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Abstract

This paper contributes to the literature by comparing predictive
accuracy of one-period real-time simple seasonal ARIMA forecasts of
Latvia’s Gross Domestic Product (GDP) as well as by comparing a di-
rect forecast of Latvia’s GDP versus three kinds of indirect forecasts.
Four main results are as follows. Direct forecast of Latvia’s Gross Do-
mestic Product (GDP) seems to yield better precision than an indirect
one. AR(1) model tends to give more precise forecasts than the bench-
mark moving-average models. An extra regular differencing appears to
help better forecast Latvia’s GDP in an economic downturn. Finally,
only AR(1) gives forecasts with better precision compared to a näıve
Random Walk model.

1 Introduction

Most of the macroeconomic forecast literature concentrate on forecasting
seasonally adjusted time series (see, for example, Wang (2008), Kuzin et al.

(2009a, 2009b), Schumacher (2009), Eickmeier and Ng (2009), Boivin and Ng
(2006), Diebold and Mariano (1995), Caggiano et al. (2009), Masten et al.

(2009), Barhoumi et al. (2009), Forni et al. (2003), Dreger and Schumacher
(2002), Stock and Watson (1998, 2002, 2003, 2004), and, considering Latvia,
Ajevskis and Davidsons (2008) and Benkovskis (2008), among others).

Sometimes, however, it is necessary to forecast seasonally unadjusted
series. This paper contributes to the literature by comparing predictive ac-
curacy of one-period real-time simple seasonal ARIMA forecasts of Latvia’s
Gross Domestic Product (GDP) as well as by comparing a direct forecast
of Latvia’s GDP versus three kinds of indirect forecasts by predicting its
components. The main conclusions in this paper are that a direct fore-
cast of Latvia’s GDP outperforms all indirect ones, that an AR(1) process
gives more precise forecasts than the competing benchmark models involv-
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ing moving-average term, and that only AR(1) model is superior to a näıve
Random Walk process.

The paper is organized as follows. Section 2 is meant to be a self-
contained description of ARIMA methodology; Section 3 describes the data;
Section 4 presents simulation results, and Section 5 concludes.

2 Methodology

2.1 Stochastic processes and stationarity

The purpose of this section is to be sufficiently self-contained. This section
up to 2.8 closely follows Kaiser and Maravall (2001) and 2.8 follows Hamilton
(1994).

The starting point is the concept of a stochastic process. For our pur-
poses, a stochastic process is a real-valued random variable zt, that follows a
distribution ft(zt), where t denotes an integer that indexes the period. The
T -dimensional variable (zt1 , zt2 , . . . , ztT ) will have a joint distribution that
depends on (t1, t2, . . . , tT ). A time series [zt1 , zt2 , . . . , ztT ] will denote a par-
ticular realization of the stochastic process. Thus, for each distribution ft
there is only one observation available. Not much can be learned from this,
and more structure and more assumptions need to be added. To simplify
notation, we shall consider the joint distribution of (z1, z2, . . . , zt), for which
a time series is available for t ≤ T.

From an applied perspective, the two most important added assumption
are

Assumption A : The process is stationary;

Assumption B : The joint distribution of (z1, z2, . . . , zt) is a multivariate
normal distribution.

Assumption A implies the following basic condition. For any value of t,

f(z1, z2, . . . , zt) = f(z1+k, z2+k, . . . , zt+k) (1)

where k is an integer; that is, the joint distribution remains unchanged if all
time periods are moved a constant number of periods. In particular, letting
t = 1, for the marginal distribution it has to be that

ft(zt) = f(zt) (2)

for every t, and hence the marginal distribution remains constant. This
implies

Ezt = ¹t; V zt = Vz (3)

where E and V denote the expectation and the variance operators, respec-
tively, and ¹z and Vz are constants that do not depend on t.
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In practice, thus, stationarity implies a constant mean and bounded
deviations from it. It is a very strong requirement and few actual economic
series will satisfy it. Its usefulness comes from the fact that relatively simple
transformations of the non-stationary series will render it stationary. For
quarterly economic series, it is usually the case that constant variance can be
achieved through the log/level transformation combined with proper outlier
correction, and a constant mean can be achieved by differencing.

The log transformation is, roughly speaking, appropriate when the am-
plitude of the series oscillations increases with the level of the series. As
for the outliers, several possible types should be considered, the most pop-
ular ones being the additive outlier (i.e., a single spike), the level shift (i.e.,
a step variable), and the transitory change (i.e., an effect that gradually
disappears).

2.2 Differencing

Denote by L the lag operator, such that

Ljzt = zt−j (j = 0, 1, 2, . . .),

and let xt denote a quarterly observed series. We shall use the operators:

∙ Regular difference: Δ = 1− L

∙ Seasonal difference: Δ4 = 1− L4

∙ Annual aggregation: S = 1 + L+ L2 + L3

Thus Δxt = xt−xt−1,Δ4xt = xt−xt−4 and Sxt = xt+xt−1+xt−2+xt−3.
It is immediately seen that the 3 operators satisfy the identity

Δ4 = ΔS (4)

If xt is a deterministic linear trend, as in xt = a+ b t, then

Δxt = b (5)

Δ2xt = 0 (6)

where Δ2xt = Δ(Δxt). In general, it can easily be seen that Δd will reduce
a polynomial of degree d to a constant. Obviously, Δ4xt will also cancel a
constant (or reduce the linear trend to a constant); but it will also cancel
other deterministic periodic functions, such as one that repeats itself every
4 quarters. To find the set of functions that are cancelled with the transfor-
mations Δ4xt. we have to find the solution of the homogeneous difference
equation

Δ4xt = (1− L4)xt = xt − xt−4 = 0, (7)
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with characteristic equation r4 − 1 = 0. The solution is given by

r =
4
√
1.

The four roots are

r1 = 1, r2 = −1, r3 = i, r4 = −i. (8)

The first two roots are real and the last two are complex conjugates, with
modulus 1 and frequency ! = ¼/2. Complex conjugate roots generate peri-
odic movements of the type

rt = At cos(!t+B) (9)

where A denotes the amplitude, B denotes the phase (the angle at t = 0)
and ! - the frequency (the number of full circles that are completed in one
unit of time). The period of function (9), to be denoted ¿ , is the number of
units of time it takes for a full circle to be completed, and is related to the
frequency ! by the expression

¿ =
2¼

!
. (10)

From (8), the general solution of Δ4xt = 0 can be expressed as (see for
example, Goldberger, 1967)

xt = c0 + c1 cos(
¼

2
t+ d1) + c2(−1)t,

where c0, c1, c2, and d1 are constants to be determined from the starting
conditions. Realizing that cos¼ = −1, the previous expression can also be
written as

xt = c0 +
2

∑

j=1

cj cos(j
¼

2
t+ dj), (11)

with d2 = 0. Considering (10), the first term in the sum of (11) will be
associated with a period of ¿ = 4 quarters and will represent thus a seasonal
component with a once-a-year frequency; the second term has a period of
¿ = 2 quarters, and hence will represent a seasonal component with a twice-
a-year frequency. Noticing that the characteristic equation can be rewritten
as (L−1)4 − 1 = 0, (8) implies the factorization

Δ4 = (1− L)(1 + L)(1 + L2).

The factor (1−L) is associated with the constant and the zero frequency, the
factor (1 + L) with the twice-a-year seasonality with frequency ! = ¼, and
the factor (1 + L2) with the once-a-year seasonality with frequency ! = ¼

2 .
The product of these last two factors yields the annual aggregation operator
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S, in agreement with expression (4). Hence, the transformation Sxt will
remove seasonal nonstationarity in xt.

For the most-often-found case in which stationarity is achieved through
the differencing ΔΔ4, the factorization

ΔΔ4 = Δ2S

directly shows that the solution to ΔΔ4 = 0 will be of the type:

xt = a+ b t+
2

∑

j=1

cj

[

cos(j
¼

2
t) + dj

]

, (12)

with d2 = 0. Thus the differencing will remove the same cosine (seasonal)
functions as before, plus the local linear trend (a+ bt). For the case Δ2Δ4,
the factorization Δ3S shows that the canceled trend will now be a second
order polynomial in t, the rest remaining unchanged.

A final and important remark:

∙ Let D denote, in general, the complete differencing applied to the
series xt so as to achieve stationarity. When specifying the ARIMA
model for xt, we shall not be stating that Dxt = 0 but that

Dxt = zt,

where zt is a zero-mean, stationary stochastic process with relatively
small variance. Thus every period the solution of Dxt = 0 will be
perturbed by the stochastic input zt (see Box and Jenkins, 1970, Ap-
pendix A.4.1). In terms of expression (12), what this perturbation
implies is that the a, b, c and d coefficients will not be constant but
will instead depend on time. This gradual evolution of the coefficients
provides the model with an adaptive behavior that will be associated
with the ‘moving’ features of the trend and seasonal components.

2.3 Linear stationary process, Wold representation, and au-

tocorrelation function

Following the previous notation, if xt denotes the observed variable and
zt = Dxt its stationary transformation, under assumptions A and B, the
variable (z1, z2, . . . , zT ) will have a proper multivariate normal distribution.
One important property of this is that the expectation of some (unobserved)
variable linearly related to zt, conditional on (z1, z2, . . . , zT ), will be a linear
function of z1, z2, . . . , zT . Thus conditional expectations will directly provide
linear filters. An additional important property is that, because the first
two moments fully characterize the distribution, stationarity in mean and
variance will imply stationarity of the process. In particular, stationarity
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will be implied by the constant mean and variance condition (3), plus the
condition that

Cov(zt, zt−k) = °k,

for k = 0, ±1, ±2, . . . . Hence the covariance between zt and zt−k should
depend on their relative distance k, not on the value of t. Therefore,

(z1, z2, . . . , zT ) ∼ N(¹,Σ),

where ¹ is a vector of a constant means, and Σ is the variance-covariance
matrix

Σ =

⎡

⎢

⎢

⎢

⎢

⎣

Vz °1 °2 . . . °T−1

Vz °1 . . . °T−2

. . . . . . . . .
Vz °1

Vz

⎤

⎥

⎥

⎥

⎥

⎦

, (Vz = °0),

a positive definite symmetric matrix. Let F denote the forward operator,
F = L−1, such that

F jzt = zt+j , (j = 0, 1, 2, . . .),

a more parsimonious representation of the 2nd-order moments of the station-
ary process zt is given by the Autocovariance Generating Function (AGF)

°(L,F ) = °0 +
∞
∑

j=1

°j(L
j + F j). (13)

To transform this function into a scale-free function, we divide by the vari-
ance °0, and obtain the Autocorrelation Generating Function (ACF),

½(L,F ) = ½0 +
∞
∑

j=1

½j(L
j + F j), (14)

where ½j = °j/°0. If the following conditions on the AGF:

1. ½0 = 1;

2. ½j = ½−j ;

3. ∣½j ∣ < 1 for j ∕= 0;

4. ½j → 0 as j → ∞;

5.
∑∞

j=0 ∣½k∣ < ∞,
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are satisfied, then a zero-mean, finite-variance, normally distributed process
is stationary. Further, under the normality assumption, a complete real-
ization of the stochastic process will be fully characterized by ¹z, Vz and
½(L,F ).

When ½j = 0 for all j ∕= 0, the process will be denoted a White Noise pro-
cess. Therefore, a white noise process is a sequence of normally identically
independently distributed random variables.

The first statistics that we shall compute for a time series [z1, z2, . . . , zT ]
will be estimates of the autocovariances and autocorrelations using the stan-
dard sample estimates

z̄ = T−1
T
∑

t=1

zt; °̂k = T−1
T
∑

t=k+1

(zt − z̄)(zt−k − z̄); ½̂k = °̂k/°̂0.

To start the modeling procedure, a general result on linear time series
processes will provide us with an analytical representation of the process
that will prove very useful. This is the so-called Wold representation. We
present it next.

Let zt denote a linear stationary stochastic process with no deterministic
component, then zt can be expressed as the one-sided moving average

zt = at + Ã 1at−1 + Ã 2at−2 + . . . =

=
∞
∑

j=0

Ã jat−j = Ψ(L)at, where

Ψ(L) =
∞
∑

j=0

Ã jL
j , (Ã 0 = 1), (15)

where at is a white noise process with zero mean and constant variance Va,
and Ψ(L) is such that

1. Ã j → 0 as j → ∞;

2.
∑∞

j=0 ∣Ã j ∣ < ∞;

the last condition reflecting a sufficient condition for convergence of the
polynomial Ψ(L). Given the Ã j-coefficients, at represents the one-period
ahead forecast error of zt, that is

at = zt − ẑt∣t−1,

where ẑt∣t−1 is the forecast of zt made at period t − 1. Since at represents
what is new in zt, it will be referred to as the innovation of the process. The
representation of zt in terms of its innovations, given by (15), is unique, and
is usually referred to as the Wold representation.
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A useful result is the following: If °(L,F ) represents the AGF of the
process zt, then

°(L,F ) = Ψ(L)Ψ(F )Va. (16)

In particular, for the variance,

Vz = (1 + Ã 2
1 + Ã 2

2 + . . .)Va. (17)

2.4 The spectrum

The spectrum is the basic tool in the so-called ‘Frequency Domain Approach’
to time series analysis. It represents an alternative way to look at and inter-
pret the information contained in the second-order moments of the series.
Here we provide a few basic concepts needed in later subsections.

Consider, first, a time series given by z1, z2, . . . , zT . To simplify the
discussion, assume the process has a zero mean and that T is even, so that
one can write T = 2q. In the same way that, as is well known, the T values
of zt can be exactly duplicated by a polynomial of order (T − 1), they can
also be exactly reproduced as the sum of T/2 cosine functions of the type
(9); this result, in fact, provides the basis for Fourier analysis.

We start by defining the Fundamental Frequency ! = 2¼/T (i.e., the
frequency of one full circle completed in T periods) and its multiples (or
harmonics) !j = (2¼/T )j, j = 1, 2, . . . , q. Then, express (9) as

rjt = aj cos !jt+ bj sin!jt, (18)

and hence,

zt =

q
∑

j=1

rjt. (19)

It is straightforward to check that aj and bj are related to the amplitude Aj

by A2
j = a2j + b2j . From (18) and (19), by plugging in the values of zt, !j ,

and t, a linear system of T equations is obtained in the unknowns aj ’s and
bj ’s, j = 1, 2, . . . , q; a total of T unknowns. Therefore, for each frequency
!j , we obtain a square amplitude A2

j . As a consequence, we obtain a set of
periodic functions with different frequencies and amplitudes. We can group
the functions in intervals of frequency by summing the squared amplitudes
of the functions that fall in the same interval. In this way one obtains
a histogram of frequencies that shows the contribution of each interval of
frequency to the series variation. In the same way that a density function
is the model counterpart of the usual histogram, the spectrum is the model
counterpart of the frequency histogram, properly standardized.

We can now let the interval Δ!j go to zero, and the frequency histogram
becomes a continuous function, which is denoted as the sample spectrum.
The area over the differential d! represents the contribution of the frequen-
cies in d! to the variation of the time series. An important result links
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the sample spectrum with the SACF. If H(!) denotes the sample spectrum,
then it is proportional to

H(!) ∝

Ã

°̂0 + 2
T−1
∑

t=1

°̂j cos !t

)

, (20)

where °̂j denotes the lag-j autocovariance estimator.
The model equivalent of (20) provides precisely the definition of the

power spectrum (see below). Consider the AGF of the stationary process
zt, given by

°(L,F ) = °0 +
∞
∑

j=1

°j(L
j + F j), (21)

where L is a complex number of unit modulus, which can be expressed as
ei!. Replacing L and F by their complex representation, (21) becomes the
function

g(!) = °0 +
∞
∑

j=1

°j(e
−i!j + ei!j),

or, using the identity
[

e−i!j + ei!j = 2 cos(j!)
]

, and dividing by 2¼, one
obtains

g1(!) =
1

2¼

⎡

⎣°0 + 2
∞
∑

j=1

°j cos(j!)

⎤

⎦ . (22)

The move from (21) to (23) is the so-called Fourier cosine transform of the
AGF °(L,F ), and is termed the power spectrum. Replacing the AGF by
the ACF (i.e., dividing by the variance °0), we obtain the Spectral Density
Function

g∗1(!) =
1

2¼

⎡

⎣1 + 2
∞
∑

j=1

½j cos(j!)

⎤

⎦ . (23)

It is easily seen that g1(!) and g∗1(!) are periodic functions, and hence the
range of frequencies can be restricted to (−¼, ¼) or (0, 2¼). Moreover, given
that the cosine function is symmetric around zero, we only need to consider
the range (0, ¼).

From (23), knowing the AGF of a process, the power spectrum is trivially
obtained. Alternatively, knowledge of the power spectrum permits us to
derive the AGF by means of the inverse Fourier transform, given by

°k =

∫ ¼

−¼
g(!) cos(!k) d!.

Thus, for k = 0,

°0 =

∫ ¼

−¼
g(!) d!, (24)
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which shows that the integral of the power spectrum is the variance of the
process.

As an example, consider a process zt, the output of the 2nd-order homo-
geneous difference-equation model

zt + .81zt−2 = 0 (25)

The characteristic equation, r2 + .81 = 0 yields the pair of the complex
conjugate numbers r = ±.9i, situated in the imaginary axis, they will be
associated thus with the frequency ! = ¼/2. The process, therefore, follows
the deterministic function

zt = .9 cos
(¼

2
t+ ¯

)

, (26)

where we can set ¯ = −¼/2. The function (26) does not depend on !
and the movements of zt are all associated with single frequency ! = ¼/2.
To transform the previous model into a stochastic process, we perturb the
equilibrium (25) every period with a white noise (0, 1) variable at, so that
it is replaced by the stochastic model

zt + .81zt−2 = at, or (1 + .81L2)zt = at. (27)

From (27), the Wold representation (15) is immediately obtained through

°(L,F ) =
Va

(1 + .81L2)(1 + .81F 2)
=

=
Va

1.656 + .81(L2 + F 2)
.

Replacing (L2 + F 2) by 2 cos 2!, the spectrum is found to be equal to

g(!) =
Va

1.656 + 1.62 cos 2!
; 0 ≤ ! ≤ ¼.

In summary, if a series contains an important component for a certain
frequency !0, its spectrum should reveal a peak around that frequency.

2.5 ARIMA models

Back to the Wold representation (15) of a stationary process, zt = Ψ(L)at.
This representation is of no help from the point of view of fitting a model
because, in general, the polynomial Ψ(L) will contain an infinite number of
parameters. Therefore, we use a rational approximation of the type

Ψ(L)
.
=

µ(L)

Á(L)
,
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where µ(L) and Á(L) are finite polynomials in L of order q and p, respec-
tively. Then we can write

zt =
µ(L)

Á(L)
at, or

Á(L)zt = µ(L)at. (28)

The model

(1 + Á1L+ . . .+ ÁpL
p)zt = (1 + µ1L+ . . .+ µqL

q)at (29)

is the Autoregressive Moving-Average process of orders p and q; in brief, the
ARMA(p, q) model. For further reference, the inverse model of (28) is the
one that results from interchanging the AR and MA polynomials. Thus

µ(L)yt = Á(L)bt,

with bt white noise, is an inverse model of (28). Equation (29) can be seen
as a non-homogeneous difference equation with forcing function µ(L)at, an
MA(q) process. Therefore, if both sides of (29) are multiplied by zt−k,
with k > q, and expectations are taken, the right hand side of the equation
vanishes, and the left hand side becomes:

°k + Á1°k−1 + . . .+ Áp°k−p = 0, (30)

or
Á(L)°k = 0, (31)

where L operates on the subindex k. The eventual autocorrelation function
(that is, °k as a function of k, for k > q) is the solution of the homogeneous
difference equation (30), with characteristic equation

rp + Á1r
p−1 + . . .+ Áp = 0. (32)

If r1, . . . , rp are the roots of (32), the solution of (30) can be written as

°k =

p
∑

i=1

rki ,

and will converge to zero as k → ∞ when ∣ri∣ < 1, i = 1, . . . , p. Comparison
of (32) and (30) shows that r1, . . . , rp are the inverses of the roots L1, . . . , Lp

of the polynomial
Á(L) = 0

that is, ri = L−1
i . Convergence of °k implies, thus, that the roots (in L)

of the polynomial Á(L) are all larger than 1 in modulus. This condition
can also be stated as follows: the roots of the polynomial Á(L) have to lie
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outside the unit circle. When this happens, it is said that the polynomial
Á(L) is stable. From the identity

Á(L)−1 =
1

(1− r1L) . . . (1− rpL)

it is seen that stability of Á(L) implies, in turn, convergence of its inverse
Á(L)−1.

From (21), considering that Ψ(L) = µ(L)/Á(L), the AGF of zt is given
by

°(L,F ) =
µ(L)

Á(L)

µ(F )

Á(F )
Va (33)

and it is straightforward to see that the stability of Á(L) will imply that the
stationarity conditions of Section 2.3 are satisfied. The AGF is symmetric
and convergent, and the eventual autocorrelation function is the solution of a
difference equation, and hence, in general, a mixture of damped polynomials
in time and periodic functions. The Fourier transform of (33) yields the
spectrum of zt, equal to

gz(!) = Va
µ(e−i!)µ(ei!)

Á(e−i!)Á(ei!)
, (34)

and the integral of gz(!) over 0 ≤ ! ≤ 2¼ is equal to 2¼ V ar(zt).
A useful result is the following. If two stationary stochastic processes

are related through
yt = C(L)xt,

then the AGF of yt, °y(L,F ) is equal to

°y(L,F ) = C(L)C(F )°x(L,F ),

where °x(L,F ) is the AGF of xt. Finally, a function that will prove helpful
is the Crosscovariance Generating Function (CGF) between two series, xt
and yt, with Wold representation

xt = ®(L)at

yt = ¯(L)at.

Letting °j = E(xtyt−j) denote the lag-j crosscovariance between xt and yt,
j = 0, ±1, ±2, . . . , the CGF is given by

CGF (L,F ) =

∞
∑

−∞

°jL
j = ®(L)¯(F )¾2

a.

If, in equation (29), the subindex t is replaced by t+k (k a positive integer),
and expectations are taken at time t, the forecast of zt+k made at time t,
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namely ẑt+k∣t is denoted the forecast function. Given that Etat+k = 0 for
k > 0, it is found that, for k > q, the forecast function satisfies the equation

ẑt+k∣t + Á1ẑt+k−1∣t + . . .+ Ápẑt+k−p∣t = 0,

where ẑt+j∣t = zt+j when j ≤ 0. Therefore, the eventual forecast function is
the solution of

Á(L)ẑt+k∣t = 0, (35)

with L operating on k. Comparing (31) and (35), the link between autocorre-
lation for lag k (and longer) and k-period-ahead forecast becomes apparent,
the forecast being simply an extrapolation of correlation: what we can fore-
cast is the correlation we have detected. For a zero-mean stationary process
the forecast function will converge to zero, following, in general, a mixture
of damped exponentials and cosine functions.

In summary, stationarity of an ARMA model, which requires the roots of
the autoregressive polynomial Á(L) to be larger than 1 in modulus, implies
the following model properties: a) its AGF converges; b) its forecast function
converges; and c) the polynomial Á(L)−1 converges, so that zt accepts the
convergent (infinite) MA representation

zt = Á(L)−1µ(L)at = Φ(L)at, (36)

which is precisely the Wold representation. For example, for the AR(1)
model

zt + Ázt−1 = at,

the root of 1 + ÁL = 0 is L1 = −1/Á. Thus, stationarity of zt implies that
∣L1∣ = ∣ 1Á ∣ > 1, or ∣Á∣ < 1.

If zt is the differenced series, for which stationarity can be assumed, that
is

zt = Dxt, D = Δd, d = 0, 1, 2, . . . ,

then the original nonstationary series xt follows the Autoregressive Inte-
grated Moving-Average process of orders p, d, and q, or ARIMA(p, d, q)
model, given by

Á(L)Dxt = µ(L)at; (37)

p and q refers to the orders of the AR and MA polynomials, respectively, and
d refers to the number of regular differences (i.e., the number of unit roots
at the zero frequency). In the following, we might encounter the following
abbreviations:

AR(p): autoregressive process of order p ;

MA(q): moving-average process of order q ;

ARI(p, d): autoregressive process of order p applied to the dth difference of
the series;
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IMA(d, q): moving-average process of order q applied to the dth difference
of the series;

Further, a series will be denoted I(d) when it requires d regular differences
in order to become stationary.

As in the stationary case, taking conditional expectations at time t in
both sides of equation (37) with t repaced by t + k, where k is a positive
integer, it is obtained that

Á(L)Dx̂t+k∣t = µ(L)ât+k∣t,

where x̂t+j∣t = E(xt+j ∣xt, xt−1, . . .) is the forecast of xt+j obtained at time
t when j > 0, and is the observation xt+j when j ≤ 0; further, ât+j∣t =
E(at+j ∣xt, xt−1, . . .) is equal to 0 when j > 0, and is equal to at+j when
j ≤ 0. As a consequence, the eventual forecast function (x̂t+k∣t as a function
of k, for k > q) will be the solution of the homogeneous difference equation

Á(L)Dx̂t+k∣t = 0,

with L operating on k. The roots of L all have unit modulus; if L = Δd, then
the eventual forecast function will include a deterministic polynomial in t
of the type (a+ b td−1). If L includes also seasonal differencing Δ4, then the
eventual forecast function will contain also the non-convergent deterministic
cosine-type function (11), associated with the once and twice-a-year seasonal
frequencies, ! = ¼/2 and ! = ¼.

As an example, the forecast function of the model

(1− .7L)ΔΔ4xt = (1 + µ1L)(1 + µ4L
4)at,

will consist of five starting values x̂t+j∣j , j = 1, . . . , 5, implied by the MA part
with q = 5, after which the function will be the solution of the homogeneous
equation associated with the AR part. Factorizing the AR polynomial as

(1− .7L)(1− L)2(1 + L)(1 + L2),

the roots of the characteristic equation are given by r1 = .7, r2 = r3 = 1,
r4 = −1, r5 = i, r6 = −i. From Section 2.2, the eventual forecast function
can be expressed as

x̂t+k∣t = c
(t)
1 (.7)k + c

(t)
2 + c

(t)
3 k + c

(t)
4 (−1)k + c

(t)
5 cos

(¼

2
k + c

(t)
6

)

,

where the last two terms reflect the seasonal harmonics (the root r4 = −1

can also be written as c
(t)
4 cos¼k). The constants c1, . . . , c6 are determined

from the starting conditions of the forecast function, and hence will depend
on t, the origin of the forecast. This feature gives the ARIMA model its
adaptive (or ‘moving’) properties. Notice that, in the nonstationary case,
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the forecast function (with fixed origin t and increasing horizon k) will not
converge.

Concerning the MA polynomial µ(L), a similar condition of stability will
be imposed, namely, the roots L1, . . . , Lq of the equation µ(L) = 0 have to
be larger than 1 in modulus. This condition is referred to as the invertibility
condition for the process and, unless otherwise specified, we shall assume
that the model for the observed series zt is invertible. This assumption
implies that µ(L)−1 converges, so that the model (28) can be inverted and
expressed as

at = µ(L)−1Á(L)zt = Π(L)zt, (38)

which shows that the series accepts a convergent (infinite) AR expression,
and hence can be approximated by a finite AR. Expression (38) also shows
that, when the process is invertible, the innovations can be recovered from
the zt series.

Some frequency domain implications of nonstationarity and noninvert-
ibility are worth pointing out. Assume that the MA polynomial µ(L) has a
unit root ∣L1∣ = 1 - perhaps a complex conjugate pair - associated with the
frequency !1. Then, µ(e

−i!1) = 0, and the spectrum of zt, given by (34),
will have a zero for the frequency !1. Analogously, if ∣L1∣ = 1 is a root of
the AR polynomial Á(L), with associated frequency !1, then, Á(e

−i!1) = 0
and g(!1) → ∞.

It follows that

∙ a unit MA root causes a zero in the spectrum;

∙ a unit AR root causes a point of ∞ in the spectrum;

∙ an invertible model will have strictly positive spectrum, g(!) > 0;

∙ a stationary model has a bounded spectrum, g(!) < ∞.

For quarterly data with seasonality, the differencing L is likely to contain
the seasonal difference Δ4. A popular specification that increases parsimony
of the model and permits us to capture seasonal effects is the multiplicative
seasonal model

Á(L)Φ(L4)ΔdΔD
4 xt = µ(L)Θ(L4)at, (39)

where the regular AR polynomial in L, Á(L), is as in (29), Φ(L4) is the
seasonal AR polynomial in L4, d is the degree of regular differencing, D is
the degree of seasonal differencing, µ(L) is the regular MA polynomial in L,
Θ(L4) is the seasonal MA polynomial in L4, and at denotes the series white-
noise (0, Va) innovation. The polynomials Á(L), Φ(L4), µ(L) and Θ(L4) are
assumed stable, and hence the series

zt = ΔdΔD
4 xt
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follows a stationary and invertible process. If p, P, q, and Q denote the
orders of the respective polynomials, model (39) will be referred to as the
multiplicative ARIMA(p, d, q)(P,D,Q)4 model. In practice, we can safely
restrict the orders to

p, q ≤ 4
P ≤ 1
Q ≤ 2
d ≤ 2
D ≤ 1.

(40)

Two important practical moments are the following:

1. Parsimony (i.e., few parameters) should be a crucial property of ARIMA
models used in practice.

2. ARIMA models are a useful tool for relatively short-term analysis.
Their flexibility and adaptive behavior contribute to their good short-
term forecasting. Tong-term extrapolation of this flexibility may im-
ply, however, ustable long-term inference (see, for example, Maravall,
1999). As a general rule, short-term analysis favors differencing, while
long-term one favors more deterministic trends, that implies less dif-
ferencing.

2.6 Modeling strategy, diagnostics and inference

The so-called Box-Jenkins approach to building ARIMA models consists of
the following iterative scheme that contains 4 stages.

2.6.1 Identification

Two features of the series have to be addressed:

∙ the degree of regular and seasonal differencing;

∙ the orders of the stationary AR and invertible MA polynomials.

Differencing of the series can employ some of the unit root tests available
for possibly seasonal data (see, for example, Hylleberg et al,1990). Devised
to test deterministic seasonals versus seasonal differencing, these tests are
of little use for our purpose. Consider two models:

(a) xt = ¹+ at,

(b) Δxt = (1− .99L)at.
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For a quarterly series, and realistic series length, it is impossible that the
sample information can distinguish between the two specifications. Conse-
quently, the choice is arbitrary. Besides the variance of at,model (a) contains
one parameter that needs to be estimated, while model (b) contains none
(although, in this case the first observation is lost by differencing). Model
(a) offers, thus, no estimation advantage. If short-term forecasting is the
main objective, however, model (b) will display some advantage because it
allows for more flexibility, given that it could be rewritten as xt = ¹(t) + at,
where ¹(t) is a very slowly adapting mean.

A similar consideration applies to seasonal variations. The model

(c) xt = ¹+
∑3

j=1 ¯jdjt + at,

where djt denotes a quarterly seasonal dummy variable, is in practice indis-
tinguishable from the direct specification

(d) Δ4xt = (1− .95L4)at.

The deterministic specification has now 4 parameters; the stochastic one
has none, but four starting values are lost at the beginning. The latter can
also be expressed as

xt = ¹(t) +
3

∑

j=1

¯
(t)
j djt + at,

where ¹(t) and ¯
(t)
j denote slowly adapting coefficients. Within our short-

term perspective, there is no reason thus to maintain the deterministic-
stochastic dichotomy, and deterministic features can be seen as extremely
stable stochastic ones.

Besides the lack of the power of unit root tests to distinguish between
models (a) and (b), or (c) and (d), the process of building ARIMA models
typically implies estimation of many specifications. In practice, a more
efficient and reliable procedure for determining AR roots is to use estimation
results based on the superconsistency of parameter estimates associated with
unit roots, having determined a priori how close to unity a root has to be
in order to be considered a unit root (see Tiao and Tsay, 1983, 1989, and
Gómez and Maravall, 2000a).

Once the proper differencing has been established, it remains to deter-
mine the orders of the stationary AR and invertible MA polynomials. Here,
the basic criterion used to be to try to match the SACF of zt with the the-
oretical ACF of a particular ARMA process. In recent years, the efficiency
and reliability of automatic identification procedures, based mostly on in-
formation criteria, has strongly decreased the importance of the ‘tentative
identification’ stage (see Fischer and Planas, 1999, and Gómez and Maravall,
2000a).
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2.6.2 Estimation and diagnostics

When q ∕= 0, the ARIMA residuals are highly nonlinear functions of the
model parameters, and hence numerical maximization of the likelihood, or
of some function of the residual sum of squares, can be computationally
non-trivial. Within the restrictions in the size of the model given by (40),
however, maximization is typically well behaved. A standard estimation
procedure would cast the model in a state-space format, and use the Kalman
filter to compute the likelihood through the Prediction Error Decomposition.
The likelihood is then maximized with some nonlinear procedure. Usually,
the Va parameter, as well as a possible constant mean, are concentrated out
of the likelihood (see Section 2.8). When the series is nonstationary, several
solutions have been proposed to overcome the problem of defining a proper
likelihood. Relevant references are Bell and Hillmer (1991), Brockwell and
Davis (1987), De Jong (1991), Gómez and Maravall (1994), Kohn and Ansley
(1986), and Morf, Sidhu and Kailath (1974).

Many diagnostics are available for ARIMA models. A crucial one, of
course, is the out-of-sample forecast performance. Some tests for in-sample
model stability are also of interest. Also, there is a large set of tests based
on the model residuals, assumed to be niid. This implies testing for nor-
mality, autocorrelation, homoskedasticity, etc. Besides the ones proposed
by Box and Jenkins (1970), additional references can be Newbold (1983),
Gourieroux and Monfort (1990), Harvey (1989), and Hendry (1995).

2.6.3 Inference

If the diagnostics are failed, in the light of the results obtained, the model
specification should be changed. When the model passes all diagnostics, we
may then proceed to inference. We shall look in particular at an application
in forecasting, the topic of this paper.

Let (37) denote, in compact notation, the ARIMA model identified for
the series xt , and denote by x̂t+j∣t the forecast of xt+j made at point t (in
Box-Jenkins notation, x̂t+j∣t = x̂t(j) ). Under our assumptions, the optimal
forecast of xt+j , in Minimum Mean Square Error (MMSE) sense, is the
expectation of xt+k conditional on the observed time series x1, . . . , xt (equal
also to the projection of xt+k onto the observed series); that is,

x̂t+j∣t = E(xt+j ∣x1, . . . , xt).

Recall that, for known parameters,

at = xt − x̂t∣t−1,

that is, the innovations of the process are the sequence of one-period-ahead
forecast errors.
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The forecast function at time t is x̂t+k∣t as a function of k (k a positive
integer). In Section 2.5 we saw that for an ARIMA(p, d, q) model, the fore-
cast function consists of q starting conditions, after which it is given by the
solution of the homogeneous AR difference equation

Á∗(L)x̂t+k∣t = 0, (41)

where L operates on k, and Á∗(L) denotes the full AR convolution Á∗(L) =
Á(L)D, and includes thus the unit roots.

A useful way to look at forecasts is directly based on the pure MA rep-
resentation Ψ(L), even in the nonstationary case of a nonconvergent Ψ(L).
Assume the model parameters are known and write

xt+k = at+k + Ã 1at+k−1 + . . .+ Ã k−1at+1 + Ã kat + Ã k+1at−1 + . . . . (42)

Given that, for k > 0, Etat+k = 0 and Etat−k = at−k, taking conditional
expectations in (42) yields

x̂t+k∣t = Etxt+k =

∞
∑

j=0

Ã k+jat−j ; (43)

so that the forecast is a linear combination of past and present innovations.
Subtracting (43) from (42), the k-periods-ahead forecast error is given by
the model

et+k∣t = xt+k − x̂t+k∣t

= at+k + Ã 1at+k−1 + . . .+ Ã k−1at+1, (44)

an MA(k − 1) process of ‘future’ innovations. From expression (44), the
joint, marginal, and conditional distributions of forecast errors can be easily
derived, and in particular the standard error of the k-period ahead forecast,
equal to

SE(k) = (1 + Ã 2
1 + . . .+ Ã 2

k−1)
1/2¾a. (45)

Unless the series is relatively short, this standard error, estimated by
using ML estimators of the parameters, will provide a good approximation.

2.6.4 A particular class of models

Box and Jenkins (1970) dedicate a considerable amount of attention to a
particular multiplicative model that, for quarterly series, takes the form

ΔΔ4xt = (1 + µ1L)(1 + µ4L
4)at (46)

(a regular IMA(1, 1) structure multiplied by a seasonal IMA(1, 1) structure).
Given that they identified the model for a series of airline passengers, it has
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become know as the ‘Airline model’. Often, the model is obtained for the
logs, in which case a rough first reading shows that the rate-of-growth of the
annual difference is a stationary process.

The model is highly parsimonious, and the 3 parameters can be given a
structural interpretation. As seen in Section 2.5, when µ1 → −1, the trend
behavior generated by the model becomes more and more stable and, when
µ4 → −1, the same thing happens to the seasonal component. Estimation of
MA roots close to the noninvertibility boundary poses no serious problem,
and fixing a priori the maximum value of the modulus of an MA root to,
for example, .99 produces perfectly behaved invertible models.

If estimation of (46) yields, for example, µ̂4 = −.99, two (mutually ex-
clusive) things can explain the result:

1. seasonality is practically deterministic;

2. there is no seasonality, and the model is overdifferenced.

Determining which of the two is the correct explanation is rather sim-
ple by testing for the significance of seasonal dummy variables. When the
model has no seasonality, the seasonal filter Δ4zt = (1− .99L4)bt would have
hardly any effect on the input series. A similar reasoning holds for µ1 and
the possible presence of a deterministic trend. Further, a purely white-noise
series filtered with model (46) with µ1 = µ4 = −.99 would, very approx-
imately, reproduce the series. Thus, the Airline model also encompasses
simpler structures with no trend or no seasonality. Adding the empirical
fact that it provides reasonably good fits to many actual macroeconomic
series (see, for example, Fischer and Planas, 1999, or Maravall, 2000) it is
an appropriate model for illustration, for benchmark comparison, and for
pre-testing.

2.7 Preadjustment

We have introduced the ARIMA model as a practical way of dealing with
moving features of series. Still, before considering a series appropriate for
ARIMA modelling, several prior corrections or adjustments may be needed.
We shall classify them in 3 groups.

1. Outliers

The series may be subject to abrupt changes, that cannot be explained
by the underlying normality of the ARIMA model. Three main types
of outlier effects are often distinguished: a) additive outliers, which af-
fects an isolated observation, b) level shift, which implies a step change
in the mean level of the series, and c) transitory change, similar to an
additive outlier whose effect damps out over a few periods. Chen and
Liu (1993) suggested an approach to automatic outlier detection that
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has been implemented by TRAMO/SEATS program (see Gómez and
Maravall, 2000a).

2. Calendar effect

By this term we refer to the effect of calendar dates, such as the
number of working days in a period, the location of Easter effect,
or holidays. These effects are typically incorporated into the model
through regression variables (see, for example, Hillmer, Bell and Tiao,
1983, and Harvey, 1989).

3. Invervention variables

Often special, unusual events affect the evolution of the series and
cannot be accounted for by the ARIMA model. There is thus a need
to ‘intervene’ the series in order to correct for the effect of special
events. Examples can be strikes, devaluations, change of the base
index or of the way a series is constructed, natural disasters, political
events, important tax changes, or new regulation, to mention a few.
These special effects are entered in the model as a regression variables.

The full model for the observed series can thus be written as

yt = w′
t¯ + C ′

t´ +
k

∑

j=1

®j¸j(L)It(tj) + xt, (47)

where ¯ = (¯1, . . . , ¯n)
′, is a vector of regression coefficients, w′

t = (w1t, . . . ,
wnt) denotes n regression or intervention variables, C ′

t denotes the matrix
with columns of the calendar effects’ variables (trading day, Easter effect,
Leap year effect, holidays), and ´ the vector of associated coefficients, It(tj)
is an indicator variable for the possible presence of an outlier at period
tj , ¸j(L) captures the transmission of the j-th outlier effect (for additive
outliers, ¸j(L) = 1, for level shifts, ¸j(L) = 1/Δ, for transitory changes,
¸j(L) = 1/(1 − ±L), with 0 < ± < 1,) and ®j denotes the coefficient of the
outlier in the multiple regression model with k outliers. Finally, xt follows a
general (possibly multiplicative) ARIMA model (39). As mentioned earlier,
there are several procedures for estimation of models of this type, and easily
available programs that enforce the procedures (for example, TRAMO; see
Gómez and Maravall, 1996). Noticing that intervention variables, outliers
and calendar effects are regression variables, the full model can be expressed
as a regression-ARIMAmodel which, in our case, is estimated by the Kalman
filter that we discuss next.

2.8 Kalman filter

This section follows Hamilton (1994) and introduces some very useful tools
named for the contribution of R.E. Kalman (1960, 1963). The idea is to ex-
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press a dynamic system in a particular form called the state-space representa-
tion. The Kalman filer is an algorithm for sequentially updating a linear pro-
jection for the system. Among other benefits, this algorithm provides a way
to calculate exact finite-sample forecasts and the exact likelihood function
for Gaussian ARMA processes, to factor matrix autocovariance-generating
functions or spectral densities, and to estimate vector autoregressions with
coefficients that change over time.

Subsection 2.8.1 describes how a dynamic system can be written in a
form that can be analyzed using the Kalman filter. The filter itself is derived
in Subsection 2.8.2, and its use in forecasting is described in Subsection
2.8.3. Subsection 2.8.4 explains how to estimate the population parameters
by maximum likelihood. Subsection 2.8.5 develops a smoothing algorithm,
which is a way to use all the information in the sample to form the best
inference about the unobserved state of the process at any historical date.
Finally, Subsection 2.8.6 describes standard errors for smoothed inferences
and forecasts.

2.8.1 The State-Space Representation of a Dynamic System

Maintained Assumptions Let yt denote an (n × 1) vector of variables
observed at date t. A rich class of dynamic models for yt can be described in
terms of a possibly unobserved (r × 1) vector »t known as the state vector.
The state-space representation of the dynamics of y is given by the following
system of equations:

»t+1 = F»t + vt+1 (48)

yt = A′xt +H ′»t + wt, (49)

where F, A′, and H ′ are matrices of parameters of dimension (r × r), (n×
k), and (n × r), respectively, and xt is a (k × 1) vector of exogenous or
predetermined variables. Equation (48) is known as the state equation, and
(49) is known as the observation equation. The (r × 1) vector vt and the
(n× 1) vector wt are vector white noise:

E(vtv
′
¿ ) =

{

Q for t = ¿
0 otherwise

(50)

E(wtw
′
¿ ) =

{

R for t = ¿
0 otherwise,

(51)

where Q and R are (r × r) and (n × n) matrices, respectively. The
disturbances vt and wt are assumed to be uncorrelated at all lags:

E(vt, w
′
¿ ) = 0 for all t and ¿. (52)

The statement that xt is predetermined or exogenous means that xt provides
no information about »t+s or wt+s for s = 0, 1, 2, . . . beyond that contained
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in yt−1, yy−2, . . . , y1. Thus, for example, xt could include lagged values of y
or variables that are uncorrelated with »¿ and w¿ for all ¿.

The system of (48) through (52) is typically used to describe a finite
series of observations {y1, y2, . . . , yT } for which assumptions about the initial
value of the state vector »1 are needed. We assume that »1 is uncorrelated
with any realizations of vt and wt:

E(vt»
′
1) = 0 for t = 1, 2, . . . , T (53)

E(wt»
′
1) = 0 for t = 1, 2, . . . , T (54)

The state equation (48) implies that »t can be written as a linear function
of (»1, v2, v3, . . . , vt) :

»t = vt+Fvt−1+F 2vt−2+. . .+F t−2v2+F t−1»1 for t = 2, 3, . . . , T. (55)

Thus, (53) and (50) imply that vt is uncorrelated with lagged values of » :

E(vt»
′
¿ ) = 0 for ¿ = t− 1, t− 2, . . . , 1. (56)

Similarly,
E(wt»

′
¿ ) = 0 for ¿ = 1, 2, . . . , T (57)

E(wt, y
′
¿ ) = E

[

wt(A
′x¿ +H ′»¿ + w¿ )

′
]

= 0 for ¿ = t− 1, t− 2, . . . , 1 (58)

E(vty
′
¿ ) = 0 for ¿ = t− 1, t− 2, . . . , 1. (59)

The system of (48) through (54) is quite flexible, though it is straight-
forward to generalize the results further to systems in which vt is correlated
with wt (see, for example, Anderson and Moore, 1979). The various param-
eter matrices (F,Q,A,H, orR) could be functions of time. The presentation
will be clearest, however, if we focus on the basic form in (48) through (54).

Examples of State-Space Representations Consider a univariate AR(p)
process,

yt+1 − ¹ = Á1(yt − ¹) + Á2(yt−1 − ¹) + . . .

Áp(yt−p+1 − ¹) + ²t+1, (60)

E(²t²¿ ) =

{

¾2 for t = ¿
0 otherwise.

This could be written in state-space form as follows.
State Equation (r = p) :
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⎡

⎢

⎢

⎢

⎣

yt+1 − ¹
yt − ¹

...
yt−p+2 − ¹

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Á1 Á2 ⋅ ⋅ ⋅ Áp−1 Áp

1 0 ⋅ ⋅ ⋅ 0 0
0 1 ⋅ ⋅ ⋅ 0 0
...

... ⋅ ⋅ ⋅ ...
...

0 0 ⋅ ⋅ ⋅ 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

yt − ¹
yt−1 − ¹

...
yt−p+1 − ¹

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

²t+1

0
...
0

⎤

⎥

⎥

⎥

⎦

(61)

Observation Equation (n = 1) :

yt = ¹+
[

1 0 ⋅ ⋅ ⋅ 0
]

⎡

⎢

⎢

⎢

⎣

yt − ¹
yt−1 − ¹

...
yt−p+1 − ¹

⎤

⎥

⎥

⎥

⎦

. (62)

That is, we would specify

»t =

⎡

⎢

⎢

⎢

⎣

yt − ¹
yt−1 − ¹

...
yt−p+1 − ¹

⎤

⎥

⎥

⎥

⎦

F =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Á1 Á2 ⋅ ⋅ ⋅ Áp−1 Áp

1 0 ⋅ ⋅ ⋅ 0 0
0 1 ⋅ ⋅ ⋅ 0 0
...

... ⋅ ⋅ ⋅ ...
...

0 0 ⋅ ⋅ ⋅ 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

vt+1 =

⎡

⎢

⎢

⎢

⎣

²t+1

0
...
0

⎤

⎥

⎥

⎥

⎦

Q =

⎡

⎢

⎢

⎢

⎣

¾2 0 ⋅ ⋅ ⋅ 0
0 0 ⋅ ⋅ ⋅ 0
...

... ⋅ ⋅ ⋅ ...
0 0 ⋅ ⋅ ⋅ 0

⎤

⎥

⎥

⎥

⎦

yt = yt A′ = ¹ xt = 1

H ′ =
[

1 0 ⋅ ⋅ ⋅ 0
]

wt = 0 R = 0.

Note that the state equation here is simply the first-order vector difference
equation. The observation equation here is a trivial identity. Thus, we have
already seen that the state-space representation (61) and (62) is just another
way of summarizing the AR(p) process (60). The reason for rewriting an
AR(p) process in such a form was to obtain a convenient summary of the
system’s dynamics, and this is the basic reason to be interested in the state-
space representation of any system.

As another example, consider a univariate MA(1) process,

yt = ¹+ ²t + µ²t−1. (63)

This could be written in state-space form as follows:
State Equation (r = 2) :

[

²t+1

²t

]

=

[

0 0
1 0

] [

²t
²t−1

]

+

[

²t+1

0

]

(64)
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Observation Equation (n = 1) :

yt = ¹+
[

1 µ
]

[

²t
²t−1

]

; (65)

that is,

»t =

[

²t
²t−1

]

F =

[

0 0
1 0

]

vt+1 =

[

²t+1

0

]

Q =

[

¾2 0
0 0

]

yt = yt A′ = ¹ xt = 1

H ′ =
[

1 µ
]

wt = 0 R = 0.

There are many ways to write a given system in state-space form. For
example, the MA(1) process (63) can also be represented in this way:
State Equation (r = 2) :

[

²t+1 + µ²t
µ²t+1

]

=

[

0 1
0 0

] [

²t + µ²t−1

µ²t

]

+

[

²t+1

µ²t+1

]

(66)

Observation Equation (n = 1) :

yt = ¹+
[

1 0
]

[

²t + µ²t−1

µ²t

]

. (67)

Note that the original MA(1) representation of (63), the first state-space
representation of (64) and (65), and the second state-space representation of
(66) and (67) all characterize the same process. We will obtain the identical
forecasts of the process or value for the likelihood function from any of
the three representation and can feel free to work with whichever is most
convenient.

More generally, a univariate ARMA(p, q) process can be written in state-
space form by defining r ≡ max{p, q + 1} :

yt − ¹ = Á1(yt−1 − ¹) + Á2(yt−2 − ¹) + ⋅ ⋅ ⋅+ Ár(yt−r − ¹)

+ ²t + µ1²t−1 + µ2²t−2 + ⋅ ⋅ ⋅+ µr−1²t−r+1, (68)

where we interpret Áj = 0 for j > p and µj = 0 for j > q. Consider the
following state-space representation.
State Equation (r = max{p, q + 1}) :

»t+1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Á1 Á2 ⋅ ⋅ ⋅ Ár−1 Ár

1 0 ⋅ ⋅ ⋅ 0 0
0 1 ⋅ ⋅ ⋅ 0 0
...

... ⋅ ⋅ ⋅ ...
...

0 0 ⋅ ⋅ ⋅ 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

»t +

⎡

⎢

⎢

⎢

⎣

²t+1

0
...
0

⎤

⎥

⎥

⎥

⎦

(69)

25



Observation Equation (n = 1) :

yt = ¹+
[

1 µ1 µ2 ⋅ ⋅ ⋅ µr−1

]

»t. (70)

To verify that (69) and (70) describe the same process as (68), let »jt denote
the jth element of »t. Thus, the second row of the state equation asserts
that

»2,t+1 = »1t.

The third row asserts that

»3,t+1 = »2t = »1,t−1,

and in general the jth row implies that

»j,t+1 = Lj−1»1,t+1.

Thus, the first row of the state equation implies that

»1,t+1 = (Á1 + Á2L+ Á3L
2 + ⋅ ⋅ ⋅+ ÁrL

r−1)»1t + ²t+1

or
(1− Á1L− Á2L

2 − ⋅ ⋅ ⋅ − ÁrL
r)»1,t+1 = ²t+1. (71)

The observation equation states that

yt = ¹+ (1 + µ1L+ µ2L
2 + ⋅ ⋅ ⋅+ µr−1L

r−1)»1t. (72)

Multiplying (72) by (1− Á1L− Á2L
2 − ⋅ ⋅ ⋅ − ÁrL

r) and using (71) gives

(1− Á1L− Á2L
2 − ⋅ ⋅ ⋅ − ÁrL

r)(yt − ¹) =

(1 + µ1L+ µ2L
2 + ⋅ ⋅ ⋅+ µr−1L

r−1)²t, (73)

which indeed reproduces (68).
The state-space form can also be very convenient for modeling sums of

stochastic processes or the consequences of measurement error. For example,
Stock andWatson (1991) postulated the existence of an unobserved scalar Ct

that represents the state of the business cycle. A set of n different observed
macroeconomic variables (y1t, y2t, . . . , ynt) are each assumed to be influenced
by the business cycle and also to have an idiosyncratic component (denoted
Âit) that is unrelated to movements in yjt, for i ∕= j. If the business cycle
and each of the idiosyncratic components could be described by univariate
AR(1) processes, then the [(n+ 1)× 1] state vector would be

»t =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Ct

Â1t

Â2t
...

Ânt

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(74)
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with state equation

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Ct+1

Â1,t+1

Â2,t+1
...

Ân,t+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ÁC 0 0 ⋅ ⋅ ⋅ 0
0 Á1 0 ⋅ ⋅ ⋅ 0
0 0 Á2 ⋅ ⋅ ⋅ 0
...

...
... ⋅ ⋅ ⋅ ...

0 0 0 ⋅ ⋅ ⋅ Án

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Ct

Â1t

Â2t
...

Ânt

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

vC,t+1

v1,t+1

v2,t+1
...

vn,t+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(75)

and observation equation

⎡

⎢

⎢

⎢

⎣

y1t
y2t
...

ynt

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

¹1

¹2
...
¹n

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

°1 1 0 ⋅ ⋅ ⋅ 0
°2 0 1 ⋅ ⋅ ⋅ 0
...

...
... ⋅ ⋅ ⋅ ...

°n 0 0 ⋅ ⋅ ⋅ 1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Ct

Â1t

Â2t
...

Ânt

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (76)

Thus, °i is a parameter that describes the sensitivity of the ith series to
the business cycle. To allow for pth-order dynamics, Stock and Watson
replaced Ct and Âit in (74) with the p×1 vectors (Ct, Ct−1, . . . , Ct−p+1)

′ and
(Âit, Âi,t−1, . . . , Âi,t−p+1)

′ so that Ã t is an [(n+ 1)× 1] vector. The scalars
Ái in (75) are then replaced by (p× p) matrices Fi with the structure of the
matrix F in (61), and [n× (p− 1)] blocks of zeros are added between the
columns of H ′ in the observation equation (76).

2.8.2 Derivarion of the Kalman Filter

Overview of the Kalman Filter Consider the general state-space sys-
tem (48) through (54), whose key equations are reproduced here for conve-
nience:

»t+1 = F»t + vt+1 (77)

yt = A′xt +H ′»t + wt (78)

E(vtv
′
¿ ) =

{

Q for t = ¿
0 otherwise

(79)

E(wtw
′
¿ ) =

{

R for t = ¿
0 otherwise.

(80)

The analyst is presumed to have observed y1, y2, . . . , yT , x1, x2, . . . , xT .
One of the ultimate objective may be to estimate the values of any unknown
parameters in the system on the basis of these observations. For now, how-
ever, we will assume that the particular numerical values of F, Q, A, H, and
R are known with certainty; Subsection 2.8.4 will give details on how these
parameters can be estimated from the data.
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There are many uses of the Kalman filter. It is motivated here as an
algorithm for calculating linear least squares forecasts of the state vector on
the basis on data observed through data t,

»̂t+1∣1 ≡ Ê(»t+1∣Yt),

where
Yt ≡ (y′t, y

′
t−1, . . . , y

′
1, x

′
t, x

′
t−1, . . . , x

′
1)

′ (81)

and Ê(»t+1∣Yt) denotes the linear projection of »t+1 on Yt and a constant,
The Kalman filter calculates these forecasts recursively, generating »̂1∣0, »̂2∣1,

. . . , »̂T ∣T−1 in succession. Associated with each of these forecasts is a mean
squared error (MSE) matrix, represented by the following (r × r) matrix:

Pt+1∣t ≡ E
[

(»t+1 − »̂t+1∣t)(»t+1 − »̂t+1∣t)
′
]

. (82)

Starting the Recursion The recursion begins with »̂1∣0, which denotes
a forecast of »1 based on no observations of y or x. This is just the uncon-
ditional mean of »1,

»̂1∣0 = E(»1),

with associated MSE

P1∣0 = E{[»1 − E(»1)] [»1 − E(»1)]
′}.

For example, for the state-space representation of the MA(1) system given
in (64) and (65), the state vector was

»t =

[

²t
²t−1

]

,

for which

»̂1∣0 = E

[

²1
²0

]

=

[

0
0

]

(83)

P1∣0 = E

([

²1
²0

]

[

²1 ²0
]

)

=

[

¾2 0
0 ¾2

]

, (84)

where ¾2 = E(²21).
More generally, if eigenvalues of F are all inside the unit circle, then the

process for »t in (77) is covariance-stationary. The unconditional mean of »t
can be found by taking expectations of both sides of (77), producing

E(»t+1) = FE(»t),

or, since »t is covariance-stationary,

(Ir − F )E(»t) = 0.
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Since unity is not an eigenvalue of F , the matrix (Ir−F ) is not singular, and
this equation has the unique solution E(»t) = 0. The unconditional variance
of » can similarly be found by postmultiplying (77) by its transpose and
taking expectations:

E(»t+1»
′
t+1) = E

[

(F»t + vt+1)(»
′
tF

′ + v′t+1)
]

= FE(»t»
′
t)F

′ + E(vt+1v
′
t+1).

Cross-product terms have disappeared in light of (56). Letting Σ denote the
variance-covariance matrix of », this equation implies

Σ = FΣF ′ +Q,

whose solution is given by

vec(Σ) = [Ir2 − (F ⊗ F )]−1 vec(Q).

Thus, in general, provided that the eigenvalues of F are inside the unit circle,
the Kalman filter iterations can be started with »̂1∣0 = 0 and P1∣0 the (r× r)
matrix whose elements expressed as a column vector are given by

vec(P1∣0) = [Ir2 − (F ⊗ F )]−1 ⋅ vec(Q).

If instead some eigenvalues of F are on or outside the unit circle, or if
the initial state »1 is not regarded as an arbitrary draw from the process
implied by (77), then »̂1∣0 can be replaced with the analyst’s best guess as to
the initial value of »1, where P1∣0 is a positive definite matrix summarizing
the confidence in this guess. Larger values for the diagonal elements of P1∣0

register greater uncertainty about the true value of »1.

Forecasting yt Given starting values »̂1∣0 and P1∣0, the next step is to

calculate analogous magnitudes for the following date, »̂2∣1 and Pt+1∣t, the

goal is to calculate »̂t+1∣t and Pt+1∣t.
First, note that since we have assumed that xt contains no information

about »t beyond that contained in Yt−1,

Ê(»t∣xt,Yt−1) = Ê(»t∣Yt−1) = »̂t∣t−1.

Next consider forecasting the value of yt:

ŷt∣t−1 ≡ Ê(yt∣xt,Yt−1).

Notice from (78) that

Ê(yt∣xt, »t) = A′xt +H ′»t,

and so, from the law of iterated projections,

ŷt∣t−1 = A′xt +H ′Ê(»t∣xt,Yt−1) = A′xt +H ′»̂t∣t−1. (85)
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From (78), the error of this forecast is

yt − ŷt∣t−1 = A′xt +H ′»t + wt −A′xt −H ′»̂t∣t−1

= H ′(»t − »̂t∣t−1) + wt

with MSE

E
[

(yt − ŷt∣t−1)(yt − ŷt∣t−1)
′
]

= E
[

H ′(»t − »̂t∣t−1)(»t − »̂t∣t−1)
′H

]

+ E
[

wtw
′
t

]

. (86)

Cross-product terms have disappeared, since

E
[

wt(»t − »̂t∣t−1)
′
]

= 0. (87)

To justify (87), recall from (57) that wt is uncorrelated with »t. Furthermore,
since »̂t∣t−1 is a linear function of Yt−1, by (58) it too must be uncorrelated
with wt.

Using (80) and (82), equation (86) can be written

E
[

(yt − ŷt∣t−1)(yt − ŷt∣t−1)
′
]

= H ′Pt∣t−1H +R. (88)

Updating the Inference About »t Next, the inference about the current
value of »t is updated on the basis of the observation of yt to produce

»̂t∣t = Ê(»∣yt, xt,Yt−1) = Ê(»t∣Yt).

This can be evaluated using the formula for updating a linear projection:

»̂t∣t = »̂t∣t−1 + {E
[

(»t − »̂t∣t−1)(yt − ŷt∣t−1)
′
]

}

× {E
[

(yt − ŷt∣t−1)(yt − ŷt∣t−1)
′
]

}−1 × (yt − ŷt∣t−1). (89)

But

E
[

(»t − »̂t∣t−1)(yt − ŷt∣t−1)
′
]

= E{
[

»t − »̂t∣t−1

] [

H ′(»t − »̂t∣t−1) + wt

]′
}

= E
[

(»t − »̂t∣t−1)(»t − »̂t∣t−1)
′H

]

= Pt∣t−1H (90)

by virtue of (87) and (82). Substituting (90), (88), and (85) into (89) gives

»̂t∣t = »̂t∣t−1 + Pt∣t−1H(H ′Pt∣t−1H +R)−1(yt −A′xt −H ′»̂t∣t−1). (91)
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The MSE associated with this updated projection, which is denoted Pt∣t,
is as follows:

Pt∣t ≡ E
[

(»t − »̂t∣t)(»t − »̂t∣t)
′
]

=
[

(»t − »̂t∣t−1)(»t − »̂t∣t−1)
′
]

− {E
[

(»t − »̂t∣t−1)(yt − ŷt∣t−1)
′
]

}

× {E
[

(yt − ŷt∣t−1)(yt − ŷt∣t−1)
′
]

}−1

× {E
[

(yt − ŷt∣t−1)(»t − »̂t∣t−1)
′
]

}

= Pt∣t−1 − Pt∣t−1H(H ′Pt∣t−1H +R)−1H ′Pt∣t−1. (92)

Producing a Forecast of »t+1 Next, the state equation (77) is used to
forecast »t+1 :

»̂t+1∣t = Ê(»t+1∣Yt)

= FÊ(»t∣Yt) + Ê(vt+1∣Yt)

= F »̂t∣t + 0. (93)

Substituting (91) into (93)

»̂t+1∣t = F »̂t∣t−1

+ FPt∣t−1H(H ′Pt∣t−1H +R)−1(yt −A′xt −H ′»̂t∣t−1). (94)

The coefficient matrix in (94) is known as the gain matrix and is denoted
Kt :

Kt ≡ FPt∣t−1H(H ′Pt∣t−1H +R)−1, (95)

allowing (94) to be written

»̂t+1∣t = F »̂t∣t−1 +Kt(yt −A′xt −H ′»̂t∣t−1). (96)

The MSE of this forecast can be found from (93) and the state equation
(77):

Pt+1∣t = E
[

(»t+1 − »̂t+1∣t)(»t+1 − »̂t+1∣t)
′
]

= E
[

(F»t + vt+1 − F »̂t∣t)(F»t + vt+1 − F »̂t∣t)
′
]

= FE
[

(»t − »̂t∣t)(»t − »̂t∣t)
′
]

F ′ + E
[

vt+1v
′
t+1

]

= FPt∣tF
′ +Q, (97)

with cross-product terms again clearly zero. Substituting (92) into (97)
produces

Pt+1∣t = F
[

Pt∣t−1 − Pt∣t−1H(H ′Pt∣t−1H +R)−1H ′Pt∣t−1

]

F ′ +Q. (98)
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Summay and Remarks To summarize, the Kalman filer is started with
the unconditional mean and variance of »1 :

»̂1∣0 = E(»1)

P1∣0 = E
{

[»1 − E(»1)] [»1 − E(»1)]
′} .

Typically, these are given by »̂1∣0 = 0 and vec(P1∣0) = [Ir2 − (F ⊗ F )]−1 ⋅
vec(Q), but in this paper the calculation of initial conditions are performed
in line with Casals, Jerez and Sotoca (2000). We then iterate on

»̂t+1∣t = F »̂t∣t−1

+ FPt∣t−1H(H ′Pt∣t−1H +R)−1(yt −A′xt −H ′»̂t∣t−1) (99)

and (98) for t = 1, 2, . . . , T. The value »̂t+1∣t denotes the best forecast of »t+1

based on a constant and a linear function of (yt, yt−1, . . . , y1, xt, xt−1, . . . , x1).
The matrix Pt+1∣t gives the MSE of this forecast. The forecast of yt+1 is
given by

ŷt+1∣t ≡ Ê(yt+1∣xt+1,Yt) = A′xt+1 +H ′»̂t+1∣t (100)

with associated MSE

E
[

(yt+1 − ŷt+1∣t)(yt+1 − ŷt+1∣t)
′
]

= H ′Pt+1∣tH +R. (101)

It is worth noting that the recursion in (98) could be calculated without
ever evaluating (99). The values for Pt∣t−1 in (98) and Kt in (95) are not
functions of data, but instead are determined entirely by the population
parameters of the process.

An alternative way of writing the recursion for Pt+1∣t is sometimes useful.
Subtracting the Kalman updating equation (96) from the state equation (77)
produces

»t+1 − »̂t+1∣t = F (»t − »̂t∣t−1)−Kt(yt −A′xt −H ′»̂t∣t−1) + vt+1. (102)

Further substituting the observation equation (78) into (102) results in

»t+1 − »̂t+1∣t = (F −KtH
′)(»t − »̂t∣t−1)−Ktwt + vt+1. (103)

Postmultiplying (103) by its transpose and taking expectations,

E
[

(»t+1 − »̂t+1∣t)(»t+1 − »̂t+1∣t)
′
]

= (F −KtH
′)E

[

(»t − »̂t∣t−1)(»t − »̂t∣t−1)
′
]

(F ′ −HK ′
t) +KtRK ′

t +Q;

or, recalling the definition of Pt+1∣t in equation (82),

Pt+1∣t = (F −KtH
′)Pt∣t−1(F

′ −HK ′
t) +KtRK ′

t +Q. (104)

Equation (104) along with the definition of Kt in (95) will produce the same
sequence generated by equation (98).
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2.8.3 Forecasts Based on the State-Space Representation

The Kalman filter computations in (98) through (101) are normally calcu-
lated by computer, using the known numerical values of F, Q, A, H, and R
along with the actual data. To help make the ideas more concrete, however,
we now explore analytically the outcome of these calculations for a simple
example.

Example - Using the Kalman Filter to Find Exact Finite-Sample
Forecasts for an MA(1) Process Consider again a state-space repre-
sentation for the MA(1) process:
State Equation (r = 2) :

[

²t+1

²t

]

=

[

0 0
1 0

] [

²t
²t−1

]

+

[

²t+1

0

]

(105)

Observation Equation (n = 1) :

yt = ¹+
[

1 µ
]

[

²t
²t−1

]

(106)

»t =

[

²t
²t−1

]

(107)

F =

[

0 0
1 0

]

(108)

vt+1 =

[

²t+1

0

]

(109)

Q =

[

¾2 0
0 0

]

(110)

yt = yt (111)

A′ = ¹ (112)

xt = 1 (113)

H ′ =
[

1 µ
]

(114)

wt = 0 (115)

R = 0. (116)

The starting values for the filter were described in (83) and (84):

»̂1∣0 =

[

0
0

]

P1∣0 =

[

¾2 0
0 ¾2

]

.
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Thus, from (100), the period 1 forecast is

ŷ1∣0 = ¹+H ′»̂1∣0 = ¹,

with MSE given by (101):

E(y1 − ŷ1∣0)
2 = H ′P1∣0H +R =

[

1 µ
]

[

¾2 0
0 ¾2

] [

1
µ

]

+ 0 = ¾2(1 + µ2).

These, of course, are just the unconditional mean and variance of y.
To see the structure of the recursion of t = 2, 3, . . . , T, consider the basic

form of the updating equation (99). Notice that since the first row of F
consists entirely of zeros, the first element of the vector »̂t+1∣t will always
equal to zero, for all t. We see why if we recall the meaning of the state
vector in (107):

»̂t+1∣t =

[

²̂t+1∣t

²̂t∣t

]

. (117)

Naturally, the forecast of the future white noise, ²̂t+1∣t, is always zero. The
forecast of yt+1 is given by (100):

ŷt+1∣t = ¹+
[

1 µ
]

[

²̂t+1∣t

²̂t∣t

]

= ¹+ µ²̂t∣t. (118)

The Kalman filter updating equation for the MSE, equation (97), for
this example becomes

Pt+1∣t = FPt∣tF
′ +Q =

[

0 0
1 0

]

Pt∣t

[

0 1
0 0

]

+

[

¾2 0
0 0

]

. (119)

Thus, Pt+1∣t is a diagonal matrix of the form

Pt+1∣t =

[

¾2 0
0 pt+1

]

, (120)

where the (2, 2) element of Pt+1∣t (which we have denoted by pt+1) is the
same as the (1, 1) element of Pt∣t. Recalling (82) and (117), this term has
the interpretation as the MSE of ²̂t∣t :

pt+1 = E(²t − ²̂t∣t)
2. (121)

The (1, 1) element of Pt+1∣t has the interpretation as the MSE of ²̂t+1∣t. We
have seen that this forecast is always zero, and its MSE in (120) is ¾2 for
all t. The fact that Pt+1∣t is a diagonal matrix means that the forecast error
(²t+1 − ²̂t+1∣t) is uncorrelated with (²t − ²̂t∣t).
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The MSE of the forecast of yt+1 is given by (101):

E(yt+1 − ŷt+1∣t)
2 = H ′Pt+1∣tH +R

=
[

1 µ
]

[

¾2 0
0 pt+1

]

+ 0

= ¾2 + µ2pt+1. (122)

Again, the intuition can be seen from the nature of the forecast in (118):

E(yt+1 − ŷt+1∣t)
2 = E

[

(¹+ ²t+1 + µ²t)− (¹+ µ²̂t∣t)
]2

= E(²2t+1) + µ2E(²t − ²̂t∣t)
2,

which, from (121), reproduces (122).
From (99), the series for ²̂t∣t is generated recursively from

[

0
²̂t∣t

]

=

[

0 0
1 0

] [

0
²̂t−1∣t−1

]

+

[

0 0
1 0

] [

¾2 0
0 pt

] [

1
µ

]

{1/
[

¾2 + µ2pt
]

} ⋅ {yt − ¹− µ²̂t−1∣t−1}

or
²̂t∣t = {¾2/

[

¾2 + µ2pt
]

} ⋅ {yt − ¹− µ²̂t−1∣t−1} (123)

starting from the initial value ²̂0∣0 = 0.
The gain matrix Kt in equation (95) is given by

Kt =

[

0 0
1 0

] [

¾2 0
0 pt

] [

1
µ

](

1

¾2 + µ2pt

)

=

[

0
¾2/

[

¾2 + µ2pt
]

]

. (124)

Finally, notice from (92) that

Pt∣t =

[

¾2 0
0 pt

]

−
(

1

¾2 + µ2pt

)[

¾2 0
0 pt

] [

1
µ

]

[

1 µ
]

[

¾2 0
0 pt

]

.

The (1, 1) element of Pt∣t (which we saw equals pt+1) is thus given by

pt+1 = ¾2 − {1/
[

¾2 + µ2pt
]

} ⋅ ¾4 =
¾2µ2pt

¾2 + µ2pt
. (125)

The recursion in (125) is started with p1 = ¾2 and thus has the solution

pt+1 =
¾2µ2t

1 + µ2 + µ4 + . . .+ µ2t
. (126)

It is interesting to note what happens to the filter as t becomes large.
First consider the case when ∣µ∣ ≤ 1. Then, from (126),

lim
t→∞

pt+1 = 0
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and so, from (121),

²̂t∣t
p−→ ²t.

Thus, given a sufficient number of observations on y, the Kalman filer infer-
ence ²̂t∣t converges to the true value ²t, and the forecast (118) converges to
that of the Wold representation for the process. The Kalman gain in (118)
converges to (0, 1)′.

Alternatively, consider the case when ∣µ∣ > 1. From (126), we have

pt+1 =
¾2µ2t(1− µ2)

1− µ2(t+1)
=

¾2(1− µ2)

µ−2t − µ2

and

lim
t→∞

pt+1 =
¾2(1− µ2)

−µ2
> 0.

No matter how many observations are obtained, it will not be possible to
know with certainty the value of the nonfundamental innovation ²t associ-
ated with date t on the basis of (yt, yt−1, . . . , y1). The gain is given by

¾2

¾2 + µ2pt
→ ¾2

¾2 − ¾2(1− µ2)
=

1

µ2
,

and the recursion (123) approaches

²̂t∣t = (1/µ2)(yt − ¹− µ²̂t−1∣t−1)

or
µ²̂t∣t = (1/µ)(yt − ¹− µ²̂t−1∣t−1).

Recalling (118), we thus have

ŷt+1∣t − ¹ = (1/µ)
[

(yt − ¹)− (ŷt∣t−1 − ¹)
]

or

ŷt+1∣t − ¹ = (1/µ)(yt − ¹)− (1/µ)2(yt−1 − ¹) + (1/µ)3(yt−2 − ¹)− . . . ,

which again is the AR(∞) forecast associated with the invertible MA(1)
representation. Indeed, the forecast of the Kalman filter with µ replaced by
µ−1 and ¾2 replaced by µ2¾2 will be identical for any t.

Calculating s-Period-Ahead Forecasts with the Kalman Filter The
forecast of yt calculated in (100) is an exact finite-sample forecast of yt on
the basis of xt and Yt−1 ≡ (y′t−1, y

′
t−2, . . . , y

′
1, x

′
t−1, x

′
t−2, . . . , x

′
1). If xt is

deterministic, it is also easy to use the Kalman filter to calculate exact
finite-sample s-period-ahead forecasts.
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The state equation (77) can be solved by recursive substitution to yield

»t+s = F s»t + F s−1vt+1 + F s−2vt+2+ . . .+ F 1vt+s−1 + vt+s

for s = 1, 2, . . . . (127)

The projection of »t+s on »t and Yt is given by

Ê(»t+s∣»t,Yt) = F s»t. (128)

Thus, from (127) the s-period-ahead forecast error for the state vector is

»t+s − »̂t+s∣t =F s(»t − »̂t∣t) + F s−1vt+1 + F s−2vt+2

+ . . .+ F 1vt+s−1 + vt+s (129)

with MSE

Pt+s∣t =F sPt∣t(F
′)s + F s−1Q(F ′)s−1 + F s−2Q(F ′)s−2

+ . . .+ FQF ′ +Q. (130)

To forecast the observed vector yt+s, recall from the observation equation
that

yt+s = A′xt+s +H ′»t+s + wt+s. (131)

There are advantages if the state vector is defined in such a way that xt
is deterministic, so that the dynamics of any exogenous variables can be
represented through »t. If xt is deterministic, the s-period-ahead forecast of
y is

ŷt+s∣t ≡ Ê(yt+s∣Yt
) = A′xt+s +H ′»̂t+s∣t. (132)

The forecast error is

yt+s − ŷt+s∣t = (A′xt+s +H ′»t+s + wt+s)− (A′xt+s +H ′»̂t+s∣t)

= H ′(»t+s − »̂t+s∣t) + wt+s

with MSE

E[(yt+s − ŷt+s∣t)(yt+s − ŷt+s∣t)
′] = H ′Pt+s∣tH +R. (133)

2.8.4 Maximum Likelihood Estimation of Parameters

Using the Kalman Filter to Evaluate the Likelihood Function The
Kalman filter was motivated in Subsection 2.8.2 in terms of linear projec-
tions. The forecasts »̂t∣t−1 and ŷt∣t−1 are thus optimal within the set of
forecasts that are linear in (xt,Yt−1). If the initial state »1 and the innova-
tions {wt, vt}Tt=1 are multivariate Gaussian, then we make the stronger claim
that the forecasts »̂t∣t−1 and ŷt∣t−1 calculated by the Kalman filter are opti-

mal among any functions of (xt,Yt−1). Moreover, if »1 and {wt, vt}Tt=1 are
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Gaussian, then the distribution of yt conditional on (xt,Yt−1) is Gaussian
with mean given by (100) and variance given by (101):

yt∣xt,Yt−1 ∼ N
(

(A′xt +H ′»̂t∣t−1), (H
′Pt∣t−1H +R)

)

;

that is,

fYt,Xt,Yt−1
(yt∣xt,Yt−1)

= (2¼)−n/2∣H ′Pt∣t−1H +R∣−1/2

× exp{−1
2(yt −A′xt −H ′»̂t∣t−1)

′(H ′Pt∣t−1H +R)−1

× (yt −A′xt −H ′»̂t∣t−1)} for t = 1, 2, . . . , T. (134)

From (134), it is a simple matter to construct the sample log likelihood,

T
∑

t=1

log fYt,Xt,Yt−1
(yt∣xt,Yt−1). (135)

Expression (135) can then be maximized numerically with respect to the
unknown parameters in the matrices F, Q, A, H, and R; see Burmeister and
Wall (1982) for an illustrative application.

As stressed by Harvey and Phillips (1979), this representation of the like-
lihood is paticularly convenient for estimating regressions involving moving
average terms. Moreover, (135) gives the exact log likelihood function, re-
gardless of whether the moving average representation is invertible.

As an illustrative example, suppose we wanted to estimate a bivariate
regression model whose equations were

y1t = a′1xt + u1t

y2t = a′2xt + u2t,

where xt is a (k × 1) vector of exogenous explanatory variables and a1 and
a2 are (k × 1) vectors of coefficients; if the two regressions have different
explanatory variables, the variables from both regressions are included in xt
with zeros appropriately imposed on a1 and a2. Suppose that the distur-
bance vector follows a bivariate MA(1) process:

[

u1t
u2t

]

=

[

²1t
²2t

]

+

[

µ11 µ12
µ21 µ22

] [

²1,t−1

²2.t−1

]

,

with (²1t, ²2t)
′ ∼ i.i.d. N(0,Ω). This model can be written in state-space
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form by defining

» =

⎡

⎢

⎢

⎣

²1t
²2t

²1,t−1

²2,t−1

⎤

⎥

⎥

⎦

F =

⎡

⎢

⎢

⎣

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎤

⎥

⎥

⎦

vt+1 =

⎡

⎢

⎢

⎣

²1,t+1

²2,t+1

0
0

⎤

⎥

⎥

⎦

Q =

⎡

⎢

⎢

⎣

¾11 ¾12 0 0
¾21 ¾22 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎦

A′ =

[

a′1
a′2

]

H ′ =

[

1 0 µ11 µ12
0 1 µ21 µ22

]

R = 0,

where ¾ij = E(²it²jt). The Kalman filter iteration is started from

»̂1∣0 =

⎡

⎢

⎢

⎣

0
0
0
0

⎤

⎥

⎥

⎦

P1∣0 =

⎡

⎢

⎢

⎣

¾11 ¾12 0 0
¾21 ¾22 0 0
0 0 ¾11 ¾12
0 0 ¾21 ¾22

⎤

⎥

⎥

⎦

.

Maximization of (135) is started by making an initial guess as to the
numerical values of the unknown parameters. One obvious way to do this is
to regress y1t on the elements of xt that appear in the first equation to get
an initial guess for a1. A similar Ordinary Least Squares (OLS) regression
for y2t yields a guess for a2. Setting µ11 = µ12 = µ21 = µ22 = 0 initially, a
first guess for Ω could be the estimated variance-covariance matrix of the
residuals from these two OLS regressions. For these initial numerical values
for the population parameters, we could construct F, Q, A, H, and R from
the expressions just given and iterate on (98) through (101) for t = 1, 2, . . . ,
T − 1. The sequences {»̂t∣t−1}Tt=1 and {Pt∣t−1}Tt=1 resulting from these itera-
tions could then be used in (134) and (135) to calculate the value for the log
likelihood function that results from these initial parameter values. The nu-
merical optimization methods can then be employed to make better guesses
as to the value of the unknown parameters until (135) is maximized. It can
be shown (see Hamilton, 1994, Section 5.9) that the numerical search will be
better behaved if Ω is parameterized in terms of its Cholesky factorization.

As a second example, consider a scalar Gaussian ARMA(1, 1) process,

yt − ¹ = Á(yt−1 − ¹) + ²t + µ²t−1,

with ²t ∼i.i.d. N(0, ¾2). This can be written in state-space form as in (69)
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and (70) with r = 2 and

F =

[

Á 0
1 0

]

vt+1 =

[

²t+1

0

]

Q =

[

¾2 0
0 0

]

A′ = ¹ xt = 1 H ′ =
[

1 µ
]

R = 0

»̂1∣0 =

[

0
0

]

P1∣0 =

[

¾2/(1− Á2) Á¾2/(1− Á2)
Á¾2/(1− Á2) ¾2/(1− Á2)

]

.

This value for P1∣0 was obtained by recognizing that the state equation (69)
describes the behavior of » = (zt, zt−1, . . . , zt−r+1)

′, where zt = Á1zt−1 +
Á2zt−2 + ⋅ ⋅ ⋅ + Árzt−r + ²t follows an AR(r) process. For this example,
r = 2, so that P1∣0 is the variance-covariance matrix of two consecutive
draws from an AR(2) process with parameters Á1 = Á and Á2 = 0. The
expressions just given for F,Q,A,H, and R are then used in the Kalman
filter iterations. Thus, expression (135) allows easy computation of the exact
likelihood function for an ARMA(p, q) process. This computation is valid
regardless of whether the moving average parameters satisfy the invertibility
condition. Similarly, expression (132) gives the exact finite-sample s-period-
ahead forecast for the process and (133) its MSE, again regardless of whether
the invertible representation is used.

Typically, numerical search procedures for maximizing (135) require the
derivatives of the log likelihood. These can be calculated numerically or
analytically. To characterize the analytical derivatives of (135), collect the
unknown parameters to be estimated in a vector µ, and write F (µ), Q(µ),
A(µ), H(µ), and R(µ). Implicitly, then, ²̂t∣t−1(µ) and Pt∣t−1(µ) will be func-
tions of µ as well, and the derivative of the log of (134) with respect to the
ith element of µ will involve ∂»̂t∣t−1(µ)/∂µi and ∂Pt∣t−1(µ)/∂µi. These deriva-
tives can also be generated recursively by differentiating the Kalman filter
recursion, (98) and (99), with respect to µi; see Caines (1988, pp.585-86) for
illustration.

For many state-space models, the EM algorithm of Dempster, Laird, and
Rubin (1977) offers a particularly convenient means for maximizing (135),
as developed by Shumway and Stoffer (1982) and Watson and Engle (1983).

Identification Although the state-space representation gives a very con-
venient way to calculate the exact likelihood function, a word of caution
should be given. In the absence of restrictions on F, Q, A, H, and R, the
parameters of the state-space representation are unidentified - more than
one set of values for the parameters can give rise to the identical value of
the likelihood function, and the data give us no guide for choosing among
these. A trivial example is the following system:
State Equation (r = 2):

»t+1 =

[

²1,t+1

²2,t+1

]

(136)
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Observation Equation (n = 1) :

yt = ²1t + ²2t. (137)

Here, F = 0, Q =

[

¾2
1 0
0 ¾2

2

]

, A′ = 0, H ′ =
[

1 1
]

, and R = 0. This model

asserts that yt is white noise, with mean zero and variance given by (¾2
1+¾2

2).
The log likelihood function from (134) and (135) simplifies to

log fYT ,YT−1,...,Y1
(yT , yT−1, . . . , y1)

= −(T/2) log(2¼)− (T/2) log(¾2
1 + ¾2

2)−
T
∑

t=1

y2t /[2(¾
2
1 + ¾2

2)]. (138)

Clearly, any values for ¾2
1 and ¾2

2 that sum to a given constant will produce
identical value for the likelihood function.

The MA(1) process explored in Subsection 2.8.3 provides a second ex-
ample of an unidentified state-space representation. As it can be verified,
the identical value for the log likelihood function (135) would result if µ is
replaced by µ−1 and ¾2 by µ2¾2.

These two examples illustrate two basic forms in which absence of iden-
tification can occur. Following Rothenberg (1971), a model is said to be
globally identified at a particular parameter value µ0 if for any value of µ
there exists a possible realization YT for which the value of the likelihood
at µ is different from the value of the likelihood at µ0. A model is said to
be locally identified at µ0 if there exists a ± > 0 such that for any value
of µ satisfying (µ − µ0)(µ − µ0)

′ < ±, there exists a possible realization of
YT for which the value of the likelihood at µ is different from the value of
the likelihood at µ0. Thus, global identification implies local identification.
The first example, (136) and (137), is neither globally nor locally identified,
while the MA(1) example is locally identified but globally unidentified.

Local identification is much easier to test for than global identification.
Rothenberg (1971) showed that a model is locally identified at µ0 if and
only if the information matrix is nonsingular in a neighborhood around µ0.
Thus, a common symptom of trying to estimate an unidentified model is
difficulty with inverting the matrix of second derivatives of the log likelihood
function. One approach to checking for local identification is to translate
the state-space representation back into a vector ARMA model and check
for satisfaction of the conditions in Hannan (1971); see Hamilton (1985) for
an example of this approach. A second approach is to work directly with
state-space representation, as is done in Gevers and Wertz (1984) and Wall
(1987). For an illustration of the second approach, see Burmeister, Wall,
and Hamilton (1986).

Asymptotic Properties of Maximum Likelihood Estimates If cer-
tain regularity conditions are satisfied, then Caines (1988, Chapter 7) showed
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that the maximum likelihood estimate µ̂T based on a sample of size T is con-
sistent and asymptotically normal. These conditions include the following:
(1) the model must be identified; (2) eigenvalues of F are inside the unit
circle; (3) apart from a constant term, the variables xt behave asymptoti-
cally like a full-rank linearly indeterministic covariance-stationary process;
and (4) the true value of µ does not fall on a boundary of the allowable
parameter space. Pagan (1980, Theorem 4) and Ghosh (1989) examined
special cases of state-space models for which

√
TI

1/2
2D,T (µ̂T − µ0)

L−→ N(0, Ia), (139)

where a is the number of elements of µ and I2D,T is a (a × a) information
matrix for a sample of size T as calculated from a second derivatives of the
log likelihood function:

I2D,T = − 1

T
E

Ã

T
∑

t=1

∂2 log f(yt∣xt,Yt−1; µ)

∂µ ∂µ′

∣

∣

∣

∣

µ=µ0

)

. (140)

A common practice is to assume that the limit of I2D,T as T → ∞ is the
same as the plim of

Î2D,T = − 1

T

T
∑

t=1

∂2 log f(yt∣xt,Yt−1; µ)

∂µ ∂µ′

∣

∣

∣

∣

µ=µ̂T

, (141)

which can be calculated analytically or numerically by differencing (135).
Reported standard errors for µ̂T are then square roots of diagonal elements
of (1/T )(Î2D,T )

−1.

Quasi-Maximum Likelihood Estimation Even if the disturbances vt
and wt are non-Gaussian, the Kalman filter can still be used to calculate
the linear projection of yt+s on past observables. Moreover, we can form the
function (135) and maximize it with respect to µ even for non-Gaussian sys-
tems. This procedure will still yield consistent and asymptotically Normal
estimates of the elements of F, Q, A, H, and R. Watson (1989, Theorem 2)
presented conditions under which the quasi-maximum likelihood estimates
satisfy √

T (µ̂T − µ0)
L−→ N(0, [I2DI

−1
OPI2D]

−1), (142)

where I2D is the plim of (141) when evaluated at the true value µ0 and
IOP is the plim of the outer-product estimate of the information matrix,

IOP = plim (1/T )
T
∑

t=1

[ℎ(µ0,Yt)][ℎ(µ0,Yt)]
′,

where

ℎ(µ0,Yt) ≡
∂ log f(yt∣xt,Yt−1; µ)

∂µ

∣

∣

∣

∣

µ=µ0

.
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2.8.5 Smoothing

The Kalman filter was motivated in Subsection 2.8.2 as an algorithm for
calculating a forecast of the state vector »t as a linear function of previous
observations,

»̂t∣t−1 ≡ Ê(»t∣Yt−1), (143)

where Yt−1 ≡ (y′t−1, y
′
t−2, . . . , y

′
1, x

′
t−1, x

′
t−2, . . . , x

′
1)

′. The matrix Pt∣t−1 rep-
resented the MSE of this forecast:

Pt∣t−1 ≡ E[(»t − »̂t∣t−1)(»t − »̂t∣t−1)
′]. (144)

For many uses of the Kalman filter these are the natural magnitudes of
interest. In some settings, however, the state vector »t is given a structural
interpretation, in which case the value of this unobserved variable might be
of interest for its own sake. For example, in the model of the business cycle
by Stock and Watson, it would be helpful to know the state of the business
cycle at any historical date t. A goal might then be to form an inference about
the value of »t based on the full set of data collected, including observations
of yt, yt+1, . . . , yT , xt, xt+1, . . . , xT . Such an inference is called the smoothed

estimate of »t, denoted
»̂t∣T ≡ Ê(»t∣T ). (145)

For example, data on GNP from 1954 through 1990 might be used to esti-
mate the value that » took on in 1960. The MSE of this smoothed estimate
is denoted

Pt∣T ≡ E[(»t − »̂t∣T )(»t − »̂t∣T )
′]. (146)

In general, Pt∣¿ denotes the MSE of an estimate of »t that is based on
observations of y and x through date ¿.

For the reader’s convenience, we reproduce here the key equations for
the Kalman filter:

»̂t∣t = »̂t∣t−1 + Pt∣t−1H(H ′Pt∣t−1H +R)−1(yt −A′xt −H ′»̂t∣t−1) (147)

»̂t+1∣t = F »̂t∣t (148)

Pt∣t = Pt∣t−1 − Pt∣t−1H(H ′Pt∣t−1H +R)−1H ′Pt∣t−1 (149)

Pt+1∣t = FPt∣tF
′ +Q. (150)

Consider the estimate of »t based on observations through date t, »̂t∣t.
Suppose we were subsequently told the true value of »t+1. From the formula
for updating a linear projection, the new estimate of »t could be expressed
as

Ê(»t∣»t+1,Yt) = »̂t∣t + {E[(»t − »̂t∣t)(»t+1 − »̂t+1∣t)
′]}

× {E[(»t+1 − »̂t+1∣t)(»t+1 − »̂t+1∣t)
′]}−1

× (»t+1 − »̂t+1∣t). (151)
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The first term in the product on the right side of (151) can be written

E[(»t − »̂t∣t)(»t+1 − »̂t+1∣t)
′] = E[(»t − »̂t∣t)(F»t + vt+1 − F »̂t∣t)

′],

by virtue of (77) and (148). Furthermore, vt+1 is uncorrelated with » and
»̂t∣t. Thus,

E[(»t − »̂t∣t)(»t+1 − »̂t+1∣t)
′] = E[(»t − »̂t∣t)(»t − »̂t∣t)

′F ′] = Pt∣tF
′. (152)

Substituting (152) and the definition of Pt+1∣t into (151) produces

Ê(»t∣»t+1,Yt) = »̂t∣t + Pt∣tF
′P−1

t+1∣t(»t+1 − »̂t+1∣t.)

Defining
Jt ≡ Pt∣tF

′P−1
t+1∣t, (153)

we have
Ê(»t∣»t+1,Yt) = »̂t∣t + Jt(»t+1 − »̂t+1∣t). (154)

Now, the linear projection in (154) turns out to be the same as

Ê(»t∣»t+1,YT ); (155)

that is, knowledge of yt+j or xt+j for j > 0 would be of no added value if we
already knew the value of »t+1. To see this, note that yt+j can be written as

yt+j = A′xt+j +H ′(F j−1»t+1 + F j−2vt+2 + F j−3vt+3 + . . .+ vt+j) + wt+j ,

But the error
»t − Ê(»t∣»t+1,Yt) (156)

is uncorrelated with »t+1, by the definition of a linear projection, and un-
correlated with xt+j , wt+j , vt+j , vt+j−1, . . . , vt+2 under the maintained
assumptions. Thus, the error (156) is uncorrelated with yt+j or xt+j for
j > 0, meaning that (155) and (154) are the same, as claimed:

Ê(»t∣»t+1,YT ) = »̂t∣t + Jt(»t+1 − »̂t+1∣t). (157)

It follows from the law of iterated projections that the smoothed esti-
mate, Ê(»t∣YT ), can be obtained by projecting (157) on YT . In calculating
this projection, we need to think carefully about the nature of the mag-
nitudes in (157). The first term, »̂t∣t, indicates a particular exact linear
function of Yt; the coefficients of this function are constructed from pop-
ulation moments, and these coefficients should be viewed as deterministic
constants from the point of view of performing a subsequent projection. The
projection of »̂t∣t on YT is thus still »̂t∣t, this same linear function of Yt - we
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can’t improve on a perfect fit.1 The term Jt in (153) is also a function of
population moments, and so is again treated as deterministic for purposes
of any linear projection. The term »̂t+1∣t is another exact linear function of
Yt. Thus, projecting (157) on YT turns out to be trivial:

Ê(»t∣YT ) = »̂t∣t + Jt[Ê(»t+1∣YT )− »̂t+1∣t],

or
»̂t∣T = »̂t∣t + Jt(»̂t+1∣T − »̂t+1∣t) (158)

Thus, the sequence of smoothed estimates {»̂t∣T }Tt=1 is calculated as fol-
lows. First, the Kalman filter, (147) to (150), is calculated and the sequences
{»̂t∣t}Tt=1, {»̂t+1∣t}T−1

t=0 , {Pt∣t}Tt=1, {Pt+1∣t}T−1
t=0 are stored. The smoothed esti-

mate for the final date in the sample »̂T ∣T , is just the last entry in {»̂t∣t}Tt=1.

Next, (153) is used to generate {Jt}T−1
t=1 . From this, (158) is used for t = T−1

to calculate
»̂T−1∣T = »̂T−1∣T−1 + JT−1(»̂T ∣T − »̂T ∣T−1).

Now that »̂T−1∣T has been calculated, (158) can be used for t = T − 2 to
evaluate

»̂T−2∣T = »̂T−2∣T−2 + JT−2(»̂T−1∣T − »̂T−1∣T−2).

Proceeding backward through the sample in this fashion permits calculation
of the full set of smoothed estimates, {»̂t∣T }Tt=1.

Next, consider the mean squared error associated with the smoothed
estimate. Subtracting both sides of (158) from »t produces

»t − »̂t∣T = »t − »̂t∣t − Jt»̂t+1∣T + Jt»̂t+1∣t

or
»t − »̂t∣T + Jt»̂t+1∣T = »t − »̂t∣t + Jt»̂t+1∣t.

Multiplying this equation by its transpose and taking expectations,

E[(»t − »̂t∣T )(»t − »̂t∣T )
′] + JtE[(»̂t+1∣T »̂

′
t+1∣T )]J

′
t

= E[(»t − »̂t∣t)(»t − »̂t∣t)
′] + JtE[(»̂t+1∣t»̂

′
t+1∣t)]J

′
t. (159)

The cross-product terms have disappeared from the left side because »̂t+1∣T

is a linear function of YT and so is uncorrelated with the projection error
»t − »̂t∣T . Similarly, on the right side, »̂t+1∣t is uncorrelated with »t − »̂t∣t.

1The law of iterated projections states that

Ê»t∣Yt) = Ê[Ê(»t∣YT )∣Yt].

The law of iterated projections thus allows us to go from a larger information set to a
smaller one.
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Equation (159) states that

Pt∣T = Pt∣t + Jt{−E[(»̂t+1∣T »̂
′
t+1∣T )] + E[(»̂t+1∣t»̂

′
t+1∣t)]}J ′

t. (160)

The bracketed term in (160) can be expressed as

− E[(»̂t+1∣T »̂
′
t+1∣T )] + E[(»̂t+1∣t»̂

′
t+1∣t)]

= {E[(»t+1»
′
t+1)]− E[(»̂t+1∣T »̂

′
t+1∣T )]} − {E[(»t+1»

′
t+1)]− E[(»̂t+1∣t»̂

′
t+1∣t)]}

= {E[(»t+1 − »̂t+1∣T )(»t+1 − »̂t+1∣T )
′]} − {E[(»t+1 − »̂t+1∣t)(»t+1 − »̂t+1∣t)

′]}
= Pt+1∣T − Pt+1∣t. (161)

The second-to-last equality used the fact that

E[»t+1»̂t+1∣T ] = E[(»t+1 − »̂t+1∣T + »̂t+1∣T )»̂
′
t+1∣T ]

= E[(»t+1 − »̂t+1∣T )»̂
′
t+1∣T ] + E[»̂t+1∣T »̂

′
t+1∣T ]

= E[»̂t+1∣T »̂
′
t+1∣T ],

since the projection error (»t+1−»̂t+1∣T ) is uncorrelated with »̂t+1∣T . Similarly,

E(»t+1»̂t+1∣t) = E(»̂t+1∣t»̂
′
t+1∣t). Substituting (161) into (160) establishes that

the smoothed estimate »̂t∣T has MSE given by

Pt∣T = Pt∣t + Jt(Pt+1∣T − Pt+1∣t)J
′
t. (162)

Again, this sequence is generated by moving through the sample backward
starting with t = T − 1.

2.8.6 Statistical Inference with the Kalman Filter

The calculation of the mean square error

P¿ ∣t = E[(»¿ − »̂¿ ∣t)(»¿ − »̂¿ ∣t)
′]

described earlier assumed that the parameters of the matrices F, Q, A, H,
and R were known with certainty. Section 2.8.4 showed how these parame-
ters could be estimated from the data by maximum likelihood. There would
then be some sampling uncertainty about the true values of these param-
eters, and the calculation of P¿ ∣t would need to be modified to obtain the
true mean squared errors of the smoothed estimates and forecasts.

Suppose the unknown parameters are collected in a vector µ. For any
given value of µ, the matrices F (µ), Q(µ), A(µ), H(µ), and R(µ) could be
used to construct »̂¿ ∣T (µ) and P¿ ∣T (µ) in the formulas presented earlier; for
¿ ≤ T, these are the smoothed estimate and MSE given in (158) and (162),
respectively; while for ¿ > T, these are the forecast and its MSE in (128) and
(130). Let YT ≡ (y′T , y

′
T−1, . . . , y

′
1, x

′
T , x

′
T−1, . . . , x

′
1)

′ denote the observed
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data, and let µ0 denote the true value of µ. The earlier derivations assumed
that the true value of µ was used to construct »̂¿ ∣T (µ0) and P¿ ∣T (µ0).

Recall that the formulas for updating a linear projection and its MSE
yield the conditional mean and conditional MSE when applied to Gaussian
vectors (see Hamilton, 1994, Chapter 4). Thus, if {vt}, {wt}, and »1 are
truly Gaussian, then the linear projection »̂¿ ∣T (µ0) has the interpretation as
the expectation of »¿ conditional on the data,

»̂¿ ∣T (µ0) = E(»¿ ∣YT ); (163)

while P¿ ∣T (µ0) can be described as the conditional MSE:

P¿ ∣T (µ0) = E{[»¿ − »̂¿ ∣T (µ0)][»¿ − »̂¿ ∣T (µ0)]
′∣YT }. (164)

Let µ̂ denote an estimate of µ based on YT , and let »̂¿ ∣T (µ) denote the

estimate that results from using µ̂ to construct the smoothed inference or
forecast in (158) or (128). The conditional mean squared error of this esti-
mate is

E{[»¿ − »̂¿ ∣T (µ̂)][»¿ − »̂¿ ∣T (µ̂)]
′∣YT }

= E{[»¿ − »̂¿ ∣T (µ0) + »̂¿ ∣T (µ0)− »̂¿ ∣T (µ̂)]

× [»¿ − »̂¿ ∣T (µ0) + »̂¿ ∣T (µ0)− »̂¿ ∣T (µ̂)]
′∣YT }

= E{[»¿ − »̂¿ ∣T (µ0)][»¿ − »̂¿ ∣T (µ0)]
′∣YT }

+ E{[»̂¿ ∣T (µ0)− »̂¿ ∣T (µ̂)][»̂¿ ∣T (µ0)− »̂¿ ∣T (µ̂)]
′∣YT }. (165)

Cross-product terms have disappeared from (165), since

E{[»̂¿ ∣T (µ0)− »̂¿ ∣T (µ̂)][»¿ − »̂¿ ∣T (µ0)]
′∣YT }

= [»̂¿ ∣T (µ0)− »̂¿ ∣T (µ̂)]× E{[»¿ − »̂¿ ∣T (µ0)]
′∣YT }

= [»̂¿ ∣T (µ0)− »̂¿ ∣T (µ̂)]× 0′.

The first equality follows because »̂¿ ∣T (µ0) and »̂¿ ∣T (µ̂) are known nonstochas-
tic functions of YT , and the second equality is implied by (163). Substituting
(164) into (165) results in

E{[»¿ − »̂¿ ∣T (µ̂)][»¿ − »̂¿ ∣T (µ̂)]
′∣YT }

= P¿ ∣T (µ0) + E{[»̂¿ ∣T (µ0)− »̂¿ ∣T (µ̂)][»̂¿ ∣T (µ0)− »̂¿ ∣T (µ̂)]
′∣YT }. (166)

Equation (166) decomposes the mean squared error into two components.
The first component, P¿ ∣T (µ0), might be described as the ‘filter uncertainty’.
This is the term calculated from the smoothing iteration (162) or forecast
MSE (130) and represents uncertainty about »¿ that would be present even
if the true value µ0 were known with certainty. The second term in (166),

E{[»̂¿ ∣T (µ0)− »̂¿ ∣T (µ̂)][»̂¿ ∣T (µ0)− »̂¿ ∣T (µ̂)]
′∣YT }
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might be called ‘parameter uncertainty’. It reflects the fact that in a typical
sample µ̂ will differ from the true value µ0.

A simple way to estimate the size of each source of uncertainty is by
Monte Carlo integration. Suppose we adopt the Bayesian perspective that
µ itself is a random variable. From this perspective, (166) describes the
MSE conditional on µ = µ0. Suppose that the posterior distribution for
the MLE in (139) suggests that µ∣YT might be regarded as approximately
distributed N(µ̂, (1/T )I −1), where µ̂ denotes the MLE. We might then gen-
erate a large number of values of µ, say, µ(1), µ(2), . . . , µ(2000), drawn from a
N(µ̂, (1/T )I −1) distribution. For each draw (j), we could calculate the
smoothed estimate or forecast »̂¿ ∣T (µ

(j)). The deviations of these estimates

across Monte Carlo draws from the estimate »̂¿ ∣T (µ̂) can be used to describe

how sensitive the estimate »̂¿ ∣T (µ̂) is to parameter uncertainty about µ :

1

2000

2000
∑

j=1

[»̂¿ ∣T (µ
(j))− »̂¿ ∣T (µ̂)][»̂¿ ∣T (µ

(j))− »̂¿ ∣T (µ̂)]
′. (167)

This affords an estimate of

E{[»̂¿ ∣T (µ)− »̂¿ ∣T (µ̂)][»̂¿ ∣T (µ)− »̂¿ ∣T (µ̂)]
′∣YT },

where this expectation is understood to be with respect to the distribution
of µ conditional on YT .

For each Monte Carlo realization µ(j), we can also calculate P¿ ∣T (µ
(j))

from (162) or (130). Its average value across Monte Carlo draws,

1

2000

2000
∑

j=1

P¿ ∣T (µ
(j)), (168)

provides an estimate of the filter uncertainty in (166),

E[P¿ ∣T (µ)∣YT ].

Again, this expectation is with respect to the distribution of µ∣YT .
The sum of (167) and (168) is then proposed as an MSE for the estimate

»̂¿ ∣T (µ̂) around the true value »¿ .

3 Data

The dataset consists of 17 quarterly seasonally unadjusted National Ac-
counts’ time series and 4 their aggregates, including GDP. The description
of the dataset is in Appendix A1.

48



4 Results

All calculations of the results below are performed in Scilab with the aid of
Grocer toolbox. 2

Direct versus indirect forecasts First, we consider direct versus indi-
rect forecasting, using ad-hoc picked SARIMAmodels: (011)(011), (010)(011),
and (110)(010). The first model is the so-called ‘Airline’ model discussed
in Subsection 2.6.4, frequently used as a benchmark model in seasonal ad-
justment programs. The second model, (010)(011), is even simpler than the
first one and is currently the model used in the seasonal adjustment process
of Latvia’s GDP. The third model, the AR(1), is usually taken as one of the
benchmark models for forecasting comparisons.

All the series are quarterly, starting from 1995Q1 and ending at 2009Q1,
each with length 57 observations. After one regular and one seasonal differ-
encing, we are left with 52 observations. The regressions are started from 16
observations, so that there are 36 elements per series to compute the Root
Mean Squared Forecast Error (RMSE). Thus, for the direct versus indi-
rect forecast comparison, 2016 one-period-ahead real-time forecasts are run
whose results are displayed in Table 1. RMSEs are computed from logged
series. In order to capture the quality of the forecast at the end of the series,
an additional RMSE, named RMSE2ndhalf, is computed for the second half
of the series.

There are three kinds of aggregates (see Appendix A1):

∙ AO +D21−D31;

∙ AF +GO +D21−D31;

∙ The sum of 15 single industry time series +D21−D31,

where D21−D31 is net transfers.
Table 1 shows that model (011)(011) gives inferior forecasts than model

(010)(011), which is inferior compared to (110)(010). It can also be seen
that forecasting the GDP series directly tend to yield better forecasts than
any indirect forecasts. The conclusion remains the same when looking at
the second half of the forecast period.

Closer look at the models One regular and one seasonal differencing of
log GDP yields a series shown in Figure 1.

It is clearly seen that the economic downturn has generated a sequence
of negative innovations, rendering the end of the series unstationary. This
observation suggests that another regular difference might be needed and
that could help improve the precision of forecasts at the end of the series.
Applying another regular differencing, we get a series plotted in Figure 2.

2Many thanks to Éric Dubois for the maintenance of Grocer.
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(011)(011) (010)(011) (110)(010)

B1G RMSE 0.0397 0.0344 0.0294
RMSE2ndhalf 0.0529 0.0466 0.0391

AO+D21-D31 RMSE 0.0487 0.0369 0.0321
RMSE2ndhalf 0.0661 0.0486 0.0431

AF+GO+D21-D31 RMSE 0.0491 0.0386 0.0321
RMSE2ndhalf 0.0673 0.0502 0.0430

Sum(single)+D21-D31 RMSE 0.0457 0.0369 0.0312
RMSE2ndhalf 0.0632 0.0493 0.0415

Table 1: Direct versus indirect forecasting.
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Figure 1: Series after one regular and one seasonal differencing of log GDP.
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Figure 2: Series after two regular and one seasonal differencing of log GDP.

Now, applying the same three seasonal ARMA models to the new series
gives RMSEs shown in Table 2.

The first three models in Table 2 are replicated for a single regular dif-
ferencing for comparison. Also, since an extra differencing leaves us with
one less observation, it is also excluded from the first three models for the
RMSE comparison to be fair. Although the series with two regular differ-
ences is close to mean zero, we demean it, in line with theory, and present
the results with extension “dm”. Also, we run a näıve Random Walk (RW)
model presented in the last two rows in Table 2.

As expected, an extra regular differencing improves the precision of fore-
casting at the end of the series, and it also improves the overall RMSE. The
rank of the three models stays the same, the AR(1) giving the most precise
one-period forecasts. However, there are two surprising observations. First,
running models on the demeaned series worsens the quality of forecasts (this
remains to be explained). Second, a näıve RW model yields almost as good
forecasts as the AR(1) and is the second best of all models.
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Model RMSE RMSE2ndhalf

(011)(011) 0.0406 0.0529
(010)(011) 0.0347 0.0466
(110)(010) 0.0302 0.0391
(021)(011) 0.0329 0.0436
(020)(011) 0.0302 0.0364
(120)(010) 0.0275 0.0337

(021)(011)dm 0.0367 0.0426
(020)(011)dm 0.0318 0.0375
(120)(010)dm 0.0290 0.0348

naive 0.0293 0.0339
naive dm 0.0303 0.0346

Table 2: A closer look at models.

5 Conclusions

The macroeconomic forecasting literature concentrates on building time-
series models for seasonally adjusted series but sometimes the forecasts of
seasonally unadjusted series are necessary, in which case we implement sea-
sonal ARIMA models. We have compared the performance of simple sea-
sonal ARIMA models and direct versus indirect real-time one-period fore-
casting of Latvia’s GDP. Four main results are as follows. First,we have seen
that the direct forecasting of Latvia’s GDP tends to give more precise fore-
casts than any of the three aggregation levels considered. Second, the AR(1)
model seems to perform better, in term of RMSE, than SARMA(01)(01)
and SARMA(00)(01). Third, an economic downturn has produced a se-
quence of negative innovations in a single regularly and single seasonally
differenced log GDP, suggesting an extra regular difference might help im-
prove the forecasts at the end of the series. The results show that indeed
models SARIMA(021)(011), SARIMA(020)(011), and SARIMA(120)(010)
tend to perform better than SARIMA(011)(011), SARIMA(010)(011), and
SARIMA(110)(010), respectively. Fourth, a näıve RW model performs very
well compared to the rest of the models considered.
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APPENDIX A1

The list of the National Accounts’ time series used in the paper. All series
are chained priced as of 2000.

A: Agriculture, hunting and forestry

B: Fishing

C: Mining and quarrying

D: Manufacturing

E: Electricity, gas and water supply

F: Construction

G: Wholesale and retail trade; repair of motor vehicles, motorcycles and
personal and household goods

H: Hotels and restaurants

I: Transport, storage and communication

J: Financial intermediation

K: Real estate, renting and business intermediation

L: Public administration and defense; compulsory social security

M: Education

N: Health and social work

O: other community, social and personal service activities
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D21: Taxes

D31: Subsidies

AF: The aggregate of A to F

GO: The aggregate of G to O

AO: The aggregate of A to O

B1G: The Gross Domestic Product
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