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Abstract

We study a model of correlated equilibrium where every player takes actions based

on his hierarchies of beliefs (belief on what other players will do, on what other players

believe about others will do, etc.) intrinsic to the game. Our model does away with

messages from outside mediator that are usually assumed in the interpretation of cor-

related equilibrium. We characterize in every finite, complete information game the

exact sets of correlated equilibria (both subjective and objective) that can be obtained

conditioning on hierarchies of beliefs; the characterizations rely on a novel iterated

deletion procedure. If the procedure ends after k rounds of deletion for a correlated

equilibrium obtained from hierarchies of beliefs, then players in the equilibrium need

to reason to at most k-th order beliefs. Further conceptual and geometric properties

of the characterizations are studied.

1 Introduction

In this paper we study a model of correlated equilibrium (in any complete information game)

where every player takes actions based on his hierarchies of beliefs (belief on what other

players will do, on what other players believe about others will do, on what others believe

others believe others will do, etc.) which are intrinsic to the game. Therefore, our model does

∗songzidu@stanford.edu. I am very grateful to Yossi Feinberg and Andy Skrzypacz for advice and detailed
comments on various drafts. And I thank Adam Brandenburger, Amanda Friedenberg, Qingmin Liu, Yair
Livne, Robert Wilson, and seminar participants at Stanford GSB for comments and discussions.
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away with messages from outside mediator that are usually assumed in the interpretation of

correlated equilibrium.

Let us illustrate our kind of correlated equilibrium with a story (which goes back to

Kohlberg and Mertens (1986)). Suppose players are recruited to play a complete information

game. They are seated in separate rooms so that they cannot communicate with each other;

each player inputs his strategy via a computer in his room. And they do not observe any

signal or message while seating in the rooms; signals and messages are already incorporated

in the payoffs and strategies of the game which are common knowledge among players. Then,

can the players still play strategies that are part of a correlated equilibrium, even though they

have no access to any correlation device? We will argue that they can, because the players

may have intertwined hierarchies of beliefs (you believe that I believe that you believe that

. . .) about each other’s strategies, which may come from the players’ previous interactions

(or the players may just be very imaginative people) and may serve as correlation devices.

More precisely, for a finite, complete information game, we have types that represent

players’ states of mind, and a pure strategy σi that maps types to actions for each player.

We assume that these strategies satisfy the following condition:

types ti and t′i induce the same hierarchy of beliefs =⇒ σi(ti) = σi(t
′
i), (1)

in addition to the usual equilibrium (incentive compatibility) condition. Condition (1) simply

says that players condition their actions on their hierarchies of beliefs in the game.

The types and strategies form a correlated equilibrium if the usual incentive compati-

bility condition is satisfied; it might be objective or subjective, depending on whether or

not the beliefs associated with types come from a common prior. We work with a posteri-

ori equilibrium (Aumann (1974, Section 8)) which is a refinement of subjective correlated

equilibrium and where the incentive compatibility condition is satisfied in the a posteriori

(or in other words, interim) stage; we call a posteriori equilibrium satisfying condition (1)

intrinsic a posteriori equilibrium. And we refer to objective correlated equilibrium simply

as correlated equilibrium; correlated equilibrium satisfying condition (1) is called intrinsic

correlated equilibrium.

Notice that strategy σi in condition (1) must be a pure strategy. Therefore, correlated

equilibrium distribution (over action profiles) consistent with condition (1) can be interpreted

as being purifiable by hierarchies of beliefs.

Our main results characterize in strategic terms sets of action profiles played under intrin-
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sic a posteriori equilibria and distributions of action profiles obtained from intrinsic correlated

equilibria (for convenience, we call this distribution intrinsic correlated equilibrium as well,

and likewise for correlated equilibrium), for every finite game. Our characterizations rely on

a novel iterated deletion procedure. If the procedure terminates after k iterations of deletion

for an intrinsic a posteriori equilibrium or an intrinsic correlated equilibria, then players in

the equilibrium need to reason to (i.e. condition their actions on) at most k-th order beliefs.

We also show that in every finite game, the set of intrinsic correlated equilibria is con-

vex, and any non-intrinsic correlated equilibrium can be broken down into irreducible sub-

equilibria, one of which must be an extreme point in the set of correlated equilibria. This

in particular implies that an irreducible and non-extreme correlated equilibrium must be

intrinsic. Conceptually, higher order beliefs in a correlated equilibrium are analogous to the

notions of “friend” of “friend” and higher-order “friendships” in a network, and this analogy

leads to the notion of irreducibility (or connectedness) for correlated equilibrium.

On the other hand, we prove that in two-person games with generic payoffs1, any non-

degenerate mixed strategy Nash equilibrium (i.e. one that requires randomization for at

least one player) is not an intrinsic correlated equilibrium (not intrinsic). The intuition

is that a Nash equilibrium does not have any variation in belief about the other players’

actions (for any given player), i.e. no variation in first order belief, which leads to the lack of

variation in any higher order belief; on the other hand, condition (1) requires the presence

of different hierarchies of beliefs to purify the mixed strategy — the source of mixing is

the belief hierarchies. Thus, we have a contradiction. The payoff genericity assumption is

needed: in Example 4.3 we construct a mixed Nash equilibrium that is intrinsic, i.e. it can

be purified by hierarchies of beliefs.

Finally, our characterization reveals a connection between intrinsic a posteriori equilib-

rium and weakly dominated actions: a set of action profiles not played under any intrinsic a

posteriori equilibrium will “typically” contain actions that are weakly dominated.

This paper is directly inspired by Brandenburger and Friedenberg (2008). Our charac-

terization of intrinsic a posteriori equilibrium (Theorem 3.1) is a generalization of Branden-

burger and Friedenberg’s injectivity result for best-response set. The theorem contributes

toward the open question of characterizing in strategic terms the solution concept studied

in Brandenburger and Friedenberg; intrinsic a posteriori equilibrium forms a refinement of

the solution of Brandenburger and Friedenberg.

1The class of generic games that we consider comes from the literature on the Lemke-Howson algorithm
for computation of Nash equilibrium in two-person games; see von Stengel (2002).
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An essential difference between our paper and Brandenburger and Friedenberg is that

we are concerned with purification based on hierarchies of beliefs, while Brandenburger and

Friedenberg are concerned with correlation based on hierarchies of beliefs. And Branden-

burger and Friedenberg work with rationalizability, while we work with correlated equilib-

rium. Additionally, Brandenburger and Friedenberg do not work with common prior, while

we do in the second half of the paper. We carefully compare our model and results to that

of Brandenburger and Friedenberg in Section 5.

The paper proceeds as follows. In the next section we formally introduce our model.

Section 3 studies intrinsic a posteriori equilibrium, and Section 4 studies intrinsic correlated

equilibrium. We discuss related literature in Section 5. Section 6 concludes the paper.

2 The Model

2.1 Notations

We use the following standard notation: for product set T =
∏

i∈N Ti, let T−j =
∏

i6=j Ti.

Likewise, for t ∈ T , let t−i = (tj)j 6=i. And for fi : Ti → Xi, i ∈ N , we write f−i(t−i) =

(fj(tj))j 6=i.

Let ∆(X) be the set of Borel probability measures on topological space X; if X is finite

or countable, we endow X with the discrete topology, so every subset is a Borel set.

For µ ∈ ∆(T ) where T =
∏

i∈N Ti is finite or countable, let µ(ti) = µ({ti} × T−i),

µ(·|ti) ∈ ∆(T−i) be µ conditional on the event {ti} × T−i if µ(ti) > 0, and let µ(tj|ti) =

µ({tj} ×
∏

k 6∈{i,j} Tk|ti) and likewise µ(tj, ti) = µ({tj} × {ti} ×
∏

k 6∈{i,j} Tk).

Finally, we write x 6= y ∈ X to mean that x ∈ X, y ∈ X and x 6= y

2.2 Set-up

We fix a finite, complete information game: (u, A,N), where N is a finite set of players

(|N | ≥ 2), A =
∏

i∈N Ai a (non-empty) finite set of action profiles, and u = (ui)i∈N ,

ui : A → R for each i ∈ N , the payoffs.

We work with type space: ((λi)i∈N , T ), where T =
∏

i∈N Ti is a (non-empty) finite or

countably infinite2 set of type profiles, and λi : Ti → ∆(T−i) is player i’s belief (i.e. probability

measure), contingent on his type, about types of other players.

2This assumption is for the convenience of avoiding measurability issues. Since the game is finite, nothing
significant changes when we let Ti be a general measurable space.
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Every player i plays a pure action contingent on his type: σi : Ti → Ai, which is his pure

strategy. We write σ = (σi)i∈N .

The equilibrium condition (incentive compatibility) is that for every i ∈ N , ti ∈ Ti and

a′
i ∈ Ai:

∑

t
−i∈T

−i

ui(σi(ti), σ−i(t−i))λi(ti)(t−i) ≥
∑

t
−i∈T

−i

ui(a
′
i, σ−i(t−i))λi(ti)(t−i) (2)

Definition 2.1. ((λi)i∈N , T, σ) is an a posteriori equilibrium if (2) is satisfied.

(λ, T, σ) is a correlated equilibrium if λ ∈ ∆(T ) is such that λ(ti) > 0 for all i ∈ N and

ti ∈ Ti, and (2) is satisfied for λi(ti) := λ(·|ti).

Correlated equilibrium differ from a posteriori equilibrium only in that the beliefs of

correlated equilibrium come from a common prior; the requirement that λ(ti) > 0 is simply

to get a well-defined conditional and is without loss of generality: we can throw aways type

ti such that λ(ti) = 0.

For any ((λi)i∈N , T, σ), we can define an extended type space (a product structure) that

consolidates information contained in σi and λi. For each i ∈ N , let λ̃i : Ti → ∆(T−i ×A−i)

be such that

λ̃i(ti)(t−i, a−i) =







λi(ti)(t−i) if σ−i(t−i) = a−i

0 otherwise
(3)

for every t−i ∈ T−i and a−i ∈ A−i.

Each type ti induces through λ̃i a hierarchy of beliefs, of which the basic uncertainty for

player i is A−i, the actions of other players. The hierarchy of beliefs is player i’s belief about

other players’ actions, his belief about their beliefs about others’ actions, his belief about

others’ beliefs about others’ beliefs, and so on. The following formulation of hierarchy of

beliefs is standard: see Siniscalchi (2007) and Brandenburger and Friedenberg (2008). The

set of all such hierarchies of beliefs forms an universal type space in which each player i has

basic uncertainty A−i
3.

For each i ∈ N , let T 1
i = ∆(A−i) be the set of player i’s first order beliefs. And define

δ1
i : Ti → T 1

i , ti 7→ margA
−i

λ̃i(ti). Therefore, the first order belief at type ti is simply player

i’s belief on other players’ actions. If player i is rational at type ti, then his action σi(ti)

must be a best response for this first order belief.

3In a “usual” universal type space (Mertens and Zamir (1985)), the basic uncertainty of every player is Θ,
the set of “fundamentals” of the game that affect payoffs; in this paper the payoffs of the game are common
knowledge among players (i.e. Θ is a singleton), so the only uncertainty is actions of players.
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A second order belief is a joint probability over other players’ actions and other players’

first order beliefs. Notice that we can obtain first order belief from second order belief by

“integrating” out in the second order belief other players’ first order beliefs. And in general,

a l-th order belief is a joint probability over other players’ actions and other players’ (l−1)-th

order beliefs.

Formally, for l ≥ 2 and i ∈ N , let T l
i = ∆(T l−1

−i × A−i) be the set of player i’s l-th

order beliefs. Define δl
i : Ti → T l

i such that δl
i(ti) is the image measure of λ̃i(ti) un-

der map (δl−1
j , idAj

)j 6=i. That is, for any Borel measurable B ⊆ T l−1
−i × A−i, δl

i(ti)(B) =

λ̃i(ti)((δ
l−1
j , idAj

)−1
j 6=i(B)), where idAj

: Aj → Aj is the identity function (idAj
(aj) = aj), and

(δl−1
j , idAj

)j 6=i : T−i × A−i → T l−1
−i × A−i is the product map, i.e. (δl−1

j , idAj
)j 6=i(t−i, a−i) =

(δl−1
j (tj), idAj

(aj))j 6=i.

(δ1
i (ti), δ

2
i (ti), δ

3
i (ti), . . .) is the hierarchy of beliefs (or belief hierarchy) of type ti. The

hierarchy of beliefs is a complete and canonical description of the state of mind of player

i (regarding actions played in the game) at type ti; it is canonical in the sense that it is

independent of any type space.

Types with the same hierarchy of beliefs are called redundant.

Example 2.1. Consider a symmetric (that is, λ1 = λ2) type space with two players: i ∈

{1, 2}, Ti = {α, α′, β, γ}, Ai = {A, B}; and σi(α) = σi(α
′) = A, σi(β) = σi(γ) = B; and

λi is as follows (each row is a probability distribution over the other player’s types, e.g.

λi(α) = 0.5α + 0.5γ, that is, with probability 0.5 the other player’s type is α, and with

probability 0.5 it is γ):

α α′ β γ

α 0.5 0 0 0.5

α′ 0.2 0.3 0 0.5

β 0.25 0.25 0.3 0.2

γ 0 0 0 1

The first order beliefs of α, α′ and β are the same: 0.5A + 0.5B (i.e. with probability 0.5

that the other player will do A, and with probability 0.5 that the other player will do B); the

first-order belief of γ is B (i.e. with probability 1 that the other player will do B).

β is distinguished from α and α′ by second-order belief (δ2
i (β) 6= δ2

i (α)), because they

have different beliefs about the other player’s first order belief: α and α′ believes that with

probability 0.5 the other player’s first order belief is 0.5A + 0.5B, and with probability 0.5

the other player’s first order belief is B; while β believes that with probability 0.8 the other
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player’s first order belief is 0.5A+0.5B, and with probability 0.2 the other player’s first order

belief is B.

On the other hand, α and α′ are not distinguished by any order of belief, so they are

redundant, having the same belief hierarchy.

Definition 2.2. ((λi)i∈N , T, σ) is an intrinsic a posteriori equilibrium if it is an a posteriori

equilibrium, and for every i ∈ N , for any two types ti, t
′
i ∈ Ti with the same hierarchy of

beliefs, i.e. δl
i(ti) = δl

i(t
′
i) for all l ≥ 1, we have σi(ti) = σi(t

′
i).

(λ, T, σ) is an intrinsic correlated equilibrium if it is a correlated equilibrium, and for

every i ∈ N , for any two types ti, t
′
i ∈ Ti with the same hierarchy of beliefs, we have σi(ti) =

σi(t
′
i); where the δl

i’s are defined with respect to λi(ti) := λ(·|ti).

In other words, “intrinsicness” in the above definition requires the strategy of every

player to be measurable on the partition generated by the player’s hierarchy of beliefs; it

rules out player i in an a posteriori equilibrium or correlated equilibrium playing different

actions at types that have the same hierarchy of beliefs, i.e. types that player i himself cannot

distinguish by thinking about other players’ actions, about what others think about others’

actions, about what others think about what others think, and so on.

Note that the redundant types α and α′ in Example 2.1 will not cause any problem for

the solution concepts in Definition 2.2, because σi assigns the same action at α and α′.

For intrinsic a posteriori equilibrium ((λi)i∈N , T, σ), we are interested in action profiles

played under this equilibrium, i.e. the product set
∏

i∈N σi(Ti). And for intrinsic correlated

equilibrium (λ, T, σ), we are interested in the distribution of action profiles obtained from

the equilibrium, i.e. µ ∈ ∆(A) such that µ(a) = λ({t ∈ T : σ(t) = a}) for every a ∈ A. We

now briefly review the characterizations when the equilibrium is not required to be intrinsic.

Pearce (1984) and Bernheim (1984) in their studies of rationalizable actions introduce

the concept of best-response set (BRS). A set of action profiles Q =
∏

i∈N Qi is a BRS if for

each i ∈ N and ai ∈ Qi, there exists a belief µ ∈ ∆(Q−i) such that ai is optimal for player

i under µ (i.e. ui(ai, µ) ≥ ui(a
′
i, µ) for all a′

i ∈ Ai, where as usual ui is linearly extended to

beliefs).

It is well-known (Brandenburger and Dekel, 1987) that for any non-empty set of action

profiles Q =
∏

i∈N Qi, there exists an a posteriori equilibrium ((λi)i∈N , T, σ) under which Q

is played (Qi = σi(Ti) for every i ∈ N) if and only if Q is a BRS.

It is also well-known that µ ∈ ∆(A) is obtained from a correlated equilibrium (λ, T, σ) if
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and only if
∑

a
−i∈A

−i

ui(ai, a−i)µ(ai, a−i) ≥
∑

a
−i∈A

−i

ui(a
′
i, a−i)µ(ai, a−i) (4)

holds for every i ∈ N and ai, a
′
i ∈ Ai.

In Section 3 and 4 we work out the exact strengthening in strategic terms that “intrin-

sicness” adds to the above characterizations.

We follow the convention in the literature to call µ ∈ ∆(A) a correlated equilibrium

(respectively, an intrinsic correlated equilibrium) if µ is obtained from a correlated equilib-

rium (respectively, an intrinsic correlated equilibrium) (λ, T, σ); that is, if µ(a) = λ({t ∈ T :

σ(t) = a}) for all a ∈ A. Furthermore, we call a correlated equilibrium µ ∈ ∆(A) intrinsic if

it is an intrinsic correlated equilibrium.

3 Intrinsic A Posteriori Equilibrium

In this section we characterize the set of action profiles played under an intrinsic a posteriori

equilibrium.

For a set of action profiles Q =
∏

i∈N Qi, let

βQ
i (ai) = {µ ∈ ∆(Q−i) : ai is optimal for player i under µ}, (5)

for every i ∈ N and ai ∈ Qi. For every µ in βQ
i (ai), we say that µ is a supporting belief of

action ai in Q−i.

It’s easy to see that βQ
i (ai) is a convex set (polytope, in fact); this simple property turns

out to be crucial to our characterization theorems.

Clearly, Q =
∏

i∈N Qi is a best-response set (BRS) if and only if for every i ∈ N and

ai ∈ Qi we have βQ
i (ai) 6= ∅.

If βQ
i (ai) = {µ}, then we simply write βQ

i (ai) for µ.

For each i ∈ N , let

W 1
i = {ai ∈ Qi : |βQ

i (ai)| = 1}, (6)

W l
i = {ai ∈ W 1

i : βQ
i (ai)(W

l−1
−i ) = 1}, l ≥ 2,

Wi =
⋂

l≥1

W l
i .

W 1
i is the set of actions in Qi that have a unique supporting belief in Q−i. W 2

i is the
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subset of W 1
i for which the unique supporting belief has support contained in W 1

−i; in general,

W l
i is the subset of W 1

i for which the unique supporting belief has support contained in W l−1
−i .

Notice that W =
∏

i∈N Wi is the largest BRS contained in W 1 =
∏

i∈N W 1
i .

We write Wi(Q) and W l
i (Q) when it is necessary to emphasize the dependence on Q.

Definition 3.1. A best-response set (BRS) Q =
∏

i∈N Qi is a semi-injective BRS if for

every i ∈ N and any two distinct actions ai and a′
i in Wi, βQ

i (ai) 6= βQ
i (a′

i).

Brandenburger and Friedenberg define injective BRS as a BRS Q =
∏

i∈N Qi such that

for every player i, we can find for every action in Qi a distinct supporting belief in Q−i (to

which the action is optimal). This is equivalent to saying that for every player i and any two

distinct actions ai and a′
i in W 1

i , βQ
i (ai) 6= βQ

i (a′
i). Semi-injectivity is weaker than injectivity,

because semi-injectivity means that βQ
i is injective over a smaller set — Wi, instead of W 1

i .

Brandenburger and Friedenberg (Proposition H.2) prove that (in our language) for any

non-empty injective BRS Q =
∏

i∈N Qi, there exists an intrinsic a posteriori equilibrium

((λi)i∈N , T, σ) such that Qi = σi(Ti) for every i ∈ N . Here is our generalization:

Theorem 3.1. For any non-empty set of action profiles Q =
∏

i∈N Qi, there exist an in-

trinsic a posteriori equilibrium ((λi)i∈N , T, σ) under which Q is played (i.e. Qi = σi(Ti) for

every i ∈ N), if and only if Q is a semi-injective BRS.

The proof of Theorem 3.1 implies the following corollary regarding the level of beliefs

players need to reason in an intrinsic a posteriori equilibrium. When l = 1, (7) is Branden-

burger and Friedenberg’s injectivity condition; when l = ∞ (and let W∞
i = Wi), (7) is our

semi-injectivity condition.

Corollary 3.2. Fix a l ≥ 1 and a non-empty Q =
∏

i∈N Qi. If for every player i,

ai, a
′
i ∈ W l

i , ai 6= a′
i =⇒ βQ

i (ai) 6= βQ
i (a′

i), (7)

then there exists an a posteriori equilibrium in which players condition their actions on

their l-th order beliefs, and under which Q is played. Conversely, if players only condition

their actions on their l-th order beliefs in an a posteriori equilibrium, and Q is played under

the equilibrium, then (7) holds.

The corollary implies that if the iterated deletions in (6) end in k rounds (i.e. W k
i = Wi

for all i ∈ N) for a semi-injective BRS Q, then players need to reason to at most k-th order

beliefs in a corresponding intrinsic a posteriori equilibrium.
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Before moving on to the proof, we discuss the underlying idea. Notice that the W l
i ’s

constructed in Equation (6) partition Qi into sets Qi \ W 1
i , W 1

i \ W 2
i , W 2

i \ W 3
i , W 3

i \ W 4
i ,

. . . , and Wi. By construction, each action in Qi \ W 1
i is supported by an infinite number of

first order beliefs, each action in W 1
i \W 2

i is supported by an infinite number of second order

beliefs and by a unique first order beliefs, each action in W 2
i \W 3

i is supported by an infinite

number of third order beliefs and by a unique second order beliefs, and so on. Note that if

an action is supported by an infinite number of l-th order belief, then it is supported by an

infinite number of hierarchies of beliefs. Since Qi is finite, we will never have any trouble

finding distinct hierarchies of beliefs to support actions in Qi \ Wi.

On the other hand, each action ai in Wi is supported by a unique l-th order belief, for

every l ≥ 1 (for l = 1, ai is supported by the unique first order belief βQ
i (ai)); therefore ai

is supported by a unique hierarchy of beliefs. Therefore, the requirement that every player

conditions his actions on his hierarchies of beliefs translate into the requirement that each

action ai in Wi has a distinct supporting belief βQ
i (ai).

Proof of Theorem 3.1. Only If:

Fix an intrinsic a posteriori equilibrium ((λi)i∈N , T, σ); let Qi = σi(Ti) for each i ∈ N ,

and let λ̃i be obtained from λi and σ by (3).

Q =
∏

i∈N Qi is clearly a BRS.

If Wi = ∅ for every i ∈ N , then there is nothing else to prove. Thus, suppose otherwise;

note that this implies that Wi 6= ∅ for all i ∈ N .

The following lemma, which is essentially Proposition 11.1 in Brandenburger and Frieden-

berg (2008), demonstrates the connection between the set W l
i and player i’s l-th order beliefs.

Lemma 3.3. For any l ≥ 1, i ∈ N and ai ∈ W l
i , there is exactly one l-th order belief in Ti

mapped by σi to ai; that is, if σi(ti) = σi(t
′
i) = ai, then δl

i(ti) = δl
i(t

′
i).

Proof. If σi(ti) = ai ∈ W 1
i , ti ∈ Ti, then clearly margA

−i
λ̃i(ti) = βQ

i (ai). Thus the lemma is

true when l = 1.

Now suppose l ≥ 2, and that the lemma is true for l − 1. Let σi(ti) = σi(t
′
i) = ai ∈

W 2
i , ti, t

′
i ∈ Ti. Then, margA

−i
λ̃i(ti) = margA

−i
λ̃i(t

′
i) = βQ

i (ai) because ai ∈ W 1
i . If

βQ
i (ai)(a−i) > 0, λ̃(ti)(t−i, a−i) > 0 and λ̃(t′i)(t

′
−i, a−i) > 0 , then we must have σ−i(t−i) =

σ−i(t
′
−i) = a−i; and a−i ∈ W l−1

−i by the construction of W l
i . By the induction hypothesis,

δl−1
j (tj) = δl−1

j (t′j) for every j 6= i. Thus, δl
i(ti) = δl

i(t
′
i).
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Corollary 3.4. For every i ∈ N and µ ∈ ∆(W−i), there can be at most belief hierarchy in

Ti having first order belief µ, i.e. if margA
−i

λ̃i(ti) = µ = margA
−i

λ̃i(t
′
i), then δl

i(ti) = δl
i(t

′
i)

for every l ≥ 1.

Proof. Suppose µ ∈ ∆(W−i) and margA
−i

λ̃i(ti) = µ = λ̃i(t
′
i), ti, t

′
i ∈ Ti. If µ(a−i) > 0,

λ̃(ti)(t−i, a−i) > 0 and λ̃(t′i)(t
′
−i, a−i) > 0, we must have σ−i(t−i) = σ−i(t

′
−i) = a−i ∈ W−i,

and by the previous lemma δl
j(tj) = δl

j(t
′
j) for every j 6= i and l ≥ 1. Thus, δl

i(ti) = δl
i(t

′
i) for

every l ≥ 1.

Now, for each i ∈ N and ai 6= a′
i ∈ Wi, by the assumption of Qi = σi(Ti), there exists

ti, t
′
i ∈ Ti such that σi(ti) = ai and σi(t

′
i) = a′

i; furthermore, ti and t′i have distinct belief

hierarchies, by the “intrinsicness” of ((λi)i∈N , T, σ). We have margA
−i

λ̃i(ti) = βQ
i (ai) and

margA
−i

λ̃i(t
′
i) = βQ

i (a′
i); and clearly βQ

i (ai)(W−i) = βQ
i (a′

i)(W−i) = 1. Then βQ
i (ai) 6=

βQ
i (a′

i), for otherwise the corollary above would imply that ti and t′i have the same hierarchy

of beliefs.

If:

We prove this direction by construction.

Let Q =
∏

i∈N Qi be a non-empty semi-injective BRS. Let W l
i and Wi be as defined in

(6).

For each i ∈ N , let

Ti = {ai(k) : ai ∈ Qi \ Wi, k ∈ {1, 2}} ∪ Wi

where ai(1) and ai(2) are two distinct copies of ai.

We define the strategy σi : Ti → Ai as follows. For every i ∈ N , let σi(ai(1)) = σi(ai(2)) =

ai for each ai ∈ Qi \ Wi; and let σi(ai) = ai, ai ∈ Wi.

For every i ∈ N , let t(ai) = ai(1) if ai ∈ Qi \ Wi; and let t(ai) = ai if ai ∈ Wi.

For every i ∈ N , define the belief λi : Ti → ∆(T−i) as follows.

Step 1:

For each ai ∈ Qi \ W 1
i , fix ν(ai, 1) 6= ν(ai, 2) ∈ βQ

i (ai) \ βQ
i (W 1

i ) such that

|{ν(ai, k) : ai ∈ Qi \ W 1
i , k ∈ {1, 2}}| = 2|Qi \ W 1

i |.

This is possible because Qi \W 1
i and βQ

i (W 1
i ) are finite sets, but βQ

i (ai) is infinite for any

ai ∈ Qi \ W 1
i (recall that βQ

i (ai) is a convex set).
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For ai ∈ Qi \ W 1
i and k ∈ {1, 2}, let

λi(ai(k))(t−i) =







ν(ai, k)(a−i) tj = t(aj) for every j 6= i

0 otherwise

for every t−i ∈ T−i.

Clearly, each ai(k), ai ∈ Qi \W 1
i and k ∈ {1, 2}, induces through λi a distinct first order

belief.

Step l: (2 ≤ l ≤ L = min{l ≥ 1 : W l = W})

For each ai ∈ W l−1
i \ W l

i , choose a c(ai) ∈ W l−2
m \ W l−1

m , m 6= i, (where W 0
m = Qm) such

that βQ
i (ai)(c(ai)) > 0; such c(ai) exists by constructions of W l

i ’s, and c(ai)’s can be chosen

so that βQ
i (ai) = βQ

i (a′
i) ⇒ c(ai) = c(a′

i). And choose κ(ai, 1) 6= κ(ai, 2) ∈ [0, 1] such that for

any ai 6= a′
i ∈ W l−1

i \ W l
i with βQ

i (ai) = βQ
i (a′

i), we have that κ(ai, 1), κ(a′
i, 1), κ(ai, 2) and

κ(a′
i, 2) are all distinct.

For ai ∈ W l−1
i \ W l

i and k ∈ {1, 2}, let

λi(ai(k))(t−i) =































βQ
i (ai)(a−i) tj = t(aj), j 6= i, and am 6= c(ai)

κ(ai, k)βQ
i (ai)(a−i) tj = t(aj), j 6∈ {i, m}, and tm = c(ai)(1)

(1 − κ(ai, k))βQ
i (ai)(a−i) tj = t(aj), j 6∈ {i, m}, and tm = c(ai)(2)

0 otherwise

for every t−i ∈ T−i.

By induction on l, it’s easy to see that each ai(k), ai ∈ W l−1
i \W l

i and k ∈ {1, 2}, induces

through λi a distinct l-th order belief.

Step L + 1:

Finally, for ai ∈ Wi, let

λi(ai)(t−i) =







βQ
i (ai)(a−i) tj = t(aj) for every j 6= i

0 otherwise

for every t−i ∈ T−i.

By assumption, each ai ∈ Wi, has a distinct first order belief.

Example 3.1. Consider the following symmetric two-person game:
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A B C D

A 1, 1 3, 3 0, 0 0, 4

B 3, 3 1, 1 0, 4 0, 0

C 0, 0 4, 0 1, 1 1, 1

D 4, 0 0, 0 1, 1 1, 1

First, note that {A, B, C, D} × {A, B, C, D} is a BRS, so all actions can be played under a

single a posteriori equilibrium.

Let Q1 = Q2 = {A, B, C, D}. Then βQ
1 (A) = βQ

1 (B) = βQ
2 (A) = βQ

2 (B) = {1/2A +

1/2B}, where 1/2A + 1/2B is the belief that assigns probability 1/2 to A and 1/2 to B.

Thus, W1 = W2 = {A, B}, and Q = Q1 × Q2 is not a semi-injective BRS. In fact, it’s easy

to see that for any C1 × C2 ⊆ {A, B, C, D} × {A, B, C, D}, if A ∈ Ci or B ∈ Ci for some

i ∈ {1, 2}, then C1 × C2 is either not a BRS, or not a semi-injective BRS.

Thus, by Theorem 3.1, A or B cannot be played by either player under any intrinsic

a posteriori equilibrium. In particular, intrinsic a posteriori equilibrium refines away the

Nash equilibrium (1/2A + 1/2B, 1/2A + 1/2B); notice that both actions A and B are weakly

dominated.

3.1 Weak Domination

In this section we illustrate a connection between intrinsic a posteriori equilibrium and weakly

dominated actions.

Recall the result of Brandenburger and Dekel (1987): for any non-empty set of action

profiles Q =
∏

i∈N Qi, there exists an a posteriori equilibrium ((λi)i∈N , T, σ) under which Q

is played (i.e. Qi = σi(Ti) for every i ∈ N) if and only if Q is a BRS.

Therefore, if action profiles Q =
∏

i∈N Qi is not played under any a posteriori equilibrium

(i.e. is not a BRS), then there exist i ∈ N and ai ∈ Qi such that ai is strictly dominated in

Q−i; that is, there exists αi ∈ ∆(Ai) such that ui(ai, a−i) < ui(αi, a−i) for every a−i ∈ Q−i.

This is because there must exist i ∈ N and ai ∈ Qi such that ai is not a best response of

player i to any µ ∈ ∆(Q−i) (for otherwise Q would be a BRS), which is equivalent to the

statement that ai is strictly dominated in Qi (Lemma 3 in Appendix B of Pearce (1984)).

We now show an analogous result with intrinsic a posteriori equilibrium and weak dom-

ination. Recall that Wi ⊆ Qi is defined from Q =
∏

i∈N Qi by Equation (6).

Proposition 3.5. Suppose that a non-empty BRS Q =
∏

i∈N Qi is not played under any

intrinsic a posteriori equilibrium (i.e. is not semi-injective), and that Wj ( Qj for some
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j ∈ N . Then, for every i 6= j, every ai ∈ Wi 6= ∅ is weakly dominated in Q−i; that is,

there exists αi ∈ ∆(Ai) such that ui(ai, a−i) ≤ ui(αi, a−i) for every a−i ∈ Q−i, with strict

inequality for some a−i ∈ Q−i.

Proof. We have W =
∏

i∈N Wi 6= ∅, for otherwise Q would be semi-injective. Take any

i 6= j and ai ∈ Wi, the unique belief in Q−i to which ai is optimal has support contained

in W−i ( Q−i. Thus, ai is weakly dominated in Q−i, because of the equivalence between

being weakly dominated and not a best response to any belief with full support (Lemma 4

in Appendix B of Pearce (1984)).

The next proposition shows that if Q is the set of correlated rationalizable action profiles

(the maximum BRS), then we can dispense with the assumption of Wj ( Qj. The proof is

based on a geometric observation on the W 1
i set.

Proposition 3.6. Suppose that the set of correlated rationalizable action profiles Q =
∏

i∈N Qi is not played under any intrinsic a posteriori equilibrium (i.e. is not a semi-injective

BRS). Then, for every i ∈ N , every ai ∈ Wi 6= ∅ is weakly dominated in Q−i. Furthermore,

ai ∈ Wi cannot survive iterated deletion of weakly dominated actions in A =
∏

i∈N Ai.

Proof. In light of the previous proposition, we will show that Wi ( Qi for all i ∈ N . This

follows from the following claim:

Claim. For any i ∈ N and any Xj ⊆ Aj, j 6= i, such that |X−i| ≥ 2, there exists an āi ∈ Ai

such that āi is player i’s best response to two distinct beliefs on X−i.

First, notice that |Q| > 1, for otherwise Q would be a semi-injective BRS. Therefore,

there exists j ∈ N such that |Qj| > 1.

For each i 6= j, apply the claim to get an āi ∈ Ai that is player i’s best response to two

distinct beliefs on Q−i. Clearly, āi ∈ Qi because Q is the set of correlated rationalizable

action profiles. Therefore, āi 6∈ W 1
i . This implies that Wi ⊆ W 1

i ( Qi. Since Wi 6= ∅, this

also means that |Qi| > 1.

Now, apply the same reasoning to j to conclude that Wj ⊆ W 1
j ( Qj as well.

Therefore, by the previous proposition, for every i ∈ N , every ai ∈ Wi 6= ∅ is weakly

dominated in Q−i. Notice that any action ai 6∈ Qi does not survive iterative deletion of

strictly dominated actions in A =
∏

i∈N Ai. Therefore, ai ∈ Wi cannot survive iterative

deletion of weakly dominated actions in A =
∏

i∈N Ai.
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Proof of the Claim. Let C be the convex hull,

C = {(ui(µi, a−i))a
−i∈X

−i
: µi ∈ ∆(Ai)} ⊆ RX

−i .

Let āi ∈ Ai be such that x = (ui(āi, a−i))a
−i∈X

−i
is an extreme point of C that is

not weakly dominated in C; clearly, such āi exists . There must be multiple hyperplanes

separating C − x = {y − x : y ∈ C} from the positive orthant R
X
−i

+ , because the origin is an

extreme point both of C − x and of R
X
−i

+ , and C − x ∩ R
X
−i

+ = {0}. Thus, āi satisfies our

desired conclusion.

3.2 Iterated Deletion and Existence

In this section we work out an iterated deletion procedure that arrives at semi-injective BRS.

We will show that this procedure always gives a non-empty set, thus there exists an intrinsic

a posteriori equilibrium in every finite game.

Verbally, our iterated deletion works as follows: we start out with
∏

i∈N R1
i , the set of all

correlated rationalizable actions (the maximum BRS). Now, (1) delete a minimum number

of actions from each R1
i so that the semi-injectivity condition in Definition 3.1 holds for

the remaining actions; this gives R2,1
i . But

∏

i∈N R2,1
i might not be a BRS, so (2) delete a

minimum number of actions from each R2,1
i so that a BRS is obtained; this gives

∏

i∈N R2
i .

But now, the semi-injectivity condition might be lost for
∏

i∈N R2
i , so we go back to (1) to

get
∏

i∈N R3,1
i , and then go to (2) to get a BRS

∏

i∈N R3
i . We keep iterating this process

until no more deletion is possible, i.e. until a semi-injective BRS
∏

i∈N Ri emerges.

We now formally specify this iterated deletion procedure.

Step 1: For each i ∈ N , let R1
i be the the set of player i’s correlated rationalizable

actions, or equivalently, the set of player i’s actions that survive iterated deletions of strictly

dominated actions.

Step l (l ≥ 2): Let a BRS Rl−1 =
∏

i∈N Rl−1
i be given from the previous step. Let

βl−1
i = βRl−1

i (cf. Equation (5)), and let Wi(l − 1) be the Wi(R
l−1), i.e. the Wi obtained

in Equation (6) when Q = Rl−1. And for each i ∈ N and γ ∈ βl−1
i (Wi(l − 1)), fix an

al−1(γ) ∈ Wi(l − 1) such that βl−1
i (al−1(γ)) = γ; note that if βl−1

i is injective on Wi(l − 1),

there is a unique choice of al−1(γ).
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For each i ∈ N , let

Rl,1
i =

(

Rl−1
i \ Wi(l − 1)

)

∪ {al−1(γ) : γ ∈ βl−1
i (Wi(l − 1))}, (8)

Rl,k
i = {ai ∈ Rl,1

i : ∃µ ∈ ∆(Rl,k−1
−i ) s.t. ai is optimal under µ}, k ≥ 2,

Rl
i =

⋂

k≥1

Rl,k
i .

Note that Rl =
∏

i∈N Rl
i is the largest BRS contained in Rl,1 =

∏

i∈N Rl,1
i .

Finally: Let Ri =
⋂

l≥1 Rl
i for each i ∈ N .

By construction, for every i ∈ N we have that

R1
i ⊇ R2

i ⊇ R3
i ⊇ . . . ⊇ Ri.

Proposition 3.7. R =
∏

i∈N Ri is a non-empty, semi-injective BRS. And by some choice

of al−1(γ) for each l and γ in (8), we can obtain any maximal (in the set-inclusion partial

order) semi-injective BRS as R.

Proof. We will first show that each Ri is non-empty; it’s clear that R is a semi-injective

BRS.

It is well-known that each R1
i is non-empty: there always exist actions that are correlated

rationalizable.

Now, fix a l ≥ 2, and suppose that each Rl−1
i is non-empty. Then Rl,1

i is non-empty

because it contains al−1(γ) where γ ∈ βl−1
i (Wi(l − 1)).

For any k ≥ 2, suppose each Rl,k−1
i is non-empty. Fix an i ∈ N and any µ ∈ ∆(Rl,k−1

−i ).

Let BRi(µ) = {ai ∈ Ai : ai is optimal for player i under µ}.

Clearly, BRi(µ) ⊆ R1
i . And BRi(µ) ∩ R2,1

i 6= ∅ because if there exists ai ∈ R1
i \ R2,1

i

such that ai ∈ BRi(µ), then we must have β1
i (ai) = µ, so by construction there exists an

a′
i ∈ BRi(µ) ∩ R2,1

i .

And we have BRi(µ) ∩ R2,1
i ⊆ R2,m

i for any m ≥ 2 (or 2 ≤ m ≤ k if l = 2) because

Rl,k−1
−i ⊆ R2,m−1

−i .

Repeating this argument, we conclude that ∅ 6= BRi(µ) ∩Rl,1
i ⊆ Rl,k

i , which implies that

Rl,k
i is non-empty.

Therefore, each Ri is non-empty.

For the second part of the proposition, fix a maximal semi-injective BRS Q =
∏

i∈N Qi.

Clearly, we have Qi ⊆ R1
i for every i ∈ N . For any two distinct a′

i 6= ai ∈ Wi(Q), we have
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βQ
i (ai) 6= βQ

i (a′
i); and notice that Wi(1)∩Qi ⊆ Wi(Q). Thus, so by some choices of a1(γ) in

Equation (8), we have Qi ⊆ R2,1
i . And Qi ⊆ R2

i because R2 is the largest BRS contained in

R2,1.

Continuing on with this reasoning, we conclude that by some choice of al−1(γ) for each

l and γ in (8), we have Qi ⊆ Ri. But this means that Qi = Ri since Q is a maximal

semi-injective BRS.

Notice the proof does not use any property of Wi except that there is a unique supporting

belief for each action in Wi. Therefore, the iterated deletion and the proposition also work

if Wi is replaced by W 1
i ; in this case we obtain Brandenburger and Friedenberg’s injective

BRS. Since an injective BRS is played under an intrinsic a posteriori equilibrium in which

every player conditions his actions on his first order beliefs (Corollary 3.2), the proof of

Proposition 3.7 implies that this more stringent kind of intrinsic a posteriori equilibrium

also exists in every finite game.

4 Intrinsic Correlated Equilibrium

This section characterizes the distribution of actions profiles obtained from an intrinsic cor-

related equilibrium. Recall that we call this distribution (respectively, distribution obtained

from a correlated equilibrium) intrinsic correlated equilibrium (respectively, correlated equi-

librium) as well.

For a µ ∈ ∆(A), let Qi be the support of margAi
µ for each i ∈ N , and let Q =

∏

i∈N Qi.

Clearly, µ is a correlated equilibrium if and only if for every i ∈ N and ai ∈ Qi we have

µ(·|ai) ∈ βQ
i (ai), where βQ

i (ai), defined in (5), is the set of beliefs supporting ai in Q−i.

For each i ∈ N , define

Y 1
i = {ai ∈ Qi : µ(·|ai) is an extreme point of βQ

i (ai)}, (9)

Y l
i = {ai ∈ Y 1

i : µ(Y l−1
−i |ai) = 1}, l ≥ 2,

Yi =
⋂

l≥1

Y l
i ,

As before, we write Yi(µ) and Y l
i (µ) when it is necessary to emphasize the dependence

on µ.
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Theorem 4.1. A correlated equilibrium µ ∈ ∆(A) is an intrinsic correlated equilibrium if

and only if for every i ∈ N , for any two distinct actions ai and a′
i in Yi, we have µ(·|ai) 6=

µ(·|a′
i).

The theorem is completely analogous to Theorem 3.1 for intrinsic a posteriori equilibrium;

see the discussion below Theorem 3.1 for some intuitions. To see why the iterated deletion

Y l
i ’s are of this form, we sketch the following lemma, which is analogous to Lemma 3.3:

Lemma 4.2. Fix an intrinsic correlated equilibrium (λ, T, σ), and suppose that µ is obtained

from (λ, T, σ) (i.e. µ(a) = λ({t ∈ T : σ(t) = a})). For any l ≥ 1, i ∈ N and ai ∈ Y l
i , there

is exactly one l-th order belief in Ti mapped by σi to ai; that is, if σi(ti) = σi(t
′
i) = ai, then

δl
i(ti) = δl

i(t
′
i).

Proof. Suppose l = 1. Fix i ∈ N and ai ∈ Y 1
i . If there exist ti, t

′
i ∈ Ti such that δ1

i (ti) 6= δ1
i (t

′
i)

but σi(ti) = σi(t
′
i) = ai (and without loss of generality, assume that σ−1

i (ai) = {ti, t
′
i}), then

because we have common prior, µ(·|ai) must be a strict convex combination of δ1
i (ti) and

δ1
i (t

′
i). This contradicts µ(·|ai) being an extreme point of βQ

i (ai), because the incentive

compatibility condition for correlated equilibrium (condition (2)) implies that δ1
i (ti) and

δ1
i (t

′
i) are in βQ

i (ai).

The inductive step is same as that in Lemma 3.3 and does not use the common prior.

The proof the only if of Theorem 4.1 then follows from the above lemma exactly as the

proof of the only if in Theorem 3.1 follows from Lemma 3.3; it also does not use the common

prior.

For the if direction of Theorem 4.1, we also follow the strategy of proof for Theorem 3.1.

However, significant complications arise because we need to ensure that the belief hierarchies

constructed come from a common prior, and that the common prior obtains µ, the correlated

equilibrium under consideration; we leave details of the construction to the Appendix. In

Example 4.3 we give a concrete example of the construction.

As with Theorem 3.1, we have the following corollary regarding the level of beliefs that

players need to reason in an intrinsic correlated equilibrium.

Corollary 4.3. Fix a l ≥ 1 and a µ ∈ ∆(A). If for every player i,

ai, a
′
i ∈ Y l

i , ai 6= a′
i =⇒ µ(·|ai) 6= µ(·|a′

i), (10)
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then there exists an a correlated equilibrium that obtains µ in which players condition

their actions on their l-th order beliefs. Conversely, if players only condition their actions

on their l-th order beliefs in a correlated equilibrium that obtains µ, then (10) holds.

Before moving on to examples, we give an easy sufficient condition for a correlated equi-

librium to be intrinsic. Brandenburger and Friedenberg in Appendix H observe that strict

incentives imply injectivity in beliefs, which implies “intrinsicness”. Here is an example of

this implication for correlated equilibrium:

Correlated equilibrium µ ∈ ∆(A) has strict incentives on the support if:

∑

a
−i∈Ai

ui(ai, a−i)µ(ai, a−i) >
∑

a
−i∈Ai

ui(a
′
i, a−i)µ(ai, a−i), (11)

for every i ∈ N , ai ∈ Qi = supp(margA
−i

µ) and a′
i ∈ Qi \ {ai}.

Myerson (1997) calls µ’s incentives elementary if (11) is satisfied for every pair of distinct

ai and a′
i in Ai.

Proposition 4.4. A correlated equilibrium with strict incentives on the support is intrinsic.

The proof of the proposition is as follows: if incentives of a correlated equilibrium µ are

strict on the support, then µ(·|ai) as a function of ai must be injective on the support (but

not vice versa), thus µ must be intrinsic.

Example 4.1 (Coordination game).

A B

A 10, 10 0, 0

B 0, 0 10, 10

The Nash equilibrium (1/2A + 1/2B, 1/2A + 1/2B) is not an intrinsic correlated equilib-

rium:

Let Q1 = Q2 = {A, B}, then βQ
i (A) = {pA + (1 − p)B : 1/2 ≤ p ≤ 1} and βQ

i (B) =

{pA + (1 − p)B : 0 ≤ p ≤ 1/2} for each i ∈ {1, 2}. Thus, 1/2A + 1/2B is an extreme point

of both βQ
i (A) and βQ

i (B), and Y 1
i = Yi = {A, B}; but conditional beliefs of A and B in

(1/2A + 1/2B, 1/2A + 1/2B) are the same: 1/2A + 1/2B.

On the other hand, it’s clear that (A, A) and (B, B) are intrinsic correlated equilibria.

More generally, a correlated equilibrium with full marginal support (i.e. the marginal

distributions have full support, which includes all correlated equilibria except (A, A) and

(B, B)) can be represented as (where p is the probability of (A, A) being played, etc.)
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A B

A p q

B r s

with incentive inequalities p/(p+r) ≥ 1/2, p/(p+q) ≥ 1/2, s/(s+q) ≥ 1/2, s/(s+r) ≥ 1/2;

and p + q + s + r = 1. Using previous characterizations of βQ
i (A) and βQ

i (B), we see that

p = q = r = s = 1/4 is the only correlated equilibrium that is not intrinsic; note that

p = q = r = 1/5 and s = 2/5 is an intrinsic correlated equilibrium, with Y 1
1 = Y 1

2 = {A}

(we have Y 2
i = Yi = ∅ for both i).

Therefore, the set of intrinsic correlated equilibria in this game consists of all correlated

equilibria except the fully mixed Nash equilibrium; note that this set is not closed.

Example 4.2 (Matching pennies, non-existence of intrinsic correlated equilibrium).

A B

A 1, -1 -1, 1

B -1, 1 1, -1

The Nash equilibrium (1/2A+1/2B, 1/2A+1/2B) here again is not an intrinsic correlated

equilibrium; the same reasoning from the previous example applies.

But (1/2A+1/2B, 1/2A+1/2B) is the unique correlated equilibrium of this game. Thus,

this game has no intrinsic correlated equilibrium

Notice that {A, B}× {A, B} is a semi-injective BRS, so there certainly exists intrinsic a

posteriori equilibrium in this game.

Example 4.3 (Matching pennies with explicit randomization by one player, mixed Nash

equilibrium being intrinsic).

A B

A 1, -1 -1, 1

B -1, 1 1, -1

C 0, 0 0, 0

The mixed Nash equilibrium (1/4A+1/4B+1/2C, 1/2A+1/2B) is an intrinsic correlated

equilibrium:

Y 1
1 = {A, B, C} as before. But Y 1

2 = ∅ because 1/4A + 1/4B + 1/2C can be written

as a convex combination of 1/6A + 1/6B + 2/3C and 1/2A + 1/2B, to each of which A

(respectively, B) is a best response of player 2. Thus, Y 2
i = Yi = ∅ for any i ∈ {1, 2}.
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Conceptually, (1/4A + 1/4B + 1/2C, 1/2A + 1/2B) is an intrinsic correlated equilibrium

because the presence of player 1’s explicit randomization C introduces variations in player

2’s supporting first order beliefs, which lead to variations in player 1’s supporting second

order beliefs that are used to purify player 1’s mixed strategy.

Here is an explicitly written intrinsic correlated equilibrium (λ, T, σ) that obtains (1/4A+

1/4B + 1/2C, 1/2A + 1/2B); it illustrates the construction in the Appendix:

T1 = {A(1), A(2), B(1), B(2), C}, T2 = {A(1), A(2), B}, σ1(A(1)) = σ1(A(2)) = σ2(A(1)) =

σ2(A(2)) = A, σ1(B(1)) = σ1(B(2)) = σ2(B) = B, σ1(C) = C, and λ ∈ ∆(T1 × T2) is as

follows:

A(1) A(2) B

A(1) 1/128 7/128 1/16

A(2) 7/128 1/128 1/16

B(1) 2/128 6/128 1/16

B(2) 6/128 2/128 1/16

C 1/4 0 1/4

Notice that the first order belief of player 2 at type A(1) is 1/6A + 1/6B + 2/3C, at

type A(2) it is 1/2A + 1/2B, and at type B it is 1/4A + 1/4B + 1/2C. Therefore, all

types of player 2 are distinguished by first order beliefs. And clearly, all types of player 1

are distinguished by second order beliefs, while they all have first order belief 1/2A + 1/2B.

Therefore, (λ, T, σ) is an intrinsic correlated equilibrium. And one can easily check that

(λ, T, σ) obtains (1/4A + 1/4B + 1/2C, 1/2A + 1/2B).

Example 4.4 (A non-intrinsic correlated equilibrium that is not Nash).

The symmetric two-person game is as follows:

A B C

A 1, 1 0, 0 0, 0

B 0, 0 1, 1 0, 0

C 0, 0 0, 0 1, 1

Consider the (asymmetric) correlated equilibrium of the game:

A B C

A 1/7 1/7 0

B 1/7 1/7 0

C 1/7 1/7 1/7
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Q1 = Q2 = {A, B, C}. For each i ∈ {1, 2}, βQ
i (A) is the convex hull spanned by extreme

points A, 1/2A+1/2B, 1/2A+1/2C and 1/3A+1/3B +1/3C; and likewise for βQ
i (B) and

βQ
i (C) (actions A, B and C are completely symmetric).

Therefore, we have that Y1 = Y2 = {A, B, C}, and µ(·|ai) is not injective on Yi (for either

i). Thus, this correlated equilibrium is not intrinsic. One can check that this correlated

equilibrium is an extreme point in the set of correlated equilibria (see Proposition 4.6).

4.1 Geometric Properties

Proposition 4.5. The set of intrinsic correlated equilibria is convex.

Proof. Suppose that µ1, µ2 ∈ ∆(A) are two intrinsic correlated equilibria; for γ ∈ (0, 1), let

µ = γµ1 + (1 − γ)µ2.

For any i ∈ N , if µ1(ai) > 0, µ2(ai) > 0 and µ1(·|ai) 6= µ2(·|ai), then µ(·|ai) is a strict

convex combination of µ1(·|ai) and µ2(·|ai), so clearly ai 6∈ Y 1
i (µ). Therefore, if ai ∈ Y 1

i (µ),

and µ1(ai) > 0 (respectively, µ2(ai) > 0), then we have that µ(·|ai) = µ1(·|ai) (respectively,

µ(·|ai) = µ2(·|ai)).

Let Q1
i = supp(margAi

µ1) and Q2
i = supp(margAi

µ2) for every i ∈ N . We thus have

Y 1
i (µ)∩Q1

i ⊆ Y 1
i (µ1) and Y 1

i (µ)∩Q2
i ⊆ Y 1

i (µ2) for each i ∈ N . This implies that Yi(µ)∩Q1
i ⊆

Yi(µ
1) and Yi(µ) ∩ Q2

i ⊆ Yi(µ
2).

If ai 6= a′
i ∈ Yi(µ) ∩ Q1

i , then ai 6= a′
i ∈ Yi(µ

1), and thus µ1(·|ai) 6= µ1(·|a′
i). Therefore,

we have µ(·|ai) 6= µ(·|a′
i), since µ1(·|ai) = µ(·|ai) and µ1(·|a′

i) = µ(·|a′
i). And likewise for

ai 6= a′
i ∈ Yi(µ) ∩ Q2

i .

Now, suppose ai 6= a′
i ∈ Y 2

i (µ) such that ai ∈ Q1
i \Q2

i , a′
i ∈ Q2

i \Q1
i and µ(·|ai) = µ(·|a′

i).

Then we have µ1(·|ai) = µ2(·|a′
i). For any aj ∈ Aj, j 6= i, such that µ1(aj|ai) = µ2(aj|a

′
i) > 0,

we have aj ∈ Y 1
j (µ), which implies that µ(·|aj) = µ1(·|aj) = µ2(·|aj). But this implies that

µ1(ai|aj) = µ(ai|aj) = µ2(ai|aj) > 0, which contradicts ai ∈ Q1
i \ Q2

i .

Thus, we have that for any i ∈ N and ai 6= a′
i ∈ Yi(µ), µ(·|ai) 6= µ(·|a′

i); i.e. µ is an

intrinsic correlated equilibrium.

The following proposition shows that intrinsic correlated equilibrium is related to the

notion of irreducibility and to extreme point in the set of correlated equilibria.

For a fixed correlated equilibrium µ ∈ ∆(A), with Qi = supp(margAi
µ) for i ∈ N , let

S =
⋃

i∈N Qi. Two actions a1 and ak in S communicate (with each other) if a1 ∈ Qi1 ,

ak ∈ Qik , and there exists am ∈ Qim , 2 ≤ m ≤ k − 1, such that im 6= im−1 ∈ N and

µ(am|am−1) > 0 for each 2 ≤ m ≤ k. Verbally, two actions communicate if they are
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connected by a sequence of intermediate actions in which µ places positive probability for

every consecutive pair of actions. One can think of such consecutive pair of actions as a link;

then two actions communicate if they are connected by a series of intermediate links.

It is readily checked that communication is an equivalence relation. Therefore, communi-

cation partitions S into equivalence classes (communication classes): S =
⋃

1≤k≤n Sk, where

every Sk =
⋃

i∈N Qk
i and ∅ 6= Qk

i ⊆ Qi. We say that the correlated equilibrium µ is irre-

ducible if n = 1. For each 1 ≤ k ≤ n, let µk(a) = µ(a)/µ(
∏

i∈N Qk
i ) for each a ∈

∏

i∈N Qk
i . It

is clear that each µk is an irreducible correlated equilibrium, and µ can be written uniquely

as convex combination of µk’s. We say that µk is an irreducible sub-equilibrium of µ.

µ can be thought of as obtained from a public randomization over correlated equilibria

µk, 1 ≤ k ≤ n.

As a concrete illustration, the correlated equilibrium below (where {A, B, C, D} are

actions for each of the two players) has three irreducible sub-equilibria: AA, BB, and

1/4CC + 3/8CD + 1/8DC + 1/4DD.

A B C D

A 1/4 0 0 0

B 0 1/4 0 0

C 0 0 1/8 3/16

D 0 0 1/16 1/8

Proposition 4.6. Suppose that a correlated equilibrium µ has irreducible sub-equilibria µk,

1 ≤ k ≤ n, and let Qk
i = supp(margAi

µk) for each i ∈ N and 1 ≤ k ≤ n. Then,

1. For each 1 ≤ k ≤ n, we either have Yi(µ
k) = Qk

i for all i ∈ N , or Yi(µ
k) = ∅ for all

i ∈ N . And for each i ∈ N , Yi(µ) =
⋃

1≤k≤n Yi(µ
k).

2. If Yi(µ
k) = Qk

i for all i ∈ N (e.g., when µk is not intrinsic), then µk is an extreme

point in the polytope of correlated equilibria.

3. µ is intrinsic if and only if µk is intrinsic for every 1 ≤ k ≤ n.

Proof. 1 and 3 are immediate.

For 2, suppose µ is an irreducible correlated equilibrium, and Yi(µ) = Qi = supp(margAi
µ)

for each i ∈ N . We will show that µ is an extreme point in the set of correlated equilibria.

Suppose µ1 and µ2 are two correlated equilibrium such that µ = µ1/2+µ2/2 and supp µ1 =

supp µ2 = supp µ. Because Yi(µ) = Qi, we must have µ1(·|ai) = µ2(·|ai) = µ(·|ai) for every

i ∈ N and ai ∈ Qi.
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Suppose that µ1 6= µ2, then there exists a ∈ Q =
∏

i∈N Qi such that µ1(a) 6= µ2(a).

Without loss of generality, suppose µ1(a) < µ2(a). Because µ1(·|ai) = µ1(·|ai) for every

i ∈ N , we have that µ1(b−i, ai) > 0 ⇒ µ1(b−i, ai) < µ2(b−i, ai) for every i ∈ N and b−i ∈ Q−i.

Because µ is irreducible, so are µ1 and µ2, and this together with the last sentence imply

that µ1(b) > 0 ⇒ µ1(b) < µ2(b) for every b ∈ Q, which clearly cannot be. Thus, we must

have µ1 = µ2.

Therefore, µ is an extreme point in the set of correlated equilibria.

Thus, if two distinct irreducible correlated equilibria µ1 and µ2 (not necessarily themselves

intrinsic) are such that there exist i ∈ N and ai ∈ Ai such that µ1(ai) > 0 and µ2(ai) > 0,

then γµ1 + (1 − γ)µ2 is an intrinsic correlated equilibrium for any γ ∈ (0, 1).

4.2 Mixed Strategy Nash Equilibrium

Previous examples suggest that non-degenerate mixed Nash equilibrium (i.e. one that re-

quires randomization for at least one player) is “typically” not an intrinsic correlated equi-

librium. This is indeed the case, for generic two-person finite games. The class of generic

games that we consider is usually associated with the Lemke-Howson algorithm, which is a

simplex-like algorithm that computes Nash equilibrium in two-person games; a good refer-

ence is von Stengel (2002).

We say that a two-person game (u, A = A1×A2, N = {1, 2}) is generic if for any i ∈ {1, 2}

and x ∈ ∆(Ai), we have |BRj(x)| ≤ | supp(x)|, where j 6= i, supp(x) = {ai ∈ Ai : x(ai) > 0}

and BRj(x) = {aj ∈ Aj : uj(aj, x) ≥ uj(a
′
j, x) for all a′

j ∈ Aj}.

Proposition 4.7. Fix a generic two-person game. Suppose (x, y) ∈ ∆(A1)×∆(A2) is a non-

degenerate mixed Nash equilibrium. Then (x, y) is not an intrinsic correlated equilibrium.

Proof. Since (x, y) is a Nash equilibrium, we have supp(x) ⊆ BR1(y) and supp(y) ⊆ BR2(x).

Thus, | supp(x)|+ | supp(y)| ≤ |BR1(y)|+ |BR2(x)|. By the genericity of the game, we have

| supp(x)| = |BR2(x)| and | supp(y)| = |BR1(y)|.

Theorem 2.10 of von Stengel (2002) (which again uses the genericity condition) implies

that the convex set C = {z ∈ ∆(A1) : supp(z) = supp(x) and BR2(z) = BR2(x)} is of

dimension 0, i.e. C = {x} 4. Fix any a2 ∈ supp(y), we claim that x is an extreme point of

βA
2 (a2).

4More generally, Theorem 2.10 of von Stengel (2002) says that the convex set {z ∈ ∆(A1) : supp(z) =
supp(x) and BR2(z) = BR2(x)} is of dimension m − n for any x ∈ ∆(A1), where m = | supp(x)| and
n = |BR2(x)|.
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Suppose otherwise, i.e. there exist z1 6= z2 ∈ βA
2 (a2) such that z1/2 + z2/2 = x; we can

choose z1 and z2 such that supp(z1) = supp(x) = supp(z2). And we have that x ∈ βA
2 (a′

2)

implies that z1, z2 ∈ βA
2 (a′

2): if z1 6∈ βA
2 (a′

2), then we have

u2(x, a′
2) = u2(z1, a

′
2)/2 + u2(z2, a

′
2)/2 < u2(z1, a2)/2 + u2(z2, a2)/2 = u2(x, a2)

which means x 6∈ βA
2 (a′

2).

Thus, we have BR2(x) ⊆ BR2(z1) ∩ BR2(z2); this means that BR2(x) = BR2(z1) =

BR2(z2), because |BR2(z1)| ≤ | supp(z1)| = | supp(x)| = |BR1(x)| and likewise for z2. Thus

we have z1 ∈ C and z2 ∈ C, which contradicts C being a singleton.

Likewise, y is an extreme point of βA
1 (a1) for every a1 ∈ supp(x). Our desired conclusion

then follows from the characterization of intrinsic correlated equilibrium in Theorem 4.1.

Finally, for any finite game, it’s easy to show that the iterated deletion procedure for

Y l
i , Equation (9), always ends in two rounds (i.e. Y 2

i = Yi for all i ∈ N) if µ is a Nash

equilibrium. Therefore, if a mixed Nash equilibrium is an intrinsic correlated equilibrium

(e.g., Example 4.3), then we can be sure that in the equilibrium players need only to condition

their actions on their second order beliefs, i.e. the equilibrium can be purified by second order

beliefs. This suggests an inherent simplicity of Nash equilibrium, if it is an intrinsic correlated

equilibrium.

5 Related Literature

Our paper is most related to Brandenburger and Friedenberg (2008). Brandenburger and

Friedenberg study rationalizability in complete information game with correlation resulting

from hierarchies of beliefs (intrinsic correlation).

They work with type space5 ((λ̃i)i∈N , T ), where λ̃i : Ti → ∆(T−i × A−i) for each i ∈ N ,

that is not necessarily obtained from Equation (3). Let l-th order belief map δl
i : Ti → T l

i be

defined as before, and let δi(ti) = (δ1
i (ti), δ

2
i (ti), . . .) be the whole hierarchy of beliefs induced

at type ti.

Brandenburger and Friedenberg define intrinsic correlation of players’ actions in a type

space with the following notions of conditional independence and sufficiency.

5As before, we assume that each Ti is (non-empty) finite or countably infinite to avoid measurability
issues.
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In a type space ((λ̃i)i∈N , T ), type ti ∈ Ti satisfies conditional independence (CI) if his

belief about actions of other players is independent conditional on their hierarchies of beliefs;

that is,

λ̃i(ti)(a−i|{δ−i(t−i) = x−i}) =
∏

j 6=i

λ̃i(ti)(aj|{δ−i(t−i) = x−i})

for every actions a−i ∈ A−i and hierarchies of beliefs x−i ∈
∏

j 6=i δj(Tj) such that λ̃i(ti)({δ−i(t−i) =

x−i}) > 0. Note that we abbreviate {t−i ∈ T−i : δ−i(t−i) = x−i} as {δ−i(t−i) = x−i}.

And ti ∈ Ti satisfies sufficiency (SUFF) if he believes that player j’s action (j 6= i) is

influenced only by player j’s belief hierarchy (and not influenced by belief hierarchies of other

players); that is,

λ̃i(ti)(aj|{δj(tj) = xj}) = λ̃i(ti)(aj|{δ−i(t−i) = x−i})

for every actions aj ∈ Aj and hierarchies of beliefs x−i ∈
∏

k 6=i δk(Tk) such that λ̃i(ti)({δ−i(t−i) =

x−i}) > 0.

Therefore, if both CI and SUFF hold at ti ∈ Ti, then we have

λ̃i(ti)(a−i|{δ−i(t−i) = x−i}) =
∏

j 6=i

λ̃i(ti)(aj|{δj(tj) = xj})

for every actions a−i ∈ A−i and hierarchies of beliefs x−i ∈
∏

j 6=i δj(Tj) such that λ̃i(ti)({δ−i(t−i) =

x−i}) > 0.

Going back to our model: ((λi)i∈N , T, σ), where λi : Ti → ∆(T−i) and σi : Ti → Ai for

each i ∈ N , it’s clear that if λ̃i is defined from λi and (σj)j 6=i via (3), and if condition (1)

holds, then at every ti ∈ Ti of every player i, CI and SUFF hold. In particular, we have

λ̃i(ti)(a−i|{δ−i(t−i) = x−i}) =
∏

j 6=i

1(aj = σj(xj))

for every actions a−i ∈ A−i and hierarchies of beliefs x−i ∈
∏

j 6=i δj(Tj) such that λi(ti)({δ−i(t−i) =

x−i}) > 0, where 1(·) is the indicator function, and σj(xj) := σj(tj) where δj(tj) = xj.

Following Tan and Werlang (1988), one defines the set of states (types and actions) of
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player i at which rationality and l-th order belief of rationality hold:

Rat1i (λ̃) = {(ti, ai) ∈ Ti × Ai : ai is optimal for player i under margA
−i

λ̃i(ti)},

Ratli(λ̃) = {(ti, ai) ∈ Rat1i (λ̃) : λ̃i(ti)(Ratl−1
−i (λ̃)) = 1}, l ≥ 2,

Rati(λ̃) =
⋂

l≥1

Ratli(λ̃)

Rati(λ̃) is the set of states of player i at which rationality and common belief of rationality

(RCBR) hold. Notice that Ratli(λ̃) and Rati(λ̃) are defined with respect to a type space

((λ̃i)i∈N , T ).

Brandenburger and Friedenberg are interested in the set of actions that are consistent

with RCBR and intrinsic correlation (i.e. CI and SUFF):

Ci = {ai ∈ Ai : there exist ((λ̃i)i∈N , T ) such that at every type of every player, CI and SUFF hold,

and ti ∈ Ti such that (ai, ti) ∈ Rati(λ̃)}

It is easy to check that if ((λi)i∈N , T, σ) is an intrinsic a posteriori equilibrium, then

σi(Ti) ⊆ Ci for every i ∈ N .

Brandenburger and Friedenberg prove that C =
∏

i∈N Ci is contained in the set of cor-

related rationalizable action profiles, and C contains the set of independent rationalizable

action profiles. Furthermore, they show that there exist games in which C is strictly con-

tained in the set of correlated rationalizable action profiles.

A precise characterization of the set C, in terms of payoffs and strategies of the game and

without mentioning type space, is (and remains) an open question raised in Brandenburger

and Friedenberg. Our Theorem 3.1 provides a partial answer: if Q =
∏

i∈N Qi is a semi-

injective best-response set, then Q ⊆ C.

A contemporaneous paper by Peysakhovich (2009) provides another partial answer: if

µ ∈ ∆(A) is a correlated equilibrium, then actions of player i with positive probability by µ

must be in Ci, i.e. supp(margAi
µ) ⊆ Ci for every i ∈ N .

Peysakhovich’s result can be interpreted in our model as follows. Suppose as before that

we have type space ((λi)i∈N , T ), where λi : Ti → ∆(T−i) for each i ∈ N . We now allow mixed

(or more accurately, behavioral) strategy: σi : Ti → ∆(Ai). On the other hand, we insist on

a more stringent “intrinsicness” condition: player can condition his randomized action only

on his first order belief; that is,
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types ti and t′i have the same first order belief =⇒ σi(ti) = σi(t
′
i),

Peysakhovich proves that every correlated equilibrium µ ∈ ∆(A) can be obtained from a

(λ, T, σ) (where λ ∈ ∆(T ), λi(ti) := λ(·|ti)), such that the above condition and the incentive

compatibility condition (2) are both satisfied.

Therefore, we have an interesting trade-off between mixed strategy and higher order

beliefs. On the one hand, every correlated equilibrium can be obtained from an incentive

compatible type space (with common prior) in which every player plays a randomized action

contingent on his first-order belief. On the other hand, “most” correlated equilibria (e.g.,

correlated equilibrium whose irreducible sub-equilibria are non-extreme) can be obtained

from an incentive compatible type space (with common prior) in which every player plays

a pure action contingent on his whole hierarchy of beliefs; that is, the player does not

randomize, but he might have to rely on more refined information, i.e. his higher order

beliefs.

6 Conclusion

Even if players sit in separate rooms and do not communicate or observe any signal, they

might still display correlated equilibrium behaviors, because of their entangled beliefs of you

believe that I believe that you believe that . . .. This paper analyzes the theory of such kind

of correlated equilibrium.

APPENDIX

A Proof of If in Theorem 4.1

The proof of the if direction extensively uses the following lemma, whose proof we defer until

the end of this section.

Lemma A.1. Fix a finite and non-empty X =
∏

i∈N Xi and a µ ∈ ∆(X) such that µ(xi) =

µ({xi} × X−i) > 0 for every i ∈ N and xi ∈ Xi. And fix (Zi)i∈N , where each Zi ⊆ Xi, and

{(ν(xi, 1), ν(xi, 2))}xi∈Zi,i∈N such that for each i ∈ N and xi ∈ Zi, ν(xi, 1), ν(xi, 2) ∈ ∆(X−i),

and µ(·|xi) = κν(xi, 1) + (1 − κ)ν(xi, 2) for some κ ∈ (0, 1).

Let X̃ =
∏

i∈N X̃i, X̃i = {xi(k) : xi ∈ Zi, k ∈ {1, 2}} ∪ (Xi \ Zi) (where xi(1) and xi(2)

are two distinct copies of xi). Define fi : X̃i → Xi such that fi(xi) = xi for xi 6∈ Zi, and



Correlated Equilibrium via Hierarchies of Beliefs 29

fi(xi(1)) = fi(xi(2)) = xi for xi ∈ Zi; define f : X̃ → X and f−i : X̃−i → X−i in the obvious

way.

Then, there exists a µ̃ ∈ ∆(X̃) such that µ̃(f−1(x)) = µ(x) for each x ∈ X, and

µ̃(f−1
−i (x−i)|xi(k)) = ν(xi, k)(x−i) for every i ∈ N , xi ∈ Zi, k ∈ {1, 2} and x−i ∈ X−i.

Furthermore, if for every i ∈ N and xi ∈ Zi, ν(xi, 1) and ν(xi, 2) have the same support

as µ(·|xi), then for every i ∈ N , xi ∈ Zi and x−i ∈ X̃−i, µ̃(xi(1), x−i) > 0 if and only if

µ̃(xi(2), x−i) > 0 (if and only if µ(xi, f−i(x−i)) > 0).

Suppose a correlated equilibrium µ ∈ ∆(A) is given such that for every i ∈ N and for

any two distinct ai 6= a′
i ∈ Yi, we have that µ(·|ai) 6= µ(·|a′

i). We will construct an intrinsic

correlated equilibrium (λ, T, σ) that obtains µ. For each i ∈ N let Qi be the support of

margAi
µ. Our construction is to split each action ai ∈ Qi \ Yi into two copies (and making

each copy a type with distinct belief hierarchy) using Lemma A.1; it works in opposite

direction to the “amalgamation” construction in Aumann and Dreze (2008).

Step 1:

For each i ∈ N and ai ∈ Qi \ Y 1
i , choose ν(ai, 1) 6= ν(ai, 2) ∈ βQ

i (ai) such that µ(·|ai) =

ν(ai, 1)/2 + ν(ai, 2)/2 and that ν(ai, 1) and ν(ai, 2) have the same support as µ(·|ai). This

is possible by construction of Y 1
i . Furthermore, we can choose ν(ai, k)’s in a way such that

for every i ∈ N :

|{ν(ai, k) : ai ∈ Qi \ Y 1
i , k ∈ {1, 2}}| = 2|Qi \ Y 1

i |

and

{ν(ai, k) : ai ∈ Qi \ Y 1
i , k ∈ {1, 2}} ∩ {µ(·|ai) : ai ∈ Y 1

i } = ∅.

Now, apply Lemma A.1 to µ, Q, (Qi \ Y 1
i )i∈N and {(ν(ai, 1), ν(ai, 2))}ai∈Qi\Y 1

i ,i∈N to

obtain T 1 =
∏

i∈N T 1
i (where T 1

i = {ai(k) : ai ∈ Qi \ Y 1
i , k ∈ {1, 2}} ∪ Y 1

i ), λ1 ∈ ∆(T 1) and

f 1
i : T 1

i → Qi, i ∈ N, with properties stated in the lemma. These properties implies that

(λ1, T 1, f1) is a correlated equilibrium that obtains µ, and that each ai(j), ai ∈ Qi \ Y 1
i and

j ∈ {1, 2}, has a distinct first order belief through λ1.

Step l: (2 ≤ l ≤ L = min{l ≥ 1 : Y l = Y })

Suppose that T l−1 =
∏

i∈N T l−1
i (where T l−1

i = {ai(k) : ai ∈ Qi\Y l−1
i , k ∈ {1, 2}}∪Y l−1

i ),

λl−1 ∈ ∆(T l−1) and f l−1
i : T l−1

i → T l−2
i , i ∈ N , (let T 0

i = Qi) are obtained from Lemma A.1

in the previous step.

For each i ∈ N and ai ∈ Y l−1
i \ Y l

i , choose a c(ai) ∈ Y l−2
j \ Y l−1

j , j 6= i, (let Y 0
j = Qj)

such that µ(c(ai)|ai) > 0; such c(ai) exists by construction of Y l
i ’s, and c(ai)’s can be chosen

so that µ(·|ai) = µ(·|a′
i) ⇒ c(ai) = c(a′

i). For each t−(i,j) ∈ T l−1
−(i,j) =

∏

k 6∈{i,j} T l−1
k , we have
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λl−1(t−(i,j), c(ai)(1), ai) > 0 if and only if λl−1(t−(i,j), c(ai)(2), ai) > 0 (by Lemma A.1); and

λl−1({c(ai)(1), c(ai)(2)} × {ai} × T l−1
−(i,j)) = µ(c(ai), ai) > 0. Let

ν(ai, 1)(t−i) =



















λl−1(t−i|ai) λl−1(t−i|ai) = 0 or tj 6∈ {c(ai)(1), c(ai)(2)}

λl−1(t−(i,j), c(ai)(1)|ai) − κ(ai) λl−1(t−i|ai) > 0 and tj = c(ai)(1)

λl−1(t−(i,j), c(ai)(2)|ai) + κ(ai) λl−1(t−i|ai) > 0 and tj = c(ai)(2)

,

and

ν(ai, 2)(t−i) =



















λl−1(t−i|ai) λl−1(t−i|ai) = 0 or tj 6∈ {c(ai)(1), c(ai)(2)}

λl−1(t−(i,j), c(ai)(1)|ai) + κ(ai) λl−1(t−i|ai) > 0 and tj = c(ai)(1)

λl−1(t−(i,j), c(ai)(2)|ai) − κ(ai) λl−1(t−i|ai) > 0 and tj = c(ai)(2)

,

for every t−i ∈ T l−1
−i , where κ(ai) > 0 is sufficiently small so that ν(ai, 1) and ν(ai, 2) has the

same support as µl−1(·|ai). Notice that ν(ai, 1)/2 + ν(ai, 2)/2 = λl−1(·|ai). Furthermore, we

can choose the κ(ai)’s so that for any ai 6= a′
i ∈ Y l−1

i \Y l
i such that µ(·|ai) = µ(·|a′

i), we have

that ν(ai, 1), ν(ai, 2), ν(a′
i, 1) and ν(a′

i, 2) all differ from each other in their probabilities on

c(a1)(1).

Now, apply Lemma A.1 to λl−1, T l−1, (Y l−1
i \Y l

i )i∈N and {(ν(ai, 1), ν(ai, 2))}ai∈Y l−1

i \Y l
i ,i∈N

to obtain T l =
∏

i∈N T l
i (where T l

i = {ai(k) : ai ∈ Qi \ Y l
i , k ∈ {1, 2}} ∪ Y l

i ), λl ∈ ∆(T l)

and f l
i : T l

i → T l−1
i , i ∈ N, with properties stated in the lemma. These properties imply

that (λl, T 2, f1 ◦ · · · ◦ f l) is a correlated equilibrium that obtains µ, and that each ai(k),

ai ∈ Y l−1
i \ Y l

i and k ∈ {1, 2}, induces a distinct l-th order belief through λl.

Finally:

Let T = TL (Ti = TL
i = {ai(k) : ai ∈ Qi\Yi, k ∈ {1, 2}}∪Yi), λ = λL, and σi = f 1

i ◦. . .◦f
L
i .

It’s easy to see that that (λ, T, σ) is an intrinsic correlated equilibrium that obtains µ.

Proof of Lemma A.1. Without loss of generality suppose that N = {1, . . . , n}.

Let µ1 ∈ ∆(X̃1 ×
∏

2≤i≤n Xi) be such that

µ1(x1(1), x−1) = µ(x1)κ(x1)ν(x1, 1)(x−1)

and

µ1(x1(2), x−1) = µ(x1)(1 − κ(x1))ν(x1, 2)(x−1),
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where µ(·|x1) = κ(x1)ν(x1, 1) + (1 − κ(x1))ν(x1, 2), for each x1 ∈ Z1 and x−1 ∈ X−1.

And let µ1(x1, x−1) = µ(x1, x−1) for every x1 6∈ Z1 and x−1 ∈ X−1.

In general, for 2 ≤ l ≤ n, let µl ∈ ∆(
∏

1≤j≤l X̃j ×
∏

l+1≤i≤n Xi) be such that for every

xl ∈ Zl, (x1, . . . , xl−1) ∈
∏

1≤i≤l−1 X̃i and (xl+1, . . . , xn) ∈
∏

l+1≤i≤n Xi:

µl(x1, . . . , xl−1, xl(1), x1+1, . . . , xn) =µ(xl)κ(xl)
µl−1(x1, . . . , xl−1, xl, . . . , xn)

µ(f1(x1), . . . , fl−1(xl−1), xl, . . . , xn)

× ν(xl, 1)(µ(f1(x1), . . . , fl−1(xl−1), xl+1, . . . , xn)

and

µl(x1, . . . , xl−1, xl(2), x1+1, . . . , xn) =µ(xl)(1 − κ(xl))
µl−1(x1, . . . , xl−1, xl, . . . , xn)

µ(f1(x1), . . . , fl−1(xl−1), xl, . . . , xn)

× ν(xl, 2)(µ(f1(x1), . . . , fl−1(xl−1), xl+1, . . . , xn),

if µ(f1(x1), . . . , fl−1(xl−1), xl, . . . , xn) > 0, and

µl(x1, . . . , xl−1, xl(1), x1+1, . . . , xn) = µl(x1, . . . , xl−1, xl(2), x1+1, . . . , xn) = 0

otherwise, where µ(·|xl) = κ(xl)ν(xl, 1) + (1 − κ(xl))ν(xl, 2).

And let

µl(x1, . . . , xl−1, xl, x1+1, . . . , xn) = µl−1(x1, . . . , xl−1, xl, x1+1, . . . , xn)

for every xl 6∈ Zl, (x1, . . . , xl−1) ∈
∏

1≤i≤l−1 X̃i and (xl+1, . . . , xn) ∈
∏

l+1≤i≤n Xi.

It is easy to verify that µ̃ = µn satisfies the desired properties.
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