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1. INTRODUCTION

In this paper, we study the mechanism design problem of a seller in a dynamic market. In each
period, a random number of buyers and objects arrive to the market. Buyers are risk-neutral and
patient, while objects are homogeneous and perishable. Each buyer desires a single unit of the
good in question, and valuations for the good vary across buyers. A mechanism designer must
elicit the private information of these buyers in order to achieve her desired outcome—either an
efficient or a revenue-maximizing allocation.

We first discuss direct revelation mechanisms which may be used to achieve these outcomes. In
particular, we show that a dynamic analogue of the Vickrey-Clarke-Groves (VCG) mechanism is
efficient, and that the optimal (revenue-maximizing) mechanism in this dynamic setting is essen-
tially a pivot mechanism with a reserve price. We then consider the possibility of achieving the
mechanism designer’s goals via a simple indirect mechanism. In sharp contrast to the static world,
second-price sealed-bid auctions do not lead to efficient outcomes, as they do not correspond to
the dynamic version of the VCG mechanism. We show that decentralized implementation via
a simple auction format is still possible, however: a sequence of ascending (English) auctions is
outcome equivalent to dynamic VCG. Adding an optimally-chosen reserve price to the sequential
ascending auction then leads to an intuitive revenue-maximizing indirect mechanism.

The role of population dynamics in markets is an under-studied topic that is of great impor-
tance. This is especially true because the vast majority of “real-world” markets are asynchronous:
not all buyers and sellers are available or present at the same time. Rather, agents arrive at the
market at different times, interact with various segments of the population, and then transact at
different times. This fact, in conjunction with the potential arrival or departure of agents from the
market in the future, leads to a trade-off: competition in the future may be higher or lower than at
the present time, and opportunities to trade may arise more or less frequently. Thus, agents must
choose between transacting now or waiting until the (uncertain) future.

In addition to this dynamic trade-off, an additional strategic element arises due to competition
between agents across time. Buyers and sellers may face the same competitors repeatedly, imply-
ing that individuals will want to learn the private information of others. Moreover, each agent
may be concerned about how her competitors will make use of any information that she reveals
about herself.

To make these trade-offs and considerations more concrete, consider for a moment the problem
faced by a buyer searching for a product on an online auction market such as eBay. Upon her
arrival to the market, this buyer will have available to her a variety of auctions to participate
in. Moreover, she can choose to “wait and see,” postponing her participation until a future date.
Supposing that our buyer does, in fact, choose to participate in an auction immediately, she must
then decide how much to bid. However, her willingness to pay will depend on her expectations
about the future. From her perspective, future supply is random—she does not know when the
next auction for a similar item will take place, nor how many such future auctions may occur.
Similarly, future competition—the number of potential competitors, as well as their strength—is
unknown to our buyer.
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In addition, this hypothetical buyer on eBay has available to her a wealth of information. She
may observe the prices at which similar items have sold for in previous auctions, as well as the
actual bids submitted by various competitors. While rational bidding behavior requires the in-
corporation of such information into a submitted bid, our buyer may also be concerned with how
her bid, given its observability, will affect others’ behavior. She could, for instance, try to strate-
gically alter her competitors’ expectations about the future—submitting a relatively high bid, for
example, could serve as a “signal” of high future competition.

Taking these considerations into account, it is clear that population dynamics can have a sig-
nificant impact on issues such as competition, price determination, efficiency, and revenue. And
given this impact, it is natural to question how this impact varies across different institutions or
market forms. Therefore, in the present work, we are concerned with two main questions. First,
can we achieve efficient or revenue-maximizing outcomes in markets with dynamic populations
of privately-informed buyers? And secondly, and equally importantly, can we achieve these out-
comes using natural or simple “real world” institutions?

The approach we take to answering these two questions is to develop a reasonably general
model of a dynamic environment that reflects some key features of markets where dynamic popu-
lations are important. Note that we do not model eBay or some other specific market “X.” Rather,
we are interested in determining how far the intuitions provided by static models may be pushed,
where those intuitions break down, and what new insights and approaches are necessitated by
market dynamics.

Thus, the model we present abstracts away many of the details of such dynamic markets, fo-
cusing instead on what we view as their essential features. In particular, demand is not constant,
as the set and number of buyers change over time, with patient buyers entering and exiting the
market according to a stochastic process. Similarly, supply is random. In some periods there may
be many units available, while in others none. Finally, each buyer’s valuation—her willingness
to pay—is her private information. Therefore, a welfare- or revenue-maximizing seller must pro-
vide appropriate incentives for information revelation to this dynamic population. The seller then
makes use of this information to dynamically allocate goods to buyers.

A natural candidate for achieving a welfare-maximizing allocation is the Vickrey-Clarke-Groves
mechanism. It is well-known that, in static environments, the VCG mechanism is efficient. By
choosing a transfer payment for each buyer that equals the externality imposed by her report on
other participants in the mechanism, the VCG mechanism aligns the incentives of the buyer with
those of a welfare-maximizing social planner. This leads to efficiency and dominant-strategy in-
centive compatibility, as truthful reporting now maximizes both the planner’s and the buyers’
objective functions. In the dynamic environment we consider, the arrival of a new buyer imposes
an externality on her competitors by reordering the (anticipated) schedule of allocations to those
buyers currently present on the market, as well as to those buyers expected to arrive in future
periods. By charging each agent, upon her arrival, a price equal to this expected externality, the
buyer’s incentives can be aligned with those of the forward-looking planner. Therefore, this dy-
namic version of the VCG mechanism implements the efficient policy.
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We also construct a revenue-maximizing direct mechanism for this setting. Making use of the
risk-neutrality of buyers, we show that the optimal policy for a revenue-maximizing seller is
equivalent to that of a social planner who wishes to maximize allocative efficiency, except that
buyers’ values are replaced by their virtual values. Each buyers’ incentives may then be aligned
with those of the seller by adding (optimal) reserve prices to the dynamic VCG mechanism. These
reserve prices are chosen so as to provide each buyer with an expected payoff equal to her ex-
pected marginal contribution to the virtual surplus. This allows the seller to discriminate between
buyers in such a way as to maximize revenue.

Notice that both of the mechanisms discussed above are direct revelation mechanisms, requir-
ing buyers to report their values to the mechanism upon their arrival to the market. In practice,
however, direct revelation mechanisms may be difficult to implement. For instance, the multi-
unit Vickrey auction—the (static) multi-unit generalization of the standard VCG mechanism—is
a direct revelation mechanism in which truth-telling is not just equilibrium behavior, but is in fact
a dominant strategy for all participants. Despite this, Ausubel (2004) points out that the Vickrey
auction lacks simplicity and transparency, explaining that “many [economists] believe it is too
complicated for practitioners to understand.” Moreover, Rothkopf, Teisberg, and Kahn (1990) ex-
plain that concerns about privacy or the potential for future misuse of information revealed in a
direct mechanism may preclude the real-world use of direct mechanisms.

These criticisms are corroborated by experimental evidence. According to Kagel, Harstad, and
Levin (1987), who examined single-unit auctions with affiliated private values, the theoretical
predictions about bidding behavior are significantly more accurate in ascending price-auctions
than in second-price auctions, despite the existence of a dominant-strategy equilibrium in the
second-price (Vickrey) auction. Kagel and Levin (2009) find a similar result in multi-object auc-
tions with independent private values: ascending-type clock auctions significantly outperform
the dominant-strategy solvable Vickrey auction in terms of efficiency. In another study examining
the efficiency properties of several mechanisms in a resource allocation problem similar to the one
we consider here, Banks, Ledyard, and Porter (1989) find that “the transparency of a mechanism
. . . is important in achieving more efficient allocations.” In their experiments, a simple ascending
auction dominated both centralized administrative allocation processes as well as decentralized
markets in terms of both efficiency and revenues.

With these criticisms and “real-world feasibility” constraints in mind, we turn to the design of
simple, transparent, and decentralized indirect mechanisms. In particular, we consider the possi-
bility of achieving efficient or revenue-maximizing outcomes via a sequence of auctions. Despite
the similarity of our direct mechanisms to their single-unit static counterparts, we show that this
resemblance does not hold for the corresponding auction formats. Recall that, in the canonical
static allocation problem, the analogue of the VCG mechanism is the second-price auction. In an
environment with a dynamic population of buyers, however, a sequence of second-price auctions
cannot yield outcomes equivalent to those of the dynamic VCG mechanism. In a sequential auc-
tion, there is an “option value” associated with losing in a particular period, as buyers may win an
auction in a future period. The value of this option depends on expected future prices, which is de-
termined by the private information of other competitors. Thus, despite working in a framework
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with independent private values, the strategic environment faced by individual bidders is more
complicated, as the dynamics of the auction market induce interdependence in (option) values.

This interdependence implies that a standard second-price sealed-bid auction does not reveal
sufficient information for the determination of buyers’ option values. In contrast, the ascending
auction is a simple open auction format that does allow for the gradual revelation of buyers’ pri-
vate information. We use this fact to construct intuitive equilibrium bidding strategies for buyers
in a sequence of ascending auctions. In each period, buyers bid up to the price at which they are
indifferent between winning an object and receiving their expected future contribution to the so-
cial welfare. As buyers drop out of the auction, they (indirectly) reveal their private information
to their competitors, who are then able to condition their current-period bids on this information.

When this process of information revelation is repeated in every period, newly arrived buyers
are able to learn about their competitors without being privy to the events of previous periods.
This information renewal is crucial for providing the appropriate incentives for new entrants to
also reveal their private information. This allows for “memoryless” behavior—incumbent buyers
willingly ignore payoff-relevant information from previous periods, as they correctly anticipate
that it will be revealed again in the course of the current auction. These memoryless strategies
are not the result of an a priori restriction on the strategy space, but are instead the result of fully-
rational optimization on the part of individual buyers, leading to prices and allocations identical
to the truth-telling equilibrium of the efficient direct mechanism. Moreover, these strategies form
a periodic ex post equilibrium: given her expectations about future competition, each buyer’s
behavior in any period remains optimal even after observing her current opponents’ values.

Similar arguments apply when considering revenue-maximizing indirect mechanisms. When
buyers’ values are drawn from the same distribution, the sequential ascending auction with an
optimally-chosen reserve price admits an equilibrium that is equivalent to truth-telling in the
revenue-maximizing direct mechanism. Thus, the sequential ascending auction is a natural de-
centralized institution for achieving either efficient or optimal outcomes.

The present work contributes to a recent literature exploring dynamic allocation problems and
dynamic mechanism design.1 Bergemann and Välimäki (2008) develop the dynamic pivot mech-
anism, a dynamic generalization of the Vickrey-Clarke-Groves mechanism that yields efficient
outcomes when agents’ private information evolves stochastically over time. Athey and Segal
(2007) characterize an efficient dynamic mechanism that is budget-balanced and incentive com-
patible, again in the presence of evolving private information. In a similar dynamic setting, Pavan,
Segal, and Toikka (2009) and Rahman (2009) consider the more general question of characterizing
incentive-compatible mechanisms. While these papers study dynamic mechanisms for a fixed set
of buyers whose types may change over time, we examine a setting where the number and set of
buyers may change over time but types are fixed.2 Moreover, a fundamental departure from the
previous literature is our focus on the design of indirect mechanisms.

1Parkes (2007) surveys much of this literature, including the many contributions of the computer science community.
2There is also a recent literature on dynamic allocation problems and mechanism design with an evolving population,
but without money. See, for instance, Kurino (2009) or Ünver (2009).
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This paper also relates to recent work on dynamic auctions and revenue management. Mieren-
dorff (2008) characterizes an auction mechanism that efficiently allocates a single storable object
when buyers arrive over the course of the auction. Pai and Vohra (2008) derive the revenue-
maximizing mechanism for allocating a finite number of storable objects to buyers whose arrival
to and departure from the market is also private information. Vulcano, van Ryzin, and Maglaras
(2002) also examine optimal mechanisms for selling identical objects to randomly arriving buy-
ers. When the objects are heterogeneous but commonly-ranked, Gershkov and Moldovanu (2008)
and (2009) derive revenue-maximizing and efficient mechanisms. In contrast to the present work,
the buyers in these models are impatient, and there is a fixed number of storable objects to be
allocated.

Finally, our analysis of indirect mechanisms is linked to the sequential auctions literature. The
seminal work is Milgrom and Weber (2000), which examines the properties of a variety of auction
formats for the (simultaneous or sequential) sale of a fixed set of objects to a fixed set of buyers.
Kittsteiner, Nikutta, and Winter (2004) extend that model to one in which buyers discount the
future. Unlike the present work, however, they require the presence of all buyers in the initial
period, leading to dramatically different conclusions about the equivalence (or lack thereof) of
second-price and ascending auctions. Said (2009) examines the role of random entry in a model
of sequential second-price auctions when objects are stochastically equivalent; that is, when val-
ues are independently and identically distributed across both buyers and objects. The computer
science literature, motivated in part by the emergence of online auction sites such as eBay, has
also turned attention towards sequential ascending auctions. Lavi and Nisan (2005) and Lavi and
Segev (2009) examine the “worst-case” performance of sequential ascending auctions with dy-
namic buyer populations. Their prior-free, non-equilibrium analysis provides a lower bound on
the efficiency of the allocations achieved via sequential ascending auctions.

The remainder of this paper is structured as follows. Section 2 introduces the general model
and environment we consider. In Section 3, we fully characterize the efficient allocation rule and
discuss its implementation via a dynamic variant of the Vickrey-Clarke-Groves mechanism. We
then construct an efficient equilibrium of the sequential ascending auction and show that it is
outcome equivalent to that of the efficient direct mechanism. Section 4 parallels the development
in Section 3, characterizing the revenue-maximizing allocation policy and constructing an optimal
direct mechanism for its implementation. We then show that the indirect sequential ascending
auction mechanism is revenue-maximizing when used with an optimally-chosen reserve price.
Finally, Section 5 concludes.

2. MODEL

2.1. Buyers, Objects, and Random Arrivals

We consider an infinite-horizon discrete-time environment; time periods are indexed by t, where
t ∈ N0 := N ∪ {0}. There is a countable set I of buyers, where each agent i ∈ I desires a single
unit of a homogeneous, indivisible good. Each buyer i’s valuation vi for this good is her private
information, and vi is independently distributed according to the distribution Fi. We assume that
Fi has a strictly positive and continuous density fi and support V := [0, v̄], and that each buyer’s
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virtual valuation

ϕi(vi) := vi −
1 − Fi(vi)

fi(vi)

is a strictly increasing function of vi.
3 Moreover, we assume that buyers are risk neutral, and that

their preferences are quasilinear and time separable. The future is discounted exponentially with
the (common) discount factor δ ∈ (0, 1).

Not all buyers are present in each period. Rather, buyers arrive stochastically to the market. In
particular, the set I of buyers is partitioned into disjoint subsets {It}t∈N0

, where It is the finite
subset of agents who may arrive in period t. The arrival of agent i ∈ It in period t is governed by
an independent draw from a Bernoulli distribution, where πi ∈ [0, 1] denotes the probability that i

is present. In addition, buyers may depart from the market after each period, where the (common)
probability of any buyer i “surviving” to the following period is denoted by γ ∈ [0, 1]. Otherwise,
buyers remain present in the market until they receive an object. Note that, unlike the probability
of arriving to the market, the survival rate is identical across agents.

Thus, buyer arrivals and departures yield a stochastic process {αt}t∈N0
, where αt : I → {0, 1}

is an indicator function that tracks the presence of each agent on the market at time t, and

At := {i ∈ I : αt(i) = 1}

is the subset of agents present in period t. We assume that buyers cannot conceal their presence,
and so αt (equivalently, At) is commonly known to the agents present at time t.4

In addition to the random arrival of buyers, several units of a homogeneous, indivisible, and
non-storable good may also arrive on the market. Let kt ∈ K := {0, 1, . . . , K} denote the number of
objects that arrive in period t, where K ∈ N is the maximal number of objects potentially available
in any given period. As with buyers, the arrival of objects is governed by a stochastic process,
where µt(k) ∈ [0, 1] denotes the probability that exactly k ∈ K objects are available in period
t. Moreover, these objects are non-storable; any unallocated objects “expire” at the end of each
period, and hence cannot be carried over to future periods. This assumption plays an important
role in the determination of the efficient policy, providing a great deal of tractability. As with
the buyer arrival process, we assume that the arrival of objects is publicly observed, and so kt is
commonly known to those agents present on the market at time t.

At the beginning of each period, new buyers arrive to the market (and old buyers may depart).
Simultaneously, new objects arrive, replacing any unallocated objects left over from the previous
period. It will be useful to denote the “state” of the market at the beginning of each period t by
ωt := (αt, kt). The realizations of the arrival and departure processes are publicly observed by all
agents present on the market, implying that ωt becomes common knowledge to all agents present
at time t. The mechanism designer may then allocate objects to agents, and we move on to the
following period.

3The assumptions on Fi are merely for expositional convenience. All the efficiency-related results continue to be true
with general distributions. Moreover, for revenue-maximization, we may use the procedure of Skreta (2007) to define
“ironed” virtual values that may be used whenever ϕi is decreasing or not well-defined.
4This assumption is merely for simplicity. As will be discussed later in Section 3.2, the equilibria we construct and
describe remain equilibria in the larger game where buyers may conceal their presence.
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2.2. Direct Mechanisms

In this setting, a dynamic direct mechanism asks each agent i to make a single report, upon
arrival to the market, of her type vi.

5 We denote by ∅ the “report” of an agent who has not arrived
to the market. Thus, the mechanism designer has available to her in each period a collection of
reports rt : It → V ∪ {∅}, where R is the set of all such reports. Note that the report ri ∈ V of an
agent i who has arrived need not be truthful, as this will depend upon the incentives provided by
the mechanism.

Let Ht denote the set of period-t histories, where each history ht ∈ Ht is a sequence of arrivals
and departures (of buyers and objects), agent reports, and allocations up to, and including, period
t − 1. Thus, we have

ht = (ω0, r0, x0; ω1, r1, x1; . . . ; ωt−1, rt−1, xt−1) ,

where xs =
{

xi,s
}

i∈I
∈ X := {0, 1}I is the allocation in period s.

A dynamic direct mechanism is then a sequence of feasible allocations and feasible monetary trans-
fers M = {xt, pt}t∈N0

, where we abuse notation and denote by

xt : Ht × {0, 1}I ×K×R → ∆(X)

a collection of allocation probabilities for each agent, and denote by

pt : Ht × {0, 1}I ×K×R → R
I

a collection of monetary transfers from each agent. The period-t allocation xt = {xi,t}i∈I is a feasible

allocation if, and only if,

∑
i∈I

xi,t ≤ kt and xi,t = 0 for all i /∈ At.

These two conditions require, respectively, that no more objects than are available in period t are
allocated at that time, and that objects are only allocated to agents that are present on the market.
Notice that we have implicitly ruled out the possibility of allocating multiple objects to any agent
as a consequence of the single-unit demand assumption. Similarly, pt = {pi,t}i∈I is a feasible

monetary transfer if, and only if,
pi,t = 0 for all i /∈ At;

that is, agents who are not present on the market cannot make or receive payments.
We assume that, upon her arrival to the market in period t, agent i ∈ It observes only the

current state of the market ωt; that is, the set At of agents present on the market (equivalently, the
indicator αt) and the number kt of objects available at time t. Agent i does not observe the history
of arrivals and departures in previous periods or the history of allocative decisions, nor does she
observe the reports of agents who have arrived before her. Thus, a reporting strategy for agent i,
conditional on having arrived to the market, is simply a mapping

ri : V × {0, 1}I ×K → V.

5It is straightforward to see that the revelation principle applies in this setting, and so the restriction to direct mecha-
nisms is without loss of generality.
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Let r−i denote the reports of all agents other than agent i ∈ It. The expected payoff to i when she
reports ri ∈ V to the mechanism M and all other agents report according to r−i is then

E

[
∞

∑
s=t

δs−t
(

xi,s (hs, ωs, (ri, r−i)) vi − pi,s (hs, ωs, (ri, r−i))
)]

,

where the expectation is taken with respect to the arrival and departure processes of buyers and
sellers, as well the history ht and the reports of all other agents that may be present on the mar-
ket. Note that we have dropped the dependence of reporting strategies on histories and market
presence to simplify notation.

2.3. Incentive Compatibility, Individual Rationality, and Revenue Equivalence

Consider a direct mechanism M = {xt, pt}t∈N0
and fix any period t and any agent i ∈ It. Since

we will be examining Bayesian implementation as opposed to dominant strategy implementation,
suppose that all other agents j 6= i are reporting truthfully; that is, suppose that

rj(vj, ωs) = vj

for all s ∈ N0, all j ∈ Is \ {i}, and every (vj, ωs) ∈ V × {0, 1}I ×K. For notational convenience,
we will denote this strategy by v−i. Recall that agent i ∈ It, upon her arrival, observes only the
set At of agents present and the number kt of objects available in period t. We may then define

Ui(v′i, vi, ωt) := E

[
∞

∑
s=t

δs−t
(

xi,s
(
hs, ωs, (v′i, v−i)

)
vi − pi,s

(
hs, ωs, (v′i, v−i)

) )
]

to be the expected payoff of agent i ∈ It from reporting v′i ∈ V when her true type is vi ∈ V and
the (observed) current market state is given by ωt ∈ {0, 1}I ×K.

The mechanism M is incentive compatible if, for all t ∈ N0 and all i ∈ It,

Ui(vi, vi, ωt) ≥ Ui(v′i, vi, ωt) for all vi, v′i ∈ V and all ωt ∈ {0, 1}I ×K.

Thus, M is incentive compatible if truthful reporting by all agents, regardless of their time of
entry, the agents present upon their arrival, and the number of objects available, is an equilibrium.
Notice that this condition is equivalent to requiring interim (Bayesian) incentive compatibility for
each agent, for every realization of the arrival processes and every realization of the agent’s values.

Similarly, the mechanism M is individually rational if, for all t ∈ N0 and all i ∈ It,

Ui(vi, vi, ωt) ≥ 0 for all vi ∈ V and all ωt ∈ {0, 1}I ×K.

Thus, M is individually rational if all agents prefer to participate (truthfully) in the mechanism
than not, where we have normalized the outside option of each player to zero. As with incentive
compatibility, this must hold for every realization of the arrival processes and the agent’s values.

Notice that, due to the agents’ risk neutrality and the quasilinearity of payoffs, we may rewrite
the payoff functions Ui as

Ui(v′i, vi, ωt) = qi(v′i, ωt)vi − mi(v′i, ωt),
8
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where

qi(v′i, ωt) := E

[
∞

∑
s=t

δs−txi,s
(
hs, ωs, (v′i, v−i)

)
]

(1)

is the expected discounted sum of object allocation probabilities, and

mi(v′i, ωt) := E

[
∞

∑
s=t

δs−t pi,s
(
hs, ωs, (v′i, v−i)

)
]

(2)

is the expected discounted sum of payments. Since buyers ultimately care only about the expected
discounted probability of receiving an object and their expected discounted payment, the seller
can restrict attention to these two functions when designing incentive schemes—we are able to
simplify the incentive problem faced by a seller in this setting by reducing the problem to a single-
dimensional allocation problem.

Therefore, we may rewrite the incentive compatibility and individual rationality constraints as

qi(vi, ωt)vi − mi(vi, ωt) ≥ qi(v′i, ωt)vi − mi(v′i, ωt) for all vi, v′i ∈ V

and
qi(vi, ωt)vi − mi(vi, ωt) ≥ 0 for all vi ∈ V,

for all t ∈ N0, all i ∈ It, and all ωt ∈ {0, 1}I ×K.
Define for all t ∈ N0 and i ∈ It the function Ûi : V × {0, 1}I ×K → R by

Ûi(vi, ωt) := qi(vi, ωt)vi − mi(vi, ωt).

Ûi is then the expected payoff of agent i from truthfully reporting her value vi. Making use of
this function, we are able to extend the classic Myerson (1981) characterization of incentive com-
patibility and expected payoffs to this dynamic setting. In particular, we obtain the following
results.

LEMMA 1 (Characterization of implementable mechanisms).
A direct mechanism M = {xt, pt}t∈N0

is incentive compatible and individually rational if, and only if, the

following conditions are satisfied for all t ∈ N0 all i ∈ It, and all ωt ∈ {0, 1}I ×K:

(1) qi(vi, ωt) is nondecreasing in vi;

(2) Ûi(vi, ωt) = Ûi(0, ωt) +
∫ vi

0 qi(v′i, ωt) dv′i for all vi ∈ V; and

(3) Ûi(0, ωt) ≥ 0.

PROOF. The proof may be found in Appendix A. �

COROLLARY 1 (Revenue equivalence).
If the dynamic direct mechanism M is incentive compatible, then for all t ∈ N0 all i ∈ It, and all

ωt ∈ {0, 1}I ×K, the expected payment of type vi ∈ V of buyer i, conditional on entry, is

mi(vi, ωt) = mi(0, ωt) + qi(vi, ωt)vi −
∫ vi

0
qi(v′i, ωt) dv′i.

If, in addition, M is individually rational, then mi(0, ωt) ≤ 0.
9
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These results are the dynamic population analogues of the standard Myerson (1981) results for
static allocation problems. Recall that in static settings with single-unit demand, incentive compat-
ibility requires that increasing a buyer’s type should increase (weakly) her probability of receiv-
ing an object. In our dynamic setting with single-unit demand, incentive compatibility instead
requires that increasing a buyer’s type should, roughly speaking, increase (weakly) her probabil-
ity of receiving an object sooner.6 More precisely, the expected discounted sum of each agent’s
allocation probabilities must be nondecreasing in that agent’s value, regardless of the state of the
market upon her arrival. Moreover, the expected payoffs of a buyer in any two mechanisms with
the same allocation rule can differ only by a constant, and hence expected payoffs and revenue are
pinned down by the expected discounted probabilities of receiving an object.

3. EFFICIENT IMPLEMENTATION

3.1. Preliminaries: An Efficient Direct Mechanism

Before discussing the properties of efficient mechanisms in this setting, we first describe the
socially efficient policy. Recall that, in the static single-object allocation setting, allocative effi-
ciency is equivalent to allocating the object to the highest-valued buyer. In our dynamic setting,
the structure of the environment—the nature of the arrival processes and the non-storability of
objects—implies that the socially efficient policy is essentially an assortative matching. In particu-
lar, objects are ordered by their arrival time and buyers are ordered by their values, and “earlier”
objects are allocated to higher-valued buyers. Of course, the feasibility constraints imposed by the
dynamic nature of the agent population have an impact on the nature of the efficient policy, as
the ordering of buyers by valuation need not correspond to the sequential ordering of buyers by
their periods of availability. Thus, the socially efficient allocation policy is, in any given period, to
allocate all available objects to the set of buyers currently present that have the highest values.

Formally, we consider a social planner who, at time zero, chooses a feasible dynamic direct
mechanism M = {xt, pt}t∈N0

. The planner’s goal is to maximize allocative efficiency; that is, the
planner wishes to choose allocations xi,t to maximize

E

[
∞

∑
t=0

∑
i∈I

δtxi,t(ht, ωt, v)vi

]
,

where the expectation is taken with respect to the arrival and departure processes, as well as
agents’ valuations. Recalling that qi(vi, ωt) from Equation (1) is agent i’s expected discounted
probability of receiving an object (conditional on entry), we may rewrite this objective function as

E

[
∞

∑
t=0

∑
i∈It

δtαt(i)qi(vi, ωt)vi

]
,

where αt(i) = 1 if i ∈ It arrives to the market and zero otherwise. (Recall that this arrival occurs
with probability πi ∈ [0, 1] for each agent i.)

6This is a consequence of the fact that there are now multiple opportunities to receive an object: if a buyer does not
receive an object in the period of her arrival, she may still receive one in future periods.
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Before a formal statement of our result, a few additional definitions are necessary. Fix any state
zt = (ht, ωt, v) ∈ Ht × {0, 1}I × K ×R, where v denotes the truthful reporting strategy by all
agents. We denote by

A+(zt) :=
{

i ∈ At :
∣∣{j ∈ At : vj ≥ vi

}∣∣ ≤ kt

}

the set of agents who are among the kt highest-ranked buyers at state zt. Similarly, the set of agents
who are ranked outside the top kt agents is denoted by

A−(zt) :=
{

i ∈ At :
∣∣{j ∈ At : vj > vi

}∣∣ ≥ kt

}
.

Finally, we let

A∼(zt) := At \
(
A+(zt)

⋃
A−(zt)

)

denote the set of agents who are “on the boundary”—the set of agents that are tied for the kt-th
highest rank.

LEMMA 2 (Efficient allocation rules).
Suppose all buyers, upon arrival, report their true values. A feasible allocation rule {xt}t∈N0 is efficient if,

and only if, for all states zt = (ht, ωt, v) ∈ Ht × {0, 1}I ×K×R,

xi,t(zt) = 1 for all i ∈ A+(zt)

and

∑
i∈A∼(zt)

xi,t(zt) = kt − |A+(zt)| if |A+(zt)| < kt.

PROOF. The proof may be found in Appendix A. �

Note that the conditions in this lemma pin down the behavior of efficient allocation rules after
almost all histories.7 The second condition applies only in the case of “ties” among the agents,
which are probability zero events. Additionally, notice that the period-t efficient allocation does
not depend on past allocations or history; only the set of objects available (indicated by kt), the
set of agents present at time t (indicated by αt), and these agents’ reported values (denoted by vt)
are relevant. Therefore, we will henceforth restrict attention to the efficient allocation rule which
breaks ties with equal probability, defined by

x̂i,t(ωt, vt) :=





1 if i ∈ A+

0 if i ∈ A−

kt−|A+|
|A∼|

if i ∈ A∼

for all ωt ∈ {0, 1}I ×K and vt ∈ VAt (and where we have dropped the dependence on histories).
It is straightforward to show that, as in the standard static allocation problem, this first-best so-

cially efficient policy is implementable. In particular, we may use the dynamic pivot mechanism of
Bergemann and Välimäki (2008), a dynamic variant of the standard Vickrey-Clarke-Groves mech-
anism, in order to achieve the efficient outcome. By choosing payments which leave agents with

7While it is straightforward to do so, we do not formally account for the zero-probability event in which a buyer’s value
equals zero. This simplifies both notation and exposition while leaving our results unchanged.

11



MAHER SAID

their flow contribution to the social welfare in each period, the dynamic pivot mechanism obtains
truth-telling as an equilibrium which implements the efficient policy.

In order to fully describe the dynamic pivot mechanism, we require the following definitions.
For any ωt ∈ {0, 1}I ×K and truthful vt ∈ VAt , let

W(ωt, vt) := E

[
∞

∑
s=t

∑
j∈I

δs−t x̂j,s(ωs, vs)vj

]

denote the social welfare (from period t ∈ N0 on) when the efficient policy x̂ is implemented.
Denoting by ω−i

s the state of the market in period s ∈ N0 when agent i has been removed from
the market (that is, where we impose αs(i) = 0), we write

W−i(ω−i
t , vt) := E




∞

∑
s=t

∑
j∈I\{i}

δs−t x̂j,s(ω−i
s , vs)vj


 .

for the social welfare (from period t ∈ N0 on) when i is removed from the market and the efficient
policy x̂ is implemented. Agent i’s flow contribution in period t ∈ N0 is simply the difference
between i’s total contribution to the social welfare and her expected future contribution:

ŵi(ωt, vt) := W(ωt, vt) − W−i(ω−i
t , vt)︸ ︷︷ ︸

total contribution

−δ
(

E

[
W(ωt+1, vt+1)

]
− E

[
W−i(ω−i

t+1, vt+1)
])

︸ ︷︷ ︸
expected future contribution

.

Thus, we may define the dynamic pivot mechanism as the mechanism M̂ := {x̂t, p̂}t∈N0
, where

the payment rule p̂ is defined by

p̂i,t(ωt, vt) := x̂i,t(ωt, vt)vi − ŵi(ωt, vt)

for all (ωt, vt). This mechanism yields to each agent flow payoffs equal to her flow contribution to
the social welfare, and has been shown to be efficient. In addition, the dynamic pivot mechanism is
periodic ex post incentive compatible. Introduced by Bergemann and Välimäki (2008), this notion
requires that, given expectations about future behavior and arrivals, each buyer’s current-period
behavior remains optimal even after observing all current-period private information.

LEMMA 3 (Implementability and efficiency of the dynamic pivot mechanism).
Truth-telling in the dynamic pivot mechanism is periodic ex post incentive compatible and individually

rational, thereby implementing the socially efficient policy.

PROOF. The result follows immediately from Bergemann and Välimäki (2008, Theorem 1).8 �

Note that, unlike the VCG mechanism in static settings, the dynamic pivot mechanism M̂ is
not dominant-strategy incentive compatible. This is true even though buyers participating in our
variant of this mechanism make only a single report upon their arrival (as compared to Bergemann
and Välimäki (2008), for instance, where buyers make a report in every period). This is because,

8Bergemann and Välimäki (2008) show this result in the context of a fixed agent population. Parkes and Singh (2003)
and Cavallo, Parkes, and Singh (2009) demonstrate that “Online VCG,” another dynamic variant of the VCG mecha-
nism, implements the efficient policy in the presence of an evolving agent population.
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in contrast to the static VCG mechanism, payments are not distribution-free, and hence agents’
beliefs about other players and their strategies matter for the determination of optimal behavior.9

3.2. An Efficient Sequential Auction

It is important to keep in mind that the dynamic pivot mechanism is a direct revelation mech-
anism, relying on a planner to aggregate the reported values of each buyer in order to determine
allocations and payments. This raises an important question: does this efficient mechanism cor-
respond to a familiar auction format? In the static single-object case, Vickrey (1961) provided a
clear answer: the analogue of the Vickrey-Clarke-Groves mechanism for the allocation of a single
indivisible good is the second-price auction. Both the sealed-bid second-price auction and the
ascending (English) auction admit equilibria that are outcome equivalent to the VCG mechanism
and are compelling prescriptions for “real-world” behavior.10

A reasonable conjecture is that a sequence of auctions would be useful in the context of a se-
quential allocation problem. But what auction format would be desirable? The “standard” ana-
logue of the VCG mechanism in static settings is the second-price sealed-bid auction. In a dynamic
setting where all buyers arrive before the initial period, Kittsteiner, Nikutta, and Winter (2004)
show that a sequence of such auctions is equivalent to VCG. When buyers arrive stochastically as
in our model, however, a sequence of second-price auctions does not correspond to the dynamic
formulation of the Vickrey-Clarke-Groves mechanism discussed above.

This failure of equivalence is due to the fact that a buyer participating in a sequence of auctions
has available to her an option: by losing in the current auction, she gains the ability to participate
in future elements of the sequence. Let us denote the expected value of this future participa-
tion by δV. Rational bidding behavior in a second-price sealed-bid auction then requires shading
one’s bid downwards by the value of this option—our bidder chooses her bid bi to maximize her
expected payoff, solving

max
bi

{
Pr
(

bi > max
j 6=i

{bj}

)
E

[
vi − max

j 6=i
{bj}

]
+ Pr

(
bi < max

j 6=i
{bj}

)
δV

}
.

Since the probability of winning and the probability of losing sum to one, we may rearrange the
above expression into an equivalent optimization problem:

max
bi

{
Pr
(

bi > max
j 6=i

{bj}

)
E

[
(vi − δV) − max

j 6=i
{bj}

]}
+ δV.

This, however, is exactly the problem faced by a bidder in a static second-price sealed-bid auction
when her true value is given by vi − δV; standard dominance-type arguments show that it is then
optimal to bid

b∗i = vi − δV.

What, then, is this option value? Clearly, it is an expectation of future payoffs from participating
in the sequence of auctions, and hence will depend upon expected future prices. But these future

9Thanks are due to Ilya Segal for pointing out the difficulty in achieving dominant-strategy implementation in
sequential-move mechanisms, thereby correcting an error in a previous version of this work.
10Of course, the revenue equivalence theorem applies, and several other standard auction mechanisms are able to yield
efficient outcomes in the single-object static setting. However, they are not outcome equivalent to the VCG mechanism.

13



MAHER SAID

prices are determined by the valuations of one’s competitors, and hence the continuation value V

is itself a function of those valuations; that is,

V = V(vi, v−i).

Thus, despite the fact that we have started in an independent private-values framework, market
dynamics (in particular, repeated competition across time) generate interdependence: buyers must
learn their competitors’ values in order to correctly “price” the option of future participation.11

Moreover, this learning is not possible when using a second-price sealed-bid auction (or any other
sealed-bid auction format, for that matter), as the auction format simply does not reveal sufficient
information to market participants, and buyers will have to bid based on their expectations and
beliefs about their competitors:

b∗i = vi − E [δV(vi, v−i)] .

In sharp contrast, however, to the sequential auctions of Kittsteiner, Nikutta, and Winter (2004)
(where all buyers are present throughout the sequence of auctions), bidders that arrive to the
market at different times will have observed different histories. These bidders will therefore have
asymmetric beliefs about their competitors, and hence asymmetric expectations. This leads to
asymmetry in bidding behavior, which in turn generates inefficient outcomes.

A similar problem arises when considering the use of a second-price auction where bids are
revealed each period after the allocation of objects. In particular, in any period in which there are
new entrants, there will be buyers who are uninformed—and about whom incumbent buyers are
uninformed. Again, these two groups will have differential information, and hence differential
beliefs, thereby leading to inefficient outcomes. Note that this occurs despite the fact that bids
are being revealed. Since information revelation is occurring after the auction is over, buyers are
unable to condition their bids on that information. Instead, information revealed in the current
period can be used only in subsequent periods; information revelation is occurring too “slowly”
for information about others to be incorporated into current-period bidding.

This suggests the need for an open auction format, and in particular the ascending price auction.
In such an auction, a price clock rises continuously and buyers drop out of the auction at various
points. This allows buyers to observe the points at which their competitors exit the auction and
make inferences about their valuations. These inferences can then be incorporated into current-

period bidding, leading to bids that correctly account for the interdependence generated by market
dynamics: buyers can arrive at the efficient outcome by submit bids

b∗i = vi − δV(vi, v−i),

To be specific, we make use of a simple generalization of the Milgrom and Weber (1982) “but-
ton” model of ascending auctions. In particular, we consider a multi-unit, uniform-price variant
of their model. The auction begins, in each period, with the price at zero and with all agents present
participating in the auction. Each bidder may choose any price at which to drop out of the auction.

11It is well-known (see, for instance, Dasgupta and Maskin (2000) or Krishna (2003)) that efficient implementation
is not guaranteed when values are interdependent. Note, however, that interdependence arises in our setting due
to the dynamics of the indirect mechanism and the resulting option values—the underlying environment for direct
mechanisms is a standard independent private values setting.
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This exit decision is irreversible (in the current period), and is observable by all agents currently
present. Thus, the current price and the set of active bidders is commonly known throughout
the auction. When there are m ≥ 1 objects for sale, the auction ends whenever at most m active
bidders remain, with each remaining bidder receiving an object and paying the price at which
the auction ended. Note that if there are fewer than m bidders initially, then the auction ends
immediately at a price of zero. In addition, suppose that several bidders drop out of the auction
simultaneously, leaving m′

< m bidders active. The auction ends at this point, and m − m′ of the
“tied” bidders are selected with equal probability to receive an object—along with the remaining
active bidders—paying the price at which the auction closed.12 With this in mind, each bidder’s
decision problem within a given period is not the choice of a single bid, but is instead the choice of
a sequence of functions, each of which determines an exit price contingent on the (observed) exit
prices of the bidders who have already exited the current auction. Therefore, over the course of
the auction, buyers gradually reveal their private information to their competitors.

This process of gradual information revelation leads to an additional asymmetry, however.
Consider the group of buyers who participated in an auction in period t but lost. At the end
of the auction, they will have observed each others’ drop-out prices and inferred each others’ val-
ues, implying that at the beginning of period t + 1, they have essentially perfect and complete
information about one another. But in period t + 1, a new group of buyers, about whom nothing
is known, arrives on the market. We therefore have two differentially informed groups of buy-
ers. Moreover, if we want to achieve an efficient outcome, these new entrants must be induced to
reveal their private information despite being asymmetrically informed.

This asymmetry may be resolved via a process of information renewal: full revelation of all private
information in every period. This is achieved by using “memoryless” strategies: incumbent buy-
ers disregard their observations and information from previous periods and behave “as though”
they are uninformed. By doing so, all buyers are able to behave symmetrically, thereby allowing
newly arrived buyers to learn about their current competitors without knowledge of the events
of previous periods. All buyers, incumbents and new entrants alike, are thus provided with the
appropriate incentives to participate in the process of information revelation.

Note that this equilibrium in memoryless strategies is not the result of an a priori restriction
on the set of strategies available to buyers. Rather, the use of memoryless strategies is the result
of fully rational and unconstrained optimizing behavior. Buyers have perfect recall of the past,
and also have available to them the option of conditioning on information revealed in previous
periods. Ignoring that information, however, is an equilibrium best response to the behavior of
their competitors.

Why would a fully-rational, utility-maximizing buyer “throw away” payoff-relevant informa-
tion from previous periods and behave as though she were uninformed? Recall that bidders

12The sequential ascending auction mechanism we propose bears some resemblance to the multi-unit auction mecha-
nism of Demange, Gale, and Sotomayor (1986). In fact, in an environment where all buyers are present in the initial
period and without supply uncertainty, the two mechanisms arrive at equivalent outcomes. Recall, however, that their
mechanism operates by making use of an auctioneer who raises the prices on “over-demanded” sets of objects. This
is precluded in our setting with a dynamic population, as it is impossible to determine which future objects will be
over-demanded before either the objects or the agents who desire them arrive to the market.
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engage in the process of information revelation and renewal in every period. Buyers therefore
anticipate that (in equilibrium) all private information they may have observed in the past will
be revealed again. In particular, there is no need for buyers to condition their behavior at the
outset of the current period on the past—buyers expect any payoff-relevant information to be re-
vealed anew as the price clock rises over the course of the current-period auction, allowing them
to condition their strategies on this information as it is revealed (or re-revealed) during the current
period.

With this in mind, we now informally describe the memoryless strategies used by each player
in the sequential ascending auction mechanism.13 In each period, buyers will remain active in
the auction until the price reaches the point at which they are exactly indifferent between win-
ning immediately and participating in future periods. Moreover, these buyers believe that any
future prices they pay will equal the externality that they impose on the market; equivalently,
they believe that the option value of future participation equals their expected future marginal
contribution to the social welfare:

δV(vi, v−i) = δE [ŵi(ωt+1, vt+1)|vt = (vi, v−i)] .

As competitors drop out of the auction and reveal their private information, each remaining buyer
recalculates this expected continuation value and redetermines her optimal drop-out point.

To formally describe the strategies, let nt := |At| = ∑j∈I αt(i) denote the number of buyers
present in period t. In addition, taking the perspective of an arbitrary bidder i, let

yt :=
(
yt

1, . . . , yt
nt−1

)

denote the ordered valuations of all other buyers present in period t, where yt
1 is the largest value,

and yt
nt−1 is the smallest. Finally, for each m = 1, . . . , nt − 1, let

v̄m := (v̄, . . . , v̄) ∈ Vm and y>m
t :=

(
yt

m+1, . . . , yt
nt−1

)
.

If all buyers use symmetric strictly increasing bidding strategies within a period, the prices at
which buyers exit the auction will reveal their values. Over the course of the current-period auc-
tion, buyers will then observe y>m

t , allowing their bids to be conditioned on this information.
Finally, we define, for each m = 1, . . . , nt − 1,

wt+1(ωt, vi, y>m
t ) := δE [ŵi(ωt+1, vt+1)|vt = (v̄m, vi, y>m

t )]

to be the (discounted) expected future marginal contribution of an agent i ∈ At with value vi,
where the expectation is conditional on the period-t presence of m competitors each with the
highest possible value v̄ and nt − m − 1 buyers ranked below i with values y>m

t .
With these preliminaries in hand, we may now define the strategies used by each bidder. We

define, for each m = 1, . . . , nt − 1,

β̂t
m,nt

(ωt, vi, y>m
t ) := vi − wt+1(ωt, vi, y>m

t ). (3)

We will assume that, in each period t ∈ N0, each agent i ∈ At bids according to β̂t
m,nt

whenever she
has m active competitors in the auction. Thus, each buyer i initially bids up to the point at which

13See Said (2008) for an explicit (closed-form) example of these strategies in a special case of the present model.
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she is indifferent between winning the object at the current price and receiving her discounted
expected marginal contribution in the next period, where the expectation is conditional on being
the lowest-ranked of the nt bidders currently present and all other bidders having the highest
possible valuation.14 Note that these initial bids depend only upon the current state of the market
and each buyer’s own private information, and not on the past history of the market.

Observe that, if vi > vj, then

wt+1(ωt, vj) − wt+1(ωt, vi)

= δE

[
W(ωt+1, vt+1)|vt = (v̄nt−1, vj)

]
− δE

[
W−j(ω

−j
t+1, vt+1)|vt = (v̄nt−1, vj)

]

− δE

[
W(ωt+1, vt+1)|vt = (v̄nt−1, vi)

]
+ δE

[
W−i(ω−i

t+1, vt+1)|vt = (v̄nt−1, vi)
]

= δE

[
W(ωt+1, vt+1)|vt = (v̄nt−1, vj)

]
− δE

[
W(ωt+1, vt+1)|vt = (v̄nt−1, vi)

]
,

since removing either i or j in the next period, conditional on her being the lowest-ranked agent,
does not affect the order of anticipated future allocations to any other agents. Moreover, note that
by treating buyer j as though her true value were vi, we can provide a bound for the difference
above. In particular, we have

δE

[
W(ωt+1, vt+1)|vt = (v̄nt−1, vj)

]
− δE

[
W(ωt+1, vt+1)|vt = (v̄nt−1, vi)

]

≥ E

[
∞

∑
s=t+1

δs−t x̂i,s(ωs, vs)|vt = (v̄nt−1, vi)

]
(vj − vi).

Thus, if vi > vj, then

β̂t
nt−1,nt

(ωt, vi) − β̂t
nt−1,nt

(ωt, vi) ≥

(
1 − E

[
∞

∑
s=t+1

δs−t x̂i,s(ωs, vs)|vt = (v̄nt−1, vi)

])
(vi − vj) > 0

since the discounted expected probability of receiving an object in the future is bounded above by
δ < 1. Thus, the agent who is, in fact, the lowest-ranked buyer present in period t will be the first
to drop out of the period-t auction, publicly revealing her value.

At this point, each remaining buyer i bids until she is indifferent between winning the object
at the current price and receiving her discounted expected marginal contribution, conditional on
the knowledge that she is the second-lowest ranked of the nt − 1 bidders remaining active in the
auction, that all remaining active bidders have the highest possible valuation and that the lowest-
ranked buyer present has value ynt−1

t < vi. In addition, suppose that buyer j with value vj was
the first to exit the auction. Then ynt−1

t = vj < vi implies

wt+1(ωt, vj) − wt+1(ωt, vi, vj)

= δ
(

E

[
W(ωt+1, vt+1)|vt = (v̄nt−1, vj)

]
− E

[
W(ωt+1, vt+1)|vt = (v̄nt−2, vi, vj)

])

− δ
(

E

[
W−i(ω−i

t+1, vt+1)|vt = (v̄nt−2, vi, vj)
]
− E

[
W−j(ω

−j
t+1, vt+1)|vt = (v̄nt−1, vj)

])
.

14This is not strictly necessary; any beliefs about the valuations of her opponents will suffice as long as the support of
those beliefs is contained in the interval (vi, v̄].
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However, the second difference above may be rewritten as
(

E

[
W−i(ω−i

t+1, vt+1)|vt = (v̄nt−2, vi, vj)
]
− E

[
W−i(ω−i

t+1, vt+1)|vt = (v̄nt−2, vi, vi)
])

+
(

E

[
W−i(ω−i

t+1, vt+1)|vt = (v̄nt−2, vi, vi)
]
− E

[
W−j(ω

−j
t+1, vt+1)|vt = (v̄nt−1, vj)

])
.

Thus, the difference in future expected contributions

wt+1(ωt, vj) − wt+1(ωt, vi, vj)

is the sum of three differences: the first is the gain in social welfare when increasing i’s value from
vi to v̄; the second is the gain in social welfare (when i is not on the market) from increasing j’s
value from vj to vi; and finally, the third is the loss in social welfare (when j is not present) from
decreasing i’s value from v̄ to vi. However, since vj < vi, the presence or absence of j from the
market has no influence on when the efficient policy allocates to i, regardless of whether i’s value
is vi or v̄. Therefore, the gain from the first difference equals the loss from the third, implying that

wt+1(ωt, vj) − wt+1(ωt, vi, vj)

= δ
(

E

[
W−i(ω−i

t+1, vt+1)|vt = (v̄nt−2, vi, vj)
]
− E

[
W−i(ω−i

t+1, vt+1)|vt = (v̄nt−2, vi, vi)
])

.

A bounding argument similar to the one previously applied may then be used to show that the
difference in bids

β̂t
nt−2,nt

(ωt, vi, vj) − β̂t
nt−1,nt

(ωt, vj) > 0.

Thus, there is “continuity” at the first drop out point, in the sense that the exit of the lowest-valued
buyer does not induce the immediate exit of any buyer with a (strictly) higher value. Therefore,
if β̂t

nt−2,nt
(ωt, vi, vj) is increasing in vi, the price at which the second exit occurs fully reveals the

value of the second-lowest ranked buyer. Similar logic may be used to show that β̂t
m,nt

(ωt, vi, y>m
t )

is strictly increasing in vi for all m, and that the “continuity” property described above holds after
every exit from the auction.

LEMMA 4 (Bids are fully separating).
For all m = 1, . . . , nt − 1, β̂t

m,nt
(ωt, vi, y>m

t ) is increasing in vi. Moreover, if vi > ym+1
t , then

β̂t
m,nt

(ωt, vi, y>m
t ) > β̂t

m+1,nt
(ωt, y>m

t ).

PROOF. The proof may be found in Appendix A. �

Since the bids are fully separating, the efficient allocation is achieved when all buyers follow the
prescribed strategies. If these strategies form an equilibrium of the sequential ascending auction
(an assumption we will shortly verify), Corollary 1 implies that expected payments by buyers in
this mechanism must be the same, up to a constant, as those in the dynamic pivot mechanism. We
may prove, however, a stronger equivalence result.

THEOREM 1 (Outcome equivalence of direct and indirect mechanisms).
Following the bidding strategies β̂t

m,nt
in every period t in the sequential ascending auction mechanism is

outcome equivalent to the dynamic pivot mechanism.
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PROOF. In order to establish that the bidding strategies β̂t
m,nt

lead to an efficient allocation, we
require the following result demonstrating that the bids are, in fact, fully separating.

Thus, following the bidding strategies prescribed in Equation (3) leads to an efficient allocation.
To see that these strategies also lead to payments equal to those of the dynamic pivot mechanism,
fix an arbitrary period t ∈ N0, and let kt denote the number of objects present, and nt := |At|

denote the number of agents present. As discussed above, the bidding strategies β̂t
m,nt

are strictly
increasing; therefore, the multi-unit uniform-price ascending auction ends allocates the kt objects
to the group of buyers with the kt highest values. Recall that if kt ≥ nt, the auction ends immedi-
ately, and all buyers present receive an object for free. Similarly, in the dynamic pivot mechanism,
each buyer i receives an object, and makes a payment p̂i,t given by

p̂i,t(ωt, vt) = vi − wi(ωt, vt),

where wi is the agent’s marginal contribution to the social welfare. Note that since i is receiving
an object, her total and flow marginal contributions are equal. However, since there are sufficient
objects present for each agent to receive one, i does not impose any externalities on the remaining
agents; thus,

wi(ωt, vt) = ŵi(ωt, vt) = vi,

implying that p̂i,t(ωt, vt) = 0. In this case, then, the allocation and payments of the auction mech-
anism and the dynamic pivot mechanism are the same.

Suppose instead that kt < nt; that is, there are more agents present than objects. Denote by im

the bidder with the m-th highest value. Then each agent who receives an object pays the price at
which buyer ikt+1 drops out of the auction, which is given by

β̂t
kt+1,nt

(ωt, vikt+1 , . . . , vint
) = vikt+1 − wt+1(ωt, vikt+1 , . . . , vint

).

In the dynamic pivot mechanism, on the other hand, each agent i who receives an object pays

p̂i,t(ωt, vt) = vi − wi(ωt, vt)

= vi − E

[
∞

∑
s=t

∑
j∈I

δs−t x̂j,s(ωs, vs)vj

]
+ E




∞

∑
s=t

∑
j∈I\{i}

δs−t x̂j,s(ω−i
s , vs)vj




= vi −

(
kt

∑
m=1

vm + E

[
∞

∑
s=t+1

∑
j∈I

δs−t x̂j,s(ωs, vs)vj

])

+

(
kt

∑
m=1

vm + (vikt+1 − vi) + E

[
∞

∑
s=t+1

∑
j∈I

δs−t x̂j,s(ω
−i,−ikt+1
s , vs)vj

])

= vikt+1 − E

[
∞

∑
s=t+1

∑
j∈I

δs−t x̂j,s(ωs, vs)vj

]
+ E

[
∞

∑
s=t+1

∑
j∈I

δs−t x̂j,s(ω
−i,−ikt+1
s , vs)vj

]

= vikt+1 − wt+1(ωt, vikt+1 , . . . , vint
),

where the final equality follows from the fact that wt+1(ωt, vikt+1 , . . . , vint
) is defined to be the ex-

pected future marginal contribution of the agent with the (kt + 1)-th highest value, conditional on
agents with higher values (which includes i) receiving an object today.

19



MAHER SAID

Thus, following the bidding strategies β̂t
m,nt

leads to period-t prices and allocations identical to
those of the dynamic pivot mechanism. Since the period t was arbitrary, as was the state ωt, this
equivalence holds after each history. Thus, the two mechanisms are outcome equivalent. �

Therefore, following the memoryless bidding strategies prescribed in Equation (3) leads to an
outcome that is identical to that of truth-telling in the dynamic pivot mechanism. Moreover, we
know from Lemma 3 that truth-telling is an equilibrium of the dynamic pivot mechanism. It
remains to be shown, however, that the bidding strategies described in Equation (3) form an equi-
librium of the sequential ascending auction mechanism.

Since the sequential ascending auction mechanism is a dynamic game of incomplete informa-
tion, the equilibrium concept we use is perfect Bayesian equilibrium. This solution concept re-
quires that behavior be sequentially rational with respect to agents’ beliefs, and that agents’ be-
liefs be updated in accordance with Bayes’ rule wherever possible. Since all buyers use the strictly
increasing bidding strategies β̂t

m,nt
, behavior along the equilibrium path is perfectly separating,

implying that Bayesian updating fully determines beliefs. To determine optimality off the equi-
librium path, however, we need to consider the beliefs of bidders after a deviation. Since such
post-deviation histories are zero probability events, we are free to choose arbitrary off-equilibrium
beliefs. Therefore, we will suppose that, after a deviation, buyers disregard their previous obser-
vations, believing that the deviating agent is currently sincerely revealing her value in accordance
with β̂t

m,nt
.

This particular specification of off-equilibrium beliefs is particularly useful. Note that these be-
liefs are consistent with Bayes’ rule even after probability zero histories. This follows immediately
from the fact that, generally, this system of beliefs consists of point-mass beliefs about the types
of other agents. The only agents about whom beliefs do not take this form are those that have yet
to arrive to the market and those who win an object in the period of their arrival—these agents
reveal only a lower bound on their value.

Moreover, this property is equivalent to the condition of preconsistency of beliefs in an extensive
form game of incomplete information put forth by Hendon, Jacobsen, and Sloth (1996), which
Perea (2002) shows to be both necessary and sufficient for the one-shot-deviation principle to
hold.15 This is an important observation, as perfect Bayesian equilibrium, in contrast to sequen-
tial equilibrium, need not satisfy the one-shot-deviation principle.16 We can therefore prove the
following result.

THEOREM 2 (Equilibrium in the sequential ascending auction).
Suppose that in each period, buyers bid according to the memoryless strategies described in Equation (3).

This strategy profile, combined with the system of beliefs described above, forms a (periodic ex post) perfect

Bayesian equilibrium of the sequential ascending auction mechanism.

15This condition is called updating consistency by Perea (2002), and is also equivalent to part 3.1(1) of Fudenberg and
Tirole (1991)’s definition of a reasonable assessment.
16These off-equilibrium beliefs also satisfy the “no-signaling-what-you-don’t know condition” in Fudenberg and Tirole
(1991). This suggests that (aside from measurability issues) one could construct a conditional probability system for
this equilibrium that satisfies Fudenberg and Tirole’s conditions for perfect extended Bayesian equilibrium. The set of
all such equilibria coincides, in finite games, with the set of sequential equilibria.
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PROOF OF THEOREM 2. We prove this proposition by making use of the one-shot deviation prin-
ciple. Consider any period with nt := |At| buyers on the market and kt objects present. Suppose
that all bidders other than player i are using the conjectured equilibrium strategies. We must show
that bidder i has no profitable one-shot deviations from the collection of cutoff points {β̂t

m,nt
}.

More specifically, we must show that i does not wish to exit the auction earlier than prescribed,
nor does she wish to remain active later than specified.

Once again labeling agents such that buyer i1 has the highest value and buyer int has the lowest,
note that if vi < vikt

, bidding according to {β̂t
m,nt

} implies that i does not win an object in the
current period. Therefore, exiting earlier than specified does not affect i’s current-period returns.
Moreover, since the bidding strategies are memoryless, neither future behavior by i’s competitors
nor i’s future payoffs will be affected by an early exit. Suppose, on the other hand, that i has
one of the kt highest values; that is, that vi ≥ vikt

. As established by Theorem 1, i receives an
object, paying a price such that her payoff is exactly equal to her marginal contribution to the
social welfare. Deviating to an early exit, however, leads to agent ikt+1 winning an object instead
of buyer i. Moreover, i’s expected payoff is then wt+1(ωt, vi, vikt+2 , . . . , vint

), which we defined as
i’s future expected marginal contribution. This is a profitable one-shot deviation for i if, and only
if,

wt+1(ωt, vi, vikt+2 , . . . , vint
) ≥ vi − β̂t

kt,nt
(ωt, vikt+1 , . . . , vint

).

Rearranging this inequality yields

β̂t
kt,nt

(ωt, vikt+1 , . . . , vint
) ≥ vi − wt+1(ωt, vi, vikt+2 , . . . , vint

) = β̂t
kt,nt

(ωt, vi, vikt+2 , . . . , vint
),

where the equality comes from the definition of β̂t
kt,nt

in Equation (3). Since vi > vikt+1 , this contra-
dicts the efficiency property established by Theorem 1. Thus, i does not wish to exit early.

Alternately, if vi ≥ vikt
, then planning to remain active in the auction longer than specified does

not change i’s payoffs, as i will win an object regardless. If, on the other hand, vi < vikt
, then

delaying exit from the period-t auction can affect i’s payoffs. Since bids in future periods do not
depend on information revealed in the current period, this only occurs if i remains in the auction
long enough to win an object. If i wins, she pays a price equal to the exit point of ivkt

, whereas if
she exits, she receives as her continuation payoff her marginal contribution to the social welfare.
So, suppose that i = im for some m > kt. Then a deviation to remaining active in the auction is
profitable if, and only if,

vm − β̂t
kt,nt

(ωt, vikt
, . . . , vim−1 , vm+1, . . . , vint

) ≥ wt+1(ωt, vm, . . . , vint
).

Rearranging this inequality yields

β̂t
kt,nt

(ωt, vikt
, . . . , vim−1 , vm+1, . . . , vint

) ≤ vm − wt+1(ωt, vm, . . . , vint
) = β̂t

m−1,nt
(ωt, vm, . . . , vint

),

where the equality comes from the definition of β̂t
m−1,nt

in Equation (3). As above, the fact that
vm < vikt

contradicts the efficiency property established by Theorem 1. Therefore, i does not
desire to remain active in the auction long enough to receive an object.
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Thus, we have shown that no player has any incentive to deviate from the prescribed strategies
when on the equilibrium path. In particular, using the bidding strategies β̂t

m,nt
is sequentially ra-

tional given players’ beliefs along the equilibrium path. Recall, however, that we have specified
off-equilibrium beliefs such that buyers “ignore” their past observations when they observe a de-
viation from equilibrium play, updating their beliefs to place full probability on the valuation that
rationalizes the deviation; they believe that the deviating agent is currently being truthful with re-
gards to the strategies β̂t

m,nt
. The argument above then implies that continuing to bid according to

the specified strategies remains sequentially rational with respect to these updated beliefs. Thus,
bidding according to the cutoffs in Equation (3) is optimal along the entire game tree: this strat-
egy profile forms a perfect Bayesian equilibrium of the sequential ascending auction mechanism.
Moreover, observe that the arguments above consider the ex post profitability of deviations; the
lack of profitable deviations even when there is no uncertainty about the valuations of current-
period competitors implies that this equilibrium is, in fact, a periodic ex post equilibrium. �

Theorems 1 and 2 jointly imply that the sequential ascending auction admits an efficient equi-
librium that also yields prices identical to those of the dynamic pivot mechanism.17 The sequential
ascending auction is therefore a natural, intuitive institution that yields efficient outcomes.

It is interesting to note several additional properties of this equilibrium. First, the proof shows
that deviations from the bidding strategies β̂t

m,nt
are not rational for any agent, even when condi-

tioning on competitors’ values in the current period. Thus, the strategy profile specified in Equa-
tion (3) forms a periodic ex post equilibrium. Since agents essentially “report” their values in each
auction, the extensive-form structure of the indirect mechanism allows for a much larger number
of potential deviations from truthful behavior as compared to the direct mechanisms discussed
earlier. Despite this, however, there is no loss in the “strength” of implementation: equilibrium in
both the direct and indirect mechanisms involves the same notion of periodic ex post equilibrium.

Furthermore, observe that in the sequential ascending auction, buyers have the ability to drop
out immediately once an auction begins. Since the bidding strategies discussed above form a
periodic ex post equilibrium, buyers do not wish to take advantage of this possibility, even if they
know their opponents’ values. Thus, although we have assumed that buyers cannot conceal their
presence when arriving to the market, we may conclude that, in equilibrium, they would not take
advantage of that opportunity were it afforded to them—the equilibrium we have constructed
remains an equilibrium in the “larger” game where buyers may conceal their presence.

4. REVENUE MAXIMIZATION

While the previous section discusses efficient direct and indirect mechanisms, we have said
little about revenue or optimality. In the static setting, Myerson (1981) showed that the optimal
mechanism for selling a single indivisible unit is a Vickrey-Clarke-Groves mechanism, with the
caveat that instead of allocating the good to the agent with the highest value, the seller allocates
the object to the agent with the highest virtual value. Maskin and Riley (1989) extend Myerson’s

17We should point out that this equilibrium is not unique. Analogous to the multiplicity of equilibria described by
Bikhchandani, Haile, and Riley (2002), there exists a continuum of outcome-equivalent equilibria that differ only in the
“speed” of information revelation within each period, among which the equilibrium we describe is the “slowest.”
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insights to the setting in which multiple identical units are offered for sale and show that, as in the
single-unit case, the objects are allocated to the set of buyers with the highest virtual valuations.

In our setting, however, while the objects are individual units of a homogeneous good, from the
perspective of an individual buyer, they are differentiated products. To make this clear, consider
a buyer i with value vi who is present at period t. If this buyer receives an object in period t, this
yields her utility vi. However, if she anticipates receiving an object in period t + 1, her valuation
for that object is δvi. Thus, she does not value the two objects identically. While there does exist
a literature on auctions for multiple heterogeneous objects, much of the focus has been on effi-
ciency and not revenue maximization.18 Thus, paralleling the previous section, we will describe
an optimal dynamic direct mechanism for a revenue-maximizing seller. We show that revenue
maximization in our setting with a dynamic population is achieved, as in Myerson (1981), by ap-
plying an efficient mechanism to virtual values. We will then discuss the indirect implementation
of the revenue-maximizing policy, showing that this can be achieved via a sequence of ascending
auctions with appropriately chosen reserve prices.

4.1. Preliminaries: An Optimal Direct Mechanism

We consider a single monopolist seller who commits, at time zero, to a dynamic direct mech-
anism M = {xt, pt}t∈N0

.19 The seller’s expected revenue from this mechanism is the expected
discounted sum of payments made by each buyer. Recalling from Equation (2) that the expected
payment of a buyer i, conditional on entry, is denoted by mi(vi, ωt), the seller’s payoff may be
written as

E

[
∞

∑
t=0

∑
i∈It

δtαt(i)mi(vi, ωt)

]
,

where αt(i) = 1 if i ∈ It arrives to the market (which occurs with probability πi ∈ [0, 1]) and
αt(i) = 0 otherwise. Applying the revenue equivalence result from Corollary 1 and following
Myerson (1981), standard techniques imply that the revenue-maximizing seller is faced with the
problem of choosing a feasible mechanism to maximize

E

[
∞

∑
t=0

∑
i∈It

δtαt(i)mi(0, ωt)

]
+ E

[
∞

∑
t=0

∑
i∈It

δtαt(i)qi(vi, ωt)ϕi(vi)

]
, (4)

subject to the incentive compatibility and individual rationality constraints discussed in Lemma 1.20

Notice that the seller’s objective function above is the sum of two terms: the first term is a
discounted sum of expected payments, while the second is a discounted sum of weighted virtual
values. Moreover, this second term is identical to the efficiency-oriented social planner’s objective
function in Equation (4), except that values have been replaced with virtual values. Therefore, the
insights of Myerson (1981) carry over from the static world to this context: maximizing revenue is

18An exception is the literature on sponsored search keyword auctions. See, for instance, Edelman and Schwarz (2006).
19As is standard, we assume that the seller fully commits to the mechanism. This ensures that the revelation principle
applies and that there is no loss of generality in considering only direct mechanisms.
20Recall that ϕi(vi) is the virtual valuation of buyer i with value vi, which we have assumed to be a strictly increasing
function of vi. This assumption is without loss of generality, as we may use the procedure of Skreta (2007) to define and
use “ironed” virtual values if ϕi is decreasing or not well-defined.
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equivalent to maximizing the virtual surplus. Objects are ordered by their arrival time and buyers
are ordered by their virtual values, and “earlier” objects are allocated to agents with higher virtual
values. Again, this matching must respect the feasibility constraints placed on the allocation rule.
Thus, the revenue-maximizing allocation policy is, in each period, to allocate all available objects
to the buyers currently present on the market that have the highest virtual values.21

Before proceeding to the formal statement of this result, some additional definitions are neces-
sary. For any state zt = (ht, ωt, v) ∈ Ht × {0, 1}I ×K×R, where v denotes truthful reporting by
all agents, we denote by

Aπ(zt) := {i ∈ At : ϕi(vi) ≥ 0}

the set of all agents present with non-negative virtual values. The set of agents i ∈ Aπ(zt) whose
virtual value is among the kt highest currently present is given by

Aπ
+(zt) :=

{
i ∈ Aπ(zt) :

∣∣{j ∈ At : ϕj(vj) ≥ ϕi(vi)
}∣∣ ≤ kt

}
.

Similarly, the set of agents i ∈ Aπ(zt) whose virtual value is ranked strictly outside the top kt

agents is
Aπ

−(zt) :=
{

i ∈ Aπ(zt) :
∣∣{j ∈ At : ϕj(vj) > ϕi(vi)

}∣∣ ≥ kt

}
.

Finally,

Aπ
∼(zt) := Aπ(zt) \

(
Aπ

+(zt)
⋃

Aπ
−(zt)

)

is the set of agents tied for the kt-th highest ranking virtual value. With these definitions in hand,
we may describe the set of optimal allocation rules.

LEMMA 5 (Revenue-maximizing allocation rules).
Suppose all buyers, upon arrival, report their true values. A feasible allocation rule {xt}t∈N0 is optimal

(revenue-maximizing) if, and only if, for all zt = (ht, ωt, v) ∈ Ht × {0, 1}I ×K×R,

xi,t(zt) = 1 for all i ∈ Aπ
+(zt), and

∑
i∈Aπ

∼(zt)

xi,t(zt) = kt − |Aπ
+(zt)| if |Aπ

+(zt)| < kt.

PROOF. The result follows directly from Lemma 2 and the discussion above. �

As with the efficient allocation rules described by Lemma 2, all revenue-maximizing allocation
rules agree after almost all histories. The only possible disagreements occur after the zero prob-
ability histories in which multiple agents have identical (positive) virtual values.22 Additionally,
these allocation policies are independent of past history, as optimal allocations are functions only
of the values of the agents currently present on the market and on the number of objects currently
available. We will therefore refer to the revenue-maximizing allocation rule x̃. By this, we mean
the revenue-maximizing allocation rule which breaks ties with equal probability, which is given

21Note, however, that allocating objects to agents with negative virtual values decreases the seller’s payoff. Thus, the
matching described above must restrict attention to buyers with non-negative virtual values.
22As with the efficient policies discussed in Section 3, we (without loss of generality) disregard the zero-probability
events in which an agent’s virtual value is equal to zero.

24



AUCTIONS WITH DYNAMIC POPULATIONS: EFFICIENCY AND REVENUE MAXIMIZATION

by

x̃i,t(ωt, vt) =





1 if i ∈ Aπ
+

0 if i ∈ Aπ
−

kt−|Aπ
+|

|Aπ
∼|

if i ∈ Aπ
∼

for all ωt ∈ {0, 1}I ×K and vt ∈ VAt , where we drop (for convenience) the dependence on ht.
It should be clear that the revenue-maximizing allocation rule x̃ satisfies the requirements of

incentive compatibility. From the perspective of a given buyer i ∈ I , x̃ allocates an object to i after
a given history if, and only if, i is among the highest-ranking (by virtual value) buyers present
at that history. Since we have assumed the standard regularity condition of increasing virtual
valuations, x̃i,t is nondecreasing in vi, given the values of the other agents present on the market.
Since this property holds for any arbitrary history and realization of competitors’ values, it is
straightforward to show that the resulting expected discounted probability of receiving an object
is also nondecreasing in vi. Thus, by choosing an appropriate payment rule, it is possible to design
an incentive compatible mechanism that implements the revenue-maximizing allocation policy.

Let us now examine the first term in the seller’s objective function in Equation (4). Given the in-
centive compatibility of the revenue-maximizing allocation policy, the revenue equivalence result
of Corollary 1 implies that the individual rationality constraint faced by our seller is

mi(0, ωt) ≤ 0

for all i ∈ I and all ωt ∈ {0, 1}I ×K. Since mi enters the seller’s objective function additively, this
constraint must be binding.

Notice that the problem of choosing a payment rule that satisfies this constraint in this dy-
namic setting is similar to the static optimal auction problem. In the static setting, the Myerson
(1981) optimal mechanism can be reinterpreted as a Vickrey-Clarke-Groves mechanism: instead
of maximizing surplus, the revenue-maximizing single-object allocation mechanism maximizes
virtual surplus. When agents report their values vi, the mechanism computes their virtual values
ϕi(vi) and then applies the VCG mechanism to these virtual values. This yields an allocation and
a “virtual price” such that the winning buyer’s virtual value less the virtual price is equal to her
marginal contribution to the virtual surplus. These insights can be applied in our setting; however,
care must be taken to correctly account for the discounting-induced heterogeneity across goods
available in different periods.

So, for each i ∈ I , define
r̃i := ϕ−1

i (0).

This is the minimal value required for agent i to potentially receive an object under the revenue-
maximizing allocation policy. Furthermore, for each t ∈ N0 and all i ∈ It, we define for any
ωt ∈ {0, 1}I ×K and truthful vt ∈ VAt the function

Πi(ωt, vt) := E

[
∞

∑
s=t

∑
j∈I

δs−t x̃j,s(ωs, vs)
(

ϕ−1
i

(
ϕj(vj)

)
− r̃i

)]
. (5)
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This expression is the same as the virtual surplus in the seller’s objective function in Equation (4),
except that instead of a weighted sum of virtual values, it is a weighted sum of the corresponding
“real” values of agent i, less the reservation value r̃i applied to agent i; that is, Πi measures the vir-
tual surplus in the same units as i’s utility function and i’s distribution function.23 Since we have
assumed that virtual values are increasing for all agents, ϕ−1

i is increasing. Therefore, transform-
ing the virtual values of all agents by ϕ−1

i preserves their ordering; moreover, ϕ−1
i (ϕj(vj))− r̃i ≥ 0

if, and only if, ϕj(vj) ≥ 0. Therefore,

x̃ ∈ arg max
{xs}∞

s=t

{
E

[
∞

∑
t=0

∑
j∈It

δtxj,t(ωt, vt)
(

ϕ−1
i (ϕj(vi)) − r̃i

)]}
;

that is, the optimal policy x̃ is an “efficient” allocation rule for an environment in which a planner
wishes to maximize the virtual surplus (as evaluated from the perspective of agent i).

Denoting by ω−i
s the market state in period s ∈ N0 when buyer i is removed from the market

(that is, where we impose αs(i) = 0), we write

Πi
−i(ω−i

t , vt) := E




∞

∑
s=t

∑
j∈I\{i}

δs−t x̃j,s(ω−i
s , vs)

(
ϕ−1

i

(
ϕj(vj)

)
− r̃i

)



for the virtual surplus (in terms of i’s utility and distribution) when i is removed from the market.
Thus, the presence of agent i ∈ It on the market yields an expected flow marginal contribution—
again, in units of i’s utility and distribution functions—equal to

w̃i(ωt, vt) := Πi(ωt, vt) − Πi
−i(ω−i

t , vt)︸ ︷︷ ︸
total contribution

−δ
(

E

[
Πi(ωt+1, vt+1)

]
− E

[
Πi

−i(ω−i
t+1, vt+1)

])

︸ ︷︷ ︸
expected future contribution

.

We now define the dynamic virtual pivot mechanism M̃ := {x̃t, p̃t}t∈N0 to be the dynamic direct
mechanism with the optimal allocation rule x̃ and the payment rule p̃ defined by

p̃i,t(ωt, vt) := x̃i,t(ωt, vt)vi − w̃i(ωt, vt)

for all (ωt, vt). This mechanism will provide to each agent flow payoffs equal to her flow contri-
bution to the virtual surplus. It is then straightforward to show that it implements the revenue-
maximizing policy.

LEMMA 6 (Implementability and optimality of the dynamic virtual pivot mechanism).
Suppose that virtual values ϕi are increasing for all i ∈ I . Then the dynamic virtual pivot mechanism M̃

is periodic ex post incentive compatible and individually rational, thereby implementing the optimal policy.

PROOF. The proof may be found in Appendix A. �

4.2. An Optimal Sequential Auction

The dynamic virtual pivot mechanism is, of course, a direct mechanism. Again, the question of
indirect implementation arises: is it possible to achieve the outcomes of the dynamic virtual pivot
mechanism using a decentralized auction mechanism? In light of the mechanism’s relationship to

23Note that when all agents are ex ante symmetric, ϕ−1
i (ϕj(vj)) = vj.
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the (efficient) dynamic pivot mechanism, as well as the results of Section 3, a natural candidate for
a revenue-maximizing indirect mechanism is the sequential ascending auction.

It is well-known that in a static setting with k units of a homogenous good to be allocated, effi-
ciency is achievable by a Vickrey-Clarke-Groves mechanism. This mechanism is outcome equiva-
lent to a k-th price sealed-bid or ascending auction. As established by Myerson (1981) in the case
of a single object, and by Maskin and Riley (1989) with multiple units of a homogenous good, the
revenue-maximizing mechanism when values are independently and identically drawn from the
same distribution F is a pivot mechanism with a reserve price equal to r̃ := ϕ−1(0). Such a mech-
anism is outcome equivalent to a k-th-price sealed-bid or ascending auction with a reserve price
equal to r̃. In our dynamic setting with randomly arriving and departing buyers, the dynamic
pivot mechanism are efficient. Moreover, the outcome of the dynamic pivot mechanism may be
implemented via a sequence of ascending auctions. Reasoning by analogy, we may conclude that,
since the dynamic virtual pivot mechanism is revenue-maximizing and corresponds (when buy-
ers are ex ante symmetric) to the dynamic pivot mechanism with a reserve of r̃, a sequence of
ascending auctions with reserve price r̃ is the corresponding revenue-maximizing auction.24

Let us formalize this analogy. We again make use of the multi-unit, uniform-price variant of the
Milgrom and Weber (1982) button auction. However, we introduce a reserve price equal to r̃. For
simplicity, we assume that the price clock starts at zero and rises continuously.25 When there are
m ≥ 1 units available in a given period, the auction will end whenever there are at most m bidders
still active and the price is at least r̃. At that time, each remaining bidder receives an object and
pays the price at which the auction ended. As before, ties are broken fairly.

Recall that we denote by nt the number of buyers present in period t, and that yt := (y1
t , . . . , ynt−1

t )

denotes the ordered valuations of all other buyers present in period t (taking the perspective of an
arbitrary bidder i), where y1

t is the largest value and ynt−1
t is the smallest. As before, we let

v̄m := (v̄, . . . , v̄) ∈ Vm and y>m
t := (ym+1

t , . . . , ynt−1
t ) for each m = 1, . . . , nt − 1.

Finally, we define, for each m = 1, . . . , nt − 1,

w̃t+1(ωt, vi, y>m
t ) := δE [w̃i(ωt+1, vt+1)|vt = (v̄m, vi, y>m

t )] .

This is the (discounted) expected future marginal contribution of an agent i ∈ At to the virtual
surplus, conditional on the period-t presence of m competitors with the highest possible value v̄

and nt − m − 1 buyers ranked below i with values y>m
t . Notice that this is exactly i’s expected

contribution to the social welfare over a replacement agent with value r̃. Moreover, observe that
w̃t+1(ωt, vi, y>m

t ) = 0 for all buyers with values vi ≤ r̃, regardless of the realization of y>m
t .

24In the case where buyers are not ex ante symmetric, a sequence of ascending auctions will again be equivalent to the
dynamic virtual pivot mechanism, with the proviso that buyers’ price clocks run asynchronously at speeds correspond-
ing to the rate of change in their virtual value functions. Such an auction corresponds to the Myerson (1981) optimal
auction when buyers are not symmetric—see Proposition 1 of Caillaud and Robert (2005).
25One could equivalently model each auction as a two-stage game in which buyers first make a participation decision
for the current-period auction, and then the price clock starts at r̃.
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In each period t ∈ N0, we assume that each agent i ∈ At bids up to the cutoffs β̃t
m,nt

whenever
she has m active competitors in the auction, where

β̃t
m,nt

(ωt, vi, y>m
t ) := vi − w̃t+1(ωt, vi, y>m

t ). (6)

These (symmetric across agents) cutoffs are strictly increasing in vi, implying that buyers can infer
the values of those competitors that have already exited the auction. Note that when buyer i is
active and knows the values y>m

t of her inactive opponents, the price at which she is indifferent
between winning an object and receiving her discounted marginal contribution in the next period
(conditional on all remaining active buyers having values greater than hers) is exactly β̃t

m,nt
. We

may then use arguments similar to those of Theorems 1 and 2 to prove the following result.

THEOREM 3 (Revenue maximization via sequential ascending auctions).
Suppose that Fi = F for all i ∈ I . Following the bidding strategies β̃t

m,nt
in Equation (6) in every period

of the sequential ascending auction with reserve price r̃ := ϕ−1(0) is a (periodic ex post) perfect Bayesian

equilibrium that is outcome equivalent to the dynamic virtual pivot mechanism.

PROOF. The proof mirrors Section 3.2. Full details may be found in Appendix B. �

Theorem 3 therefore implies that the sequential ascending auction with a reserve price admits
an equilibrium with prices and allocations identical to those of the dynamic virtual pivot mecha-
nism. Therefore, analogous to the case of Section 3.2, we find that a seller who wishes to maximize
revenues via a transparent, decentralized mechanism may do so by using a sequence of ascending
auctions. Moreover, the method of proof of the proposition above shows that the strategy profile
specified in Equation (6) forms a periodic ex post equilibrium. Given expectations about future
arrivals and behavior, each buyer’s current-period bid is a best response to the strategies of her
opponents, regardless of the realization of their values or the history of the mechanism.

5. CONCLUSION

In this paper, we examine a private-values, single-unit-demand environment where buyers and
objects arrive at random times. We discuss the implementation of the efficient allocation policy
via the dynamic pivot mechanism, a dynamic variant of the classic Vickrey-Clarke-Groves mech-
anism. Moreover, by extending the static Myerson (1981) payoff- and revenue-equivalence results
to our dynamic setting, we are able to derive an optimal direct mechanism. This mechanism suc-
ceeds in maximizing the seller’s profits in this dynamic environment by applying the efficient
mechanism to buyers’ virtual values.

While direct mechanisms are useful theoretical devices, there is much evidence demonstrating
that they may be of limited value in practice. We therefore consider indirect mechanisms in this
setting and propose using a sequence of one-shot auctions instead. We show that a sequence of
ascending auctions serves as a simple, natural, and intuitive institution that corresponds to the
dynamic Vickrey-Clarke-Groves mechanism. Unlike the standard second-price auction, this open
auction format allows each buyer to learn her competitors’ values, and hence determine her own
marginal contribution to the social welfare. When each buyer exits each auction at the price such
that she is indifferent between winning the object and obtaining her future marginal contribution,
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we obtain a decentralized price discovery mechanism that yields equilibrium outcomes identi-
cal to those of the centralized direct mechanism. Moreover, this equilibrium behavior behavior
is memoryless—buyers rationally ignore payoff-relevant information from previous periods, cor-
rectly anticipating that it will be revealed anew.

These results set the stage for several additional avenues of inquiry. For instance, suppose that
objects need not be allocated in the period of their arrival, but can instead be placed in inventory
and allocated in future periods. Such a situation provides a seller with an additional strategic tool:
the ability to withhold an item in the current period in hopes of “better” demand in future periods.
While some properties of our solution are maintained (for instance, the efficient policy continues
to allocate objects to higher-ranked buyers before moving onto competitors with lower values,
and a dynamic VCG mechanism will continue to be efficient), the indirect implementation results
do not follow immediately. For example, in the case of storable objects, the sale of an object to a
particular agent imposes an additional externality on her competitors, as the number of objects
available in the future decreases. This reduces the incentives for buyers to truthfully reveal their
private information, as this information may be of great strategic value to competitors. Moreover,
reserve prices are necessary even for achieving efficient outcomes, and the manner in which these
reserve prices fluctuate over time with changes in supply will be a crucial factor in the possibility
of attaining efficient outcomes via an auction mechanism.

Another natural extension of our model is the generalization to the case in which agents may
demand multiple units. This, however, introduces additional intertemporal tradeoffs in any auc-
tion mechanism, as expected future payoffs in individual valuations are no longer identical func-
tions of individual values when buyers have differential demands or are faced with multi-unit
“exposure” risks. While informational asymmetries may be resolved via information renewal and
memoryless strategies, such strategies cannot resolve the fundamental asymmetry in objectives
that arise when some buyers have already satisfied a portion of their demand. An alternative line
of research relaxes the assumption that buyer entries and exits are exogenous, instead allowing
buyers to condition their participation on market conditions. Such a model would provide an im-
portant building block to an understanding of competing marketplaces and platforms. We leave
these questions, however, for future work.
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APPENDIX A. OMITTED PROOFS

PROOF OF LEMMA 1. We first show the necessity of the three conditions for incentive compati-
bility and individual rationality. So, suppose that the mechanism M is both incentive compatible
and individually rational. Fix any t ∈ N0, any i ∈ It, and arbitrary ωt ∈ {0, 1}I × K. Then
incentive compatibility implies that, for all vi ∈ V,

Ûi(vi, ωt) = max
v′i∈V

{
qi(v′i, ωt)vi − mi(v′i, ωt)

}
.

Thus, Ûi(vi, ·) is an affine maximizer, and is hence a convex function of vi. Moreover, for all
vi, v′i ∈ V, incentive compatibility is equivalent to

Ûi(v′i, ωt) ≥ qi(vi, ωt)v′i − mi(vi, ωt)

= qi(vi, ωt)vi − mi(vi, ωt) + qi(vi, ωt)(v′i − vi)

= Ûi(vi, ωt) + qi(vi, ωt)(v′i − vi).

Thus, qi(vi, ·) is a subderivative of Ûi(vi, ·) at vi. Since Ûi(vi, ·) is convex in vi, it is absolutely
continuous and hence differentiable almost everywhere, implying that at every point of differen-
tiability,

∂

∂vi
Ûi(vi, ωt) = qi(vi, ωt).

Since Ûi(vi, ·) is convex, this implies that qi must be nondecreasing in vi.
Moreover, every absolutely continuous function is equal to the definite integral of its derivative,

implying that

Ûi(vi, ωt) = Ûi(0, ωt) +
∫ vi

0
qi(v′i, ωt) dv′i

for all vi ∈ V. Finally, since qi is nondecreasing in vi, the requirement of individual rationality is
then satisfied for all vi only if

Ûi(0, ωt) ≥ 0.

Hence, the three conditions are necessary conditions for M to be incentive compatible and indi-
vidually rational.

We now show the sufficiency of the three conditions for incentive compatibility and individual
rationality. Suppose that M satisfies the three conditions, and fix any t ∈ N0, any i ∈ It, and
arbitrary ωt ∈ {0, 1}I ×K. Note first that qi is nondecreasing in vi and Ûi(0, ωt) ≥ 0 immediately
imply that Ûi(vi, ωt) ≥ 0 for all vi ∈ V, and so M is individually rational.

Now, for any vi, v′i ∈ V, the second condition implies that

Ûi(v′i, ωt) = Ûi(vi, ωt) +
∫ v′i

vi

qi(v′′i , ωt) dv′′i .

If vi < v′i, then qi nondecreasing implies that qi(vi, ωt) ≤ qi(v′i, ωt). Thus,

Ûi(v′i, ωt) ≥ Ûi(vi, ωt) + qi(vi, ωt)(v′i − vi).
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Similarly, if vi > v′i, then qi nondecreasing implies that qi(vi, ωt) ≥ qi(v′i, ωt). Therefore,

Ûi(v′i, ωt) = Ûi(vi, ωt) −
∫ vi

v′i

qi(v′′i , ωt) dv′′i

≥ Ûi(vi, ωt) − qi(vi, ωt)(vi − v′i) = Ûi(vi, ωt) + qi(vi, ωt)(v′i − vi).

However, this inequality is, as shown above, equivalent to incentive compatibility. Since vi, v′i ∈ V

were chosen arbitrarily, this implies that M is incentive compatible. �

PROOF OF LEMMA 2.26 Note first that any two allocation rule that satisfy the conditions of the
lemma yield the same expected payoff to the social planner. To see this, note that the only variation
permitted is in the allocation of objects to agents with zero valuation and in the breaking of ties.
Given the allocations to all other agents, choosing to allocate to agents with value zero yields
neither an increase nor decrease in the realized surplus. Moreover, although the second condition
regarding the allocation to agents in A∼ allows for various mixtures over this set of agents, the
outcome of these mixtures is always the same: exactly kt − |A+| of these agents receive an object.
Different choices among these outcomes does not affect future payoffs, as the arrival process of
agents and objects is orthogonal to these allocative decisions, and all agents depart the system at
the same exogenously given rate 1 − γ.

With this in mind, let x̂ denote a deterministic allocation rule that allocates an object to the
highest-ranking agents (including those with value equal to zero), where ties are broken arbitrarily
(but without randomization). Fix any policy x0 that yields the planner a strictly higher payoff than
the policy x̂, and define

Z0 :=
{
(ht, ωt) ∈ H× {0, 1}I ×K : x0(z) 6= x̂(z), x0(z′) = x̂(z′) for all z′ → z

}
.

Thus, Z0 is the set of all histories and arrivals z such that x0 and x̂ disagree at z, but agree on all
of z’s prefixes; that is, Z0 is the set of “first” or “earliest” disagreements between x0 and x̂. Since
x0 does strictly better than x̂, this set must have nonzero measure (with respect to the measure
induced by the arrival processes), as otherwise the two policies would agree almost everywhere
(and hence yield identical payoffs).

For each z ∈ Z0, note that the policy x0 induces a probability distribution over outcomes, where
an outcome is an assignment of objects to agents. Denote by Σ0(z) the set of outcomes induced
by x0 at history z. Thus, an outcome σ ∈ Σ0(z) is associated with a subset of buyers present that
receive an object. Let aj(σ) denote the j-th highest-valued agent that receives an object under x0 in
outcome σ. Similarly, let bj(z) denote the j-th highest-valued agent overall.

Define for each z ∈ Z0 and for each σ ∈ Σ0(z), we define the “continuation policy” xσ
1 (z) to

be the allocation rule that allocates to the highest-ranking agents present at time z, and is equal to
x0 at all successors of z except that it allocates to agent aj(σ) whenever x0 allocates to agent bj(z).
Thus, xσ

1 (z) is the same as x0 except that it “swaps” the allocation decisions of aj(σ) and bj(z).
Since vaj(σ) ≤ vbj(z) (with a strict inequality for at least one j), the expected payoff to the planner
under xσ

1 is greater than that of x0 along this branch of the mechanism tree. To see why this is true,

26Thanks are due to Larry Samuelson for suggesting the method of proof used below.
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consider any v > v′ and t < t′. Since δ < 1, we have

(δtv + δt′v′) − (δtv′ + δt′v) = (δt − δt′)(v − v′) > 0.

Thus, even if agents do not depart the market, the planner’s payoff along this path is increases.
Thus, define the allocation policy x1 to be equal to x0 at all histories that are not successors to

histories in Z0. Furthermore, for each z ∈ Z0, we define x1(z) to be the stochastic policy that
chooses xσ

1 (z) with the probability that x0 leads to outcome σ. Since this leads to an increase in
the planner’s payoff over x0 along every successor history to those in Z0, and this set has positive
measure, it must be the case that x1 yields a strictly greater payoff that x0.

If x1 yields the planner a payoff less than or equal to that of x̂, transitivity of the planner’s
payoffs leads to a contradiction, implying that there does not exist a policy x0 such that x0 does
strictly better than x̂, and hence that x̂ is optimal.

On the other hand, if x1 yields a payoff greater than that of x̂, we define the set

Z1 :=
{
(ht, ωt) ∈ H× {0, 1}I ×K : x1(z) 6= x̂(z), x1(z′) = x̂(z′) for all z′ → z

}

to be the set of x1’s “first disagreements” with x̂. We may repeat the procedure above to then
define a new policy x2 that agrees with x̂ at every z ∈ Z1, but does strictly better than either x1.
Notice that, if x1 does better than x̂, then we have arrived at a contradiction.

Proceeding in this manner, we construct a sequence of policies {xs}∞
s=0 with associated expected

payoffs {Ws}∞
t=0 such that Ws < Ws+1 for all s ∈ N0. Note, however, that for all s ∈ N0, xs agrees

with x̂ on at least all histories of length s. Since δs approaches zero as s becomes increasingly large,
this implies that

lim
s→∞

Ws = Ŵ,

where Ŵ is the planner’s expected payoff from following policy x̂. Moreover, since {Ws} is an
increasing sequence, this implies that

Ŵ ≥ Ws for all s ∈ N0,

a contradiction. It must therefore be the case that there does not exist a policy x0 that yields the
planner a strictly higher payoff than x̂. Therefore, we may conclude that x̂ is, in fact, a socially
optimal policy. �

PROOF OF LEMMA 4. Fix an arbitrary period t ∈ N0, and let ωt := (αt, kt) denote the state of the
market at time t. Consider an agent i ∈ At with value vi, and suppose that nt − m − 1 buyers have
dropped out of the period-t auction, revealing values y>m

t , where m ∈ {1, . . . , nt − 1}. We wish to
show first that vi > vj > ym+1

t implies that

β̂t
m,nt

(ωt, vi, y>m
t ) := vi − wt+1(ωt, vi, y>m

t ) > vj − wt+1(ωt, vj, y>m
t ) =: β̂t

m,nt
(ωt, vj, y>m

t ).
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Notice that wt+1(ωt, vj, y>m
t ) − wt+1(ωt, vi, y>m

t ) =

δE

[
W(ωt+1, vt+1)|vt = (v̄nt−m, vj, y>m

t )
]
− δE

[
W−j(ω

−j
t+1, vt+1)|vt = (v̄nt−m, vj, y>m

t )
]

− δE

[
W(ωt+1, vt+1)|vt = (v̄nt−m, vi, y>m

t )
]
+ δE

[
W−i(ω−i

t+1, vt+1)|vt = (v̄nt−m, vi, y>m
t )

]

= δE

[
W(ωt+1, vt+1)|vt = (v̄nt−m, vj, y>m

t )
]
− δE

[
W(ωt+1, vt+1)|vt = (v̄nt−m, vi, y>m

t )
]
,

since removing either i or j in the following period, conditional on their being the m-th highest-
ranked agent, does not differentially affect the order of anticipated future allocations to any other
agents. In particular, since the the efficient allocation rule x̂ makes assignments based solely on
the ranking of valuations, it will choose the same assignments in future periods when i or j have
been removed from the market.

Moreover, by naïvely treating buyer j as though her true value were vi, we can provide a bound
on the difference above. In particular, we have

δE

[
W(ωt+1, vt+1)|vt = (v̄nt−m, vj, y>m

t )
]
− δE

[
W(ωt+1, vt+1)|vt = (v̄nt−m, vi, y>m

t )
]

≥ E

[
∞

∑
s=t+1

δs−t x̂i,s(ωs, vs)|vt = (v̄nt−m, vi, y>m
t )

]
(vj − vi).

Thus, if vi > vj, then

β̂t
m,nt

(ωt, vi, y>m
t ) − β̂t

m,nt
(ωt, vi, y>m

t )

≥ (vi − vj)

(
1 − E

[
∞

∑
s=t+1

δs−t x̂i,s(ωs, vs)|vt = (v̄m, vi, y>m
t )

])
> 0

since the discounted expected probability of receiving an object in the future is bounded above by
δ < 1. Thus, β̂t

m,nt
(ωt, vi, y>m

t ) is strictly increasing in vi.
Also, note that if vi > vj = ym+1

t , then wt+1(ωt, vj, y>m+1
t ) − wt+1(ωt, vi, vj, y>m+1

t ) =

δ
(

E

[
W(ωt+1, vt+1)|vt = (v̄m+1, vj, y>m+1

t )
]
− E

[
W(ωt+1, vt+1)|vt = (v̄m, vi, vj, y>m+1

t )
])

− δ
(

E

[
W−i(ω−i

t+1, vt+1)|vt = (v̄m, vi, vj, y>m+1
t )

]
− E

[
W−j(ω

−j
t+1, vt+1)|vt = (v̄m+1, vj, y>m+1

t )
])

.

However, the second difference above may be rewritten as

E

[
W−i(ω−i

t+1, vt+1)|vt = (v̄m, vi, vj, y>m+1
t )

]
− E

[
W−i(ω−i

t+1, vt+1)|vt = (v̄m, vi, vi, y>m+1
t )

]

+ E

[
W−i(ω−i

t+1, vt+1)|vt = (v̄m, vi, vi, y>m+1
t )

]
− E

[
W−j(ω

−j
t+1, vt+1)|vt = (v̄m+1, vj, y>m+1

t )
]
.

Thus,
wt+1(ωt, vj, y>m+1

t ) − wt+1(ωt, vi, vj, y>m+1
t )

is the sum of three differences. The first is the expected gain in social welfare when increasing i’s
value from vi to v̄. The second is the expected gain in social welfare (when i is not on the market)
from increasing j’s value from vj to vi. Finally, the third difference is the expected loss in social
welfare (when j is not present) from decreasing i’s value from v̄ to vi. However, since vj < vi, the
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presence or absence of j from the market has no influence on when the efficient policy allocates to
i, regardless of whether i’s value is vi or v̄. Therefore, the gain from the first difference equals the
loss from the third difference, implying that

wt+1(ωt, vj, y>m+1
t ) − wt+1(ωt, vi, vj, y>m+1

t )

= δ
(

E

[
W−i(ω−i

t+1, vt+1)|vt = (v̄m, vi, vj, y>m+1
t )

]
− E

[
W−i(ω−i

t+1, vt+1)|vt = (v̄m, vi, vi, y>m+1
t )

])
.

Moreover, by (again) naïvely treating buyer j as though her true value were vi, we can provide a
bound on the difference above, which may be used to show that

β̂t
m,nt

(ωt, vi, vj, y>m+1
t ) − β̂t

m+1,nt
(ωt, vj, y>m+1

t ) > 0.

Thus, the exit of the buyer with rank (m + 1) does not induce the immediate exit of any buyer
with a higher value. Therefore, since β̂t

m,nt
(ωt, vi, vj, y>m+1

t ) is strictly increasing in vi, the price at
which this exit occurs fully reveals the value of the (m + 1)-th highest-ranked buyer.

Since m was arbitrary, we may conclude that bids are fully separating. �

PROOF OF LEMMA 6. As discussed within the text, the discounted expected probability of re-
ceiving an object under the revenue-maximizing allocation policy q̃i(vi, ωt) is nondecreasing in vi.
This implies, applying Lemma 1, that the virtual dynamic pivot mechanism is incentive compat-
ible. To see that it this mechanism is also individually rational, observe that the law of iterated
expectations implies that

E

[
∞

∑
s=t

δs−tw̃i(ωs, vs)|vi = 0

]
= E [w̃i(ωt, vt)|vi = 0] .

Simple arithmetic then implies that the expected utility from participating in the mechanism of an
agent i with value vi = 0 simplifies to

Ûi(0, ωt) = −m̃i(0, ωt) = E [w̃i(ωt, vt)|vi = 0] .

Notice, however, the revenue-maximizing allocation rule never allocates an object to agent i since

ϕi(0) = −
1

fi(0)
< 0.

Therefore, the optimal policy yields exactly the same outcome whether or not i is present, implying
that w̃i = 0 regardless of the realizations of other buyers’ values. Thus, by Lemma 1, the dynamic
virtual pivot mechanism M̃ is individually rational.

In order to show that truth-telling is a periodic ex post optimal strategy for all agents, fix an
arbitrary agent i ∈ It for arbitrary t ∈ N0, and suppose that i knows the reported values vt

−i of all
agents other than i who are also on the market at time t. Then, by reporting a value v′i upon her
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arrival in state ωt, agent i’s payoff under the dynamic virtual pivot mechanism is
(

x̃i,t(ωt, (v′i, vt
−i)) + E

[
∞

∑
s=t+1

δs−t x̃i,s(ωs, (v′i, vs
−i))

])
(vi − v′i) + w̃i(ωt, (v′i, vt

−i))

= E

[
∞

∑
s=t

∑
j∈I

δs−t x̃j,s(ωs, (v′i, vs
−i))

(
ϕ−1

i (ϕj(vj)) − r̃i

)]
− Πi

−i(ω−i
t , vt

−i),

where the expectation is taken with respect to the true distributions of values for agents arriving in
periods s > t. Since x̃ is an efficient policy for maximizing the above sum of “transformed” virtual
values, the first term above is maximized by setting v′i = vi. Moreover, the second term does
not depend on v′i. Hence, i’s expected payoff is maximized by truthful reporting of her value,
regardless of the reports of the other agents present or the state upon i’s arrival; that is, given
the truth-telling behavior of agents arriving in every future period, truthful reporting is optimal
regardless of the realizations of all other agents already present on the market. �
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APPENDIX B. PROOF OF THEOREM 3

The proof of this proposition parallels the developments of Section 3.2. In particular, we will
first show, as in Lemma 4, that bids are fully separating. Then we will show that, analogous
to Theorem 1, following the postulated bidding strategies leads to an identical outcome as the
dynamic virtual pivot mechanism. Finally, we will show, as in Theorem 2, that these strategies
form a (periodic ex post) perfect Bayesian equilibrium of the sequential auction mechanism.

CLAIM. The bid functions β̃t
m,nt

(ωt, vi, y>m
t ) are increasing in vi for all m = 1, . . . , nt − 1. Moreover, if

vi > ym+1
t , then

β̃t
m,nt

(ωt, vi, y>m
t ) > β̃t

m+1,nt
(ωt, y>m

t ).

PROOF OF CLAIM. Fix an arbitrary period t ∈ N0, and let αt and kt indicate the set of agents and
objects present on the market, respectively. Consider an agent i ∈ At with value vi, and suppose
that nt − m − 1 buyers have dropped out of the period-t auction, revealing values y>m

t , where
nt := |At| is the number of agents present, and m ∈ {1, . . . , nt − 1}. We wish to show first that
vi > vj > ym+1

t implies that

β̃t
m,nt

(ωt, vi, y>m
t ) := vi − w̃t+1(ωt, vi, y>m

t ) > vj − w̃t+1(ωt, vj, y>m
t ) =: β̃t

m,nt
(ωt, vj, y>m

t ).

Notice that

w̃t+1(ωt, vj, y>m
t ) − w̃t+1(ωt, vi, y>m

t )

= δE

[
Π(ωt+1, vt+1)|vt = (v̄nt−m, vj, y>m

t )
]
− δE

[
Π−j(ω

−j
t+1, vt+1)|vt = (v̄nt−m, vj, y>m

t )
]

− δE

[
Π(ωt+1, vt+1)|vt = (v̄nt−m, vi, y>m

t )
]
+ δE

[
Π−i(ω−i

t+1, vt+1)|vt = (v̄nt−m, vi, y>m
t )

]
.

This, however, is equal to

δE

[
Π(ωt+1, vt+1)|vt = (v̄nt−m, vj, y>m

t )
]
− δE

[
Π(ωt+1, vt+1)|vt = (v̄nt−m, vi, y>m

t )
]
,

since removing either i or j in the following period, conditional on their being the m-th highest-
ranked agent, does not differentially affect the order of anticipated future allocations to any other
agents. In particular, since the the revenue-maximizing allocation rule x̃ makes assignments based
solely on the ranking of valuations, it will choose the same assignments in future periods when i

or j have been removed from the market.
Moreover, by naïvely treating buyer j as though her true value were vi, we can provide a bound

on the difference above. In particular, we have

δE

[
Π(ωt+1, vt+1)|vt = (v̄nt−m, vj, y>m

t )
]
≥ δE

[
Π(ωt+1, vt+1)|vt = (v̄nt−m, vi, y>m

t )
]

+E

[
∞

∑
s=t+1

δs−t x̃i,s(ωs, vs)|vt = (v̄nt−m, vi, y>m
t )

]
(vj − vi).
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Thus, if vi > vj, then

β̃t
m,nt

(ωt, vi, y>m
t ) − β̃t

m,nt
(ωt, vi, y>m

t )

≥ (vi − vj)

(
1 − E

[
∞

∑
s=t+1

δs−t x̃i,s(ωs, vs)|vt = (v̄m, vi, y>m
t )

])
> 0

since the discounted expected probability of receiving an object in the future is bounded above by
δ < 1. Thus, β̃t

m,nt
(ωt, vi, y>m

t ) is strictly increasing in vi.
Additionally, note that if vi > vj = ym+1

t , then

w̃t+1(ωt, vj, y>m+1
t ) − w̃t+1(ωt, vi, vj, y>m+1

t )

= δ
(

E

[
Π(ωt+1, vt+1)|vt = (v̄m+1, vj, y>m+1

t )
]
− E

[
Π(ωt+1, vt+1)|vt = (v̄m, vi, vj, y>m+1

t )
])

− δ
(

E

[
Π−i(ω−i

t+1, vt+1)|vt = (v̄m, vi, vj, y>m+1
t )

]
− E

[
Π−j(ω

−j
t+1, vt+1)|vt = (v̄m+1, vj, y>m+1

t )
])

.

However, the second difference above may be rewritten as

E

[
Π−i(ω−i

t+1, vt+1)|vt = (v̄m, vi, vj, y>m+1
t )

]
− E

[
Π−i(ω−i

t+1, vt+1)|vt = (v̄m, vi, vi, y>m+1
t )

]

+ E

[
Π−i(ω−i

t+1, vt+1)|vt = (v̄m, vi, vi, y>m+1
t )

]
− E

[
Π−j(ω

−j
t+1, vt+1)|vt = (v̄m+1, vj, y>m+1

t )
]
.

Thus,
w̃t+1(ωt, vj, y>m+1

t ) − w̃t+1(ωt, vi, vj, y>m+1
t )

is the sum of three differences. The first is the expected gain in virtual surplus when increasing i’s
value from vi to v̄. The second is the expected gain in virtual surplus (when i is not on the market)
from increasing j’s value from vj to vi. Finally, the third difference is the expected loss in virtual
surplus (when j is not present) from decreasing i’s value from v̄ to vi. However, since vj < vi,
the presence or absence of j from the market has no influence on when the optimal (revenue-
maximizing) policy allocates to i, regardless of whether i’s value is vi or v̄. Therefore, the gain
from the first difference equals the loss from the third difference, implying that

w̃t+1(ωt, vj, y>m+1
t ) − w̃t+1(ωt, vi, vj, y>m+1

t ) = δ
(

E

[
Π−i(ω−i

t+1, vt+1)|vt = (v̄m, vi, vj, y>m+1
t )

]

− E

[
Π−i(ω−i

t+1, vt+1)|vt = (v̄m, vi, vi, y>m+1
t )

])
.

Moreover, by (again) naïvely treating buyer j as though her true value were vi, we can provide a
bound on the difference above, which may be used to show that

β̃t
m,nt

(ωt, vi, vj, y>m+1
t ) − β̃t

m+1,nt
(ωt, vj, y>m+1

t ) > 0.

Thus, the exit of the buyer with rank (m + 1) does not induce the immediate exit of any buyer
with a higher value. Therefore, since β̃t

m,nt
(ωt, vi, vj, y>m+1

t ) is strictly increasing in vi, the price at
which this exit occurs fully reveals the value of the (m + 1)-th highest-ranked buyer.

Since m was arbitrarily chosen, this implies that the drop-out points of buyers bidding accord-
ing to the strategy described by Equation (6) are fully revealing of the buyers’ values. �
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CLAIM. Following the bidding strategies β̃t
m,nt

in every period t in the sequential ascending auction mech-

anism is outcome equivalent to the dynamic virtual pivot mechanism.

PROOF OF CLAIM. Fix an arbitrary period t ∈ N0, and let kt denote the number of objects present,
and nt := |At| denote the number of agents present. As shown above, the bidding strategies β̃t

m,nt

are strictly increasing; therefore, the multi-unit uniform-price ascending auction ends allocates the
kt objects to the group of buyers with the kt highest values greater than the reserve.27 Recall that if
kt ≥ nt, the auction ends immediately upon the price reaching the reserve value r̃, and all buyers
present receive an object at that price. Similarly, in the dynamic virtual pivot mechanism, each
buyer i with vi > r̃ receives an object, and makes a payment p̃i,t given by

p̃i,t(ωt, vt) = vi − w̃i(ωt, vt),

where w̃i is the agent’s marginal contribution to the virtual surplus.28 However, since there are
sufficient objects present for each agent with a non-negative virtual value to receive one, i does
not impose any externalities on the remaining agents; thus,

w̃i(ωt, vt) = w̃i(ωt, vt) = vi − r̃,

implying that p̃i,t(ωt, vt) = r̃. In this case, then, the allocation and payments of the auction mech-
anism and the dynamic pivot mechanism are the same.

Suppose instead that kt < nt; that is, there are more agents present than objects. Denote by im

the bidder with the m-th highest value. Then each agent who receives an object pays the greater
of the reserve price r̃ and the price at which buyer ikt+1 drops out of the auction, which is given by

β̂t
kt+1,nt

(ωt, vikt+1 , . . . , vint
) = vikt+1 − wt+1(ωt, vikt+1 , . . . , vint

).

If vikt+1 < r̃, then the situation is identical to the previous case. Therefore, assume that vikt+1 ≥ r̃.
In the dynamic virtual pivot mechanism, on the other hand, each agent i who receives an object

pays a price

p̃i,t(ωt, vt) = vi − wi(ωt, vt)

= vi − E

[
∞

∑
s=t

∑
j∈I

δs−t x̃j,s(ωs, vs)(vj − r̃)

]
+ E




∞

∑
s=t

∑
j∈I\{i}

δs−t x̃j,s(ω−i
s , vs)(vj − r̃)


 .

This may be rewritten as

vi −

(
kt

∑
m=1

(vm − r̃) + E

[
∞

∑
s=t+1

∑
j∈I

δs−t x̃j,s(ωs, vs)(vj − r̃)

])

+

(
kt

∑
m=1

(vm − r̃) + (vikt+1 − vi) + E

[
∞

∑
s=t+1

∑
j∈I

δs−t x̃j,s(ω
−i,−ikt+1
s , vs)(vj − r̃)

])
.

27Recall that buyers with values less than r̃ bid up to their true value, as they are never allocated an object, and so their
future expected contribution to the virtual surplus is zero.
28Note that since i is receiving an object, her total and flow marginal contributions are equal.
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Rearranging the above expression allows us to rewrite it as

p̃i,t(ωt, vt) = vikt+1 − E

[
∞

∑
s=t+1

∑
j∈I

δs−t x̃j,s(ωs, vs)(vj − r̃)

]

+ E

[
∞

∑
s=t+1

∑
j∈I

δs−t x̃j,s(ω
−i,−ikt+1
s , vs)(vj − r̃)

]

= vikt+1 − w̃t+1(ωt, vikt+1 , . . . , vint
),

where the second equality follows from the fact that wt+1(ωt, vikt+1 , . . . , vint
) is defined to be the

expected future marginal contribution to the virtual surplus of the agent with the (kt + 1)-th high-
est value, conditional on agents with higher values (which includes i) receiving an object today.
Therefore, following the bidding strategies β̃t

m,nt
leads to period-t prices and allocations identical

to those of the dynamic pivot mechanism. Since the period t was arbitrary, as was the state ωt,
this equivalence holds after each history. Thus, the two mechanisms are outcome equivalent. �

Finally, it remains to be seen that the bidding strategies in Equation (6) do, in fact, form an equi-
librium. As in the case of the sequential ascending auction with no reserve, the bidding strategies
β̃t

m,nt
are strictly increasing. Behavior along the equilibrium path is therefore perfectly separating,

implying that Bayesian updating fully determines beliefs. In order to determine optimality off

the equilibrium path, we again suppose that, after a deviation, buyers ignore their past observa-
tions and the history of the mechanism, and instead believe that the deviating agent is currently

truthfully revealing her value in accordance with the bidding strategies β̃t
m,nt

.

CLAIM. Suppose that in each period, buyers bid according to the cutoff strategies given in Equation (6).

This strategy profile, combined with the system of beliefs described above, forms a perfect Bayesian equilib-

rium of the sequential ascending auction mechanism with reserve price r̃.

PROOF OF CLAIM. We prove this claim by making use of the one-shot deviation principle. Con-
sider any period with nt := |At| buyers on the market and kt objects present. Suppose that all
bidders other than player i are using the conjectured equilibrium strategies. We must show that
bidder i has no profitable one-shot deviations from the collection of cutoff points {β̃t

m,nt
}. More

specifically, we must show that i does not wish to exit the auction earlier than prescribed, nor does
she wish to remain active later than specified.

Once again labeling agents such that buyer i1 has the highest value and buyer int has the lowest,
note that if vi < max{vikt

, r̃}, bidding according to {β̃t
m,nt

} implies that i does not win an object
in the current period. Therefore, exiting earlier than specified does not affect i’s current-period
returns. Moreover, since the bidding strategies are memoryless, neither future behavior by i’s
competitors nor i’s future payoffs will be affected by an early exit.

Suppose, on the other hand, that vi > r̃ and that i has one of the kt highest values; that is, that
vi ≥ max{vikt

, r̃}. As established by Theorem 1, i receives an object, paying a price such that her
payoff is exactly equal to her marginal contribution to the virtual surplus. Deviating to an early
exit, however, leads either to agent ikt+1 winning an object (if vikt+1 ≥ r̃) instead of buyer i, or to
an object being discarded. Moreover, i’s expected payoff is then w̃t+1(ωt, vi, vikt+2 , . . . , vint

), which
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we defined as i’s future expected marginal contribution to the virtual surplus. This is a profitable
one-shot deviation for i if, and only if,

w̃t+1(ωt, vi, vikt+2 , . . . , vint
) ≥ vi − β̃t

kt,nt
(ωt, vikt+1 , . . . , vint

).

Rearranging this inequality yields

β̃t
kt,nt

(ωt, vikt+1 , . . . , vint
) ≥ vi − w̃t+1(ωt, vi, vikt+2 , . . . , vint

) = β̃t
kt,nt

(ωt, vi, vikt+2 , . . . , vint
),

where the equality comes from the definition of β̃t
kt,nt

in Equation (6). Since vi > vikt+1 , this contra-
dicts the conclusion of the first claim above. Thus, i does not wish to exit the auction early.

Alternately, if vi ≥ max{vikt
, r̃}, then planning to remain active in the auction longer than

specified does not change i’s payoffs, as i will win an object regardless. If, on the other hand,
vi < max{vikt

, r̃}, then delaying exit from the period-t auction can affect i’s payoffs. Since bids
in future periods do not depend on information revealed in the current period, this only occurs
if i remains in the auction long enough to win an object. If i wins, she pays a price equal to the
larger of r̃ and the exit point of ivkt

, whereas if she exits, she receives as her continuation payoff
her marginal contribution to the virtual surplus. So, suppose that i = im for some m > kt. Then a
deviation to remaining active in the auction is profitable if, and only if,

vm − β̃t
kt,nt

(ωt, vikt
, . . . , vim−1 , vm+1, . . . , vint

) ≥ w̃t+1(ωt, vm, . . . , vint
).

Rearranging this inequality yields

β̃t
kt,nt

(ωt, vikt
, . . . , vim−1 , vm+1, . . . , vint

) ≤ vm − w̃t+1(ωt, vm, . . . , vint
) = β̃t

m−1,nt
(ωt, vm, . . . , vint

),

where the equality comes from the definition of β̃t
m−1,nt

in Equation (6). As above, the fact that
vm < vikt

contradicts the conclusion of the claim above regarding the monotonicity of bids. There-
fore, i does not desire to remain active in the auction long enough to receive an object.

Thus, we have shown that no player has any incentive to deviate from the prescribed strategies
when on the equilibrium path. In particular, using the bidding strategies β̃t

m,nt
is sequentially ra-

tional given players’ beliefs along the equilibrium path. Recall, however, that we have specified
off-equilibrium beliefs such that buyers “ignore” their past observations when they observe a de-
viation from equilibrium play, updating their beliefs to place full probability on the valuation that
rationalizes the deviation; they believe that the deviating agent is currently being truthful with re-
gards to the strategies β̃t

m,nt
. The argument above then implies that continuing to bid according to

the specified strategies remains sequentially rational with respect to these updated beliefs. Thus,
bidding according to the cutoffs in Equation (6) is optimal along the entire game tree: this strategy
profile forms a perfect Bayesian equilibrium of the sequential ascending auction mechanism. �

Thus, bidding in each period according to the strategy described in Equation (6) forms a per-
fect Bayesian equilibrium of the sequential ascending auction with reserve price r̃; moreover, this
equilibrium is outcome equivalent to the dynamic virtual pivot mechanism. �
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