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Abstract

I study a class of differential games of pollution control with profit functions that are

polynomial in the global pollution stock. Given an emissions path satisfying mild regular-

ity conditions, a simple polynomial ambient transfer scheme is exhibited that induces it in

Markov-perfect equilibrium (MPE). Proposed transfers are a polynomial function of the dif-

ference between actual and desired pollution levels; moreover, they are designed so that in

MPE no tax or subsidy is ever levied. Their applicability under stochastic pollution dynam-

ics is studied for a symmetric game of polluting oligopolists with linear demand. I discuss a

quadratic scheme that induces agents to adopt Markovian emissions strategies that are sta-

tionary and linear-decreasing in total pollution. Total expected ambient transfers are always

non-positive and increase linearly in volatility and the absolute value of the slope of the in-

verse demand function. However, if the regulator is interested in inducing a constant emissions

strategy then, in expectation, transfers vanish.
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1 Introduction

When individual pollution discharges are not observable, a regulator may wish to impose corrective

policy measures that are based on observed total (ambient) pollution levels. As a result, there

is an extensive literature on ambient transfers as a means of nonpoint-source pollution control

going back to the work of Segerson [15], whose analysis builds on earlier theoretical work of

Holmstrom [9]. Xepapadeas [18] extends Segerson’s contribution to a dynamic setting under

both deterministic and random specifications on pollutant accumulation. Since then a significant

and growing literature has developed, shedding light into the theoretical design and practical

implementation of ambient transfer schemes.

A common criticism of ambient transfers rests on their dependence on total pollution levels

and, in particular, the fact that they may result in excessive and inequitable penalties. In an

environment with no uncertainty Karp [10], drawing on earlier work of Karp and Livernois [11],

investigates these concerns by comparing the tax burdens of (a plausible type of) Pigouvian and

ambient taxes. In his model, both tax schemes are linear and evolve over time in an intuitive

fashion; moreover, they are designed to induce a common steady state level of pollution. Karp finds

that, in many plausible cases, the steady-state tax burden of ambient policy is lower, mitigating

some of the concerns regarding its potential inequity.

At the same time, it is possible to design ambient transfers so that, in steady-state equilibrium,

no tax or subsidy is ever imposed. In particular, one can make the tax scheme a function of the

observed difference between actual and desired pollution levels, ensuring that when that difference

is zero transfers accordingly vanish (Xepapadeas [18]). Indeed, Karp and Livernois’ [11] ambient

scheme (which is revisited in Karp [10]) can be modified in this way as well.1

One important point that the literature has largely left unaddressed is how desirable steady

states are reached.2 In particular, issues of potential inter-temporal welfare loss (in relation to

the social optimum) en route to the equilibrium are not explored. By focusing on entire paths of

emissions instead of just steady-state levels, this paper accommodates such concerns.

I initially focus on a class of deterministic infinite horizon differential games of pollution

control in which agents’ payoffs are polynomial in the total stock of pollution.3 Moreover, I

1It should be noted, however, that the equilibrium analysis in [11] and [10] deals with necessary conditions for a

MPE. Moreover, Xepapadeas [18] examines non-degenerate Markovian Nash equilibria, which may or may not be

Markov perfect. This paper employs the MPE criterion described in Definition 4.4 of Dockner et al. [4], for which

sufficient conditions are given in Theorem 4.4 of the same reference.
2An exception is the paper of Benchenkroun and Long [1]. But these authors do not consider ambient transfers.
3Specific instances of this model can be found in many previous contributions including [15, 17, 18, 5, 11, 6, 1,
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allow for potential irreversibility or hysteresis effects in the pollution accumulation process. Such

phenomena are typically observed in many ecological processes, notably so in shallow lake systems

(see, for e.g., [13, 12]), and carry profound implications for pollution control policy. Given a

particular emissions path satisfying a mild regularity condition, I exhibit a simple ambient transfer

scheme that induces it in MPE. The scheme is a polynomial function of the observed difference

between actual and desired total pollution and is designed so that, in MPE, no tax or subsidy

is levied at every point in time, not just at the steady-state. Since induced emissions paths only

depend on calendar time and are subgame-perfect, it is less likely that agents will find themselves

off equilibrium. Thus, actual pollution levels will, at least in theory, plausibly match desired ones

so that no transfers ever occur.4

An additional implication of the deterministic analysis is that, with moderate monitoring, first-

best outcomes can be achieved in settings in which, without the use of policy, this is structurally

impossible.5 Or, more abstractly, that differential games with “bad” equilibrium properties can be,

via the manipulation of the state-dependent component of agents’ objective functions, transformed

into ones possessing at least one MPE that is obvious and, where applicable, socially desirable.

This neat result breaks down when uncertainty is introduced into the pollutant accumulation

process. From a purely technical point of view, the differential game becomes stochastic and its

analysis is substantially complicated. Determining the temporal distribution of pollution as a

result of agents’ emissions rests on solving a stochastic differential equation, an exercise of consid-

erable mathematical difficulty. Moreover, even when such an equation allows for analytical insight,

the resulting process will typically fail to have a stationary distribution unless certain modeling

assumptions are imposed. Such assumptions, while standard in the literature on stochastic models

of economic growth (see Merton [14]), are not natural in a pollution control context.

To keep the analysis tractable, I concentrate on a symmetric model of polluting oligopoly

introduced by Benchenkroun and Long [1]. Assuming linear demand, I focus on schemes that

induce emissions strategies that are symmetric, stationary, and linear-decreasing in total pollution.

10, 7].
4Of course, deviations from the equilibrium can happen for a variety of reasons and are observed in experimental

studies. A striking example can be found in Cochard et al. [2] where ambient transfers perform quite poorly. At the

same time, and in contrast to [2], Spraggon [16] finds ambient transfers to be effective in inducing socially optimal

behavior. These occasionally dramatic discrepancies between experimental studies are not thoroughly understood,

though collusion seems to play a prominent role in the inefficiency observed in [2].
5Consider the linear quadratic game studied in Dockner and Long [5], which draws on foundational work by

Tsutsui and Mino [17]. The best one can hope for in this setting (assuming the discount rate is low enough) is a

MPE in nonlinear strategies that leads to socially optimal steady state pollution levels.
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This class of target strategies is appealing for its simplicity; for this reason, its elements may be

thought of as the result of a political process aiming to curb emissions.

Under this specification on target strategies, the stochastic process of total pollution accumu-

lation is a special case of the well-studied Cox-Ingersoll-Ross process [3], which is extensively used

in finance and whose probabilistic and asymptotic properties are completely characterized. The

underlying stochastic control problem is tractable and it is possible to gauge the effect of ambient

transfers. In particular, given a target strategy, I exhibit a simple quadratic ambient transfer

scheme that induces it in MPE and provide closed-form expressions for expected transfers at

any point in time. These (expected) transfers are always non-positive and their magnitude in-

creases linearly with volatility and the absolute value of the slope of the inverse demand function.

Moreover, I show that expected transfers vanish when the regulator wishes to induce a constant

emissions strategy. To the best of my knowledge, this is the first paper that provides as precise a

probabilistic analysis of dynamic nonpoint-source pollution control policy.

The paper is organized as follows. Section 2 discusses the deterministic model and its pol-

icy implications. Section 3 introduces the symmetric stochastic oligopoly game and derives the

expected ambient tax burden for a stationary and linear target emissions strategy. Section 4

provides concluding remarks. Technical proofs are collected in the Appendix.

2 The Deterministic Model

Suppose there are n agents who are involved in a pollution-generating economic activity. Agent

i’s emissions at time t are denoted by ei(t) and the global stock of pollution by x(t) ∈ ℜ+. Agent

i’s profit at time t is denoted by

πi(e(t), x(t)),

where the function πi(·) : ℜn+1 7→ ℜ is strictly concave in ei and polynomial decreasing in x.6

Agents’ emissions are constrained by technology and labor, so that for all i ∈ {1, 2, .., n} there

exists emax
i ∈ ℜ+ such that ei(t) ∈

[
0, emax

i

]
. The time evolution of pollution is governed by the

following differential equation

ẋ(t) =
n∑

i=1

ei(t) − g(x(t)), (1)

6In the nonpoint source pollution literature πi is typically only a function of ei, with the damages from pollution

entering only in the social welfare function. I relax this assumption to allow for agents potentially incurring some

of the costs of total pollution accumulation.
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where g(x) is a polynomial function that denotes the physical rate of natural purification, which

satisfies

lim
x→∞

g(x) = ∞.

The function g(·) may have convex-concave nonlinearities in order to capture potential irreversibil-

ity or hysteresis effects in the pollution accumulation process.7

These assumptions imply that the global stock of pollution will be bounded so that, given an

initial pollution level of x0, x(t) ∈
[
0, xmax

]
, where

xmax = max

{

x0, max

{

x ∈ ℜ+ : g(x) =

n∑

i=1

emax
i

}}

.

Suppose that the regulator imposes an ambient transfer scheme φ that is a function of total

pollution and calendar time. Focusing on agent i, and denoting other agents’ emissions by e∗−i
, φ

gives rise to the following differential game:

max
ei(·)

∫ ∞

0
e−δt

[
πi(ei(t), e

∗
−i(t), x(t)) + φi(x(t), t)

]
dt

subject to: ẋ(t) = ei(t) +
n∑

j 6=i

e∗j (t) − g(x(t))

ei(t) ∈
[
0, emax

i

]
, x(0) = x0, (2)

where δ is the discount rate. Moreover, the regulator wishes to induce emissions path ê where

ê =
{
êi(t) : t ≥ 0, i ∈ {1, 2, .., n}

}
.

Given an initial condition x̂0 on total pollution, ê has an associated pollution path x̂, where

x̂ =
{
x̂(t), t ≥ 0

}
.

Theorem 1 shows that the regulator can induce ê in MPE with the use of a relatively simple

ambient transfer scheme. First, I introduce some notation. Given a continuously differentiable

emission path ê, define the functions f ê

i : ℜ× [0,∞) 7→ ℜ, where

f ê

i (x, t) = −δ

∫
∂

∂ei
πi(ê(t), x)dx +

∂

∂t

[ ∫
∂

∂ei
πi(ê(t), x)dx

]

+
∂

∂ei
πi(ê(t), x)

[ n∑

j=1

ej(t) − g(x)

]

− πi(ê(t), x), (3)

7For (a non-polynomial) example applicable to shallow lake dynamics, see Maler et al. [13] and Kossioris et

al. [12].
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for i ∈ {1, 2, .., n}. The model assumptions imply that the functions f ê

i are well-defined and poly-

nomial in x. Let n̂i ≥ 1 denote the polynomial degree of f ê

i . The following theorem summarizes

the paper’s first result.

Theorem 1 Consider a feasible and continuously differentiable emission path ê and the functions

f ê

i given by Eq. (3). Suppose that the functions V i(x, t) : ℜ× [0,∞) 7→ ℜ, where

V i(x, t) = −

∫
∂

∂ei
πi(ê(t), x)dx −

∫ ∞

t

f ê

i (x̂(s), t)e−δ(s−t)ds,

are bounded from below and satisfy lim supt→∞ e−δtV i(x̂(t), t) ≤ 0, for all initial conditions x0

and i ∈ {1, 2, ..., n}. The mechanism

φ̂i(x, t) =

n̂i∑

k=1

∂kf ê

i

∂xk
(x̂(t), t)

[x − x̂(t)]k

k!
, i ∈ {1, 2, ..., n} (4)

induces ê in Markov perfect equilibrium.

Proof. Consider the Hamilton-Jacobi-Bellman (HJB) equation for agent i, assuming that other

agents choose the control paths ê−i,

δV i(x, t)−V i
t (x, t) = max

ei∈
[
0,emax

i

]

{

πi(ei, ê−i(t), x)+ φ̂i(x, t)+V i
x(x, t)

[

ei +
∑

j 6=i

êj(t)−g(x)

]}

. (5)

To ensure that agent i’s best response is given by êi(t), the right-hand-side of Eq. (5) must be

maximized at that level of emissions. As the function πi is strictly concave in ei, it is sufficient

to impose that the value function V i(x, t) satisfy

V i
x(x, t) = −

∂

∂ei
πi(ê(t), x). (6)

Since ê(t) is by definition feasible no constraints are violated. Eq. (6) in turn implies

V i(x, t) = −

∫
∂

∂ei
πi(ê(t), x)dx + Âi(t), (7)

where Âi(t) is a function that is, for the moment, unspecified. Substituting the value function

given by (7) into the HJB conditions obtains the following equation

δ

[

−

∫
∂

∂ei
πi(ê(t), x)dx + Âi(t)

]

−
∂

∂t

[

−

∫
∂

∂ei
πi(ê(t), x)dx + Âi(t)

]

=

= πi(ê(t), x) + φ̂i(x, t) −
∂

∂ei
πi(ê(t), x)

[ n∑

j=1

êj(t) − g(x)

]

. (8)
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Recalling Eq. (3) and rearranging terms, Eq. (8) may be written in the following way

φ̂i(x, t) − δÂi(t) +
d

dt
Âi(t) = f ê

i (x, t)

⇒

n̂∑

k=1

∂kf ê

i

∂xk
(x̂(t), t)

[x − x̂(t)]k

k!
− δÂi(t) +

d

dt
Âi(t) = f ê

i (x, t)

⇒

n̂∑

k=1

∂kf ê

i

∂xk
(x̂(t), t)

[x − x̂(t)]k

k!
− f ê

i (x, t) − δÂi(t) +
d

dt
Âi(t) = 0. (9)

Considering the Taylor expansion of f ê

i (x, t) (recall that f ê

i is polynomial in x) about (x̂(t), t),

Eq. (9) obtains the following differential equation

d

dt
Âi(t) − δÂi(t) − f ê

i (x̂(t), t) = 0. (10)

Solving differential equation (10) yields

Âi(t) = eδt

[

Ai(0) +

∫ t

0
f ê

i (x̂(s), s)e−δsds

]

.

Setting

Âi(0) = −

∫ ∞

0
f ê

i (x̂(s), s)e−δsds

implies the particular solution

Âi(t) = −

∫ ∞

t

f ê

i (x̂(s), s)eδ(t−s)ds.

The theorem’s assumptions imply that V i(x, t) satisfies sufficient conditions for optimality given

by Theorem 4.4 in Dockner et al. [4].

Remarks. Theorem 1 gives rise to two immediate corollaries.

Corollary 1 All feasible and continuously differentiable target paths ê for which ∂
∂ei

πi(ê(t), x)

and ∂2

∂t∂ei
πi(ê(t), x) are bounded for all i ∈ {1, 2, .., n} satisfy the assumptions of Theorem 1.

Proof. Recall that under our assumptions both e and x are bounded. The result follows.

As an example, Corollary 1 is satisfied for profit functions πi that are separable in e and

x, provided the target path ê is bounded from below by a strictly positive number (an interior

assumption that is typically true of first-best solutions) and does not change too rapidly. These

modeling assumptions are present in many well-studied dynamic games of pollution control.
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Corollary 2 Eq. (4) implies that φ̂(x̂(t), t) ≡ 0. Thus, in MPE, the mechanism prescribed by

Theorem 1 ensures that no transfers are ever made.

Remarks. The practical relevance of Corollaries 1 and 2 hinges on the equilibrium concept

employed in the analysis. On this score, Theorem 1 implies that a desirable emissions trajectory

may be induced in Markov-perfect open-loop equilibrium. This finding suggests that agents are less

likely to deviate from the equilibrium path as they do not condition their emissions on anything

else but calendar time, knowing that their actions will constitute a best response regardless of

perceived pollution levels. Indeed, the predictive capacity of this equilibrium concept is, at least

in theory, quite robust. As a result, provided there is no uncertainty in the evolution of the global

pollution stock, Corollary 2 indicates that it is unlikely for any tax or subsidy to ever be levied.

In this sense, the deterministic problem is relatively easy to address.

3 A Model of Polluting Oligopolists with Stochastic Dynamics

In a physical environment in which pollutant accumulation evolves stochastically, state-dependent

policy needs to be designed with caution. This is because Corollary 2 no longer holds and actual

transfers will have to be made between agents and the regulating authority. Appropriate policy

tools should arguably result in transfers that are moderate, or at the very least predictable (in a

probabilistic sense). Xepapadeas [18] incorporates stochastic dynamics in his model but focuses

on long-run asymptotics and does not discuss the dynamic effect of policy implementation. In

this section, I attempt to address some of these issues in a systematic fashion.

Adopting the model of polluting oligopolists by Benchenkroun and Long [1], suppose there

are n identical agents producing a homogeneous good. I take the output of each agent to equal

his emissions and assume that each agent has a constant unit cost c ≥ 0. Furthermore, assume

that the underlying demand for the produced good is linear so that the inverse demand function

P (·) is given by

P (e) = A − b

n∑

j=1

ej .

Hence, agent i’s profit at time t is given by

πi(e(t), x(t)) =

[

A − b

n∑

j=1

ej(t)

]

ei(t) − cei(t).
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Departing from a deterministic physical environment I follow Xepapadeas [18] and assume that

the evolution of the pollution stock is governed by the following stochastic differential equation

dx(t) =

[ n∑

j=1

ej(t) − βx(t)

]

dt + σ
√

x(t)dWt, x(0) = x̂0 (11)

where β > 0, Wt is a Wiener process and σ > 0. Thus, pollutant accumulation is a diffusion

process with instantaneous drift of
∑n

j=1 ei(t) − βx(t) and variance σ
√

x(t).

Suppose that the regulator is interested in inducing a symmetric, stationary and linear-

decreasing Markovian emissions strategy8 ê so that

êi(x) =
E

n
−

γ

n
· x, i ∈ {1, 2, .., n} (12)

where γ ≥ 0 and E > 0.

The attentive reader will notice that the class of target strategies given by Eq. (12), in combi-

nation with the fact that (in a stochastic framework) the state space is now unbounded, implies

that emission rates may take negative values.9 For reasons of analytical tractability that will be-

come apparent, I relax the condition on feasible emissions so that, in contrast to the deterministic

case, ei ∈ ℜ. This kind of simplifying assumption is commonly made even in the deterministic

literature on games of pollution control (e.g., Dockner and Long [5], Benchenkroun and Long [1],

Karp [10], Kossioris et al. [12]). At the same time, it should be noted that in my framework

target strategies may be chosen so that negative emission rates occur with arbitrarily low prob-

ability (see Proposition 1). From a practical standpoint, negative emission rates may correspond

to abatement measures agents undertake when total pollution exceeds critically high levels.

With this target strategy specification, the pollutant dynamics (11) can be rewritten in the

following way:

dx(t) = (β + γ)

[
E

β + γ
− x(t)

]

dt + σ
√

x(t)dWt, x(0) = x̂0. (13)

Eq. (13) is an instance of the celebrated Cox-Ingersoll-Ross [3] process, which is extensively used

in finance. Fortunately, its evolution and steady-state properties are completely characterized.

The following proposition summarizes.

8In contrast to the deterministic case, and since the problem at hand is stochastic, it is reasonable to condition

the regulator’s goal on current pollutant accumulation and not on calendar time.
9Note, however, that this same class of strategies ensures that total pollution is always non-negative (see Propo-

sition 1) so that stochastic differential equation (11) is well-defined.
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Proposition 1 Stochastic differential equation (13) has a unique solution given by the diffusion

process
{
x̂(t) : t ≥ 0

}
where

(a) x̂(t) has a noncentral chi-square distribution with expectation

E[x̂(t)] = x̂0e
−(β+γ)t +

E

β + γ

[
1 − e−(β+γ)t

]

and variance

Var[x̂(t)] = x̂0
σ2

β + γ

[
e−(β+γ)t − e−2(β+γ)t

]
+

Eσ2

2(β + γ)2
[
1 − e−(β+γ)t

]2
.

(b) If 2E > σ2 then {x̂(t) : t ≥ 0} has a stationary distribution that is Gamma

(

2E
σ2 , σ2

2(β+γ)

)

.

Due to its relevance for financial applications, much numerical analysis has been undertaken

to describe the precise nature of this noncentral chi-square distribution.10 For our purposes,

knowledge of its mean and variance will suffice.

In view of Proposition 1, the class of target strategies introduced in Eq. (12) holds considerable

appeal. This is because, if somehow induced, its elements lead to an equilibrium pollutant accu-

mulation process that can be described in precise probabilistic terms. Moreover, this same class of

target strategies also lends itself to simple policy prescriptions. In particular, a quadratic ambient

transfer scheme is presented that induces, in MPE, a linear stationary Markovian strategy, which

satisfies the stability condition 2E > σ2.

Let V̂ (x) : ℜ+ 7→ ℜ, denote a function such that

V̂ (x) = −γb
n + 1

2n
x2 −

[

A − c −
b(n + 1)

n
E

]

x. (14)

Slightly modifying the logic of Eq. (3) to fit our particular target strategy in a stochastic framework

leads to the following expression

f ê

i (x) = δV̂ (x) −

[

A − b(E − γx)

]
E − γx

n
+

c

n

[
E − γx

]

−V̂x

[
E − (β + γ)x

]
−

σ2

2
V̂xxx, (15)

for i ∈ {1, 2, .., n}. Similar to the proof of Theorem 1, this function will appear in the HJB

equation of the stochastic control problem faced by the agents. The second result of the paper is

summarized in the following Theorem.

10See Dyrting [8] for a discussion of efficient numerical methods to determine its probability distribution function.
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Theorem 2 Let ê denote a target Markovian strategy given by Eq. (12) such that 2E > σ2. The

ambient transfer scheme φ̂ such that

φ̂i(x, t) =
∂2f ê

i

∂x2

(

E[x̂(t)]

)[
x − E[x̂(t)]

]2

2
+

∂f ê

i

∂x

(

E[x̂(t)]

)
[
x − E[x̂(t)]

]
, i ∈ {1, 2, ..., n},

where all relevant quantities are defined in Proposition 1 and Eqs. (14) and (15), induces ê in

Markov-perfect equilibrium.

Proof. See Appendix.

Note that the function
∂2f ê

i

∂x2 is a constant such that

∂2f ê

i

∂x2
= −

bγ
[
δ(n + 1) + 2n(β + γ) + 2β

]

n
.

Thus, at any point in time an agent incurs an expected ambient transfer that is equal to

−
bγ

[
δ(n + 1) + 2n(β + γ) + 2β

]

n

Var[x̂(t)]

2
, (16)

where Var[x̂(t)] is given by Proposition 1. This transfer is non-positive and can be clearly seen to

be zero in the deterministic σ = 0 case. Interestingly, it is also zero when γ vanishes (i.e., when

the regulator wishes to induce a constant emissions strategy), or when the slope of the inverse

demand function is zero. The next proposition gives a precise description of the total discounted

cost of policy implementation.

Proposition 2 The expected total discounted ambient transfer for an agent i is equal to

−σ2bγ

[
δ(n + 1)

n
+ 2(β + γ) +

2β

n

]
E + δx̂0

δ(δ + β + γ)(δ + 2(β + γ))
.

Proof. I proceed to calculate

E

[ ∫ ∞

0
e−δtφ̂i(x̂(t), t)dt

]

= E

[ ∫ ∞

0
e−δt

(
∂2f ê

i

∂x2

[
x̂(t) − E[x̂(t)]

]2

2
+

∂f ê

i

∂x

(

E[x̂(t)]

)
[
x̂(t) − E[x̂(t)]

)

dt

]

.
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By Proposition 1 and Fubini’s Theorem, the expectation and integral operators can be inter-

changed so that

E

[ ∫ ∞

0
e−δtφ̂i(x̂(t), t)dt

]

=

∫ ∞

0
e−δt ∂

2f ê

i

∂x2

Var[x̂(t)]

2
dt =

∂2f ê

i

∂x2

σ2(E + δx̂0)

2δ(δ + β + γ)(δ + 2(β + γ))

= −
bγ

[
δ(n + 1) + 2n(β + γ) + 2β

]

n

σ2(E + δx̂0)

2δ(δ + β + γ)(δ + 2(β + γ))

= −σ2bγ

[
δ(n + 1)

n
+ 2(β + γ) +

2β

n

]
E + δx̂0

2δ(δ + β + γ)(δ + 2(β + γ))

(17)

Proposition 3 Expected total ambient transfers are non-positive. They are equal to zero when

either b or γ are equal to zero. Their absolute value is decreasing in n, β and δ, increasing in E

and γ, and linearly increasing in b, and σ2.

Proof. The monotonicity results regarding β and γ can be established by taking the appropriate

derivatives of Eq. (17) and observing their signs. All other statements are obvious by inspection.

Remarks. Propositions 2 and 3 provide a precise account of the expected tax burden agents will

bear. Whether ambient taxation is a viable policy option will, in large part, depend on whether

this tax is overly excessive. Since the particulars of the target emissions strategy are up to the

regulator’s discretion, physical parameters such as volatility and the rate of natural purification

will ultimately determine whether ambient transfers should be implemented. Between the two,

volatility is arguably more important. This is because Eq. (17) shows that the tax burden diverges

with volatility.

An important implication of Theorem 2, is that it is possible to induce strategies that reconcile

many different considerations. One may wish, for instance, to induce a linear strategy that

maximizes steady-state payoffs while ensuring that the mean and variance of steady-state pollution

levels be below certain exogenously determined levels. In view of Proposition 1, determining such

a target strategy (i.e., solving for the relevant E and γ) would amount to solving a two-variable

nonlinear optimization problem with quadratic constraints.

4 Conclusion

This paper sheds light on the ability of ambient transfers to influence MPE behavior for a large

class of differential games of pollution control. The analysis suggests that, under deterministic

12



pollution accumulation, these policy tools are able to induce a wide set of emissions paths. More-

over, proposed schemes are designed so that, in equilibrium, no tax or subsidy is ever levied. The

equilibrium concept that is used (Markov-perfect open-loop equilibrium) ensures that deviations

from the equilibrium path are, at least in theory, relatively unlikely.

The robustness of these results is tested under a stochastic framework for pollutant accumula-

tion. When physical dynamics are uncertain, it is no longer possible to guarantee zero transfers in

equilibrium and it becomes important to gauge the scale of potential taxes or subsidies. This exer-

cise is undertaken for a simple linear oligopoly model and a regulating authority that is interested

in inducing symmetric, stationary, and linear-decreasing emissions as a function of total pollu-

tion. I derive closed-form expressions for expected ambient transfers at any point in time and find

that they are always non-positive, with their magnitude increasing linearly with volatility and the

slope of the inverse demand function. In addition, these expected transfers vanish if the regulating

authority wishes to induce a constant emission strategy. The simplicity of the results implies that

one may solve for the target strategy that maximizes profits subject to the constraint that the

mean and variance of steady-state levels of pollution be below certain exogenously determined

levels. A careful numerical study of this issue is left for future research.

Appendix

Proof of Theorem 2 Consider the Hamilton-Jacobi-Bellman equation for agent i,

δV i(x, t) − V i
t (x, t) = max

ei

{
[
A − b

∑

j 6=i

ej(x, t) − bei

]
ei − cei + φ̂i(x, t)

+V i
x(x, t)

[

ei +
∑

j 6=i

ej(x, t) − βx

]

+ V i
xx(x, t)

σ2x

2

}

. (18)

Assuming that other agents choose the stationary Markovian strategies êj(x) = E−γx
n

and drop-

ping superscripts, Eq. (18) obtains

δV (x, t) − Vt(x, t) = max
ei

{[

A −
b(n − 1)

n
(E − γx) − bei

]

ei − cei + φ̂(x, t)

+Vx(x, t)

[

ei +
(n − 1)

n
(E − γx) − βx

]

+ Vxx(x, t)
σ2x

2

}

. (19)

To ensure that agent i’s best response is given by êi(x) = E−γx
n

, the right-hand-side of Eq. (5)

must be maximized at that level of emissions. Thus, the value function V (x, t) must satisfy

Vx(x, t) = −

[

A − c −
b(n + 1)

n
(E − γx)

]

. (20)
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Following identical reasoning as in the proof of Theorem 1 the specification of φ̂ ensures that the

value function

V (x, t) = −γ
b(n + 1)

2n
x2 −

[

A − c −
b(n + 1)

n
E

]

x

︸ ︷︷ ︸

V̂ (x)

−

∫ ∞

t

f ê

i

(
E[x̂(s)]

)
e−δ(s−t)ds. (21)

solves the HJB equation (19) for the desired maximizing control êi(x) = E−γx
n

. That is, V (x, t)

satisfies the partial differential equation

δV (x, t) − Vt(x, t) =

[

A − b(E − γx)

]
E − γx

n
+

c

n

[
E − γx

]
+ φ̂(x, t)

+ V̂x(x)
[
E − (β + γ)x

]
+ V̂xx(x)

σ2x

2
. (22)

But, while this choice of V (x, t) solves the HJB equation, it is not possible to invoke standard

sufficiency theorems to establish optimality. This is because the state space is no longer bounded;

hence, the candidate value function will not be bounded or even bounded from below. For this

reason, it is necessary to use an alternative sufficiency theorem given by Theorem 3.4 in Dockner

et al. [4] that relies on finite horizon approximations of the value function. To this end, consider

a finite-horizon version of our problem over t ∈ [0, T ] with no salvage function and postulate that

a value function of the form

V (x, t; T ) = A1(t;T )x2 + A2(t; T )x + A3(t;T ) (23)

solves the Hamilton-Jacobi-Bellman equation (19) for a maximizing control of ei(x) =
[
E−γx]/n,

with the added terminal time constraint V (x, T ;T ) = 0. In particular,

[

δA1(t;T ) −
d

dt
A1(t;T )

]

x2 +

[

δA2(t;T ) −
d

dt
A2(t;T )

]

x + δA3(t; T ) −
d

dt
A3(t; T )

=

[

A − b(E − γx)

]
E − γx

n
+

c

n

[
E − γx

]
+ φ̂(x, t)

+
[
2A1(t;T )x + A2(t;T )

][
E − (β + γ)x

]
+ A1(t;T )σ2x. (24)

and

A1(T ;T ) = A2(T ;T ) = A3(T ;T ) = 0.

14



Using Eq. (22), it is possible to cancel out φ̂(x, t) and to rewrite Eq. (24) in the following way
[

δA1(t;T ) −
d

dt
A1(t;T ) +

δγb(n + 1)

2n

]

x2 +

[

δA2(t; T ) −
d

dt
A2(t;T ) + δ

(

A − c −
Eb(n + 1)

n

)]

x

+δA3(t;T ) −
d

dt
A3(t;T ) + δ

∫ ∞

t

f ê

i

(
E[x̂(s)]

)
e−δ(s−t)ds −

d

dt

∫ ∞

t

f ê

i

(
E[x̂(s)]

)
e−δ(s−t)ds

︸ ︷︷ ︸

equivalently to Eq. (10), this expression equals −f ê

i

(
E[x̂(t)]

)

.

=

[

2A1(t;T )x + A2(t;T ) + A − c −
b(n + 1)

n
(E − γx)

]
[
E − (β + γ)x

]
+

[

A1(t; T ) +
γb(n + 1)

2n

]

σ2.

(25)

Collecting the terms involving x2, A1(t;T ) must satisfy the following differential equation

−
d

dt
A1(t; T ) +

[
δ + 2(β + γ)

]
A1(t;T ) = −γ

b(n + 1)

2n
(δ + 2(β + γ)). (26)

The solution of (26) satisfying A1(T ;T ) = 0 is given by

A1(t;T ) = −γ
b(n + 1)

2n
e(δ+2(β+γ))t

∫ T

t

(δ+2(β+γ))e−(δ+2(β+γ))sds = −γ
b(n + 1)

2n

[

1−e−(δ+2(β+γ))(T−t)

]

,

so that

lim
T→∞

A1(t; T ) = −γb
n + 1

2n
. (27)

Similarly, collecting the terms involving x, A2(t;T ) must satisfy

−
d

dt
A2(t;T ) +

[
δ + β + γ]A2(t;T ) = −

[
δ + β + γ

]
[

A − c −
b(n + 1)

n
E

]

,

+

[

A1(t;T ) +
γb(n + 1)

2n
︸ ︷︷ ︸

γb(n+1)
2n

e−(δ+2(β+γ))(T−t)

]
[
2E + σ2

]
. (28)

The solution of (28) satisfying A2(T ;T ) = 0 is given by

A2(t;T ) = −

[

A−c−
b(n + 1)

n
E

][

1−e−(δ+β+γ)(T−t)

]

+Ke(δ+β+γ)t

∫ T

t

e−(δ+2(β+γ))(T−s)e−(δ+β+γ)sds,

where K =
[
2E + σ2

]γb(n+1)
2n

. It is easy to see that A2(t;T ) will satisfy

lim
T→∞

A2(t;T ) = −

[

A − c −
b(n + 1)

n
E

]

(29)

Finally, A3(t;T ) will need to satisfy

δA3(t; T ) −
d

dt
A3(t; T ) = f ê

i

(
E[x̂(t)]

)
+

[

A2(t;T ) + A − c −
b(n + 1)

n
E

]

E. (30)
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Using identical reasoning as before it is easy to show that

lim
T→∞

A3(t;T ) = −

∫ ∞

t

f ê

i

(
E[x̂(s)]

)
e−δ(s−t)ds, (31)

so that collecting Eqs. (27), (29), and (31) obtains

lim
T→∞

V (x, t;T ) = V (x, t). (32)

Finally, it is necessary to examine the limiting properties of E
[
V (x̂(t), t)

]
:

lim sup
t→∞

e−δtE
[
V (x̂(t), t)] = lim sup

t→∞
e−δt

[

− γ
b(n + 1)

2n
E[x̂(t)2] −

[

A − c −
b(n + 1)

n
E

]

E[x̂(t)]

−

∫ ∞

t

f ê

i

(
E[x̂(s)]

)
e−δ(s−t)ds

]

= lim sup
t→∞

e−δt

[

− γ
b(n + 1)

2n

[

Var[x̂(t)] +
[
E[x̂(t)]

]2
]

−

[

A − c −
b(n + 1)

n
E

]

E[x̂(t)]

]

. (33)

Given Proposition 1, it is easy to see that the process {x̂(t) : t ≥ 0} converges to the relevant

Gamma distribution in L2 so that

lim sup
t→∞

e−δtE
[
V (x̂(t), t)] = lim

t→∞
e−δtE

[
V (x̂(t), t)] = 0. (34)

Given Eqs. (32) and (34), applying the stochastic equivalent of Theorem 3.4 in Dockner et al. [4]

completes the proof.
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