero weight on observations j whose distance from i is greater than r
(Brunsdon et al 1998a, Yildirim and Ocalb 2006):

Lifd, <r

"1 oird, > )

The above weighting function suffers from the problem of discontinuity over the study
area: it seems unnatural that the spatial association between the variables ends so abruptly.

¢ Kernel functions

In order to solve this problem, it is possible to specify a w; as a continuous and
monotone decreasing function of dj;. The kernel functions or kernels’ has been suggested for
constructing this kind of weights, in which a constant value /4 provides some control of the
range of the circle of influence of each observation i. They are mostly Gaussian distance-
decay-based functions and bisquare/tricube functions.

a) Gaussian distance-decay-based functions®

They may be achieved by a host of several specifications, as the following (Brunsdon
et al. 1998a):

W, = exp(—d;./hz) (6)

where % is a nonnegative parameter known as the bandwidth, which produces a decay of
influence with distance. If i and j coincide, the weighting of data at that point will be the
unity. Changing the bandwidth results in a different exponential decay profile, which in turn
produces estimates that vary more or less rapidly over space. The weighting of other data will
decrease according to a Gaussian curve as the distance between 7 and j increases. For data a
long way from i the weighting will fall to virtually zero, effectively excluding these
observations from the estimation of parameters for location i.

This function is the most commonly used (Huang and L.eung 2002) and has received

many other specifications, e.g. w; =,/exp(—d; / h) (Brundson et al 1996) or
w, = exp(—h-d;.) (Fotheringham et al. (1997, 2001).

* A kernel (K) is a weighting function that estimates the weights of the nearby data points to a give one. They can
be probability density functions. In practice, a kernel should be monotone decreasing function for positive real

numbers. Other desirable features of a kernel function are the following: K(O):l, lim , _mK(d ) =1.

Similarites between the spatial kernel approach and the kernel regression are discussed in Wand and Jones
(1995). In the kernel regression, weights are based on similarities between the predictor variables themselves,
rather than their geographical location, what provides a nonparametric approach to regression modeling.

* Distance-decay-based function is the conceptualization of the influence of distance on potential usage
expressing the way increasing distance has an inverse effect on the possible usage, that is, data being further
away are less likely to be used.
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Still another approach is to rely on the Gaussian function ¢ (Le Sage 2004) can be
W, = ¢(d,- / hO'), where ¢ denotes the standard normal density and o represents the standard

deviation of the distance vector d;, which represents a vector of distances between observation
i and all other sample data observations.

b) Bisquare and tricube weighting schemes.

Specifically, the formal expression of the bisquare weighting function is the following
(Brunsdon et al 1998a, Bivand and Brunstad 2005):

2P
w; = [1_(‘1&”‘)} Jifd, <h

(7

0 , otherwise

where £ is the maximum -constant- distance for non-zero weights. As /4 tends to infinity,
weights tend to the total sample (N) for all pairs of points so that the estimated parameters
become uniform and GWR becomes equivalent to Ordinary Least Squares (OLS)’.
Conversely, as the bandwidth gets smaller, the estimates of the parameters will increasingly
depend on observations close to i and hence will have increased variance. In each case, the
constant value / provides some control of the range of the circle of influence of each
observation i.

On its side, the tricube kernel function, proposed by McMillen (1996), is specified in a

3
similar way: w; = [1—(61,/. /h)ﬂ ,if I(d, < k), and O otherwise.

c) Adaptive weighting schemes.

In general, all the spatial kernel functions fall within two categories, i.e., fixed or
adaptive spatial kernel functions. In a fixed spatial kernel function, one optimum spatial
kernel (represented by the spatial bandwidth) is determined and applied uniformly across the
study area. Such approach, however, suffer from the potential problem that in some parts of
the region, where data are sparse, the local regressions might be based on relatively few data
points. As pointed out by Paez et al. (2002a, b) and Fotheringham et al. (2002), fixed spatial
kernels may produce large local estimation variance in areas where data are sparse, which
might exaggerate the degree of non-stationarity present. They also might mask subtle spatial
non-stationarity at where data are dense.

To offset this problem, spatially adaptive weighting functions can be incorporated into
GWR. These functions would have different bandwidths (distances), expressing the number
or proportion of observations to retain within the weighting kernel “window”, irrespective of
distance: on the one hand, relatively small bandwidths in areas where the data points are
densely distributed and on the other hand, relatively large bandwidths where the data points
are sparsely distributed. In other words, they are able to adapt themselves in size to variations

> One of the advantages of these functions is that they allow saving time in computation processes. In effect, if
the number of observations for which weighting is non-zero is significantly smaller than A, then the computation
overhead of (4) can be reduced by treating the problem as though it were only applied to the non-zero weighted
observation (Brunsdon ef al. 1998a).
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in the density of the data so that the kernels have larger bandwidths where the data are sparse
and have smaller ones where the data are plentiful. In these cases, the bandwidth is adaptive
in size and acts to ensure that the same number of non-zero weights is used for each
regression point in the analysis.

For example, the adaptive bisquare weighting function is the following:

2
v = [1=(dn) | vitd, <h

®)

0 , otherwise

where #; represents the different bandwidths (distances), which express the number or
proportion of observations to consider in the estimation of the regression at location i.

2.4. Bandwidth selection

The problem is now therefore how to select the optimal bandwidth. If we have strong
theoretically based prior beliefs about the value of / in a given situation, then it is reasonable
to make use of them. However, that information is usually missing. Anyway, since different /
will result in different weight matrices W;, the estimated parameters of GWR are not unique.
The best 4 can be chosen using the least squares cross-validation method (Cleveland 1979;
Fotheringham et al. 2002). Suppose that the predicted value of y; from GWR is denoted as a

functions of h by (). The sum of squared errors may then be written as:

RSS(h) = Z[yi —prm | )

A logical choice would be to find 2 minimizing this equation. However, when # is
very large the weighting of all locations except for i itself become negligible (w; —0) and

the fitted values at location i will tend to the actual values ( J; (k) — y,). This suggests that an

unmodified least squares automatic choice of 4 would always lead to & — oo, or possibly
result in computational errors. This problem can be avoided if, for each i, a GWR estimate of
yi is obtained by omitting the i observation from the model. If the modified GWR estimate of

viis denoted by J_,(h) then the cross-validates sum of squared errors is denoted by:
Ak 2
CVRSS(h)=Y"[ = §.,(h) ] (10)

Choosing /4 to minimize this equation provides a method for choosing 4 automatically
that does not suffer from the problems encountered by working with RSS(h). Thus, when 4
becomes very large, the model is calibrated only on samples near to i and not at i itself
(Brunsdon et al. 1998b). For the specific case of the adaptive spatial kernels and the tri-cube
weighting function, we would compute a value for 4 (or ¢) denoting the number of nearest
neighbors beyond which we impose zero weights. The score function would be evaluated
using alternative values of ¢ to find a value that minimizes the function®.

® Another estimation method for h consists in minimizing the goodness-of-fit statistics, the corrected Akaike
Information Criterion or AICc (Hurvich et al. 1998; Fotheringham et al. 2002).
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2. SPATIAL INSTABILITY IN THE PER CAPITA DISPOSABLE INCOME
DISTRIBUTION OF SPANISH PROVINCES

This section examines the spatial distribution of the per capita disposable income of
Spanish provinces. This case is well known and has been tackled by many authors (Cuadrado
et al. 1998, Vicéns and Chasco 1998, Garrido 2002, Alcaide and Alcaide 2005 between
others). Thus, our objective is to use this case for applying the methodology that we develop
in the previous section. If some kind of continuous spatial instability is found across Spanish
provinces, this should be taken into account in some studies, e.g. spatial prediction of
municipal income (Alaién 2001, Chasco 2003, Chasco and Lépez 2004, Cravo et al. 2004).

In the first subsection, we present the data that we have used. In the second, we
specify a basic global model, which is estimated by ordinary least squares; this model is tested
for spatial autocorrelation and respecified using different spatial dependence models. In the
third subsection, we go deeper into the spatial structure of the data in search of symptoms of
spatial instability and estimate a GWR model using different weighting schemes. Next, we
test for spatial non-stationarity in the relationship between income and the covariates. Finally,
we propose a final spatial regimes model, with different regimes for each non-constant
parameter, which fits better than the other models and leads to white noise errors.

4.1. Data

The data employed in the analysis come from the Spanish Office for Statistics (INE)
databank. The sample includes the 50 Spanish provinces (the Autonomous Cities of Ceuta and
Melilla have been excluded). The INE provides provincial data of household disposable
income in the Regional Accounts for the period 2000-2004. The series for 2004 shows
(Figure 1) that the highest per capita GDP is observed mainly in the Northeast provinces,
which forms a big quadrant determined by the Bask Country, Navarre, La Rioja and
Catalonia, including Madrid and the Balearics (above 13,800 euros per capita). On the other
end of the distribution, the lowest per capita income is registered in Southern provinces,
mainly Extremadura, Andalusia and Castile-La Mancha (below 10,700 euros per capita).

In this paper, we want to test the existence of continuous spatial instability of the
parameters in a model of per capita household income of Spanish provinces for the year 2004.
In spatial prediction, the main aim is to find explanatory variables that exert a good
correlation with the endogenous, though it is not “caused” by them in a Granger sense. The
explanatory variables must be available not only for the provincial level but also for the
municipal one. This imposes an important restriction since some ““a priori” good explanatory
variables cannot be used or must be proxied. For that purpose, it is preferable to select as
many regressors as possible and avoid multicollinearity with principal components analysis.

We have specified the basic model shown in “la Caixa” (2005). In this book, the
authors present a spatial prediction exercise of municipal income data from the provincial
series. This kind of estimation can be criticized because it estimates only one —national
average- coefficient for each explanatory variable, which is applied afterwards to estimate the
whole set of Spanish municipalities. If spatial instability is proved in the provincial
(aggregate) model of household income, a GWR approach could improve these spatial
prediction exercises as it allows for estimating one different coefficient for each province.
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Figure 1. Per capita household disposable income of Spanish provinces for 2004

Income per capita
(euros, 2004)

[] 9,457 to 10,470
[] 10,470 to 11,890
M 11,890 to 13,770
M 13,770 to 16,257

V5 o "

Descriptive statistics:

Label Minimum Lwr quartile Median Upr quartile Maximum
Household income per capita 9,457 10,652 11,940 13,936 16,257
Provinces Badajoz Albacete Valencia Huesca Alava

(bad) (alb) (val) (hue) (ala)

Source: INE 2007. The variable income per capita has been classified in the map with a method called “natural
breaks”, which identifies breakpoints between classes using Jenks optimization (Jenks and Caspall 1971). This
method is rather complex, but basically it minimizes the sum of the variance within each of the classes, finding
groupings and patterns inherent in the data.

First, we have grouped the original set of 7 explanatory variables into two factors
using principal components analysis and Varimax rotation. These variables are the following
(all rated by population): domestic telephone lines, broadband telephone lines, population
with secondary and university degrees, population with qualified jobs, unemployment,
average distance to the capital and commercial heads and average housing price. They are
fully specified in Table 2.

The use of principal components is clearly necessary since some of the explanatory
variables are highly correlated each other. This is the case of average distance to the capital
and commercial heads, which gets a Pearson correlation coefficient above 0.7 with three
variables: population with secondary and university degrees, population with qualified jobs
and average housing price. We find also very high correlation coefficients (above 0.8)
between average housing price and two variables: population with secondary and university
degrees and population with qualified jobs. Moreover, the latter are also correlated (Pearson
above (.7) with broadband telephone lines.

The principal components analysis produces 2 factors with 77% of cumulative
variance and communalities over 0,7 in all cases, except broadband lines and unemployment
rate. The rotated factors can be interpreted as follows: factor 1 (F1) contains high scores of
variables as secondary and university degrees, qualified jobs, housing price and average
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distance to capitals (negative), which are related to educated-qualified people that live in well-
communicated provinces with higher housing price. Regarding factor 2 (F2), it is mainly
based on telephone lines (domestic and broadband) and unemployment (negative), which are
related to provinces with higher economic activity and lower unemployment rates. In Table 3,
we present the communalities and the rotated factors matrix.

Table 1 Definition of the variables

Variable Source

Dependent variable:
INC Per capita household disposable income (in euros), year Contabilidad Regional
2004 de Espaiia (INE)

Explanatory variables:

X3

*

Original variables:

T Per capita domestic telephone lines, year 2004 Telefonica de Esparnia,
S.A.

B Per capita broadband telephone lines, year 2004 Telefonica de Espana,
S.A.

D Percentage of population with secondary and university 2001 Census, Encuesta

degrees, year 2004 de Poblacion Activa

(INE)

J  Percentage of population with qualified jobs, year 2001 2001 Census (INE)

U Unemployment rate, year 2004 Instituto Nacional de

Empleo (INEM)
D Average distance to capitals and commercial heads, year ~ Estimation and

2004 Nomenclator (INE)
H Average housing price, year 2004 Ministerio de la Vivienda
** Rotated factors:
F1 Factor 1: “education-qualification” Self-elaboration
F2 Factor 2: “employment-activity” Self-elaboration
WF2 Employment-activity in neighboring provinces Self-elaboration

We have called the first factor as “education-qualification” and second one as
“employment-activity”. It must be highlighted that these two factors are orthogonal, which
leads to a first interesting conclusion: in Spain, there is no —or at least, very small- correlation
between variables like education-qualification and employment-activity. That is to say, there
are provinces in which higher levels of education coexists with lower employment rates
(Cordoba, Huelva, Biscay), and vice versa (Alicante, Burgos, Tarragona).

With respect to “la Caixa” (2006), in this paper we have incorporated a new variable
to consider the cases in which households obtain their income not only in the same province
but also in neighboring ones. In effect, in some Spanish provinces, commuting to work to
proximal provinces is a common practice, particularly when they are close to a big urban area
(e.g. Guadalajara and Segovia, near Madrid). For that reason, we have built the spatial lag of
factor 2 (employment-activity) —using a connectivity weight matrix- as a proxy of this
phenomenon.
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Table 2  Principal components analysis results

Comunalities Rotated components matrix
Initial Extraction Component
T 1.000 708 F1 F2
B 1.000 .694 T 170 .824
U 1.000 .638 B .603 575
D 1.000 817 U -.149 -.785
E 1.000 .862 D -.904 021
J 1.000 .842 E .855 363
H 1.000 .837 J .878 .266
Note: Extraction method: principal components H 846 348

analysis. Note: Extraction method: principal components

analysis. Rotation method: Varimax normalization
with Kaiser. The rotation has converged in 3
iterations.

4.2. Estimation of household disposable income: specification of a basic global model

Therefore, our initial specification is a basic regression model, which relates per capita
household income with three explanatory variables: education-qualification and employment
activity levels existent in a province, as well as the employment-activity present in proximal
ones.

INC, = B, + BF1.+ B,F2, + BWF2. +u, (11)

where £y, B, B, P> are parameters to be estimated and u; is a stochastic error term with the
usual properties.

We have estimated this model by OLS. We have also carried out various tests to detect
the presence of spatial dependence using the spatial weight matrices previously defined in
equation (24). As is shown in Table 4, all the coefficients are quite significant and the
goodness-of-fit can be considered as acceptable (due to the transformation of the variables),
though improvable’ (R* = 0.72). In this case, the multicollinearity figure is 2.23 (low level of
multicollinearity), because of the perfect orthogonality of the factors (F1, F2). The Jarque-
Bera non-normality statistic on the residuals takes on a very low value (0.20), which can be
considered as non-significant at all (p = 0.90). Consequently, we can rely on the results of the
misspecification tests which depend on the normality assumption, such as the various
Lagrange Multiplier (LM) tests. This is the case for the LM tests for spatial autocorrelation in
the residuals, the LM test for spatial error dependence, and the LM test for spatial lag

"The R® value of 0.72 of the above model means that the equation explains 72% of the variance of the level of
household per capita income in 2004.
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dependence, which are highly significant in this model. These results indicate that there is
evidence of the presence of spatial dependence in the OLS error terms®.

In these cases, the classic modelling strategy (Florax et al. 2003) suggests a re-
specification of the basic initial model to take into account the spatial effects. The robust
version of LM test is only significant for the spatial lag dependence. We have tested different
spatial dependence specifications, such as spatial lag, spatial cross-regressive, mixed spatial
autoregressive cross-regressive models (see Anselin 1988 for a review) but in all cases, we
found remaining spatial autocorrelation and/or spatial heterogeneity in the residuals.

Table 3 Estimation results for the basic model of per capita income

Basic Spatial lag Spatial cross- Mixed spatial
Model . autorregres. Cross-
model model regressive model .
regressive model
Estimation OLS ML OLS ML
Constant 12,212.17°  3,434.65" 12,1683 7,333.8"
(148.69) (1543.05) (119.18) (2333.35)
F1 (education-qualification) 706.4077°  608.652"" 595.333" 579.626""
(166.52) (127.09) (134.84) (122.60)
F2 (employment-activity) 721533 482527 455.466™" 415.1617"
(188.01) (149.09) (158.80) (145.73)
WE2 (F2 spatial lag) 1,253.46"" 5204717 1229.53" 832.8""
(288.79) (251.33) (230.93) (271.21)
, 1981.6™" 1,298.25™
WF1 (F1 spatial lag) - - (381.59) 473.29)
Endogenous spatial lag 0.7127"" 0.3938"
i (0.127) ) (0.1911)
R? 0.722 - 0.822 -
AIC 841.510 823.540 820.033 818.091
Jarque Bera 0.2018 - 1.6033 -
Breush-Pagan 2.7306 7.8296" 2.6207 6.8313
White test 12.8841 - 10.6734 -
LMERR 4.5933" 10.0515™ 0.1149 6.4461"
Robust LMERR 2.2749 - 52601 -
LMLAG 25.0736" - 45176 -
Robust LMLAG 227553 - 9.6629"" -

Notes: * Significant at p <0.10. ~ Significant at p < 0.05. ™ Significant at p < 0.01. In brackets: estimates

standard deviation. R” is the adjusted R?. LMERR is the Lagrange multiplier test for spatial autocorrelation in the
error term. LMLAG is the Lagrange multiplier test for an additional spatially-lagged endogenous variable in the
model. Robust LMERR is the Lagrange multiplier test for spatial autocorrelation in the error term robust to the
presence of spatial lag dependence. Robust LMLAG is the Lagrange multiplier test for an additional spatially
lagged endogenous variable robust to the presence of spatial error dependence.

¥ Here neighbors have been defined such that each element of the spatial weight matrix, wy;, is set equal to the
inverse of the squared distance between centroids of provinces i, . We have obtained similar results for other
specifications, e.g. connectivity or nearest neighbor matrices.
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What happens? As Brunsdon et al. 1999 state, sometimes spatial autocorrelation in the
residuals may be implied by some kind of spatial heterogeneity that is not correctly modeled
by spatial dependence specifications. Consequently, we estimate model (26) with the GWR
method and test the goodness-of-fit and the remaining spatial dependence in the residuals.

4.3. Estimation of spatial instability of household disposable income with a GWR model

The first step in computing GWR estimates is to find the weighting matrix W;
(i=1,2,...,n), given that W, = diag (w,,w,,,...,w, ) where w; is the weight between location i

and location j. In this paper, we have adopted three kernel functions’: 1) the fixed gaussian
function shown in (6), for which the influence of each neighboring province j around province
i is a continuous decreasing function of the distance that separates them, 2) the fixed bisquare
weighting function shown in (7) and 3) the adaptive bisquare weighting function shown in
(8). These approaches correspond to the situation that one province will have no influence on
the provincial household income of another province if the distance between them is
sufficiently long.

Since W; is a function of the bandwidth we must choose the optimal 4. For this
purpose, we use the least-squares cross-validation (CVRSS) method shown in (9). For each
province i, this method obtains a GWR estimate of per capita income in this province by
omitting the i™ observation. The complete process starts with a weighted OLS calibration
using different possible values of /4 that leads to different weighting matrices W; (always
omitting the observations at location 7). Thus, many different values of the estimated

independent J (k) can be estimated at this stage, and therefore the scores of the residuals

sum of squares, Zl[ Vi— j/;(h)T, can also be calculated. Finally, the best value of 4 is

selected by minizing the sum of the squared errors.

Applying the above procedure to the analysis of per capita income in Spanish
provinces, the method computes 11, 9 and 8 different weighted OLS calibrations (iterations)
for the fixed Gaussian, fixed bisquare and adaptive bisquare functions, respectively, and thus,
different CVRSS values.

When we apply a fixed Gaussian function, the minimum score of the CVRSS value is
obtained when the bandwidth / equals approximately 167 km. Thus, the weighting matrix W;
is estimated, where W, = exp(— d;. / 167%). In the case of the fixed bisquare function, the

minimum score of the CVRSS value is obtained for h equals 807 km. In this case, the
2
weighting matrix W; is estimated as W, =[1—(dlj/ 807)2} ,if dij < 807. Finally, for the

adaptive bisquare function, the minimum score of CVRSS is obtained when the local sample
size includes approximately a 46% of the total units. The weighting matrix W; is here
estimated considering different local bandwidths or distances (%;), such that each sub-sample
always includes the 46% of the Spanish provinces (about 23 of 50):

2
W :[1—(d[j /h, )2} ,if d, <h,. It is particularly highlighting the difference in bandwidths

between both fixed Gaussian and bisquare functions (167 and 807 km, respectively). Too
large a bandwidth will produce a flat surface with little spatial variation and too small a

? To give a point location value to each observation, we used the centroid of each province.
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bandwidth will result in estimation problems with some of the local regressions. On the
contrary, the bisquare adaptive function establishes different local bandwidths (such that each
sub-sample always includes the 46% of the Spanish provinces, which is about 23 of 50), in a
range from 290 to 963 km, depending on the density of neighbors around each province.

Figure 2 shows the spatial range of the two fixed weighting schemes used in this
application, Gaussian and bisquare, computed for their corresponding cross-validated
bandwidths (167 and 807 km, respectively). In current GWR techniques, bandwidth is first
established globally, with fixed weighting schemes (Gaussian or bisquare), meaning that
regions in denser parts of the study area have a larger number of weighted neighbors
contributing to their estimates than in less dense parts. The bandwidth of the Gaussian fixed
weighting function (167 km) is about half the greatest nearest neighbor distance in the data set
(264 km, for the Balearic Islands and 7arragona), and lower than the first quartile (277 km).
The bandwidth of the bisquare fixed function establishes a much wider bandwidth (807 km),
which is higher even than the third quartile (600 km). Regarding the bisquare adaptive
weighting method, it considers a range of different local bandwidths (%;). The lowest
bandwidth (290 km) corresponds to Segovia (“seg” in Figure 1), which is a Castilian province
located in the center of Spain, the denser area (e.g. the zone with more proximal neighbors).
On the other side, Santa Cruz de Tenerife (“scr”), in the Canary Islands, constitutes one of the
sparsest zones; for this reason, it has the largest bandwidth, 963 km.

Figure 2. Values of weighting functions by distance for bandwidths chosen by cross-
validation of the basic model

1,00
0,90
0,80 -
0,70 +
0,60
0,50
0,40
0,30
0,20
0,10
0,00 =
-1000

Gaussian fixed

— — — - Bisquare fixed

500 1000

Source: Self-elaboration.

To estimate the parameter vectors ,&gw'(z’ =1, 2,...,50) equation (4) is used. These

parameter vectors are the expected estimates parameters of the GWR when the value of
h =167 (Gaussian fixed), 4 =807 (bisquare fixed) and an adaptive 46% (23 provinces) of
local sample size (bisquare adaptive). The main results of the estimations are in Table 5. For
the global model (OLS basic model in Table 4), we show the estimates and their
corresponding standard errors, as well as a 2-sigma value, which is twice the estimate
standard errors. For the GWR regressions, we show 4 descriptive statistics that summarize the
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distribution of the B;’fwr -coefficients: the minimum and maximum values, the inter-quartile

range and the standard deviation of each distribution. In addition, we present a some
goodness-of-fit measures: adjusted R*, SSR and standard error of the estimate'”.

Table4  Estimation results for the global OLS and GWR models of per capita income

Global model Gaussian fixed  Bi-square fixed Bi—;quare
(OLS) model model adaptive model
(GWR) (GWR) (GWR)
Coeff. Coeff. Coeff. Coeff.
Min 11,017 11.115 11,112
F; 12,212 Max 13,328 12.654 13,618
0 (148.69) Int. range 713.832 190.000 799.099
constant St.dev. 552.203 283.461 611.750
297.38 2-sigma
. Min -362.00 349,24 -241.78
B 706.407"" Max 1,067.97 1.026,12 1,083.59
Education- (166.52) Int. range 576.538 203.500 483.323
qualification St.dev. 341.933 140.847 307.955
333.04 2-sigma
A Min 80.41 265,69 123.89
B, 721.533™ Max 1,180.40 1.001,14 1,373.72
Employment- (188.01) Int. range 257.596 187.800 301.762
activity St.dev. 225313 144.884 271.531
376.02 2-sigma
5 Min 455.74 598,60 147.37
B 1,253.46™" Max 2,125.51 1.428,52 1,884.24
Employment- (288.79) Int. range 531.828 267.000 750.428
activity spatial St.dev. 335.593 168.552 445774
lag 577.58 2-sigma
. 46%
Bandwidth - 167.45 km. 807.23 km. ;
23 provinces
R? 0.72 0.83 - 0.84
AIC 841.51 806.63 827.22 804.69
SSR 50,847,587 21,195,415 37,974,257 19,317,962
6 1,051.37 803.96 871,48 774.04

u

Notes: * Significant at p <0.10. ~ Significant at p <0.05. " Significant at p <0.01. In brackets:

standard errors of the OLS coefficient estimates, SE ( ,[3’;.7]5). 2-sigma is twice the OLS standard errors.

St.dev is the standard deviation of the GWR coefficient estimates, /v, . SSR is sum of squared residuals.

Underlined are the coefficient interquartile ranges above 2-sigma and the GWR standard deviations above
OLS standard deviations. 6‘u is the standard error of the estimate.

In terms of goodness of fit, the bi-square adaptive model is better than the bisquare
and Gaussian fixed ones, and the three GWR estimations improves significantly the OLS
global model. The adjusted R’ indicates that about 84% of the per capita household income is

' The adjusted R’ is constructed from a comparison of the predicted values from different models at each
regression point and the observed values.
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explained by the three elected independent variables in the GWR bi-square adaptive model,
what can be considered a good result.

Concerning the individual significance of the parameters, though they are all
statistically significant in the global regression, there are several non-significant parameters in
the GWR models. A pseudo t-test can be built dividing each local estimate by the
corresponding local standard error of the estimate. This measure does not allow refusing the
null of zero value, with at least a 90% of confidence, in 17, 9 and 19 cases for F1, F2 and
WEF2, respectively. In addition to the estimation of model parameters at each location of
interest, a local estimate of the coefficient of determination (Rz) may be derived. These
regression model parameters and diagnostic statistics are interpreted in the same way as with
a conventional global regression, although the local estimates of the R* should not be
interpreted with the same confidence as that from a global model (Fotheringham et al., 2002).
In the three GWR regressions, local R* are sufficiently high, above 0.7, except 3 and 4
regressions in the Gauss fixed and bisquare adaptive models, respectively, corresponding to
the provinces of Cadiz (“cad”), Girona (“gir’), Malaga (“mal”) and Navarre (“nav”). The
bisquare fixed model registers local R? above 0.7. In this case, the relatively better goodness
of fit in local regressions is due to a large bandwidth, which produces little spatial variation
and local estimates very close to the global one.

Figure 3. Plots of the GWR estimate distributions
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Note: OLS is global model, GFixed is Gaussian fixed, BsFixed is bisquare fixed, Adapt is bisquare adaptive.
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For each variable and each weighting method, all the estimates have a typical marked
banded pattern (Figure 3). In general terms, Gaussian fixed and bisquare adaptive functions
are more similar, while the bisquare fixed scheme leads to more smoothed results, due to its
larger bandwidth. If we compare the GWR estimates with the single OLS one, we realize that
the latter is not always an average of the former. Particularly in Factor 2, the OLS estimate is
higher than all the GWR ones, with the exception of 9 provinces. Therefore, it seems quite
evident that the single OLS estimates could be highly biased in certain provinces.

We should test for the degree of collinearity existent between GWR estimates. As
Wheeler and Tiefelsdorf (2005) show, the local regression coefficients can be potentially
collinear even if the underlying exogenous variables in the data generating process are
uncorrelated. They demonstrate that in many cases, it appears that when one coefficient
estimate moves in one direction, it seems to force at least one of the others in the other
direction. In the present case, Table 5 indicates that in there is scarce correlation between the
explanatory variables, mainly in the bi-square adaptive model. This results raise no doubts
about the potential for using geographically weighted regression, mainly the bisquare adaptive
model, for explaining per capita income in Spanish provinces.

Table 5 Correlation coefficients of the GWR coefficient estimates

Gaussian fixed weighting method.:

Intercept Fi F2 WF2
Intercept 1.00
F1 0.23 1.00
F2 0.64 0.49 1.00
WE2 0.06 0.09 0.43 1.00

Bi-square fixed weighting method.:

Intercept Fl F2 WEF2
Intercept 1.00
F1 0.45 1.00
F2 0.79 0.82 1.00
WE2 0.56 -0.08 0.21 1.00

Bi-square adaptive weighting method:

Intercept Fi F2 WF2
Intercept 1.00
F1 0.30 1.00
F2 0.47 0.45 1.00
WE2 -0.07 0.09 0.38 1.00

4.4. Testing spatial non-stationarity

The remaining questions are whether the GWR model describes the relationships
significantly better than an OLS model and whether each set of parameter estimates exhibit
significant spatial variation over the study areas. In effect, although the techniques of GWR
seem to be very appealing in analyzing spatial non-stationarity, from the statistical viewpoint,
two critical questions need to be addressed. The first one is a goodness-of-fit vs. simplicity
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question. As pointed out by Leung et al. (2000a) and Fotheringham et al. (2002), the GWR
model will certainly fit a given data set better than a global OLS model. However, in practice,
a simpler model is usually preferred over a more complex one if there is no significant
improvement from the latter. To justify the employment of GWR instead of OLS in this
study, a Monte Carlo F test (Brunsdon et al. 1999, Fotheringham et a/. 2002) and two other F
tests (F1 and F2 test in Leung et al. 2000a) have been formulated to address this concern.

Table 6  Spatial stability tests of GWR models

Gaussian fixed model Bi-square fixed model Bi-square adaptive
(GWR) (GWR) model (GWR)

BFClocal LMZF; BFClocal LMZF; BFClocal LMZF;
p-values  p-values p-values p-values  p-values  p-values

By 0.030" 0.605 - 0.232 0.00" 0.520
constant
A 0.320 0.088" - 0.230 0.43 0.000""
Education-qualification
B 0.760 1.000 - 1.000 0.70 1.000
Employment-activity
B, 0.890 1.000 - 1.000 0.72 1.000
F1 spatial lag
BF 017" 039" 008"
Global C 0.0 0.039 0.008
variability =~ LMZF, 0.123 0.313 0.092°
pvalues v g 0.119 0.073" 0.092"
Moran’s [ 0.011 0.162" -0.059

Notes: " Significant at p < 0.10. " Significant at p < 0.05 . ™ Significant at p < 0.01.

These F-tests are based on analysis of variance (ANOVA) and use generalized degrees
of freedom (no longer integer because of the varying weights sums per estimate) to compare
the improved sum of squares accounted for by the GWR estimates as compared with the
global OLS estimates. These tests are established so that a hat matrix may be constructed
from rows from the GWR model, each row using its appropriate weights. The Monte Carlo
test derived by Brunsdon ef al. (1999) compares the difference in the residual sums of squares
of the OLS and GWR models with the residual sum of squares of the GWR model. We will
call it “global BFC test”. On their side, Leung et al. (2000a) proposed two other Monte Carlo
tests, which are very similar to the global BFC: LMZ F; and F,. The LMZ F, compares the
residual sums of squares of the GWR model with the residual sums of squares of the OLS
one, with the corresponding degrees of freedom. On its side, the LMZ F, is very similar to
global BFC: it compares the same difference than in global BFC with the residual sum of
squares of the OLS model, choosing a different denominator for the F-ratio, as well as slightly
different degrees of freedom. Results of these tests are shown in Table 6, from which we can
see that the GWR estimates significantly reduce the residual sum of squares over and above
the OLS estimates, specially in the case of the bisquare specifications. The global BFC tests
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are significant in the three GWR models, though the F; and F, are not significant in the
Gaussian fixed model.

The second question concerns the core concept of employing a GWR model, namely,
whether there is significant spatial non-stationarity among the relationships or not. To answer
this question, another F test (the F; test in Leung et al. 2000a), based on the sample variance
of the estimated model coefficients have been suggested as well. If any independent variable
(including the constant term) shows spatial stationarity by this test, a mixed GWR model may
be more appropriate than OLS. In Table 6, we display two local statistics to test spatial
variation in each GWR individual coefficients: BFC local test and LMZ F; test. The BFC
local is a Monte Carlo test to see if the local parameter estimates are stationary or non-
stationary. BFC local test shows that only the independent term varies significantly over
space, while LMZ F; highlights spatial variation in F1 (education-qualification) parameter.

Brunsdon et al. 1998a, 1999, Mei 2004 and Fotheringham et al. 2002 also suggest the
use of intuitive alternative methods that can overcome some of the disadvantages of the
significance tests. In this sense, they present two informal proceedings. First, they compare

the variability of the S -coefficients with the standard errors of the ﬁj‘.’" -coefficients of the

global regression model (1). This can be done by tabulating \/E = \/ Zl( B =B, )2 / N, for

each variable, against SE(bk) from model (1). If the null hypothesis of stationarity were

rejected for some but not all parameters, a mixed GWR-model could be appropriate. In Table

N

5, all the values of /v, exceeds SE ( ﬂj’.’/“), although by less amounts in the cases of the non-

significant variables (F2 and WF2). This suggests that there is some justification in
considering the patterns of spatial variation in all the coefficients in the model.

Secondly, we can also compare the range of the local parameter estimates ( ,@lfw) with

a confidence interval around the global estimate of the equivalent parameter ( ﬁA’j”[S ). Recall

that 50% of the local parameter values will be between the upper and lower quartiles and that
approximately 68% of values in a normal distribution will be within + 1 standard deviations
of the mean. This gives us a reasonable, although very informal, means of comparison. We

can compare the range of values of the local estimates ( ,@;’W’) between the lower and upper

quartiles with the range of values at +1 standard deviations of the respective global estimate,

A

which is simply 2xSE( £ ). Given that 68% of the values would be expected to lie within
J

this latter interval, compared to 50% in the inter-quartile range, if the range of local estimates
between the inter-quartile range is greater than that of 2 standard errors of the global mean,
this suggests the relationship might be non-stationary.

As we can see in Table 5, in the bi-square adaptive regression, only the interquartile
range of the F2 (employment-activity) estimates is less than 2 standard errors (2-sigma) of its
corresponding global estimate. These results reinforce the conclusion about the existence of
spatial variation in the intercept and F1 (education-qualification) variable, though some
spatial instability has also been found in WF2 (employment-activity in neighboring
provinces).
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To give a further indication of the nature of the variation in the coefficients, we can
consider the range of coefficient values estimated for the explanatory variables of income per
capita with the help of a density plot11 (Bivand and Brunstad 2002). Figure 4 shows for each
coefficient the density plot of the GWR coefficient distributions, as well as the OLS global
estimate (solid vertical line) with its corresponding confidence bands (+/- twice the standard
error) in dashed vertical lines. In all the cases, the GWR estimates group more or less around
the OLS global estimates. These plots highlight the skewed shape of the bisquared fixed
GWR distributions, due to the wider bandwidth (807 km) reached by this method with respect
to the others. As stated before, too large a bandwidth will produce a flat surface with little
spatial variation, and vice versa.

Figure 4. Density plots of the GWR estimates
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Notes: Vertical solid lines are the OLS estimators of the global basic model; vertical dashed lines are their
corresponding 2-sigma values (+/- twice the estimator standard errors).

It also seems clear that there is a certain degree of structural instability in GWR
coefficients with respect to OLS, since some of the former are out the latter 2-sigma bands,
especially in the bisquare adaptive distributions. In the case of the intercept and Fl1
(education-qualification), spatial variability is more acute because there are more GWR

' The density plot draws the non-parametric kernel density estimates of the coefficient distributions. It may be
interpreted as the continuous equivalent of a histogram in which the number of intervals has been set to infinity
and then to the continuum.
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coefficients significantly exceeding the OLS bands. On the contrary, spatial instability is
lower in F2 (employment-activity) and WF2 (employment-activity spatial lag) because they
have a higher density mass inside the OLS 2-sigma bands. This result confirms the output of
the local instability tests: though the informal measures are more or less significant for all the
coefficients, in the GWR bisquare adaptive model (Table 4) the formal tests (Table 5) are
only clearly significant for the intercept (BFC local) and the variable F1 of education-
qualification (LMZ Fj).

Finally, we can test for spatial autocorrelation in the residuals with the help of the
Moran’s I test'? (Cliff and Ord 1981), which also allows us to detect remaining spatial non-
stationarity (Fingleton 1999). Except for the bisquare fixed function, GWR models lead to
uncorrelated and stationary residuals what proves the superiority of GWR over the OLS
global model.

In short, since results demonstrate the existence of spatial instability in the parameters,
we can conclude that GWR regression is better than a global model to explain income in
Spanish provinces. We have tested this hypothesis using three different weighting functions
and all them address to this same conclusion. We choose the bisquare adaptive function since
it leads to a better goodness of fit and can adapt to the different spatial configurations of
Spanish provinces across territory (e.g. it considers different bandwidths for each province
depending on its spatial sparseness). Moreover, this function also overcomes better the
multicollinearity problems between the estimates and produces white noise residuals.
Regarding local non-stationarity of the bisquare adaptive GWR estimates, the formal tests are
only clearly significant for the intercept and F1 (education-qualification), though the informal
local tests are also significant (in a lesser extent) for the other two variables. Next, we analyze
in depth the distribution of these estimates across the Spanish territory.

4.5. Analysis of spatial instability in bisquare adaptive GWR estimators

First, we map the spatial variation of these two variables, intercept and F1, to have a
better knowledge of variation on their fitted parameters (Figure 5). Indeed, especially when
working with large data sets, mapping, or some other form of visualization, is the only way to
make sense of nature of spatial instability.

In our model, the intercept or constant parameter measures the fundamental level of
per capita household income excluding the effects of all factors on regional economic
development across Spain. It can be referred to as “the basic level of regional economic
development”. There is a clear spatial variation with higher constant parameters in the
northeastern provinces and lower ones in the southern provinces. It means that, other things
being equal, the northeastern Spanish provinces had the highest basic level of economic
development; the southern provinces had the lowest, while the level in the central -and
northwestern- areas are between the northeastern and the southern areas in 2004. Thus, the
basic level of economic development in the Spanish provinces displays a ladder-step
distribution, which varies from high in the northeast to low in the south.

"2 The Moran’s I test has been computed on errors using the expression commonly applied to univariate
distributions and the same spatial weight matrix used previously in the LM tests. Inference is based on the
permutation approach (999 permutations), as shown in (Anselin 1995). There is also a test procedure for spatial
autocorrelation in GWR framework in Leung ef al. (2000b), which is a three-moment > approximation.
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In Figure 5, we have also represented Factor 1 (education-qualification) coefficients.
This variable has more impact on per capita household income in the north (Cantabria, the
Bask Country, north Castile, Navarre, La Rioja) and west (Salamanca and Cdceres). On the
other side, the influence of this factor on per capita income is less important in the
Mediterranean provinces (Catalonia, The Balearics, Comunidad Valenciana, Murcia, south
Andalusia and the Canaries), having this variable a negative effect in the Balearics. This is
likely because these areas are growing economies based on the service sector, which is mainly
labor-intensive and not so dependent on the education level of the labor force. On the
contrary, in the north, economic activity is based on heavy industries, which are not so highly
labor demanding, though require qualified workers.

Figure 5. Map for the intercept and F1 adaptive GWR estimates
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Notes: The classification method is “natural breaks” (Jenks and Caspall 1971)

Mapping the spatial distributions of the GWR raw estimates is interesting. However,
as Fotheringham et al. 2001 point out, the values represented on these maps do not take into
account the standard errors of the estimates. Consequently, it is often more illuminating to
view maps of ¢-statistics by dividing each local estimate by the corresponding local standard
error of the estimate. These #-maps are useful, not in a formal sense, but in a purely
exploratory role, to highlight parts of the map where interesting relationships appear to be
occurring. In Figure 5, we have shown the #-maps for the GWR local parameters of the
explanatory variables (we exclude the intercept since it is always significant). In general, a #-
map of a certain coefficient is very similar to the map of this same raw coefficient, but
sometimes reveals interesting spatial variations that would be missed completely if we rely
solely on the global analysis of raw parameters.

For example, in Figure 5 we see that F1 (education-qualification) has low influence on
per capita income in the Mediterranean provinces and the Isles. However, with the help of the
t-map we can also detect other non-significant provinces, such as the ones located in the
northwest (Galicia). Nevertheless, in general, in these places the most significant variable is
F2 (employment-activity). That is to say, there is a tradeoff between these 2 factors when
explaining per capita household income. This conclusion was also reached before, when
computing these factors as orthogonal, demonstrating that in Spain, there are provinces in
which higher levels of education coexists with lower employment rates, and vice versa.
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Figure 6. #-Maps for the adaptive GWR estimates of the explanatory variables
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Notes: The classification method is “natural breaks”, except the first class that has been established as less than
1.96, which is approximately the critical value for refusing the null hypothesis of non-significant parameter with
a 95% of confidence.
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Moreover, it is particularly highlighting that F2 coefficients are not significant in some
provinces proximal to Madrid (Guadalajara and Segovia) and Valencia (Cuenca and
Albacete). It is possibly due to the existence of many residents that do not earn their salaries
in the provinces they live but in Madrid and Valencia, respectively, where they commute to
work. In this cases, WF2 (employment-activity spatial lag), which consider this variable, is
highly significant what emphasizes this argument. WF2 measures the role that spatial
externalities of employment-activity play in the explanation of per capita household income.
This role is very important in the provinces located in the axis Madrid-Valencia-Barcelona.
This interesting result is the same to that found in Peeters and Chasco (2006) that detected big
agglomeration effects mainly in the provinces of the Valencian Community, as well as in
Catalonia, Murcia and Castile-La Mancha.

The t-maps reveal that the GWR model does not explain per capita income the same
everywhere. For example, it is more effective for the northern provinces (along the Cantabric
coast) than in the southwest (Andalusia and the Canary Islands). It is particularly highlighting
the case of Cadiz, Mdlaga and the Canaries, which are the only provinces with non-significant
t-values in all the explanatory variables. In effect, neither education-qualification nor
employment-activity (and its spatial lag) seems to be significant enough to explain per capita
household income. In the case of the Andalusian provinces, this situation can be explained
because in the inland, farmers’ income does not fundamentally depend on neither their
educational level nor the economic activity, but on the state subsidies. Besides, some
provinces are not so well explained by the model, as the case of Galicia (4 Coruiia,
Pontevedra and Ourense), where only F2 coefficient is significant. In the first ones, economic
activity is very high, particularly in the coast and highly labor demanding. Ourense
constitutes a peculiar case, since its residents income depends not only in its own economic
activity but also on emigrants’ remittances. As seen, the t-maps highlight some facet of the
relationship completely hidden in the global results and force us to ask about questions we
would otherwise not have asked.

3. MAIN CONCLUSIONS

The purpose of this paper is to analyze the spatially varying impacts of some classical
regressors on per capita household disposable income of Spanish provinces. This variable has
frequently been modeled as an ecological regression to predict its value for microterritorial
units (e.g. municipalities). Nevertheless, observations at an aggregated level of analysis do not
necessarily provide useful information about lower levels of analysis, particularly when
spatial heterogeneity (non-stationarity) is present. For that reason, we propose to test spatial
variation of the determinants of per capita household income across Spanish provinces: if this
effect was present, it should be considered in future ecological inferences of municipal
income.

First, we modeled the provincial household income distribution following a basic
global regression, which was also re-specified to take into account spatial effects. We found
clear evidence of spatial instability in the distribution of the residuals that could not be totally
solved by global specifications. Since spatial autocorrelation in the residuals may be implied
by some kind of spatial heterogeneity not always correctly modeled by spatial dependence
specifications, we re-specified the basic model using GWR methods. With this aim, we tested
three weighting functions: Gaussian fixed, bisquare fixed and bisquare adaptive. In these three
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cases, spatial instability was detected using both formal and informal tests. We finally chose
the bisquare adaptive specification since it leads to a better goodness of fit and can adapt to
the different spatial configurations of Spanish provinces across territory. Moreover, this
function also overcomes better the multicollinearity problems between the estimates and
produces white noise residuals.

Regarding local non-stationarity of the bisquare adaptive GWR estimates, the formal
tests were only clearly significant for the intercept and F1 (education-qualification), though
the informal local tests were also significant (in a lesser extent) for the other two variables.
GWR shown that when explaining per capita household income, there is a tradeoff between
education-qualification and employment-activity; e.g. in Spain, there are provinces in which
higher levels of education coexists with lower employment rates, and vice versa. Regarding
WE2, it measures the role of spatial externalities in the explanation of per capita household
income. This role revealed as very important in the provinces located in the axis Madrid-
Valencia-Barcelona, which coincides with other similar analysis.

GWR is, no doubt, a better specification to model per capita household income than
other global models. It highlights some facets of the relationship completely hidden in the
global results and forces us to ask about questions we would otherwise not have asked. This
analysis demonstrates that GWR should be considered to predict income in Spanish
municipalities from an ecological inference estimated with provincial data.
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