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1 Introduction

This chapter provides a general overview of theories and tools to model individual and

collective decision-making. In particular, stress is laid on the interaction of several

decision-makers.

A substantial part of this chapter is devoted to utility maximization and its appli-

cation to collective decision-making, Game Theory. However, the pitfalls of utility

maximization are thoroughly discussed, and the radically alternative approach of view-

ing decision-making as constructing narratives is presented with its emerging compu-

tational tools. In detail, the chapter is structured as follows.

Section (2) presents utility maximization and Game Theory with its Nash equilib-

ria. The most important prototypical games are expounded in this section. Section (3)

presents games that are not concerned with Nash equilibria. Section (4) illustrates the

main paradoxes of utility maximization, as well as the patches that have been pro-

posed. Section (5) expounds the vision of decision-making as constructing a narrative,

supported by a rare empirical case-study. Section (6) aims at providing computational

tools for this otherwise literary vision of decision-making. Finally, section (7) con-

cludes by assessing the pros and cons of competing approaches.

This chapter touches so many issues that a complete list of references to the rele-

vant litterature would possibly be longer than the chapter itself. Instead of references,

the names of the most important scholars in each field have been made, so the in-

terested reader should be able to reconstruct the relevant bibliography by herself. A

few exceptions have been made for very specific works, that have been mentioned in

footnotes.

2 Utility and Games

Let {a1,a2, . . .am} be a set of alternatives. Let ai denote a generic alternative, hence-

forth called the i-th alternative where i = 1,2, . . .m.

By selecting an alternative, a decision-maker obtains one out of several possible

consequences. Let {ci1,ci2, . . .cin} be the set of possible consequences of alternative

ai. Let ci j denote a consequence of ai, where i = 1,2, . . .m and j = 1,2, . . .ni.
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The expected utility of alternative ai is:

u(ai) =
ni

∑
j=1

p(ci j)u(ci j) (1)

where p(ci j) is the probability of obtaining consequence ci j and u(ci j) is the utility of

consequence ci j.

It is suggested that the one alternative should be chosen, that maximizes expected

utility. Frank Ramsey, Bruno De Finetti and Leonard Savage demonstrated that this is

the only choice coherent with a set of postulates that they presented as self-evident.

Among these postulates, the following ones are mentioned in this chapter:

Transitivity Transitivity of preferences means that if ai ≻ a j and a j ≻ ak, then ai ≻ ak.

Independence Independence of irrelevant alternatives means that ai ≻ a j iff ai ∪ak ≻
a j ∪ak, ∀ak.

Completeness Completeness means that ∀(ai,a j), a preference relation ≻ is defined.

Utility maximization is neither concerned with conceiving alternatives, nor with the

formation of preferences, which are assumed to be given and subsumed by the utility

function. Probabilities may eventually be updated by means of frequency measure-

ment, but at least their initial values are supposed to be given as well. Thus, utility

maximization takes as solved many of the problems with which its critics are con-

cerned.

Utility maximization takes a gambler playing dice or roulette as its prototypical

setting. In fact, in this setting the set of alternatives is given, utilities coincide with

monetary prizes and probabilities can be assessed independently of utilities. For some

critics of this decision theory, gambling is not an adequate prototype of most real-life

situations.

The interaction of several utility-maximizing decision-makers is covered by Game

Theory. Game Theory assumes that collective decision-making is the combination

of several individual decision processes, where each individual maximizes its utility

depending on the alternatives selected by the other individuals. Since selecting an

alternative implies considering what alternatives other players may select, alternatives

are generally called strategies in Game Theory.

Utility takes the name payoff in Game Theory. Games in which one player does

better at another’s expense are called zero-sum games. Games may be played once, or

they may be repeated.

In general, Game Theory attempts to find out equilibria in games. If each player

knows the set of available strategies and no player can benefit by changing his or her

strategy while the other players keep theirs unchanged, then the current choice of strate-

gies and the corresponding payoffs constitute a Nash equilibrium. Since this implies

stepping in another player’s shoes in order to figure out what (s)he would do if one

selects a particular strategy, Nash-equilibria are fixed points in self-referential loops of

the kind “I think that you think that I think . . . ”.

Note that being at a Nash equilibrium neither implies that each player reaches the

highest possible payoff that (s)he can attain, nor that sum of all payoffs of all players
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is the highest that can be attained. This is a concern for economics, for it implies that

individual interest may not produce the common good.

If a game is repeated a Nash equilibrium may be either realized with pure strategies,

meaning that players choose consistently one single alternative, or mixed strategies,

meaning that players select one out of a set of available strategies according to a prob-

ability distribution. Accepting the idea of mixed strategies often allows to find Nash

equilibria where there would be none if only pure strategies are allowed. However,

the realism of random decision-makers choosing strategies according to a probability

distribution may be questioned.

Most of the games analysed by Game Theory involve two, or in any case a very lim-

ited number of players. On the contrary, evolutionary games concern large populations

of players playing different strategies, that are subject to an evolutionary dynamics reg-

ulated by replicator equations. Successful strategies replicate and diffuse, unsuccessful

strategies go extinct. Occasionally, new strategies may originate by random mutation.

The equilibrium concept of evolutionary games is that of evolutionarily stable

strategies. An evolutionary stable strategy is such that, if almost every member of

the population follows it, no mutant can successfully invade. Alternatively, evolution-

ary games may be played in order to observe typical dynamics, in which case they

become akin to the influence games that will be handled in § (sec:influenceGames).

The following games propose prototypical modes of human interaction. Games

used by experimental economics in order to evince human attitudes do not pertain to

this list.

2.1 The Battle of Sexes

Imagine a couple. The husband would most of all like to go to the football game. The

wife would like to go to the opera. Both would prefer to go to the same place rather

than different ones. If they cannot communicate, where should they go?

The payoff matrix in figure (1) is an example of Battle of the Sexes, where the wife

chooses a row and the husband chooses a column. Aside, a generic representation of

the game where L < M.

This representation does not account for the additional harm that might come from

going to different locations and going to the wrong one, i.e., he goes to the opera while

she goes to the football game, satisfying neither. Taking account of this effect, this

game would bear some similarity to the Game of Chicken of § (2.7).

This game has two pure-strategy Nash-equilibria, one where both go to the opera

and another where both go to the football game. Furthermore, there is a Nash equilib-

rium in mixed strategies, where the players go to their preferred event more often than

to the other one.

None of these equilibria is satisfactory. One possible resolution involves a com-

monly observed randomizing device, e.g., the couple may agree to flip a coin in order

to decide where to go.
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0, 0

3, 2 0, 0

2, 3

Opera Football

Opera

Football 0, 0

0, 0M, L

L, M

Figure 1: A payoff matrix for the Battle of the Sexes (left) and its generic representation

(right). The left number is the payoff of the row player (wife), the right number is the

payoff of the column player (husband). In this generic representation, L is the payoff of

the least preferred alternative whereas M is the payoff of the most preferred alternative.

C, C

D, DB, S

S, B3, 3

1, 1

0, 1

1, 0

HareStag

Hare

Stag

Figure 2: A payoff matrix for the Stag Hunt (left) and its generic representation (right).

The left number is the payoff of the row player, the right number is the payoff of

the column player. In this generic representation, C is the payoff that accrues to both

players if they cooperate, D is the payoff that accrues to both players if they defect

from their agreement, S is the sucker’s payoff and B is the betrayer’s payoff.

2.2 The Stag Hunt

Rousseau described a situation in which two individuals agree to hunt a stag, which

none of them would be able to hunt alone. Each hunter may eventually notice a hare

and shoot at it. This would destroy the stag hunt, so the other hunter would get nothing.

An example of the payoff matrix for the stag hunt is pictured in figure (2), along

with its generic representation. The stag hunt requires that C > B ≥ D > S.

This game has two pure-strategy Nash-equilibria, one where both hunters hunt the

stag, the other one where both hunters hunt a hare. The first equilibrium maximizes

payoff, but the second equilibrium minimizes risk. There exists also a mixed-strategy

Nash-equilibrium, but no payoff matrix can make the hunters play “stag” with a prob-

ability higher than 1/2.

In addition to the example suggested by Rousseau, Hume provides a series of ex-

amples that are stag hunts. One example addresses two individuals who must row a

boat. If both choose to row they can successfully move the boat. However if one does

not, the other wastes his effort. Hume’s second example involves two neighbours wish-

ing to drain a meadow. If they both work to drain it they will be successful, but if either

fails to do his part the meadow will not be drained.

Several animal behaviours have been described as stag hunts. For example, the
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3, 3

5, 0

0, 5

1, 1

Cooperate Defect

Cooperate

Defect

C, C

D, DB, S

S, B

Figure 3: A payoff matrix for the Prisoner’s Dilemma (left) and its generic representa-

tion (right). The left number is the payoff of the row player, right number is the payoff

of the column player. In this generic representation, C is the payoff if both players

cooperate, D is the payoff if both defect from their agreement, S is the sucker’s payoff,

B is the betrayer’s payoff.

coordination of slime molds. In times of stress, individual unicellular protists will ag-

gregate to form one large body. Here if they all act together they can successfully

reproduce, however the success depends on the cooperation of many individual pro-

tozoa. Also, the hunting practices of orca are an example of a stag hunt. Here orcas

cooperatively corral large schools of fish to the surface and stun them by hitting them

with their tails. Since this requires that fish do not have ways to escape, it requires the

cooperation of many orcas.

2.3 The Prisoner’s Dilemma

The Prisoner’s Dilemma is a central subject in economics, for it apparently contradicts

its basic assumption that common good arises out of self-interested individuals. This

difficulty is eventually overcome by repeating the game.

The basic formulation of the Prisoner’s Dilemma is as follows. Two suspects, A

and B, are arrested by the police. The police has insufficient evidence for a conviction,

and, having separated both prisoners, visits each of them offering the same deal: if one

testifies for the prosecution against the other and the other remains silent, the betrayer

goes free and the silent accomplice receives the full 10-year sentence. If both stay

silent, both prisoners are sentenced to only six months in jail for a minor charge. If

each betrays the other, each receives a five-year sentence. Each prisoner must make

the choice of whether to betray the other or to remain silent. However, neither prisoner

knows for sure what choice the other prisoner will make.

The Prisoner’s Dilemma describes any situation where individuals have an interest

to be selfish, though if everyone cooperates a better state would be attained. Examples

may include unionising, paying taxes, not polluting the environment, or else. Fig-

ure (3) illustrates a payoff matrix for the Prisoner’s Dilemma, as well as its generic

representation. The Prisoner’s Dilemma requires that B > C > D > S.

The Prisoner’s Dilemma has only one Nash equilibrium at (D,D). All individual

incentives push towards this equilibrium. Nevertheless, this equilibrium is not socially

optimal.

Eventually, the difficulty raised by the Prisoner’s Dilemma can be overcome if play-
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ers can repeat the game (which requires 2C > B+S). In particular, by playing the Pris-

oner’s Dilemma as an evolutionary game with large numbers of players and strategies

it is possible that islands of cooperation sustain themselves in a sea of selfish choices.

Robert Axelrod pioneered this line of research in 1984, finding out that a “tit-for-tat”

strategy was the most efficient: start with cooperating whenever you meet a new player,

but defect if the other does.

2.4 The Traveller’s Dilemma

The Traveler’s dilemma is a non-zero-sum game in which two players attempt to max-

imize their own payoff, without any concern for the other player’s payoff. The game

was formulated by Kaushik Basu and goes as follows.

An airline loses two suitcases belonging to two different travellers. The suitcases

contain identical antiques. An airline manager tasked to settle the claims of both trav-

ellers explains that the airline is liable for a maximum of 100 $ per suitcase, and in

order to determine a honest appraised value of the antiques the manager separates both

travellers and asks each of them to write down the amount of their value at no less

than 2 $ and no more than 100 $. He also tells them that if both write down the same

number, he will treat that number as the true value of both suitcases and reimburse both

travellers that amount. However, if one writes down a smaller number than the other,

this smaller number will be taken as the true value, and both travellers will receive that

amount along with a bonus/malus: 2 $ extra will be paid to the traveller who wrote

down the lower value and a 2 $ deduction will be taken from the person who wrote

down the higher amount. The challenge is: what strategy should both travellers follow

in order to decide what value they should write down?

If this game is actually played, nearly all the times everyone chooses 100 $ and gets

it. However, rational players should behave differently.

Rational players should value the antique slightly less than their fellow traveller, in

order to get the the bonus of 2 $. For instance, by pricing at 99 $ one would get 101

$, whereas the opponent would get 97 $. However, this triggers an infinite regression

such that 2 $ is the only Nash-equilibrium of this game. Thus, being rational does not

pay.

The Traveller’s Dilemma suggests that in reality people coordinate and collaborate

because of their bounded rationality. If they would be smarter than they are, they would

obtain less.

2.5 The Dollar Auction

The dollar auction is a non-zero sum sequential game designed by Martin Shubik to

illustrate a paradox brought about by rational choice theory. In this game, players with

perfect information are compelled to make an ultimately irrational decision based on a

sequence of rational choices.

The game involves an auctioneer who offers a dollar bill with the following rule:

the dollar goes to the highest bidder, who pays the amount he bids. The second-highest

bidder also must pay the highest amount that he bids, but gets nothing in return.
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Suppose that the game begins with one of the players bidding 1 cent, hoping to

make a 99 cent profit. He will quickly be outbid by another player bidding 2 cents, as a

98 cent profit is still desirable. Similarly, another bidder may bid 3 cents, making a 97

cent profit. Alternatively, the first bidder may attempt to convert their loss of 1 cent into

a gain of 97 cents by also bidding 3 cents. In this way, a series of bids is maintained.

However, a problem becomes evident as soon as the bidding reaches 99 cents. Sup-

posing that the other player had bid 98 cents, they now have the choice of losing the

98 cents or bidding a dollar even, which would make their profit zero. After that, the

original player has a choice of either losing 99 cents or bidding $1.01, and only losing

one cent. After this point the two players continue to bid the value up well beyond the

dollar, and neither makes a profit.

2.6 Pure Coordination Games

In 1960 Thomas Schelling introduced pure coordination games, which are a sort of

a puzzle for Game Theory ever since. Pure coordination games are one-shot games

where players face a set of alternatives knowing that a positive payoff will only accrue

to them if they coordinate on the same choice. For instance, two subjects may be

shown a city map and asked, independently of one another, to select a meeting point.

Or, subjects may be asked to select a positive integer. In the first case they obtain a

positive payoff if they select the same meeting point; in the second case, if they select

the same integer.

The difficulty of pure coordination games derives from the fact that players cannot

communicate and that the game is not repeated. The astonishing fact about pure coor-

dination games is that players make an agreement much more often than they would

do if they would play randomly.

In general, the explanation is that pure coordination games generally entail cues

that single out one choice as more “salient” than others. For instance, subjects asked to

select a meeting point generally end up with the railway station, whereas the majority

of those asked to name a positive integer select the number 1.

However, this suggests that coordination may eventually be attained because of

conventions, habits or values that do not enter the description of decision settings.

People may not even be aware of what makes them coordinate with one another.

2.7 The Game of Chicken

The game of Chicken models two drivers, both headed for a single lane bridge from

opposite directions. One must swerve, or both may die in the crash. However, if one

driver swerves but the other does not, he will be called a “chicken”. Figure (4) depicts

a typical payoff matrix for the Chicken Game, as well as its generic form.

Chicken is an anti-coordination game with two pure-strategy Nash-equilibria where

each player does the opposite of what the other does. Which equilibrium is selected

depends very much on the effectiveness in signaling pre-commitment before the game

is played. For instance, a driver who disables brakes and steering wheel in front of

the other driver may induce him to swerve. One real-world example is a protester who
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StraightSwerve

Swerve

Straight

0, 0 −1, +1

22

(V−C)  (V−C)
,

0, V

V, 0+1, −1

V/2, V/2

−10, −10

Figure 4: A payoff matrix for the Game of Chicken (left) and its generic representation

(right). The left number is the payoff of the row player, the right number is the payoff

of the column player. In this generic representation, V is the value of power, prestige, or

of the available resource to be obtained, C is the cost if both players choose “straight”.

handcuffs himself to an object, so that no threat can be made which would compel him

to move

Betrand Russell remarked that the nuclear stalemate was much like the Game of

Chicken: 1

As played by irresponsible boys, this game is considered decadent and

immoral, though only the lives of the players are risked. But when the

game is played by eminent statesmen, who risk not only their own lives but

those of many hundreds of millions of human beings, it is thought on both

sides that the statesmen on one side are displaying a high degree of wisdom

and courage, and only the statesmen on the other side are reprehensible.

This, of course, is absurd. Both are to blame for playing such an incredibly

dangerous game. The game may be played without misfortune a few times,

but sooner or later it will come to be felt that loss of face is more dreadful

than nuclear annihilation. The moment will come when neither side can

face the derisive cry of ’Chicken!’ from the other side. When that moment

is come, the statesmen of both sides will plunge the world into destruction.

John Maynard Smith and G. Price re-interpreted the Game of Chicken in the con-

text of animal behaviour. Their Hawk-Dove game has the same payoff matrix as in

figure (4), where “swerve” and “straight” correspond to the following strategies, re-

spectively:

Dove Retreat immediately if one’s opponent initiates aggressive behaviour;

Hawk Initiate aggressive behaviour, not stopping until injured or until the opponent

backs down.

Whilst the original Game of Chicken assumes C > V and cannot be repeated, the

Hawk-Dove game lacks this requirement and is generally conceived as an evolutionary

game.

The strategy “Dove” is not evolutionary stable, because it can be invaded by a

“Hawk” mutant. If V > C, then the strategy “Hawk” is evolutionarily stable. If V < C

1Bertrand W. Russell, Common Sense and Nuclear Warfare. London, George Allen and Unwin, 1959.
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there is no evolutionarily stable strategy if individuals are restricted to following pure

strategies, although there exists an evolutionarily stable strategy if players may use

mixed strategies.

2.8 The War of Attrition

The war of attrition is a game of aggression conceived by John Maynard Smith in

which two contestants compete for a resource of value V by persisting while constantly

accumulating costs. Equivalently, this game can be seen as an auction in which the

prize goes to the player with the highest bid Bh, and each player pays the loser’s low

bid Bl .

The war of attrition cannot be properly solved using its payoff matrix. In fact, the

players’ available resources are the only limit to the maximum value of bids. Since bids

can be any number if available resources are ignored, the payoff matrix has infinite size.

Nevertheless, its logic can be analysed.

Since players may bid any number, they may even exceed the value V that is con-

tested over. This may appear irrational at first sight. However, each bidder pays Bl .

Therefore, it would seem to be in each player’s best interest to bid the maximum pos-

sible amount rather than an amount equal to or less than the value of the resource V .

However, if both players bid higher than V , the high bidder does not so much win

as lose less, in the sense that −Bl < V −Bh < 0 — a Pyrrhic victory. In contrast, if

each player bids less than V , the player bidding Bl will lose, and the other player will

benefit by an amount V −Bl .

Since there is no value to bid which is beneficial in all cases, there is no dominant

strategy. However, this does not preclude the existence of Nash-equilibria. Any pair of

strategies such that one player bids zero and the other player bids any value equal to V

or higher, or mixes among any values V or higher, is a Nash-equilibrium.

The War of Attrition is akin to a Chicken or Hawk-Dove game — see § (2.7) —

where if both players choose “swerve”/“Dove” they obtain 0 instead of V/2 as in fig-

ure (4).

The evolutionarily stable strategy when playing it as an evolutionary game is a

probability density of random persistence times which cannot be predicted by the op-

ponent in any particular contest. This result has led to the conclusion that, in this game,

the optimal strategy is to behave in a completely unpredictable manner.

3 Influence Games

The following games are not concerned with Nash-equilibria. Players are not assumed

to figure out which alternatives other players might choose, originating infinite regres-

sions that can only stop at Nash-equilibrium points.

Rather, boundedly rational players are assumed to follow certain rules, that may be

quite simple but need not be necessarily so. The game then concerns what collective

behaviours can be generated by mutual influence.

Evolutionary games reach this approach when they report simulations of the inter-

action of given rules rather than predicting evolutionary stable strategies. Such is the
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case, for instance, of Axelrod’s simulations of the Prisoner’s Dilemma — see § (2.3).

This section aims at providing formal tools for this approach. In particular, two

prototypical games have been investigated.

The Ising model (originally developed in physics, where it is also known as spin

glass model) is concerned with imitation. The minority game, also known as the El

Farol bar problem, is about the opposite of imitation, i.e., about doing the opposite of

what others do.

3.1 The Ising Model

The Ising model was originally developed in physics in order to study the interaction

between atoms in a ferromagnetic material. For this reason its agents can only take two

states, or opinions — originally, + and − — and are fixed in space. However, although

many imitation models are generally more complex than the Ising model, the closed-

form solutions of the Ising model may guide the builder of more complex models in

the process of understanding their behaviour.

In general, the Ising model is not presented as a game. It is done here in order to

stress its symmetry with the minority game.

Let N players be denoted by means of an index i = 1,2, . . .N. Players must choose

between an alternative A = −1 and an alternative A = 1.

The payoff of a player does not only depend on the alternative that he has chosen,

but also on the average of the alternatives chosen by the other players. Let m denote

this average.

Since we want to reproduce situations where the individual follows the herd, the

effect of m should be the stronger, the more homogeneous the group. Since A∈ {−1;1}
and consequently m ∈ {−1;1}, we can reach this goal by requiring that payoff depends

on a term Am. This term may eventually be multiplied by a coefficient J > 0.

A stochastic term ε is necessary in order to understand our game as a system jump-

ing between many equilibria. This term will disappear when expected values will be

taken.

In the end, let us choose the following functional form for the payoff of a player:

u(A) = v(A)+ J Am+ ε (2)

where u(A) is the total payoff of a player and v(A) is its individual component.

Furthermore, let us assume that this individual component takes the following form:

v(A) =

{

−h if A = −1

h if A = 1
(3)

where h ∈ ℜ , h > 0.

By assuming that the stochastic terms εi are Gumbel-distributed, we can apply the

logit model. By combining eq. (2) and eq. (3) we derive the following expressions for

the probability that a player selects one of the two alternatives:

p{A = −1} =
eµ(−h−J m+ε)

eµ(−h−J m+ε) + eµ(h+J m+ε) (4)
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p{A = 1} =
eµ(h+J m+ε)

eµ(−h−J m+ε) + eµ(h+J m+ε) (5)

The expected value of the selected alternative is E{A} = −1 · p{A = −1}+ 1 ·
p{A = 1}. Since it is also E{A} = m we obtain the following expression:

m = tanh(µh+µJm) (6)

where tanh(x) = (ex − e−x)/(ex + e−x) is the hyperbolic tangent.

Eq. (6) provides an analytic description of a game with herd behaviour on two

alternatives described by means of a mean-field approximation. It admits a closed

form solution that provides the following findings:

• If µJ < 1 and h = 0 there exists one single solution at m = 0. Consider that this

is a discrete-time system, so its attractors are stable if all eigenvalues of the state

transition function are in (−1,1). Intuitively, µJ < 1 means that this system is

globally stable. Furthermore, h = 0 means that the individual component of util-

ity is zero so the players have no incentive to choose one of the two alternatives.

Consequently, the stochastic term makes m = 0 the only solution.

• If µJ < 1 and h 6= 0 there exists one single solution with the same sign as h.

In fact, as in the previous case the system is globally stable so it admits one

single solution. However, since in this case there exists an individual component

in their utility function, this component determines what equilibriun arrives to.

If players generally prefer A = −1 the equilibrium will be m ≈ −1, if players

generally prefer A = 1 the equilibrium will be m ≈ 1.

• If µJ ≥ 1 and h = 0 there exist three solutions: m = 0 and m = ±m(µJ). In

fact, the system is globally unstable but locally stable equilibria may exist. Since

the individual component of utility is zero, the system may either tend towards

m = 0, or m ≈−1, or m ≈ 1.

• If µJ ≥ 1 and h 6= 0, the following subcases must be distinguished:

– If, for any given µ and J, there exists a threshold H(h) > 0 such that | h |≤
H, then three solutions exist, one with the same sign as h and the other two

with opposite sign. Condition | h |< H means that the individual component

of utility is limited even if not zero. Therefore, results are similar to the

previous case.

– If, for any given µ and J, there exists a threshold H(h) > 0 such that | h |>
H, then there exists one single solution with the same sign as h. In fact,

if the individual component of utility can take any value, then the whole

system is force into its direction.

In the Ising model, each player observes the average behaviour of all other players.

If each player observes only the behaviour of his neighbours, one obtains Schelling’s

model of racial segregation.

11



1

1

1

0
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0 1
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History

Figure 5: An example of a strategy based on the two previous steps of the minority

game. The first column lists all possible stories. The second column, depending on

past history, makes a prediction.

3.2 The Minority Game

The minority game originates from a consideration inspired to economist Brian Arthur

by the El Farol bar in Santa Fe, New Mexico (USA). Arthur remarked that people go

to the bar in order to meet other people, but they do not want to go when all other

people go, because the bar is too crowded on such occasions. Thus, they want to do the

opposite of what most people do — go to the bar when most people stay at home, stay

at home when most people go to the bar. Evidently, the “El Farol bar problem” cannot

have a stable equilibrium. In fact, once the majority observed what the minority did, it

wants to imitate it, which turns the minority into majority, and so on endlessly.

Physicists Yi-Cheng Zhang and Damien Challet remarked that this is the essence of

the dynamics of the stock market. In fact, in the stock market those traders gain, who

buy when stocks are low (because most traders are selling) and sell when stocks are

high (because most traders are buying). So all traders want to belong to the minority,

which, being impossible, generates instability. Among the physicists, the “El Farol bar

problem” became “the minority game”.

Let us consider N players who either belong to a group denoted 0 or a group denoted

1. Players belonging to the minority group receive a positive payoff. Players belonging

to the majority group have a payoff zero.

Strategies are functions that predict which will be the minority group in the next

step given the minority group in the m previous steps. Thus, a strategy is a matrix with

2m rows (dispositions with repetition of two elements of class m) and two columns.

The first column entails all possible series of minority groups in the previous m steps,

henceforth histories. The second column entails the group suggested for the next step.

As an example, figure (5) illustrates a strategy with m = 2.

Each player owns s strategies. If s = 1, the game is trivial because the time series

of the minority group is periodical.

If s > 1, players choose the strategy that cumulated the greatest amount of payoffs.

Thus, a number of feedbacks may arise between what strategies are chosen and their

capability to predict the minority. In this game, players must adapt to an environment

that they themselves create.

An important magnitude in this game is the variance of the time series of the num-
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Figure 6: Efficiency of coordination ec as a function of the number of histories in a

strategy 2m/N, for different values of the number of available strategies s. The hori-

zontal line at ec = ec marks the efficiency level when player select a strategy at random.

The vertical dashed line marks the point where ec can be greater than ec.

ber of players belonging to group 1 (or, equivalently, group 0). Henceforth, this mag-

nitude will be denoted by σ2.

The average of the number of players belonging to each group is generally close to

N/2. If σ2 is small, then the distribution of the number of players belonging to group 1

is concentrated around N/2. This implies that the minority is large, eventually close to

its maximum (N/2−1). On the contrary, if σ2 is large the number of players belonging

to group 1 tends to be either much smaller or much larger than N/2, implying that the

minority is often very small.

Let us consider σ2/N in order to normalize to the number of players. Let us define

the efficiency of coordination ec = N/σ2 as the reciprocal of the extent to which players

behave differently from one another.

Figure (6) depicts numerical simulations of ec as a function of the number of his-

tories in a strategy 2m/N. Graphs are shown for different values of s. The horizontal

line marks the value that ec attains if players would make a random choice among the

strategies available to them.

With low m the efficiency of coordination is low. This happens because if memory

is short, then players have greater difficulties to adapt to the changing features of the

game.

If only few strategies are available (s = 2,s = 3,s = 4), at intermediate values of

m many players guess the correct strategy so ec increases above the level that can
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be attained if strategies are chosen randomly. This threshold is marked by the dashed

vertical line. However, this effect disappears if many strategies are available (s = 8,s =
16). In this case the decision process becomes similar to a random choice so even at

intermediate values of m the efficiency of coordination is close to the level attained if

strategies are chosen randomly.

Independently of the number of available strategies, with increasing m the value of

ec tends to the level attained when strategies are chosen randomly. In fact, a history

of length m occurs again after 2m steps on average, so a strategy that is successful

with a particular history needs 2m steps in order to be successful again. With very

high values of m, no strategy can present itself as particularly successful; therefore, a

nearly-random dynamics ensues.

Let us consider what information is available to players. The only information

available to them is what group was the minority in previous time steps. Let this in-

formation be carried by a variable Wt , where Wt = 0 means that at time t the group 0

has been minority, Wt = 1 otherwise. The issue is whether this information is used ef-

ficiently; if it is not, there may exist exist arbitrage possibilities for players who utilize

information more efficiently than their peers.

Let us consider Wt and Wt+1 as distinct signals. Let us compute their mean mutual

information I(Wt ,Wt+1).
2

Mean mutual information measures whether the information entailed in the out-

comes of two steps of the game, taken together, is greater than the sum of the infor-

mation entailed in the outcomes of the two steps independently of one another. Thus,

mean mutual information says whether a player, by observing the time series of the

outcome of the game, could do better than his peers. If the minority game is describing

a stock market, I(Wt ,Wt+1) > 0 means that a trader could gain from arbitrage.

Let us introduce information efficiency ei = 1/I(Wt ,Wt+1). Being the reciprocal of

mean mutual information, information efficiency is high when mean mutual informa-

tion is low, i.e., when information is efficiently exploited by the player so there is little

room for arbitrage.

Figure (7) depicts numerical simulations of ei as a function of the number of stories

in a strategy 2m/N. Graphs are shown for different values of s.

One may observe in figure (7) a sudden drop of ei in the [0.3,1] interval. This is

entailed in the interval [0.1,1] where ec was observed to rise above the level corre-

sponding to random choice in figure (6). Thus, we may subsume the behaviour of the

minority game as in table (1):

Table (1) shows that the minority game has two large behaviour modes, one in-

efficient in coordination but efficient in the exploitation of information, the other one

efficient in coordination but inefficient in the exploitation of information. In between,

a tiny space where the efficiency of coordination and the efficiency of information ex-

ploitation may change dramatically depending on s and m.

2Given a source of binary symbols {a1,a2, . . .aM} issued with probabilities p1, p2, . . . pM , the aver-

age information that they convey is defined as H(A) = ∑M
i=1 p(ai) lg2 1/p(ai) and it is called informa-

tion entropy. Suppose that there is a second source issuing symbols {b1,b2, . . .bN} with information en-

tropy H(B). Let H(A,B) denote the information entropy of the whole system. Mean mutual information

H(A)+H(B)−H(A,B) measures to what extent the two sources interact to correlate their messages. Mean

mutual information is zero if the two sources are independent of one another.
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Figure 7: Efficiency of exploitation of information as a function of the number of

stories in a strategy, normalized to the number of players.

2m/N < 0.1 2m/N > 1

inefficient coordination efficient coordination

low ec high ec

efficient information exploitation inefficient information exploitation

high ei low ei

Table 1: Efficiency of coordination and efficiency of information exploitation in the

minority game.
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Since the minority game is a stylised representation of stock markets, we may ask

in which region stock markets operate. It is well known that very many traders operate

in stock markets, so we may assume that N is very high. Human bounded rationality

suggests that traders do not make use of complicated algorithms that take account of

events far back in the past, so m should be in the order of a few units. Consequently,

2m/N is likely to be very small.

This suggests that financial markets are characterised by low coordination, which

implies irregular oscillations where large majorities and small minorities may appear.

At the same time, financial markets are efficient in exploiting information. Thus, the

observation of its time series offers few possibilities to extrapolate its future courses.

4 Some Pitfalls of Utility Maximization

Utility maximization strikes its adepts for its elegance, simplicity and beauty. Unfortu-

nately, empirical tests have have shown that in many situations decision-makers do not

follow its prescriptions.

The situations where decision-makers typically do not behave as utility maximizers

are generally known as paradoxes. Some paradoxes can be reduced to utility maxi-

mization by means of special additions to the basic theory. In this section the main

paradoxes will be discussed, together with their eventual resolution within the utility

maximization framework.

4.1 Ellsberg’s Paradox and Sub-Additive Probabilities

Suppose that a decision-maker is placed in front of two urns, henceforth denoted A and

B. The decision-maker is informed that urn A entails white and black balls in equal

proportion, e.g., urn A may contain 10 white balls and 10 black balls. Regarding urn

B, the decision-maker knows just that it entails white and black balls. Suppose to ask

the decision-maker to evaluate the probability to extract a white ball from urn A and

the probability to extract a white ball from urn B.

Since urn A entails white and black balls in equal proportions, the probability to

extract a white ball from urn A is 0.5. On the contrary, nothing is known regarding the

proportion of white to black balls in urn B. In cases like this, the so-called “principle

of insufficient reason” — i.e. the fact that there is no reason to think otherwise —

suggests to imagine that also urn B entails white and black balls in equal proportions.

Thus, also in this case the probability to extract a white ball is assessed at 0.5. And

yet, something is not in order: intuitively, urn B should be characterized by a greater

uncertainty than urn A!

Ellsberg’s paradox actually deals with the size of the sample on which probabilities

are evaluated. In fact, Ellsberg’s paradox places two extreme situations aside.

In the case of urn A, since we know that it entails white and black balls in equal

proportions we are able to compute probability with infinite precision. It is just like ex-

tracting a ball (and replacing it afterwards) infinite times. We are measuring probability

on a sample of infinite size.

16



In the case of urn B, lack of knowledge on the proportion of white to black balls

is equivalent to estimating the probability of extracting a white ball prior to any ex-

traction. It means that the probability must be measured on a sample of size zero. We

guess its value at 0.5, but the reliability of our estimate is very low.

One possibility for overcoming Ellsberg’s paradox is representing uncertainty by

means of two magnitudes. The first one is probability whilst the second one is sample

size. In general, the size of the sample is expressed by a precision indicator.

Another possibility is to resort to the theory of sub-additive probabilities as exem-

plified by Itzhak Gilboa and David Schmeidler. While according to classical probabil-

ity theory the sum of the probabilities of an exhaustive set of events must be equal to 1,

according to the theory of sub-additive probabilities this holds only if probabilities are

measured on a sample of infinite size. In all other cases the probabilities take values

such that their sum is smaller than 1.

Let us consider the following example: We are playing dice in a clandestine gam-

bling room. Since we fear that we are playing with an unfair die, we may not assign

probability 1/6 to each face, but rather less, e.g. 1/8. Thus, the sum of the probabili-

ties of all faces is 6×1/8 = 3/4, which is smaller than 1. Subsequently, if we have a

possibility to throw the die many times — i.e. if we can increase the size of our sample

— we may find out that the die is unfair in the sense that, e.g., face ”2” comes out with

probability 1/3 while the other faces come out with probability 2/15. The sum of all

these probabilities is 5×2/15+1/3 = 2/3+1/3 = 1.

Let us return to Ellsberg’s paradox. In the case of urn A, the probability to extract

a white ball is 0.5 and the probability to draw a black ball is 0.5. The sum of these

probabilities is 1. In the case of urn B, the decision-maker may judge that the proba-

bility to extract a white ball is, for instance, 0.4, and that the probability of extracting a

black ball is also 0.4. The sum of these probabilities is 0.8, but this does not constitute

a problem for the theory.

4.2 Allais’ Paradox and Prospect Theory

The following experiment was carried out by Maurice Allais having Leonard Savage as

a subject, who was a major advocate of expected utility maximization and nevertheless

did not behave according to its prescriptions. Subjects are asked to choose between the

alternatives A and B reported on the rows of table (2). It is empirically observed that

most people choose alternative (B).

Subsequently, the same subjects are confronted with the alternatives C and D re-

ported on the rows of table (3). It is empirically observed that most people choose

alternative (C).

Let us now examine the expected utilities of two pairs of alternatives (A,B) and

(C,D). Preferring (B) to (A) means that u(2,400) > 0.33×u(2,500)+0.66×u(2,400),
which can be written as 0.34×u(2,400) > 0.33×u(2,500). Unfortunately, preferring

(C) to (D) implies the opposite, i.e. that 0.33×u(2,500) > 0.34×u(2,400). So it turns

out that most people do not behave rationally if they maximise utility.

Allais’ paradox is due to the presence of a tiny probability of not obtaining anything

in alternative (A). Thus, it is due to aversion to risk.
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Consequence 1 Consequence 2 Consequence 3

Alternative receive $ 2,500 receive $ 2,400 receive nothing

A with prob. 0.33 with prob. 0.66 with prob. 0.01

Alternative receive $ 2,400

B with prob. 1.00

Table 2: The first choice in Allais’ experiment.

Consequence 1 Consequence 2

Alternative receive $ 2,500 receive nothing

C with probability 0.33 with probability 0.67

Alternative receive $ 2,400 receive nothing

D with probability 0.34 with probability 0.66

Table 3: The second choice in Allais’ experiment.

Daniel Kahneman and Amos Tversky introduced non-linear transformations of util-

ities and probabilities in order to balance risk aversion. The transformed utilities and

probabilities can describe the observed behavior as expected utility maximization. This

is called Prospect Theory.

A prospect is a set of pairs {(c1, p1), (c2, p2), . . .}, where c j is a consequence that

will obtain with probability p j. As a preliminary step, prospects with identical conse-

quences are summed, dominated prospects are eliminated and riskless components are

ignored.

Prospects Theory prescribes that the utilities and the probabilities of the above

prospects be transformed according to the following rules:

1. Utility is transformed by means of a non-linear function v = f (u) such that

f ′(u) > 0 and f ′′(u) < 0 for u > 0, f ′(u) > 0 and f ′′(u) > 0 for u < 0, with

| f ′′(u) |u<0 > | f ′′(u) |u>0.

2. Probabilities p are transformed into “weights” w by means of a non-linear func-

tion w = g(p) such that g(0) = 0 and g(1) = 1 but ∃p ∈ (0,1) such that ∀p < p

it is g(p) ≥ p and ∀p > p it is g(p) ≤ p.

3. Weights w are transformed into coefficients q by means of the following rules:
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q−−h = w−(p−h) for j = −h

q−i = w−(p−h + . . .+ pi)−w−(p−h + . . .+ pi−1) for −h < j ≤ 0

q+
i = w+(pi + . . .+ pk)−w+(pi+1 + . . .+ pk) for 0 ≤ j < k

q+
k = w+(pk) for j = k

where w− and q− refer to prospects with negative utility, denoted with an index

j ∈ [−h,0], whereas w+ and q+ refer to prospects with positive utility, denoted

with an index j ∈ [0,k].

The v and q obtained at the end of this procedure can be used much like utilities and

probabilities, respectively. Prospect Theory succeeds to eliminate the inconsistencies

highlighted by Allais’ paradox, but it does not explain why it works. It should be called

a heuristic, rather than a theory.

4.3 Preference Reversal in Slovic’s Paradox

Let us consider a series of bets with different characteristics. 3 For instance, a series

of bets on different horses, or playing on a series of different slot machines, or a series

of unfair dice different from one another. The game consists of choosing to bet on a

specific horse, choosing to play on a specific slot machine or selecting a specific die to

throw. In other words, the game consists of choosing one bet out of a series of bets.

In order to simplify matters, let us consider series composed by two bets. More

specifically, let us consider the four pairs of bets in table (4).

For any pair of bets, subjects are asked to select either bet A or bet B. On average,

the number of subjects who prefer A to B is slightly greater than the number of subjects

who prefer B to A.

At this point, a different game is played. Subjects are asked to imagine that they

own a lottery ticket for each bet, and that they have a possibility to sell it. That is, they

can either wait for the outcome of each bet, where they may win or loose with a certain

probability, or they can sell the ticket. In order to compare the willingness to play to

the willingness to sell the ticket, subjects are asked to fix a minimum selling price for

each bet.

In general, it is empirically observed that most people ask a higher price for bets B

than for bets A.

However, for each pair of bets, bet A has the same expected (utility) value than bet

B. Thus, utility maximizers should be indifferent between A and B. On the contrary,

subjects have a slight preference for A if they are asked to play one of the two bets but

they definitely prefer B if they are asked to fix a selling price.

The distinguishing feature of bets A is that the first consequence has a much higher

probability than the second one. Thus, one assumes that it is the difference of proba-

bility values that orientates decision-making.

The distinguishing feature of bets B is that the first consequence concerns a much

larger amount of money than the second one. Probabilities, on the contrary, are some-

times very similar, sometimes very different from one another. Thus, one assumes that

it is the difference of money values that orientates decision-making.

3A comprehensive introduction to this topic is: Paul Slovic and Sarah Lichtenstein (eds.), The Construc-

tion of Preference. Cambridge, Cambridge University Press 2006.
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PAIR OF BETS I

Consequence 1 Consequence 2

Bet AI win $ 4.00 loose $ 1.00

with probability 0.99 with probability 0.01

Bet BI win $ 16.00 loose $ 2.00

with probability 0.33 with probability 0.67

PAIR OF BETS II

Consequence 1 Consequence 2

Bet AII win $ 3.00 loose $ 2.00

with probability 0.95 with probability 0.05

Bet BII win $ 6.50 loose $ 1.00

with probability 0.50 with probability 0.50

PAIR OF BETS III

Consequence 1 Consequence 2

Bet AIII win $ 2.00 loose $ 1.00

with probability 0.80 with probability 0.20

Bet BIII win $ 9.00 loose $ 0.50

with probability 0.20 with probability 0.80

PAIR OF BETS IV

Consequence 1 Consequence 2

Bet AIV win $ 4.00 loose $ 0.50

with probability 0.80 with probability 0.20

Bet BIV win $ 40.00 loose $ 1.00

with probability 0.10 with probability 0.90

Table 4: Slovic’s experiment.
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If subjects are asked to play the bets their attention is caught by probabilities, so

either they are indifferent or they prefer A. If subjects are asked to sell lottery tickets

their attention is caught by money values, so they prefer B.

Slovic’s paradox shows that preferences change if the decision-maker focuses on

the probability of a consequence or, rather, on its utility (here, money value). This

means that human beings are unable to evaluate probabilities and utilities indepen-

dently of one another.

Slovic’s paradox — often known as “preference reversal” — is destructive for util-

ity maximization. In fact, it undermines the assumption that a utility function and a

probability function can be defined, independently of one another. Slovic’s paradox

suggests that uncertain belief cannot be split into utilities and probabilities.

Obviously, several attempts to reconcile preference reversal with the theory of ra-

tional choice have been made. Preference reversal can be accommodated with the

theory of rational choice if either violations of transitivity, or of independence, or of

completeness of preferences are accepted. While the attempts to reconcile preference

reversal with the theory of rational decision by relaxing transitivity or independence

of preferences did not receive much attention because these properties are essential for

our idea of rationality — see § (2), the more recent idea of dropping completeness

deserves some discussion. In fact, allowing preferences to be incomplete amounts to

accept the idea that a utility function can be defined, at most, for some alternatives.

Possibly, just the simplest and most repetitive ones.

4.4 Arrow’s Paradox

The following paradox of social choice is due to Kenneth Arrow. Let A, B and C denote

three alternatives, and let 1, 2 and 3 denote three individuals. Let us assume that:

• Individual 1 prefers alternative A to alternative B and alternative B to alternative

C. Thus, he prefers alternative A to alternative C.

• Individual 2 prefers alternative B to alternative C and alternative C to alternative

A. Thus, he prefers alternative B to alternative A.

• Individual 3 prefers alternative C to alternative A and alternative A to alternative

B. Thus, he prefers alternative C to alternative B.

If these three individuals constitute a democratic community with a majority rule,

then this community prefers A to B (individuals 1 and 3) and alternative B to alternative

C (individuals 1 and 2). Thus, if the community wants to have transitive preferences, it

must prefer A to C. But, the majority of its members (individuals 2 and 3) prefers C to

A!

The setting of Arrow’s paradox can be seen as a game, where individual utility

maximizers are set together. Arrow’s paradox shows that there are conditions where

the outcome contradicts a basic assumption of utility maximization, even if individuals

do not.

Several proposals have been made in order to overcome Arrow’s paradox. The most

common way out is to allow individuals to have different preferences if all alternatives
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are presented to them, or if they are presented with pairs of alternatives. Or, one may

limit voters to two alternatives presented in tournaments — Arrow’s paradox would

disappear, but the final choice is not necessarily the one that would be preferred by the

largest possible majority.

5 Logic of Consequence and Logic of Appropriateness

As we have seen in § (4), utility maximization is not a good descriptor of decision

processes. Its proponents — notably, Leonard Savage — have objected that utility

maximization is not meant to be a faithful description of what people actually do, but

rather a prescription of what they should do. It pretends to be a normative theory,

although it is not a descriptive theory.

However, the preference reversals highlighted by Slovic point to such a huge dis-

tance between theory and reality, that the normativeness of utility maximization might

be questioned. If utilities do not exist, it may make little sense to tell decision-makers

that they should maximize them. Furthermore, if evolution shaped human reasoning

along patterns that are different from utility maximization, we ought to be careful to

declare these patterns “illogical”, or “irrational”. Rather, it may make sense to ob-

serve how human beings actually make their decisions, understand the rationale, and

eventually revise our theories.

James March traced a distinction between the “logic of consequences” that under-

lies utility maximization, and a “logic of appropriateness” where human beings behave

according to what they deem appropriate depending on past experiences and social

pressures to conformity in specific settings. Note that the logic of appropriateness does

not separate an individualistic step (Utility) from social interation (Game Theory).

Human minds are viewed as coherence-seeking machines that make use of avail-

able information in order to construct a plausible interpretation of reality, be it social

roles, scientific theories, or else. By drawing causal relationships and eliminating in-

consistencies a decision-maker tells herself a story that explains why certain facts are

the way they are and why certain people did what they did. This story, a founding story

that suggests a decision-maker what it is appropriate to do, is called a narrative.

The construction of a narrative may require that issues that do not fit into the picture

are ignored, downplayed or forgotten. It may require that opinions are changed even

dramatically, and yet their purporters candidly claim that they have always been coher-

ent throughout their lives, or that they have been coherent in spite of having changed

their opinion, if their story is seen from a particular point of view.

Albeit disturbing for our idea of rationality, the extent and easiness with which hu-

man beings distort previous experiences is proven by a number of experiments in psy-

chology. Daryl Bem and Michael Ross have shown that it is easy to induce the subjects

of experiments to change opinion while they are still convinced to have been coher-

ent throughout the whole experiment. Anthony Greenwald, Michael Ross, Kenneth

Gergen and Eugene Winograd have shown that people construct coherent narratives of

their past, and that they remember past events to the extent that they fit these narra-

tives. Other experiments by Michael Ross, Anthony Greenwald, Kathy McFarland and

Michael Conway have shown how they may eventually change their interpretation of
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the past and construct a new narrative if new evidence must be accommodated. The

empirical evidence tells us that human beings are ready to lie to themselves in order to

build coherent narratives. 4

This attitude is puzzling, because distorting reality in order to construct a coherent

narrative is at odds with our idea of rationality. So either human nature is inherently

irrational, or our idea of rationality is incorrect.

According to James March, re-inventing the past is a crucial ability that enables

decision-makers to conceive new goals and figure out a strategy in an uncertain future.

Later, a similar argument has been made by Karl Weick under the label of “sensemak-

ing”. Essentially, these authors suggest that in order to make decisions in the face of

an uncertain future it is good to have a narrative that explains the past as if previous

decisions had been made along a coherent line. This line guides the decision-maker

into the future, providing a rationale for action even if certainties are very few.

So here comes a straightforward argument for normativeness. If seeking coherence

has the purpose of constructing a narrative, and if narratives are useful, then a decision

theory based on constructing narratives should be regarded as rational, and openly

prescribed.

In business, politics and other fields, narratives may constitute the bulk of strate-

gies. David Lane and Robert Maxfield have made a years-long field observation of the

elaboration and modification of the narrative of a Silicon Valley firm. 5 This study is

worth reporting, because it is very clear in making us understand that narratives are

useful precisely because they provide a guidance in the face of an uncertain future,

and that their usefulness is not impaired by the fact that their coherence is based on an

arbitrary interpretation of reality.

5.1 A Real Story

In 1990, Echelon, a Silicon Valley company, launched LonWorks, an innovative tech-

nology for distributed control. Previously, control was centralized into one main pro-

cessing unit. With LonWorks, each electrotechnical device is endowed with a micro-

processor and can communicate with all other devices, so all device control each other.

Distributed control is more resilient than centralized control, and easily implements

modular architectures to which additional devices can be added.

Distributed control is particularly suited to the automation of office spaces in large

buildings, post-Fordist productive plants, as well as any setting where a large number

of heterogeneous devices must coordinate their operations while retaining some flexi-

bility. Thus, in its early days Echelon focused on partnerships with large producers of

the devices to be automated, e.g., a producer in the field of heating and air condition-

ing was offered a possibility to integrate a microchip in their devices, as well on lifts,

doors and windows in order to integrate all controls in a large building, from lighting

to heating to theft protection.

4Detailed references to this litterature can be found in Guido Fioretti, Either, Or. Exploration of an

emerging decision theory. Working paper available SSRN.
5David A. Lane and Robert R. Maxfield, “Ontological Uncertainty and Innovation”. Journal of Evolu-

tionary Economics, 15 (1) 2005: 3–50.
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With some disappointment, Echelon had to recognize that the LonWorks technology

was not exploited in its full potentialities. In fact, each large producer was specialized

in one tiny sector so it had neither the power nor the capability to implement LonWorks

on all devices. For instance, a producer in the field of heating and air conditioning

found it difficult to install LonWorks on doors, windows, lights and lifts, for the au-

tomation of these devices was covered by other firms. Indeed, the difficulty was that

Echelon was attempting to create a new market — one may call it a market for automa-

tion — in a marketplace that was covered by producers of several physical devices at a

time.

Echelon was conscious of the enormous difficulties connected with the creation of

a new market. Nevertheless, it deemed that long-term relations with a few special-

ized producers would pay in the long run. Echelon had a narrative, saying that large

specialized producers would slowly but persistently adopt and impose LonWorks. Con-

sequently, it invested all of its resources in these relations.

By 1994, Echelon was loosing confidence in this narrative. Echelon started to ap-

proach large system integrators of ICT, such as Olivetti and Ameritech. However, the

crucial move was that of hiring a person for this job, who did not come from Silicon

Valley as all other executives did. Through this employee, Echelon approached smaller

companies, that integrated devices from different producers. Some people at Eche-

lon conceived the idea of embedding LonWorks in a box that could be attached to any

electrotechnical device, of whatever producer.

Scholars of technological innovation know how difficult it is for visionary employ-

ees to convince their boss of the value of their idea. In the case of Echelon the CEO

embraced enthusiastically the new idea, because it appeared to fit with his previous

experience.

Echelon’s CEO had been the successful entrepreneur of a small firm that exploited

digital technologies to produce PBX (private branch exchange) systems with innovative

features. This firm had been able to displace giants such as AT&T by providing small

independent installers with a superior product. When this CEO met small independent

integrators of electromechanical devices, he mapped the new idea onto his previous

experience.

In 1996, and within a few months, Echelon changed its narrative. Echelon presented

itself as a provider of an innovative microchip for independent system integrators, a

microchip that could be installed on any electrotechnical device, of whatever producer.

Most importantly, Echelon told itself that it had always pursued this strategy. No-

body in the firm seemed to be aware that the firm’s strategy had changed. According

to the narrative that they had developed, they had always done what they were doing.

Moreover, when faced with evidence that the firm had adopted a different strat-

egy, management wished that the final publication by Lane and Maxfield would not

stress this aspect (Lane: personal communication). This makes sense, for according to

our idea of rationality narratives should reflect “objective information”, and decision-

makers should stick to it. Thus, management did not want to appear irrational.

However, the case of Echelon highlights that constructing a narrative by re-interpreting

the past may be good and useful for decision-makers. In fact, the reported case reveals

that by re-interpreting its mission Echelon was able to direct its investments. If the fu-

ture is uncertain, as it is often the case, interpreting the past in order to find a direction
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for the future is a sensible activity.

Rather, the trouble is with our idea of rationality. Since re-interpreting the past is

regarded as irrational, then it must be done in secrecy. In reality, if re-interpreting the

past has positive effects, then it should be prescribed.

6 Tools for the Logic of Appropriateness

Although the logic of appropriateness cannot propose itself with a ready-made and

ready-to-use formula such as utility maximization, there exist some tools that can be

used to reproduce its building blocks. These are essentially classification tools, that

form concepts out of information, and coherence tools, that arrange concepts into co-

herent stories.

In particular, the following tools will be reviewed in this section:

1. Unsupervised neural networks;

2. Evidence Theory;

3. Constraint Satisfaction Networks.

Unsupervised neural networks reproduce the formation of mental categories out of

a flow of information. Evidence Theory assumes that an actor receives information

on possibilities and arranges them into coherent hypotheses. Constrain Satisfaction

Networks arrange concepts into coherent explanations. Although they have not been

integrated into one another, they all concern the process of selecting some items from

the flow of experiences, arranging them in a coherent narrative, and deciding accord-

ingly.

The logic of consequence makes sense in the restricted realm of games of chance,

where it is possible to overview an exhaustive set of possibilities and enlist all of the

consequences of any alternative. On the contrary, the logic of appropriateness makes

sense precisely because quite often such conditions do not hold. Thus, this review

does not cover tools concerned with classification in a given set of categories, such as

Case-Based Decision Theory and supervised neural networks.

6.1 Unsupervised Neural Networks

Human mental categories are not defined by pre-specified similarity criteria that the

objects to be classified should fulfil. Rather, mental categories are continuously con-

structed and modified according to the similarity of a just-received piece of information

to the pieces of information that have already been stored in existing categories. For

instance, a child observing house chairs may start with an idea of “chair” as an object

having four legs, then observe an office chair with one leg and take away the num-

ber of legs from its definition of “chair”. The point here is that definitions are made

once mental categories exist. Mental categories are not constructed around existing

definitions.
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In some cases, definitions are not even possible, because a mental category entails

objects that do not have any common feature. 6 For instance, the mental category

expressed by the word “game” refers to children amusing themselves with toys, adults

involved in a serious competition on a chess board and as well as a set of wild animals.

One may speculate that man transposed the emotions involved in hunting into the more

intellectual context of chess, and that the fact that chess was an amusement suggested

some similarity to what children were supposed to do. So pairwise intersections of the

meanings of the word “game” exist, but this does not imply that all meanings have a

common intersection. Therefore, a definition of “game” is not possible.

Unsupervised neural networks are able to reproduce the idea that mental categories

arise out of adding examples. In fact, these networks construct categories around the

most frequent input patterns, mimicking the idea that a child creates a category “chair”

upon observation of many such objects.

Neural networks are composed by a set of neurons which produce an output y ∈ ℜ
by summing inputs x1, x2, . . . xN ∈ ℜ by means of coefficients a1,a2, . . .aN :

y =
N

∑
i=1

ai xi (7)

For any set of coefficients ai, this simple device is able to classify inputs in a cat-

egory by yielding the same output y for several input vectors x. In fact, there exist

several vectors x whose weighted sum yields the same y. For instance, if ∀i it is ai = 1,

then e.g. y = 10 can arise out of x′ = [9 1], x′′ = [2.5 7.5], as well as many other

vectors. In this sense, the neuron classifies the input vectors [9 1] and [2.5 7.5] in the

same category.

Note that a neuron has no difficulty to classify input vectors that do not perfectly

fit its categories. For instance, if there is a category y = 10 and a category y = 11, an

input vector x′′′ = [2.1 8] is classified in the category y = 10 just as x′ and x′′.

The shape of the categories implemented by a neuron depends on the coefficients

ai. For instance, if a1 = 0.5 and a2 = 20 the input vector x′ = [9 1] yields y = 24.5 and

may not lie in the same category as x′′ = [2.5 7.5], which yields y = 151.25.

The coefficients ai may be chosen by the user of the network during a training

phase, in which case we are dealing with a supervised network. Alternatively, the

coefficients ai may be initialised at random and subsequently changed by the network

itself according to some endogenous mechanism. In this case we have an unsupervised

network, of which the Kohonen network is the best known instance. 7.

In unsupervised networks, the ability of a neuron to change its categories stems

from a feed-back from output y and a feed-forward from input x, towards coefficients

ai:

dai

dt
= φ(a,y)xi −γ(a,y)ai ∀i (8)

6See George Lakoff, Women, Fire, and Dangerous Things. Chicago, The University of Chicago Press

1987.
7The basic reference is Teuvo Kohonen, Self-Organization and Associative Memory. Berlin-Heidelberg,

Springer 1989.
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Figure 8: The neuron of an unsupervised network. The feed-backs and -forwards are

responsible for the most notable properties of unsupervised networks, including the ab-

sence of a training phase. In a sense, the “training phase” of supervised neural networks

may be seen as a feed-back and -forward passing through a human operator.

where φ(a,y) and γ(a,y) may be linear or non-linear functions.

In equation 8, the term φ(a,y)xi enables the neuron to learn input patterns. It entails

both a feed-back (from y) and a feed-forward (from xi). This learning term makes ai

increase when both y and xi take high values, thereby enhancing those coefficients

that happened to yield a high y when a particular xi was high. Thus, the structure of

coefficients vector a ultimately depends on which vectors x appeared most often as

inputs.

The learning term is such that the neuron learns the patterns that it receives most

often. This is sufficient to make the network work, but makes it unable to construct

different categories if different patterns appear. Furthermore, since the learning term

works by multiplying inputs and outputs, it may produce an explosive output. This

should be curbed in order to use the network.

For both reasons, a forgetting term that makes the coefficients ai decay towards

zero is in order. In equation 8 the forgetting term is γ(a,y)ai. It depends on a feed-back

from output y and, most importantly, on coefficient ai itself.

Figure 8 illustrates the feed-backs and -forwards within a neuron of an unsupervised

network.

Simple, but non trivial examples of equation 8 are: ȧ = µyx− νa, ȧ = µx− νya,

ȧ = µyx− νya, ȧ = µyx− νy2a, where µ and ν are constants. Each functional form

corresponds to different strengths of the learning and forgetting terms.

In general, a network of neurons is able to discriminate input information according

to much finer categories than a single neuron can do. As a rule, the greater the num-

ber of neurons, the finer the categories that a network constructs. However, a neural

network is useful precisely because it is able to classify a huge amount of information

into a few broad categories. If categories are so fine that they track input information

exactly, then a neural net becomes useless. Thus, the number of neurons that a network

should possess depends on the variability of the input as well as on user needs.

However, the behaviour of a neural network does not only depend on the number

of its neurons, but also on the structure of the connections between them. In fact, just
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like the capabilities of neurons depend on feed-backs and -forwards, the capabilities of

a neural network depend on linkages that eventually enable information to circulate in

loops. If information can circulate within the network, then the whole network acquires

a memory.

It is a distributed memory, fundamentally different in nature from the more usual

localised memories. Localised memories such as books, disks, tapes etc., store infor-

mation at a particular point in space. This information can only be retrieved if one

knows where its support is (e.g. the position of a book in a library, or the address of a

memory cell on a hard disk).

On the contrary, in a neural network each neuron may be part of a number of in-

formation circuits where information is “memorised” as long as it does not stop to

circulate. Although this is a memory, one cannot say that information is stored at any

particular place. Hence the name.

For obvious reasons, the information stored in a distributed memory cannot be re-

trieved by means of an address. However, a piece of information flowing in a particular

loop can be retrieved by some other piece of information that is flowing close enough

to it. Thus, in a distributed memory information can be retrieved by means of asso-

ciations of concepts, with a procedure that reminds of human “intuition”. Indeed, the

connectionist idea of a distributed memory is a possible explanation for the existence in

both humans and animals of an associative memory, i.e. the ability to establish an asso-

ciation between a particular stimulus and specific responses if the stimulus is repeated

sufficiently often.

6.2 Evidence Theory

Evidence Theory is a branch of the mathematics of uncertain reasoning that, unlike

Probability Theory, does not assume that a decision-maker knows the set of all possible

events. 8 Rather than defining a “residual event” for anything that cannot be clearly

expressed, Evidence Theory leaves a decision-maker’s possibility set open to novelties.

Evidence Theory makes use of a particular class of monotone uncertainty mea-

sures, Choquet capacities of infinite order. Furthermore, it assumes that no operation is

attached to the possibility set, which frees a decision-maker to define a “residual event”

by complementation. Novel possibilities can appear in the possibility set in the course

of the calculations, and the possibility set is called frame of discernment in order to

stress its cognitive nature.

Evidence Theory does not take a gambler as its prototypical subject, but a judge

or a detective. The reason is that a gambler playing with dice or throwing a coin

knows what possibilities can occur. On the contrary, judges and detectives know that

unexpected proves and testimonies may open up unexpected possibilities. Possibly,

managers making investments, politicians steering their countries, or just anyone in the

important choices of her daily life is more akin to a judge or a detective looking for

cues than to a gambler looking for luck.

Let us consider a frame of discernment Θ. Let us suppose that a person receives

8The basic reference is Glenn Shafer, A Mathematical Theory of Evidence. Princeton, Princeton Univer-

sity Press 1976.
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testimonies, or bodies of evidence, as numbers that to various extents support a set of

possibilities A1,A2, . . .AN , where A1 ⊆ Θ, A2 ⊆ Θ. . . AN ⊆ Θ and where the Ais are

not necessarily disjoint sets. 9 Let us denote these numbers {m(A1),m(A2), . . .m(Θ)},

where m(Ai) measures the amount of empirical evidence that supports the possibility

Ai.

Numbers m are exogenous to the person (the judge, the detective) who owns the

frame of discernment. They are not subjective measures for this person, though they

may be subjective evaluations of those who provide the testimonies. Numbers m are

cardinal measures of the amount of empirical evidence supporting each possibility.

Since no operation is defined on the frame of discernment, the number m that has

been assigned to Θ does not concern any specific possibility. Rather, it indicates how

small the evidence is, that supports the possibilities envisaged in the testimony, or, in

other words, how strongly a person fears that the possibilities that she is envisaging are

not exhaustive. The greater the ignorance of a person on which possibilities exist, the

greater m(Θ).
Note that m(Θ) can be smaller than any m of the Ais that it entails. Indeed, this

applies to the Ais as well: if Ai ⊃ A j, this does not imply that m(Ai) > m(A j).
Although it is not strictly essential for Evidence Theory, numbers m are generally

normalised by requiring that:

N

∑
i=1

m(Ai)+m(Θ) = 1 (9)

For instance, if the original format of the testimony is:

{5,32,12,3}

by applying eq. 9 we obtain:

{0.096,0.615,0.231,0.058}

whose numbers sum up to one.

Let us suppose that the decision-maker wants to evaluate to what extent the avail-

able empirical evidence supports certain hypotheses that she is entertaining in her mind.

Since a hypothesis concerns the truth of a possibility or a set of possibilities, hypothe-

ses are subsets of the frame of discernment just as possibilities are. A body of evidence

{m(A1),m(A2), . . .m(Θ)} supports a hypothesis H to the extent that some Ais are in-

cluded or at least intersect H.

Note that, whilst the possibilities Ai entailed in the testimonies cannot be combined

with one another (intersected, complemented, etc.) to form novel possibilities, a hy-

pothesis H represents a free construct of the owner of a frame of discernment (the

judge, the detective, etc.). This person is absolutely free to conceive any hypothesis, as

well as its opposite. Thus, although Ais are forbidden, H can be safely considered.

9For simplicity, the theory is expounded with respect to a finite number of possibilities. No substantial

change is needed if an infinite number of possibilities is considered.
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Figure 9: Left, two contradictory possibilities. Centre, two coherent possibilities.

Right, two partially coherent, partially contradictory possibilities.

Given a testimony {m(A1),m(A2), . . .m(Θ)}, the belief in hypothesis H is expressed

by the following belief function:

Bel(H) = ∑
Ai⊆H

m(Ai) (10)

By definition, Bel( /0) = 0 and Bel(Θ) = 1. However, this last condition does not

imply that any of the possibilities included in the frame of discernment must necessarily

realise. It simply means that any possibility must be conceived within the frame of

discernment, independently of what possibilities are envisaged at a certain point in

time.

The belief function takes account of all evidence included in H. The plausibility

function takes account of all evidence that intersects H:

Pl(H) = ∑
H∩Ai 6= /0

m(Ai) (11)

It can be shown that belief and plausibility are linked by the relation Pl(H) = 1−
Bel(H), where H denotes a hypothesis opposite to H. If m(Θ) > 0 these two measures

are not equivalent, so both of them need to be considered. In general, Bel(H)≤ Pl(H).
Let us suppose that some unexpected facts occur, that are told by a new testimony.

The new testimony must be combined with previous knowledge, confirming it to the

extent that it is coherent with it. On the contrary, previous beliefs must be weakened if

the new evidence disconfirms them.

Let {m(B1),m(B2), . . .m(Θ)} be the new testimony, which must be combined with

{m(A1),m(A2), . . .m(Θ)}. The new testimony may entail possibilities that are coherent

with those of the previous testimony, possibilities that contradict those of the previous

testimony, and possibilities that partially support, partially contradict the previous testi-

mony. Figure 9 illustrates contradictory, coherent and partially coherent/contradictory

possibilities on the frame of discernment. Contradictory possibilities appear as dis-

joint sets. A possibility is coherent with another if it is included in it. Finally, two

possibilities that are partially coherent, partially contradictory, intersect one another.

Let us suppose that two testimonies

{m(A1),m(A2), . . .m(Θ)}
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and

{m(B1),m(B2), . . .m(Θ)}

that satisfy eq. 9, must be combined into a testimony

{m(C1),m(C2), . . .m(Θ)}

that also satisfies eq. 9. Dempster-Shafer’s combination rule yields a combined testi-

mony {m(Ck)} where the coherent possibilities between {m(Ai)} and {m(B j)} have

been stressed.

According to Dempster-Shafer combination rule, possibilities {Ck} are defined by

all intersections of each possibility in {A1,A2, . . .Θ} with each possibility in {B1,B2, . . .Θ}.

For any possibility Ck, the amount of empirical evidence is:

m(Ck) =
∑Ai∩B j=Ck

m(Ai)m(B j)

1−∑Ai∩B j= /0 m(Ai)m(B j)
(12)

The numerator of eq. 12 measures the extent to which both the first and the second

testimony support the possibility Ck. In fact, for each possible Ck the sum extends to all

pairs of possibilities from the two testimonies that are coherent on Ck (see fig. 9). The

more the intersections between the Ais and the B js that give rise to Ck, and the greater

their amounts of evidence, the larger the numerator.

The denominator is the complement to one of those elements of the second testi-

mony that contradict the first one. In fact, the complement to one is made on those

Ais and B js that are disjoint sets (see fig. 9). The denominator represents a measure of

the extent to which the two testimonies are coherent, in the sense that all evidence that

supports contradictory possibilities is excluded.

Essentially, Dempster-Shafer combination rule says that the evidence supporting

possibility Ck is a fraction of the coherent evidence between {m(A1),m(A2), . . .m(Θ)}
and {m(B1),m(B2), . . .m(Θ)}. The amount of this fraction depends on the sum of all

elements of the testimonies that support Ck.

Dempster-Shafer’s rule can be iterated to combine any number of testimonies. The

outcome of Dempster-Shafer combination rule is independent of the order in which

two testimonies are combined. 10

The above description made clear that Evidence Theory provides an algorithm for

handling an exogenous flow of new, unexpected possibilities. Indeed, the decision-

maker of Evidence Theory is not supposed to conceive possibilities. She merely listens

to exogenous testimonies that consist of possibilities and degrees of evidence support-

ing them, and combines these testimonies into a coherent whole by means of Dempster-

Shafer theory. She does not conceive novel possibilities out of a creative effort. Rather,

novel possibilities — the {Ck} — arise out of combination of exogenous inputs.

On the contrary, Probability Theory ascribes its subjects the ability to conceive

novel possibilities by applying a set of operations (e.g., union, intersection, comple-

mentation) to a given set of elementary possibilities. Under this respect, Probability

Theory with its σ-algebras is conceptually akin to classical artificial intelligence, in the

10A detailed numerical example can be found in Guido Fioretti, “Evidence Theory as a Procedure for

Handling Novel Events”. Metroeconomica, 60 (2) 2009: 283–301.
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sense that classical artificial intelligence assumed that intelligent behaviour, expressed

by the ability to generate higher-order concepts, results from the application of logical

operations on a set elementary concepts. Both lines of reasoning suppose that complex

reasoning from the combination of given bricks with given rules.

6.3 Constraint Satisfaction Networks

Parallel constraint satisfaction networks (CSN) arrange concepts into coherent theories.

Although they belong to the larger family of neural networks, they do not carry out any

classification process.

Constraint satisfaction networks are characterized by:

• Excitatory and inhibitory connections;

• Feedbacks between neurons.

Neurons represent possibilities, or concepts, or propositions. Connections repre-

sent inferences: an excitatory connection from neuron A to neuron B means “A implies

B”, whereas an inhibitory connection from neuron A to neuron B means “A implies ¬
B”.

Let ai denote the activation (the output) of neuron i, with ai ∈ ℜ . Let wi j ∈ ℜ
denote the weight by which neuron i multiplies the input arriving from neuron j.

The net excitatory input to neuron i is:

eneti = ∑
j

wi ja j i f wi ja j ≥ 0 (13)

The net inhibitory input to neuron i is:

eneti = ∑
j

wi ja j i f wi ja j < 0 (14)

At each time step, the activation of neuron i is increased by its excitatory inputs and

decreased by its inhibitory inputs:

∆ai = eneti(amax −ai)+ ineti(ai −amin) (15)

where, in general, amax = 1 and amin = −1.

Feedbacks between neurons make the network maximize consonance:

C = ∑
i
∑

j

wi jaia j (16)

or, equivalently, minimize energy E = −C.

Consonance maximization means that those neurons are strengthened, that repre-

sent possibilities, concepts or propositions that are coherent with one another. Thus,

constraint satisfaction networks can be used to model any cognitive process character-

ized by a search for coherence. 11 In particular, researchers have emphasized the ability

of CSN to construct narratives, much like humans actually do.

11The basic reference is Paul Thagard, Coherence in Thought and Action. Cambridge (MA), The MIT

Press 2000.
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Notable applications of CSN are the elaboration of scientific theories, which amounts

to arrange empirical findings in a network of coherent causal relations, as well as the

evaluation of guilt or innocence in a trial, which amounts to fitting testimonies in a

coherent frame. CSN have also been used to model post-decisional reduction of disso-

nance.

Furthermore, CSN can be used to model the process of emphasizing the positive

aspects of one alternative and the negative aspects of its competiting alternatives until a

coherent frame is available and a decision can be made. This oscillation between com-

peting explanations reproduce at least one important aspect of Gestalt theories, namely,

the idea that the human mind may shift among alternative interpretations of reality, as

exemplified by Rubin’s vase and other images where at least two interpretations are

possible. 12 Many cues suggest that this is the fundamental pattern of decision-making.

A clear limitation of CSN is that they work with given possibilities, concepts,

or propositions. In other words, CSN can reproduce the arrangement of possibilities

and concepts, not their arousal. In order to include this feature it has been proposed

that CSN represent unconscious arrangement of available possibilities and concepts,

whereas a conscious process running in parallel would care about the search and elab-

oration of novel ones.

7 Conclusions

This review presented tools to model decision-making according to two opposing paradigms,

namely, the logic of consequence and the logic of appropriateness. The reader may feel

unease because scientists do not provide a univocal answer to the demands of the mod-

eller.

However, a pragmatic attitude may suggest that tools should be used depending on

conditions. Utility maximization and Game Theory require that all available alterna-

tives and all their possible consequences can be listed. Thus, it may be sensible to make

use of these tools when one such exhaustive list is available, eventually releasing the

requirement of perfect rationality and the pursuit of Nash-equilibria while assuming

some form of bounded rationality as influence games do. Unsupervised neural net-

works, Evidence Theory and constraint satisfaction networks, on the contrary, may be

used when more challenging decision settings must be modelled. The modeller should

remember that constructing narratives makes sense because the world is uncertain even

in what possibilities may exist, so it is only when modelling such decision settings that

these tools make sense.

The trouble, in this last case, is that the tools mentioned above have not been inte-

grated into a unified framework. No simple formula is ready to be used, so the modeller

must resort to a higher degree of creativity and intuition. On the other hand, here is an

exciting opportunity for modellers to participate to theory development.

12The simplest picture of this kind is a cube depicted by its edges: it is up to the observer to choose which

face stays in the front and which face stays in the rear. Rubin’s vase is white and stands against a black

background. The observer may see a white vase, or two black profiles in front of one another.
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