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This paper examines the effects of a win bonus, effort, costs and team size, on the demand for 

talented players, the win percentage and the profits of small and big teams. Teams play a 

Cournot game, under the following objective functions: (i) teams maximize profits, (ii) teams 

maximize win percentage, (iii) the small team maximizes profit and the big win percentage, 

and (iv) vice versa. The effects are based on a priori selected parameter values and bounds, as 

well as from optimal solutions of non-linear programs, by maximizing anyone of the four win 

percentage formulae, derived from the respective Cournot reaction functions. 
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1. Introduction 
 
 
Over the last two decades, a number of researchers have applied oligopoly theory to 
study the performances of teams. Most of the models are based on the classical two 
teams’ championship developed by Quirk & Fort (1992). Among the factors 
considered, were being the size of the teams, the effort of the players, the wage 
structure or the bonus system and the revenue sharing. Recently, Szymanski & 
Kesenne (2004), Kesenne (2007), Goossens (2007), Franck & Nüesch (2007), 
Papahristodoulou (2008), Dietl et al (2009) have analyzed to what extent these factors 
influence the win percentages or the profits of the teams.  
 
Regarding the wage structure, Franck & Nüesch (2007), using data from the German 
soccer league, show that “teams which have either a very egalitarian or a very differential 
pay structure are more successful on the field” compared to teams that have “a medium 
level of wage dispersion”. Papahristodoulou (2008) formulated a non-linear integer 
model with four teams, playing in a tournament, like the UEFA CL, under different 
“team-production” functions. When teams maximize points, higher wage equality 
seems to improve the performance of three teams, while the most efficient team of 
the tournament is not affected by the wage structure. When teams maximize profits, 
the performance depends on both the “production” technology and on wage 
differences. For instance, under decreasing returns, and when paying the marginal 
value product of their players, the most “balanced” team performs better. On the 
other hand, the most “unbalanced” team performs best under increasing returns to 
scale and egalitarian wages; in that case, the non-qualified teams did not manage to 
improve their performance and qualify, even if their players should receive the 
expected qualification bonus that UEFA pays. 
 
Dietl et al (2009) showed that if large teams pay the highest wages (a salary cap) and 
small teams pay just above the salary floor, the competitive balance decreases, the 
profits from the small teams as well as the aggregate profits increase, but the effects 
on the large teams’ profits are ambiguous. On the other hand, if large teams pay 
below cap and small teams pay exactly at the floor, the competitive balance increases, 
the profits from the small teams increase and the profits from the large teams 
decrease. 
 
Kesenne (2007), in a two-team Cournot-tournament, assumed that the small team 
introduces an extra win bonus in order to improve the effort of its talents. Under 
plausible parameter values, and especially when the effort of its players increases, as 
expected by the introduction of the bonus, the profits to the small team increase and 
the tournament gets more balanced.   
 
Basically, this paper is a slight modification of the Kesenne (2007) Cournot duopoly. 
The main difference is that the big team introduces the win bonus instead and teams 
compete in a mixed Cournot as well. The paper is organized as follows; in section 
two we present the main assumptions; in section three, teams play Cournot and 
maximize profits; in section four we compare our findings to Kesenne; in section five 



 

2 
 

both teams maximize the win percentage, given zero profits; in section six teams play 
a mixed Cournot; in part one, team 1 maximizes profits and team 2 win percentage 
and in part two the reverse; in section 7 we concentrate on the win percentages from 
all models; in section 8 we compare all models based on “optimal” parameter values 
and in section 9 we summarize our conclusions.  
 
 

2. The main assumptions  
 
 
Two teams sign contracts with talents. There is a fixed amount of talents in the 
market, available for any demand. The number of talents each firm employs does not 
change during the tournament. One team pays only a fixed salary, while the other 
team pays both a fixed salary and a win bonus.  Contracts are signed at the start of 
the season, before the effort of the talents was measured and the results of the 
tournament are known. It is assumed that team managers have a good knowledge of 
all relevant parameters, like effort of talents, revenues and costs. Teams maximize 
their win percentage or profits.  
 
Kessene (2007) assumes that the small team (team 2) introduces the bonus to foster 
the effort of its players.  Although there might be some small teams which introduce 
a win bonus, to my knowledge from the football world in many European leagues, it 
is more often the biggest teams, with higher economic resources, that offer a much 
higher win bonus. Thus, contrary to Kessene, we assume that it is the biggest team 
(team 1) who offers the bonus.  
 
The win percentages are:  

( )
w 1

1

1 2

e t
=

e t + t
   (1) 

( )
w 2

2

1 2

t
=

e t + t
   (2) 

 
t1 and t2 are the respective (homogenous) talented players, and e 1≥ is the effort 

index required by the players of team 1. If 1 2et t= , the tournament will remain 

balanced, even if team 1 has less talented players than team 2.  
 
Following Kesenne we assume that teams’ cost functions are asymmetric, as below:  
 

wθ σ+1 1 1K = t    (3) 

2 2K = t     (4) 

 
In our simulations we will assume the following parameter bounds: 

, .0 1 0 0.5θ σ≤ ≤ ≤p  Thus, while team 2 pays to its talents a higher wage, equal to t2, 

team 1 pays at most the same fixed salary (θ) and an “extra” win bonus (σ). This 
assumption might not be valid in the real world, for at least two reasons: first, even if 
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the talented players are homogenous, bigger teams pay at least the same fixed salary 
as smaller ones, and also a higher bonus; second, the possibility of both 

1 & 0 0.5θ σ≥ ≤p might be due to the fact that talented players are not perfectly 

homogenous, and most star players play for the biggest teams. 
 
Precisely as Kesenne we assume the following, simple, revenue functions: 
 

m w1 1 1R =     (5) 

m w2 2 2R =      (6) 

 
Team 1 is assumed to be more attractive for the public and the media (i.e. it has a 
higher market size) and its revenue from its winning games is higher, so that we 

normalize for team 2, 2m 1= and assume 1m 1≥ . 

 
Thus, since we assume that the biggest team introduces the extra bonus to its talents, 
it is interesting to examine if our modified assumptions would lead to less balanced 
tournaments and to different profits and talents, compared to Kesenne.   
 
 

3. Teams play Cournot and maximize profits 
 
 
The profit functions are: 
 

  (7) 

   (8) 
 
Differentiate (7) and (8) w. r. t.  t1 and t2 respectively and solve we obtain the teams’ 
talents demands: 
  

   (9) 

   (10) 
 
Setting (9) and (10) in the profit functions (7) and (8) we obtain: 
 

   (11) 

   (12) 
 
Finally, setting (9) and (10) in (1) and (2) we obtain: 

p1 = m1  
e t1He t1 + t2L - q t1 - s

e t1He t1 + t2L
p2 =

t2He t1 + t2L - t2

t1 =
e Hs2 - 2s m1 + m1

2LH-q + es - em1L2
t2 = -

e q Hs - m1LHq - es + em1L2

p1 = -
e2 Hs - m1L3Hq - es + em1L2

p2 =
q2Hq - es + em1L2
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   (13) 

   (14) 
 
From (13) and (14) it is clear that the tournament is completely balanced, if

1( )e mθ σ= − , team 1 wins more if 1( )e mθ σ< −  and team 2 wins more if 1( )e mθ σ> − .  

 

Regarding talents, the simplified ratio is 1 1

2

( )t m

t

σ
θ
−

= , i.e. independent from effort. 

Moreover, effort influences the overall number of talents, i.e. both the numerator and 
the denominator and the balance of the tournament. For instance, if 

, , . , .1e 1 1 0 5 m 1 4θ σ= = = = then, t1 = t2 = 0.25 and the tournament is balanced; but if 

we change the effort to . ,e 1 4= and use the initial formulae (9) and (10), both values 

decrease to t1 = t2 = 0.243. Thus, despite the fact that the talents ratio is unchanged, 
the tournament turns unbalanced.  
 
Finally regarding profits, it is also unclear whether (11) is larger or lower than (12). 

For instance, it is possible that π1 < π 2, if the following conditions (a) apply:   
 

                                                                                                                                                  (a) 
   
Table 1 summarizes the effects of the four parameters on profits, talents and the win 
percentages. The sign of the derivatives is based on the following, rather broad, 

parameter bounds:  , , . , .1e 1 0 1 0 0 5 m 1θ σ≥ ≤p p p f   

 
The effects on the profits and the win percentage (the first two parts of the Table) are 
similar. As expected, higher effort and higher market size increase the win 
percentage and the profits of team 1 and decrease the win percentage and profit of 

team 2. On the other hand, higher values in fixed salary (θ ) and bonus (σ ), affect 
team 1 negatively and team 2 positively.  
 
The effects on teams’ talents (and especially for the smaller team 2) are more complex 
though. In general, effort can have a positive effect on both teams’ talents, if the same 
following conditions (b) are valid: 
 

                 (b) 
 
Notice that this condition requires an upper limit to effort equal to 2, provided that: 
(i) the market size to team 1 is a little higher than 1; (ii) its fixed salary is close to 1; 
(iii) its bonus is close to 0.5. On the other hand, by violating the last two conditions, 

w1 =
e Hs - m1L

es - em1 - q

w2 =
q

q - e s + em1

m1 < 1.5 &- 1 + m1 < s < 0.5& 
"#################################################################

-s3 + 3s2m1 - 3s m1
2 + m1

3 < q § 1& 1 § e < $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%-
1q2Hs - 1 m1L3

1< m1 < 1.5 &− 1+ m1 < σ < 0.5 &−1σ + m1 < θ ≤ 1& 1 ≤ e < −
1θ

σ − 1m1
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using for instance . , . , . , .1e 1 1 95 3 m 1 4θ σ= = = = , the respective talent values are 

0.2853 and 0.2464 and by just increasing effort to e = 1.6, both values are reduced to 
0.2636 and 0.2277 respectively. 
 
Table 1: Effects from the profit maximization  

Derivative Sign Derivative Sign 

 
+ 

 
- 

 
+ 

 
- 

 
- 

 
+ 

 
- 

 
+ 

 
+ 

 
- 

 
+ 

 
- 

 
- 

 
+ 

 
- 

 
+ 

 
?  

 
?  

 
+ 

 
?  

 
- 

 
?  

 
- 

 
?  

 
 
As expected, the higher the market size, the more talents are demanded by the big 
team. On the other hand, the effect on t2 is ambiguous. It will be positive, under 
exactly the same conditions (a) above. For instance, if team 1 pays a rather high 

bonus, (σ = 0.3) and a fixed salary, θ =0.95, the effort from its talents is not that high, 
(e = 1.1), and its market size is not higher than 1.16, team 2 will demand more talents 
than team 1! 
 
The demand for talents t1 is lower when the fixed salary or the bonus increases, while 

these effects on t2 are again ambiguous. For instance, the effects of θ and σ on t2 can 
be negative under exactly the same conditions as before, (a) or (b). 

∑ w1

∑ e
=

q H-s + m1LHq - e s + em1L2 ∑ w2

∑ e
=

q Hs - m1LHq - es + em1L2
∑ w1

∑ m1
=

e qHq - e s + em1L2 ∑ w2

∑ m1
= -

eqHq - es + em1L2
∑ w1

∑ q
=

e Hs - m1LHq - es + em1L2 ∑ w2

∑ q
=

e H-s + m1LHq - es + em1L2
∑ w1

∑ s
= -

e qHq - e s + em1L2 ∑ w2

∑ s
=

eqHq - e s + em1L2
∑ p1

∑ e
= -

2e q Hs - m1L3Hq - e s + em1L3 ∑ p2

∑ e
=

2q2 Hs - m1LHq - es + em1L3
∑ p1

∑ m1
=

e2 Hs - m1L2 H3q - e s + em1LHq - e s + em1L3 ∑ p2

∑ m1
= -

2e q 2Hq - e s + em1L3
∑ p1

∑ q
=

2e2 Hs - m1L3Hq - es + em1L3 ∑ p2

∑ q
=

2eq H- s + m1LHq - es + em1L3
∑ p1

∑ s
=

e2 Hs - m1L2 H- 3q + es - em1LHq - e s + em1L3 ∑ p2

∑ s
=

2eq2Hq - es + em1L3
∑ t1

∑ e
=

Hs - m1L2 Hq + e s - em1LHq - e s + em1L3 ∑ t2

∑ e
= -

q Hs - m1L Hq + e s - em1LHq - e s + em1L3
∑ t1

∑ m1
=

2eq H- s + m1LHq - es + em1L3 ∑ t2

∑ m1
=

eq Hq + es - em1LHq - es + em1L3
∑ t1

∑ q
= -

2e Hs - m1L2Hq - e s + em1L3 ∑ t2

∑ q
=

e Hs - m1L Hq + es - em1LHq - es + em1L3
∑ t1

∑ s
=

2e q Hs - m1LHq - e s + em1L3 ∑ t2

∑ s
= -

eq Hq + e s - em1LHq - e s + em1L3
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Below we plot t2, against e and σ, given the following parameters, m1 = 1.1, and θ = 
0.9.  It is clear that talents for the small team are decreasing for simultaneously higher 

values of e and low values of σ . On the other hand, for higher values of σ and e, 
talents are increasing and reach a maximum at e = 1.5, before they decrease again.  
 
Graph 1: The demand for t2 as a function of efforts and bonus 
 
 

 
 
 

In the second graph we plot t2 against two other parameters, m1 and σ, given e = 1.1 

and θ = 0.9. It is clear that, if team 1 pays a relatively high win bonus and its market 
is not high, (i.e. m1 < 1.3) the talents of team 2 will increase. 
 
Graph 2: The demand for t2 as a function of market size and bonus 

 
 

 
 
 
Thus, while the largest team 1 demands less talents when it pays high fixed salary 

(θ), or extra win bonus (σ), it is possible that team 2 will demand more talents 
instead! On the other hand, a high market size of team 1 results to more talents, more 
wins and more profits. 
 
 

4. A comparison to Kesenne results 
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As mentioned earlier, our modified assumptions are expected to lead to less 
competitive balance, compared to Kesenne (2007), and to different values in profits 
and talents.  In Table 2 we show our own and Kesenne results, using the same five 
pair of parameters selected by Kesenne. In all simulations, the biggest team has a 
double size (i.e. m1 = 2). 
 
Table 2: Own and Kesenne simulation results (m1 = 2) 

 w1 w2 t1 t2 t1 + t2 

normalized 
π1 π2 π1 + π2 

normalized 
Results 

θ = 1 

σ = 0 

e = 1 

.6666 

.6666 

.3333 

.3333 

.4444 

.4444 

.2222 

.2222 

66 

66 

.8889 

.8889 

.1111 

.1111 

100 

100 

Own 

Kesenne 

θ = 1 

σ = .1 

e = 1.3 

.7118 

.6309 

.2882 

.3691 

.3897 

.4657 

.2051 

.2096 

59 

68 

.9630 

.7961 

.0830 

.1226 

105 

92 

Own 

Kesenne 

θ = 1 

σ = .1 

e = 1 

.6552 

.6897 

.3448 

.3103 

.4292 

.4281 

.2259 

.1926 

66 

62 

.8155 

.9512 

.1189 

.0867 

93 

104 

Own 

Kesenne 

θ = .85 

σ = .1 

e = 1.3 

.7440 

.5923 

.2560 

.4077 

.4258 

.4829 

.1905 

.2557 

62 

74 

1.0516 

.7017 

.0655 

.1496 

112 

85 

Own 

Kesenne 

θ = .85 

σ = .1 

e = 1 

.6909 

.6538 

.3091 

.3462 

.4773 

.4527 

.2135 

.2396 

69 

69 

.9069 

.8550 

.0955 

.1078 

100 

96 

Own 

Kesenne 

 
In the first raw, with the same fixed salary, without bonus and no extra effort, both 
results are identical. In three cases, our results reveal indeed a lower competitive 
balance compared to Kesenne.  
 
The only case in which the Kesenne model leads to lower competitive balance is in 
the third raw, where despite the fact that the bonus is being paid, in addition to the 
same fixed salary, the effort remains unchanged. If the small team introduces the 
bonus its win percentage is 0.3108, while if the big team introduces it, the small team 
improves its win percentage to 0.3448! We conclude that if the bonus does not 
improve the effort, the competitive balance will be higher when the big team 
introduces it.  
 
The most extreme case is found in the fourth raw (lower fixed salary, some bonus 
and higher effort), where in the Kesenne model the competitive balance improves 
strongly while in our model it is reduced significantly. In that case, the competitive 
balance will be higher when the small team introduces it.  
 
Regarding the normalized values and the distribution of talents to the teams, the 
results are unclear. It seems though that the Kesenne results for team 1 are higher 
compared to ours. Our results in the second raw (with equal fixed salary, a small 
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bonus and a rather high effort) provide the lowest total value and also the most 
evenly distribution.  
 
Finally, our total profits seem to be higher compared to Kesenne. The only case in 
which the Kesenne model leads to higher overall profits is in the third raw. In the 
same case, the profits to team 2 are higher according to our model. The highest 
difference in profits is found in the fourth raw, where the profits to team 2 are the 
highest according to Kesenne and the lowest according to our model. 
 
 

5. Teams play Cournot and maximize win percentages 
 
 
We turn now to win maximization problem, subject to zero profits. The zero-profits 
constraint is obviously not very realistic, but it simplifies significantly the extremely 
complex derivatives that would occur if we assumed non-negative profits and 
derived the Kuhn-Tucker conditions. 
 
We continue assuming that team 1 introduces effort, i.e. equations (1) and (2) are the 
same. Since the mathematical complexities increase dramatically with many 
parameters, we assume that the cost functions are now simpler and similar to both 
teams:  
 

1 1 1

2 2 2

C =c t

C =c t
    (3)’, (4)’ 

 

In our simulations later we will assume that 1 2c c≥ . 

 
The revenue functions are also similar to both teams and quadratic in the win 
percentage: 
 

( )
( )

2

1 1 1 1

2

2 2 2 2

R =m w -β w

R =m w -β w
   (5)’, (6)’ 

 

Quadratic revenue functions reduce revenues, when excessive winning make 
matches less exciting and does not attract a huge public. Moreover, for rather high m- 

and low β-values, the fall in revenues is very modest. To simplify our derivatives, we 

use the same β-parameter to both teams and assume that

, , ,1 2 1 21 0 m 1 m m mβ β> ≥ ≥ ≥f .  

 

The zero profits conditions are valid when average revenues equal average costs, 
given by the following conditions. 
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( )

( )

2

1 1 1

1

1

2

2 2 2

2

2

m w -b w
=c

t

m w -b w
=c

t

   (15), (16) 

 
Both teams maximize: 
 

  (17) 

  (18) 
 
The simplified first order conditions are: 
 

   (19) 

   (20) 

  (21) 

  (22)  
 
Solving the system and simplifying we find: 
 

  (23) 

  (24) 
 

(23) is strictly positive, as long as 1 1
2

c c
c

e

β−
f , and (24) is strictly positive, as long as 

1
2

1

c
c

e mβ β
−

−
p . 

 
 
Set (23) and (24) in (1) and (2) and simplifying, we find: 
 

   (25) 

   (26) 

L =
et1

et1 + t2
+ l 

i
k
jjjjjjj m1 et1

et1+ t2
- b  J et1

et1+t2
N2

t1
- c1

y
{
zzzzzzz

M =
t2

et1 + t2
+ m  

i
k
jjjjjjj m2 t2

et1+t2
- b  J t2

et1+t2
N2

t2
- c2

y
{
zzzzzzz

e Ht2 H- e b l - e lm1 + t2L + e t1 He b l - e lm1 + t2LLHe t1 + t2L3 = 0

-c1 +
e He H- b + m1L t1 + m1 t2LHe t1 + t2L2 = 0

e2 t1
2 - e t1 H b m + m m2 - t2L + m H b - m2L t2He t1 + t2L3 = 0

- b t2 + m2 He t1 + t2L - c2 He t1 + t2L2He t1 + t2L2 = 0

t1 =
He c2 m1 + c1 H b - m2LL H- b + m1 + m2L

b Hc1 + e c2L2
t2 = -

e H b - m1 - m2L He c2 H b - m1L + c1 m2L
b Hc1 + e c2L2

w1 =
e c2 m1 + c1 H b - m2L

b Hc1 + e c2L
w2 =

e c2 H b - m1L + c1 m2

b Hc1 + e c2L
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(25) is strictly positive, as long as 1 1 2
2

1

c c m
c

em

β− +
f  , and (26) is strictly positive, as long 

as 1 2
2

1

c m
c

e emβ
−

−
p .  

 
The sign of the partial derivatives of (23) - (26) are shown in Table 3. In the first half 
of the table we show the sign of the win percentage derivatives, given some broad 
parameter bounds. The effects on the win percentages are similar to Table 1. In both 
models, effort and market size of team 1 affect the winning performance of team 1 

positively, while the cost c1, which is quite similar to θ (mainly) and also σ in the first 

model, affects it negatively. The β−effect1 depends on the relationship between 2c

and 1 2

1

c m

em
.For instance, for the normalized values c2 = m2 = 1, the parameter β will 

have a positive winning effect on team 1, if c1 > em1.  
 
Table 3: Effects from win maximization 

( ), , , , , ,1 2 1 1 2 2e 1 1 0 c c 0 m 1 m m mβ β≥ ≥ ≥ ≥f f f  ( )
( )

. , , , . , . ,

. , , , . , . ,

2 2 1 1

2 2 1 1

0 5 m 1 c 1 m 1 5 e 1 1 c 1

0 5 m 1 c 1 c 1 2 e 1 3 m 1

β

β

= = = = = ≥

= = = = = ≥
 

1

1

w

c

∂
∂

 
- 

2

1

w

c

∂
∂

 
+ 

1

1

t

c

∂
∂

 
( 1c 7.7)f  

(-) 

2

1

t

c

∂
∂

 
( 1c 3.3)p  

(+) 

1

2

w

c

∂
∂

 
+ 

2

2

w

c

∂
∂

 
- 

1

2

t

c

∂
∂

 
(+) 

( 1m 12)p  
2

2

t

c

∂
∂

 
(-) 

( 1m 24.5)f  

1

1

w

m

∂
∂

 
+ 

2

1

w

m

∂
∂

 
- 

1

1

t

m

∂
∂

 
( 1c 7.7)p  

(+) 

2

1

t

m

∂
∂

 
( 1c 3.3)f  

(-) 

1

2

w

m

∂
∂

 
- 

2

2

w

m

∂
∂

 
+ 

1

2

t

m

∂
∂

 
(-) 

( 1m 12)f  
2

2

t

m

∂
∂

 
(+) 

( 1m 24.5)p  

1w

β
∂
∂

 
,

1 2
2

1

if

c m
c

em

+

p
 

2w

β
∂
∂

 

1 2
2

1

, if

c m
c

em

+

f
 

1t

β
∂
∂

 
( 1c 1.8333)f  

(-) 

2t

β
∂
∂

 
( 1c 1.54)p  

( 1m 1.0453)f  

1w

e

∂
∂

 
+ 

2w

e

∂
∂

 
- 

1t

e

∂
∂

 
(+) 

( 1m 12)p  
2t

e

∂
∂

 
( 1c 3.3)f  

(-) 

 
 
In the second half of the table, we show the partial derivatives of talents. Most of 
these derivatives are very complex and non-linear. In order to analyze under which 
costs and market size conditions the derivatives for both teams are positive, we 

assumed first the following specific values: . , , , . , . .2 2 10 5 m 1 c 1 m 1 5 e 1 1β = = = = =  

Then we solved for the cost to team 1, satisfying the bound 1c 1≥ . The minimum or 

maximum bounds of c1 required for positive derivatives, are given in the first raw. 

                                                 
1 Since we assumed the same β-parameter for both teams, the change of the value can be the result of 
any team. 
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We repeated for the market size of team 1, satisfying the bound 1m 1≥  and also 

setting . , , , . , . .2 2 10 5 m 1 c 1 c 1 2 e 1 3β = = = = =  The minimum or maximum bounds of m1 

required for positive derivatives, are given in the second raw. The (+) signs satisfy 

the minimum bounds, 1c 1≥ or 1m 1≥ , while the (-) signs reject the existence of 

positive derivatives for these specific values and bounds.  
 

The effects of both e and c2 on t1 are identical. Both are positive, as long as 1c 1≥ , or as 

long as 112 mf . Moreover, due to non-linearity in the derivatives, extremely large 

market size of team 1 would turn these effects to negative ones! The effect of m1 on t1 

is positive, as long as . 17 7 cf , or as long as 1m 1≥ , and turns negative for c1 above 7.7. 

The effect of c1 on t1 is opposite to the effect of m1, i.e. it is negative, unless the costs 
are extremely high (above 7.7); it is never positive with the second set of parameters. 
The effect of m2 on t1 is never positive with the first set of parameters; it is positive 
though, if the market size of team 1 is extremely high, i.e. if it is more than 12 times 

larger than the market size of team 2. Finally, the effect of β on t1 is positive if team 1 
pays at least 83.3% higher costs and always negative, irrespectively how larger the 
market size of team 1 is.  
 
The effects of both e and m1 on t2 are also identical. Both are positive, as long as

.1c 3 3f , and both are negative as long as 1m 1≥ .The effect of m2 on t2 is positive, as 

long as 1c 1≥ , or as long as . 124 5 m 1≥f . The effect of c1 on t2 is positive, if the costs 

to team 1 are below the upper limit of 3.3, or if 1m 1≥ . Also the effect of β on t2 is 

positive if the cost limits are . 11 54 c 1≥f , or if .1m 1 0453≥ . Finally, the effect of c2 on 

t2 is negative, if 1c 1≥ or if .1m 24 5p .  

 
Notice that the minimum or maximum values of c1 and m1 required for positive 
effects on t1 are not equal to the respective maximum or minimum values required 
for positive effects on t2. For instance, the effects of m1 on both t2 and t1 are positive 

for .1c 3 3f , respectively 1c 7.7p , such as c1 = 4; but, for c1 = 8, the effect on t2 remains 

positive, while the effect on t1 turns negative. 
 
Most of the effects on t1 and t2 seem to be consistent with those in Table 1, but the 
restrictiveness in these two models differs.  For instance, m1 affects t1 positively in 
both models. Moreover, while in the profit maximization that is clear, in the win 

maximization model it is also required that 1c 7.7p . Similarly, while in the profit 

maximization the effect of θ, is clearly negative, in the win maximization model the 

corresponding c1 will have a negative effect on t1 only if 1c 7.7p . On the other hand, in 

the win maximization model, the effort effect on t1 is positive under less restrictive 
conditions, like those set in Table 3. The profit maximization conditions are much 

stronger though, because, in addition to . , .1m 1 5 e 1 1= = , two more strong conditions 

are required, namely: . & . .1 0 99 0 6θ σ≥ =f For instance, if we limit the bonus 

parameter to its upper bound 0.5, the effort effect on t1 turns negative.  
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If we turn to the effects on t2, we found earlier, Table 1, that the derivatives are 
ambiguous. On the other hand, in the win maximization model, the effects of e and 

m1 are negative under more plausible conditions, such as 1m 1≥ , or .1c 3 3p , and the 

effect of c1 is positive under exactly the same conditions. The respective θ effect on t2, 
in the profit maximization model, would be positive, given the same parameters

. , .1m 1 5 e 1 1= = and also if .0 59σ < (i.e. violating the upper limits).  

 
 

6. Teams play mixed Cournot: one maximizes profits and the other maximizes 
win percentage  

 
 
In football, the objective functions of teams might differ, despite the fact that they 
compete in the same tournament.  Sometimes, when the owner of a team has 
maximized the win percentage over a period of years, by scarifying profits, or even 
incurring losses, he might change his objective and maximize profits instead. 
Similarly, owners who have maximized profits over a certain period of years might 
be forced by their public to shift to win maximization.  
 
Two examples from the Italian Serie A are AC Milan and FC Inter. The owner of AC 
Milan, Silvio Berlusconi, when he took over the team, his main objective was to win 
everything (and entertain as well), without bothering about profits. The great success 
of his team had two effects; first, it incurred considerable losses and second, it 
increased the popularity of its owner. When Silvio Berlusconi was elected Italy’s 
prime minister, AC Milan lost a lot of its win percentage, because its owner changed 
his objective into profit maximization, (in fact, loss minimization). Instead of 
investing in new players, AC Milan started selling its stars, like Kaká in summer of 
20092. On the other hand, his fierce competitor, Massimo Moratti, the owner of FC 
Inter, who has not won as much as AC Milan, (at least in European competitions), 
was spurred to maximize the win percentage, by buying expensive players and 
paying less attention to profits.  
 
We turn therefore to the mixed Cournot game, in which the teams have different 
objective functions. In case (a), the small team maximizes profits while the big team 
maximizes win percentage and in case (b) just the opposite. 
 
 

                                                 
2 "I am concerned about the salary. The fees of the players are ineligible. We should get one day to fix a salary 
cap, like the US. I have spoken with Platini. I am the first to 'jump the bench'? I paid 10 billion lire for Gullit 
and achieved 15 in advertising for my TV. It was a deal. And now the salaries in Milan are lower than other 
clubs, because here it is a society that treats people in a certain way. Is my opinion an attack on the Real? I do 
not criticize the Spaniards, the phenomenon is general. Also a cut by 50 percent, the current salary would be 
insane. "Silvio Berlusconi (Gazzetta dello Sport, August, 19, 2009) 
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(a) Team 2 maximizes profits and team 1 maximizes win percentage  
 
 
We need the profit function (8), modified slightly by multiplying the normalized 

wages paid to its talents t2 with a wage parameter γ > 0, and also the win percentage 
function (17). 
 
From the respective first order conditions we obtain: 
 

  (27) 
 

 (28) 
 
Thus, the win percentages are: 

  (29) 
 

  (30) 
 
The profit for team 2 is: 
 

  (31) 
 

Assuming the following bounds in parameters, ( ), , , ,1 1e 1 c 0 1 0 m 1β γ≥ ≥f f f , it is 

easy to show that the sum of (27) and (28) is strictly positive and (27) is larger than 
(28).  
 
Given the bounds above, we show in Table 4a the sign of derivatives, and under 
which additional conditions3 they are positive.  
  

It is clear that e, m1 and γ have a positive effect on w1, while β and c1 have a negative 

effect. Thus, when team 1 attracts a huge public, i.e. when m1 is high or β is low, its 
win percentage increases, while when its revenue decreases, either by lower m- or 

higher β-values, its win percentage falls4.  Similarly, m1 has a positive effect on t1 

while β and c1 have a negative effect. Also the effects of e and γ on t1 are positive, as 

                                                 
3 To simplify these additional conditions, we assumed β = 0.5. The conditions shown in the Table are 
the simplest ones, because there are also more complex conditions for positive derivatives. 
4 The interpretation of these derivatives is that team 1 can’t win extensively with less home public 

(smaller market size), or when many of its supporters find it less exciting (higher β). Perhaps, both 
home public and win percentages are endogenous, and when the team does not win so extensively 
anymore, very often, a large part of the home public is disappointed and does not follow its matches. 

t1 =
e g m1

2He b g + c1L2
t2 =

e Hc1 + e g H b - m1LL m1He b g + c1L2
w1 =

e g m1

e b g + c1

w2 =
c1 + e g H b - m1L

e b g + c1

p2 =
Hc1 + g e H b - m1LL2Hg e b + c1L2
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long as c1 > 0.5eγ. Thus, team 1 can afford to pay high costs and still demand more 

talents, when the product of effort, fixed salary paid by team 2 and β is lower than c1. 
 
Table 4a: Effects from mixed Cournot (team 2 maximizes profits) 

 

+ 

 
 

 

+ 

 

 

 

- 

 

- 

 

+ 

 

+ 

 

- 

 

- 

 

- 

 
 

 

- 

  

 

+ 

 
 

 

- 

 
 

 

+ 

 
 

 
11c 0.5e e mγ γ− +p  

 
11c 0.5e e mγ γ− +p  

 
11c 0.5e e mγ γ− +f  

 
11c 0.5e e mγ γ− +p  

 
11c 0.5e e mγ γ− +f  

 

With regard to t2, the effects are ambiguous. For instance the effects of e and m1 can 

be positive, as long as 1 1c 0.5e 2e mγ γ− +f , while the effects of β and c1 are negative 

∑ w1

∑ e
=

g c1 m1He b g + c1L2 ∑ t1

∑ e
=

g H- e b g + c1L m1
2He b g + c1L3 c1 > 0.5e g

∑ w1

∑ g
=

ec1 m1He b g + c1L2 ∑ t1

∑ g
=

e H-e b g + c1L m1
2He b g + c1L3 c1 > 0.5e g

∑ w1

∑ b
= -

e2 g 2 m1He b g + c1L2 ∑ t1

∑ b
= -

2 e2 g 2 m1
2He b g + c1L3

∑ w1

∑ m1
=

e g

e b g + c1

∑ t1

∑ m1
=

2 e g m1He b g + c1L2
∑ w1

∑ c1
= -

e g m1He b g + c1L2 ∑ t1

∑ c1
= -

2 e g m1
2He b g + c1L3

∑ w2

∑ e
= -

g c1 m1He b g + c1L2 ∑ t2

∑ e
=

c1 Hc1 + e g H b - 2 m1LL m1He b g + c1L3 c1 > - 0.5 e g + 2e g m1

∑ w2

∑ g
= -

ec1 m1He b g + c1L2 ∑ t2

∑ g
=

e2m1 He b g H- b + m1L - c1 H b + m1LLHe b g + c1L3 c1 <
-0.25eg + 0.5eg m1

0.5+ m1

∑ w2

∑ b
=

e2 g2 m1He b g + c1L2 ∑ t2

∑ b
= -

e2 g Hc1 + e g H b - 2 m1LL m1He b g + c1L3 c1 < - 0.5 e g + 2e g m1

∑ w2

∑ m1
= -

e g

e b g + c1

∑ t2

∑ m1
=

e Hc1 + e g H b - 2 m1LLHe b g + c1L2 c1 > - 0.5 e g + 2e g m1

∑ w2

∑ c1
=

e g m1He b g + c1L2 ∑ t2

∑ c1
= -

e Hc1 + e g H b - 2 m1LL m1He b g + c1L3 c1 < - 0.5 e g + 2e g m1

∑ p2

∑ e
= -

2 g c1 Hc1 + e g H b - m1LL m1He b g + c1L3
∑ p2

∑ g
= -

2 e c1 Hc1 + e g H b - m1LL m1He b g + c1L3
∑ p2

∑ b
=

2 e2 g 2 Hc1 + e g H b - m1LL m1He b g + c1L3
∑ p2

∑ m1
= -

2 e g Hc1 + e g H b - m1LLHe b g + c1L2
∑ p2

∑ c1
=

2 e g Hc1 + e g H b - m1LL m1He b g + c1L3
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for the same condition and finally γ will have a positive effect on t2, for a very small 
cost interval.   
 

The effects on π2 differ. Effort, market size and γ influence π2 positively, as long as 

1 1c 0.5e e mγ γ− +p . Also β and c1 will influence π2 positively, when the opposite 

inequality is valid. But, checking the conditions for which both π2 and t2 are positive, 

we conclude that the range of parameters differs. For instance, given γ = 1 and m1 =2, 

the effort effect on π2 is positive if, e > 0.6667c1 and c1 > 1.5; the same effect on t2 is 
positive if either, (i) e < 0.2857c1 and c1 > 3.5, or (ii) e 1≥ and c1 < 3.5, or (iii) e > 1 and 

c1 = 3.5. Similarly, the c1 effect on π2 is positive if, e < 0.6667c1 and c1 > 1.5; the same 
effect on t2 is positive if either, (i) e > 0.2857c1 and c1 > 3.5, or (ii), or (iii) as before. 

Thus, the positive effects on π2 require a smaller cost interval compared to the 
positive effects on t2. 
 
 

(b) Team 1 maximizes profits and team 2 maximizes win percentage  
 
 
We need to use now the profit function (7) and the win percentage function (18). 
 
 
From the respective first order conditions we obtain: 
 

 (32) 
 

  (33) 
 
Thus, the win percentages are: 
 

  (34) 
 

   (35) 
 
And the profit of team 1 is: 
 

 (36) 
 

For the following general bounds, ( ), , , , , , ,2 1 2 1 2e 1 c 0 1 0 m 1 m m mβ θ σ β≥ ≥ ≥ ≥f f f , 
it is easy to show that the sum of (32) and (33) is strictly positive.  
 

t1 =
Hs - m1L m2 Hec2 Hs - m1L + q H- b + m2LLH b q + ec2 H-s + m1LL2

t2 =
eq H- s + m1L m2

2H b q + ec2 H-s + m1LL2

w1 =
ec2 H-s + m1L + q H b - m2L

b q + ec2 H- s + m1L
w2 =

q m2

b q + ec2 H-s + m1L

p1 = -
Hs - m1L Hec2 Hs - m1L + q H- b + m2LL2H b q + ec2 H-s + m1LL2
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Notice that in this case, it is unclear whether (32) is larger or smaller than (33). It is 
also unclear whether the sum of (32) and (33) is larger or smaller than the respective 
sum of (27) and (28). On the other hand, for plausible parameters, we find (36) > (31).  
 
Table 4b: Some effects from mixed Cournot (team 1 maximizes profits)  

 

- 

 
-* 

 
+ 

 
+* 

 
- 

 
- 

 
- 

 
 -* 

 
+ 

 
+ 

 
+ 

 
+* 

 
- 

 
- 

 

+* 

 

-* 

 

+* 

 

+* 

 

-* 

 
-* 

 

+* 

 
Given the bounds above, we show in Table 4b the sign of derivatives, and under 
which specific conditions5 they are positive (those market with a star).  

                                                 
5 In the win percentage the derivatives were “relatively” easier. The general conditions above were 
sufficient o check their sign. On the other hand, in the talents, and in profits to team 1, where the 

∑ w2

∑ e
=

q c2 Hs - m1L m2Hb q + e c2 H-s + m1LL2 ∑ t2

∑ e
= -

q H b q + e c2 Hs - m1LL Hs - m1L m2
2H b q + e c2 H- s + m1LL3

∑ w2

∑ q
=

e c2 H-s + m1L m2Hb q + e c2 H-s + m1LL2 ∑ t2

∑ q
=

e H b q + e c2 Hs - m1LL Hs - m1L m2
2H b q + e c2 H- s + m1LL3

∑ w2

∑ b
= -

q 2 m2Hb q + e c2 H-s + m1LL2 ∑ t2

∑ b
=

2 e q 2 Hs - m1L m2
2H b q + e c2 H-s + m1LL3

∑ w2

∑ m1
= -

e q c2 m2Hb q + e c2 H-s + m1LL2 ∑ t2

∑ m1
=

e q H b q + e c2 Hs - m1LL m2
2H b q + e c2 H- s + m1LL3

∑ w2

∑ m2
=

q

b q + e c2 H-s + m1L ∑ t2

∑ m2
=

2 e q H-s + m1L m2H b q + e c2 H- s + m1LL2
∑ w2

∑ s
=

e q c2 m2Hb q + e c2 H-s + m1LL2 ∑ t2

∑ s
= -

e q H b q + e c2 Hs - m1LL m2
2H b q + e c2 H- s + m1LL3

∑ w2

∑ c2
=

e q Hs - m1L m2Hb q + e c2 H-s + m1LL2 ∑ t2

∑ c2
= -

2 e2 q Hs - m1L2 m2
2H b q + e c2 H- s + m1LL3

∑ p1

∑ e
=

2q c2 Hs - m1L2 Hec2 H-s + m1L + q H b - m2LL m2H b q + ec2 H-s + m1LL3
∑ p1

∑ q
=

2ec2 Hs - m1L2 m2 Hec2 Hs - m1L + q H- b + m2LLH b q + ec2 H-s + m1LL3
∑ p1

∑ b
=

2q2 Hs - m1L m2 Hec2 Hs - m1L + q H- b + m2LLH b q + ec2 H- s + m1LL3
∑ p1

∑ m1
=

3e2 b q c2
2 Hs - m1L2 - e3 c2

3 Hs - m1L3 + b q3 H b - m2L2 - e q2 c2 Hs - m1L H3 b 2 - 2 b m2 - m2
2LH b q + ec2 H- s + m1LL3

∑ p1

∑ m2
=

2q Hs - m1L Hec2 H-s + m1L + q H b - m2LLH b q + ec2 H- s + m1LL2
∑ p1

∑ s
=

- 3e2 b q c2
2 Hs - m1L2 + e3 c2

3 Hs - m1L3 - b q 3 H b - m2L2 + e q 2 c2 Hs - m1L H3 b 2 - 2 b m2 - m2
2LH b q + e c2 H- s + m1LL3

∑ p1

∑ c2
= -

2e q Hs - m1L2 m2 Hec2 Hs - m1L + q H- b + m2LLH b q + ec2 H-s + m1LL3



 

17 
 

 
 
Both e and m1 affect the win percentage of team 2 negatively, precisely as in case 6(a), 

Table 4a. Both θ and σ and the own size m2 affect the win percentage positive while 

the own costs c2 affect it negative. Finally, β affects the win percentage negatively 
now, while in case 6(a) that effect was positive and in case 5, Table 3, could be 

positive if and only if 1 2
2

1

c m
c

em
f . 

 
The effects on t2 are also similar. Moreover, in four cases, these marked effects were 
conditioned on the specific bounds and values of the parameters.  
 

The effects on π1 are exactly opposite to the effects on t2. The effects are similar to 
those in Table 1, i.e. higher effort and higher market size increase the profit of team 1 

and higher values in fixed salary (θ ) and bonus (σ ) decrease it. 
 
The effects on t1 are presented in Appendix. Six out of the seven effects are opposite 
to those on t2. Only the market size of team 2 has a positive effect on both teams’ 

talents. The effects on t1 are also similar as in case 6(a), Table 4a, except the effect of β 
which is positive now, as long as the effort is not higher than 2.99.   
 
 

7. A further look on the win formulae 
 
 
So far we used some general or specific values or bounds in parameters, to examine 
the various effects.  In this section we will examine when the win formulae from all 
models to team 1, i.e.  (13), (25), (29) and (34), are larger, equal or lower to the 
respective formulae to team 2, and also by comparing them to each other.  
 
In order to compare the formulae we need to find simple conditions, satisfying some 
normalized values and bounds in parameters. Among the nine parameters that 
appear in all formulae, only e and m1 exist everywhere. The normalized values c2 = 1, 
m2 = 1 and the bounds of the remaining seven parameters are given in the first raw of 
Table 5. Notice that c2 does not appear in (13), (14), (29) and (30) while the normalized 
value of m2 = 1 is set in these formulae. The simplest conditions to ensure a perfect 
competitive balance in all four models are given in the last column, while some 
numeric values are also provided to ensure that the pair of formulae are “>” or “<”. 
 
It is clear that all four formulae can’t lead to a perfect competitive balance if the win 
bonus is strictly positive. Team 1 (team 2) wins more in all formulae for lower 

(higher) values in θ, σ  and c1, and higher value in γ,  irrespectively if teams have 
almost the same market size and the effort is very close to its upper bound. It is also 

                                                                                                                                                         
derivatives were more complex, these conditions did not provide clear signs. We assumed instead the 

following specific bounds and values: ( ), . , . , , ,2 2 1c m 1 0 5 0 0 5 e m 1 0 1β σ θ= = = ≤ ≥ ≤p p .  
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clear that, except formula (34) that can’t be larger than (13), all other formulae can be 
larger or lower than another.  
 
Table 5: Comparison of win formulae 

Normalized values and bounds: c2= 1, m2= 1 

, . . , . , , , ,1 10 1 0 1 0 5 0 0 5 c 1 0 1 m 1 1 e 2θ σ β γ≤ ≤ ≤ ≤ ≤ ≥ ≤ ≥ ≤ ≤p p  
A simple condition 

for equality 

 θ  σ  β  c1 γ  m1 e   

All formulae = 0.5 False6  

Team 1 wins more 

in all formulae 

0.5 0.25 0.0625 1.5 0.625 1.0009 1.875 

Team 2 wins more 

in all formulae 

0.9980 0.46875 0.0625 2 0.5 1.0009 1.875 

(13) > (14) 1 0.1 - - - 1 1.12 1e(m -σ)θ =  

(25) > (26) - - 0.25 1 - 1 1.01 ,1 1

1

-2c +βc
e β>0

β-2m
=   

(29) > (30) - - 0.25 1 1 1 1 1

1

-c
e

βγ-2γm
=  

(34) > (35) 1 0.5 0 - - 1.51 2 

1

2θ-βθ
e

m -σ
=  

(13) > (25) 1 0.1 0.25 1.85 - 1 2 Unknown7 

(13) < (25) 1 0.1 0.25 1.83 - 1 2 

(13) > (29) 1 0.1 0 2.12 1 1 1 

(13) < (29) 1 0.1 0 2.10 1 1 1 

(13) > (34) 0.5 0.5 0 - - 1 2 

(13) < (34) False8 

(25) > (29) - - 0.25 1 1 2.5 1 

(25) < (29) - - 0.25 1 1 1 1 

(25) > (34) 1 0.1 0.5 1 - 1 1 

(25) < (34) 1 0.1 0.5 2.67 - 1 1 

(29) > (34) 0.5 0.1 0 3.65 1 1.5 2 

(29) < (34) 0.5 0.1 0 3.67 1 1.5 2 

(29) > (35) 1 0.1 0 1 1 1 1.1111 

(29) < (35) 1 0.5 0 1 0.5 1 1.1111 

                                                 
6 All can be equal to 0.5 though if σ = 0, and all other parameters are equal to unit. 
7 Despite the fact that we used Mathematica’s power function Reduce, (that provides all the possible 
solutions to a set of equations, including those that require specific conditions on parameters), the 
Mathematica kernel failed to provide solutions for each one of these pairs within 10 minutes of 
evaluation. 
8 It is possible if β = 1, θ = 0.5, σ = 0.5, e = 2, and m1 = 1. 



 

19 
 

In the profit maximization model (section 3), the competitive balance is perfect, if

1( )e mθ σ= −  and team 1 wins more if ( )1e mθ σ< − . For instance, for given, θ, m1 and 

σ -values, if effort is higher than 1.11, team 1 wins more.  
 
In the win maximization model (section 4), the competitive balance is perfect, if

,1 1

1

-2c +βc
e β>0

β-2m
=  and team 1 wins more if 1 1

1

-2c +βc
e

β-2m
> . For example, for β = 0.25 , 

and m1 = c1 = e = 1, the competitive balance is perfect. Given m1 = e = 1, for c1 > 1, 
team 2 wins more, while for higher values in m1, and/or e team 1 wins more, if c1 = 1. 

Notice that for β = 0, both (25) and (26) are indeterminate. 
 
In the first mixed model (section 6(a)), the competitive balance is perfect, if

1

1

-c
e

βγ-2γm
=  and team 1 wins more if 1

1

-c
e

βγ-2γm
> . For instance, for m1 = e = γ = 1 and 

β = 0, the competitive balance is perfect even if c1 = 2. The competitive balance is still 

perfect for m1 = 2, e = 1 and β = 0,  even if c1 = 4 and γ = 1. 
 
In the second mixed model (section 6(b)), the competitive balance is perfect, if

1

2θ-βθ
e

m -σ
=  and team 1 wins more if 

1

2θ-βθ
e

m -σ
> . For instance, for θ  =1 , σ  = 0.5 , β = 0 

and e = 2 , team 1 wins more if its market size is just slightly more than 50% higher, 

while when both teams have the same market size and θ  = σ  = 0.5 , β = 0 and e = 2, 
the competitive balance is perfect.  
 
Thus, in our four models, the interaction of teams’ various parameters, does not 
necessarily support Dietl et al (2009) findings, because the competitive balance can be 
perfect, even if the larger team pays both high fixed salary and bonus, or has higher 
costs than the smaller team, as long as its market size is larger and/or its effort is 
higher.  
 
When we compare all the win formulae for team 1 pair wise, i.e. (13), (25), (29) and 
(34), we conclude that (29) is preferred to all others (in bald), if team 1 manages to 
keep its costs at most 2.11 times higher compared to team 2, or even if it has the same 
market size as team 2. Since (25) is preferred to (13), and to (34), (again if team 1 
manages to keep its costs at low levels) team 1 would like to maximize its win 
percentage and not its profit.  
 
Finally, when we compare the two mixed cases for team 1, (last two rows), it is not 
clear whether (29) is higher or lower than (35). When team 2 maximizes profits and 
team 1 win percentage, the win percentage to team 1 (i.e. (29)), is higher than (35), 
(i.e. the reverse case), provided that the bonus is low and the wages to team 2 high. 
On the other hand, when the bonus is high and the wages to team 2 are low, and for 
the same values in other parameters, team 2 wins more than team 1.  
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8. Comparison of the four models 
 
 
In this section, precisely as in the previous one, instead of using some ad-hoc values, 
we use a simple non-linear program to implicitly find the “optimal” values in 
parameters. We need to maximize each one of these eight formulae, first for team 1 
and second for team 2, given some constraints on the remaining ones. We formulated 
therefore the following non-linear program. 
 

. .

i

1,2

i

1,2

j

1,2

Max w

s t w < 0.8

0.35 < w < 0.8, i j

Bounds

≠
 

 
The objective function maximizes the win percentage for each one of these four 
formulae. In order to exclude the extreme solutions of a win percentage of 100%, the 
objective function’s win percentage has an upper bound of 0.8 (i.e. a very high 
imbalance). We also assume that, the other three formulae for the same team (from 
the respective models) should have an upper and a lower bound of 0.8 and 0.35 
respectively. We used the same general bounds and the two normalized values as in 
the previous section. 
 
The estimates are shown in Tables 6a and 6b. Some parameters are in bald while 
others are in plain text. The set of bald parameters are the implicitly “optimal” values 
that appear in the respective win percentage objective function, while the set of plain 
parameters are found from the constraints and the bounds of the other three 
formulae9. The bald values in the win percentage, the talents and the profits (both 
normalized), are the respective “optimal” values which are consistent with the 
formulae of the same model. Similarly, the plain text values are obtained when the 
“optimal” parameters are set in the respective formulae of the other three models. 
 
For instance, when team 1 maximizes, the bounds (from both the bald and the plain 
parameters) are: 
 

. . , . . , . . , . . ,

. . , . . , . .1 1

0 36 0 5 0 04 0 44 0 52 0 84 0 38 0 97

1 41 m 2 5 1 05 e 1 81 2 33 c 2 76

β σ θ γ< ≤ ≤ ≤ ≤
≤ ≤ ≤

p p p

p p p
 

 
Moreover, in order to simplify the comparison of all these “optimal” parameters, we 
will concentrate on the bald parameters of both Tables. The following general 
conclusions are drawn: 
 

                                                 
9 As was mentioned earlier, the normalized value c2 = 1, is excluded when γ is included and also in 
formulae (13) and (14).   
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First, as expected, the highest imbalances seem to appear when each team maximizes 
anyone of its four formulae. It seems also that the competitive balance is higher in 
Table 6b, if we concentrate on the plain text parameters (off-diagonal). 
 
Table 6a: Summary results (Team 1 maximizes the win percentage) 

c2= 1, m2= 1 

Bounds: , . . , . , , , ,1 10 1 0 1 0 5 0 0 5 c 1 0 1 m 1 1 e 2θ σ β γ≤ ≤ ≤ ≤ ≤ ≥ ≤ ≥ ≤ ≤p p  

 Win percentage to team 1 and 2 

(raw 1 & 2), when each one of the 

four formulas is maximized 

Talents to team 1 and 2 (row 1 & 2) and 

Profits to team 1 and 2 (row 3 & 4) 

according to the following four formulas 

 (13) 

π-max 

(25) 

win-

max 

(29) 

π-max, 

team 2 

(34) 

π-max, 

team 1 

(9) 

(10) 

(11) 

(12) 

(23) 
(24) 

− 
− 

(27) 
(28) 

− 
(31) 

(32) 
(33) 
(36) 

− 

θ = .5176, 

σ = .4405, 

 β = .4248, 

c1= 2.759, 

 γ = .7831, 

m1= 2.222, 

e = 1.165 

0.8 

0.2 

0.6 

0.4 

.6442 

.3558 

.7745 

.2255 

55 

16 

101 

4 

43 

33 

- 

- 

45 

29 

- 

13 

60 

20 

101 

- 

θ = .7422, 

σ = .0738, 

 β = .3578, 

c1= 2.511, 

 γ = .3808, 

m1= 2.496, 

e = 1.055 

.7749 

.2251 

0.8 

0.2 

.3777 

.6222 

.7369 

.2631 

57 

17 

101 

5 

70 

19 

- 

- 

36 

62 

- 

39 

63 

24 

101 

- 

θ = .8455, 

σ = .3487, 

 β = .4396, 

c1= 2.329, 

 γ = .9663, 

m1=1.415, 

e = 1.813 

.6957 

.3043 

.6923 

.3077 

0.8 

0.2 

.6332 

.3668 

27 

21 

100 

9 

33 

27 

- 

- 

37 

17 

- 

4 

29 

31 

100 

- 

θ = .6220, 

σ = .0389, 

 β = .5, 

c1= 2.403, 

 γ = .9273, 

m1= 1.647, 

e = 1.547 

0.8 

0.2 

.6819 

.3181 

.7573 

.2427 

.7778 

.2222 

41 

16 

101 

4 

37 

27 

- 

- 

40 

20 

- 

6 

45 

20 

101 

- 
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Table 6b: Summary results (Team 2 maximizes the win percentage) 

c2= 1, m2= 1 

Bounds: , . . , . , , , ,1 10 1 0 1 0 5 0 0 5 c 1 0 1 m 1 1 e 2θ σ β γ≤ ≤ ≤ ≤ ≤ ≥ ≤ ≥ ≤ ≤p p  

 Win percentage to team 1 and 2 

(raw 1 & 2), when each one of the 

four formulas is maximized 

Talents to team 1 and 2 (row 1 & 2) and 

Profits to team 1 and 2 (row 3 & 4) 

according to the following four formulas 

 (14) 

π-max 

(26) 

win-

max 

(30) 

π-max, 

team 2 

(35) 

π-max, 

team 1 

(9) 

(10) 

(11) 

(12) 

(23) 
(24) 

− 
− 

(27) 
(28) 

− 
(31) 

(32) 
(33) 
(36) 

− 

θ = .9795, 

σ = .3021,  

β = .5, 

c1= 1.206, 

 γ = .8604, 

m1= 1.023, 

e = 1.019 

.4286 

.5714 

 

.3946 

.6054 

 

.5453 

.4547 

 

0.2 

0.8 

18 

24 

100 

33 

27 

42 

- 

- 

34 

29 

- 

21 

12 

48 

100 

- 

θ = .8367, 

σ = .1335, 

 β = .4608, 

c1= 2.513, 

 γ = .8119, 

m1= 1.109, 

e = 1.560 

.6453 

.3547 

 

0.2 

0.8 

 

.4537 

.5463 

 

.5614 

.4386 

 

27 

23 

100 

13 

8 

51 

- 

- 

16 

31 

- 

30 

28 

35 

100 

- 

θ = .8470, 

σ = .1814, 

 β = .4916, 

c1= 2.737, 

 γ = .3175, 

m1= 1.042, 

e = 1.826 

.6499 

.3501 

 

.2282 

.7718 

 

0.2 

0.8 

 

.5741 

.4259 

 

23 

23 

100 

12 

8 

48 

- 

- 

7 

50 

- 

64 

25 

34 

100 

- 

θ = .9844, 

σ = .4784,  

β = .4118, 

c1= 1.690, 

 γ = .6705, 

m1= 1.287, 

e = 1.021 

.4560 

.5440 

 

.2862 

.7138 

 

.4466 

.5534 

 

0.2 

0.8 

 

20 

25 

100 

30 

20 

50 

- 

- 

29 

37 

- 

31 

13 

54 

100 

- 

 
Second, the profits to team 1 are always higher and approximately 100, irrespectively 
if team 1 maximizes, either (13) or (34) or team 2 maximizes either (14) or (35). The 
maximum profit for team 2 (i.e. 64), is obtained when that team maximizes (30). The 
sum of profits from (11) and (12) in Table 6b is higher than the same sum in Table 6a.  
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Third, the number of talents and its distribution varies. When team 1 maximizes its 
formulae, the range is higher. The normalized upper value is 98, when formula (25) is 
maximized and the “optimal” values are set into formulae (27) and (28).  In fact, in 
this case, team 2 maximizes its talents too. The lower value is 42, when formula (14) 
is maximized. The lower and higher values for team 1 are 7 and 70 respectively, 
while the respective values for team 2 are 16 and 62. Notice also two interesting 
features: (i) when team 2 maximizes (30), (and achieves the maximum profit, 64), 
team 1 has its minimum value in talents, 7; (ii) when team 1 maximizes (25) it 
maximizes its talents as well, 70. In case (ii), if the “optimal” values are set into (28) 
team 2 achieves its maximum number of talents, 62; and if are set in (29), team 2 wins 
more than team 1 in Table 6a, (i.e. 62% versus 38%).  
 
Thus, in general, the “optimal” parameter values from Table 6b are more appropriate 
to maximize the balance of teams in terms of talents, the competitive balance and 
total profits.  
 
A more detailed investigation of the “optimal” parameters reveals the following: 
 
Two parameters, m1 and e appear in all formulae. As expected, when team 1 
maximizes, m1 is always higher. On the other hand the values of e are not necessarily 
higher, when team 1 maximizes. 
 

The parameter β is included in six formulae. The bald values in both tables are also 
rather similar, with bounds around 0.4 and 0.5.  
 

The fixed wage (θ) and the win bonus (σ) appear in four formulae. While, as 

expected, the sum of θ and σ  is always lower when team 1 maximizes, the bald value 

of σ  is lower in (14), compared to (13). 
 

The cost parameter c1 is included in four formulae. In both win max formulae (25) 
and (26), the value is the same, and as expected, a bit lower when formula (29) is 
maximized and a bit higher when formula (30) is maximized. 
 

Finally, the parameter γ  (the wages to team 2) is included in two formulae. As 
expected, its value is lower when team 2 maximizes (30). 
 
Thus, it is clear that team 1 would like to have a larger market size compared to what 
team 2 would like them to have. The minimum market size team 1 would like to 
have is 40% higher than the normalized market size of team 2, while team 2 would 
prefer that to be at most 29% higher. Effort, in relation to market size, makes no 
difference. This is clearly shown in the maximization of (25) and (26). When (26) is 
maximized, the “optimal” value of effort is much higher compared to when (25) is 
maximized, (i.e. 1.56 versus 1.05). Moreover, that is not sufficient to make team 1 
winning more, because the market size of team 1 is much lower compared to when 
(25) is maximized (i.e. 1.11 versus 2.50). On the contrary, given the fact that the other 
two bald parameters are quite similar in both Tables, the win percentages shift from 
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0.8 - 0.2 to 0.2 – 0.8! A similar finding is when we compare (13) and (34). Despite the 
fact that the win bonus is higher and the effort is lower in (13), the larger market size 
makes the win percentage 0.8 in (13) and 0.78 in (34). This is also consistent with the 
previous findings in Table 5, where (13) is never lower than (34). 
 

It is also clear that team 1 would like to pay a lower fixed salary (θ), compared to 
what team 2 would like them to pay. On the other hand, when both teams maximize 
profits (and the relevant formulae are (13) and (14)), team 1 is willing to pay higher 

bonus (σ) to its talents, compared to what team 2 would like them to pay. The levels 
of bonus are reverse when team 1 maximizes profits and team 2 maximizes win 
percentage (and the relevant formulae are (34) and (35)).  
 

It is also clear that while team 2 would like to pay lower wages (γ) to their own 
talents, (when team 2 maximized profits and team 1 maximizes win percentage), 
team 1 would prefer them to pay three times higher.  
 
The higher values of c1, compared to the normalized value of c2= 1, are unexpected. 
Their effect is less important when other parameters are favourable to team 1. For 
instance, the maximization of (29) yields w1 = 0.8 and w2 = 0.2, despite the fact that c1 

is 133% higher than c2.  
 
 

9. Conclusions 
 
 
It is rather difficult to draw clear-cut conclusions, to the competitive balance, profits 
and talents from all these models. We concentrate only on the competitive balance 
and on the clear derivatives of profits and talents, and illustrate with a big team, like 
Real Madrid and a smaller one, like Seville. 
 
Regarding the partial derivatives from all four models, the competitive balance 
improves when: (i) Real Madrid reduces its market size; (ii) the effort of its talents 
decreases; (iii) the fixed salary, the win bonus and the other cost parameter c1 

increase;  and (iv) when Seville decreases its wages, its cost parameter c2 , and 
increases its market size. 

 
Moreover, the strength of these derivatives varies. It is not clear which of these 
parameters is the most crucial. In some models it is sufficient when one of these 
parameters is above or below some critical values for the competitive balance to 
decrease. In the win-maximization model both effort and c1 need to take high and 
minimum values respectively to make Real Madrid winning more.  
 
A high win bonus that improves the effort of Real Madrid players significantly will 
decrease the competitive balance. On the other hand, when the introduction of a win 
bonus does not improve the effort of the players, the competitive balance will 
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improve if Real Madrid has introduced it and will decrease if Seville has introduced 
it.  
 
Regarding the partial derivatives from all four models on talents, t1 and t2, the signs, 
in most cases, are similar to those on w1 and w2. It seems though that the market size 
of Real Madrid is more important than, for instance, the effort of its talents, or the 
costs c1, in order to increase the number of talents, at least for themselves. In case the 
market size of Real Madrid is not much higher than Seville, high effort from Real 
Madrid talents and simultaneously low win bonus paid to them are required instead 
to increase t1. 
  
Finally, the effects on profits π1 and π2 are also similar to those on w1 and w2. 
Moreover, the profits Seville are never higher, even if Real Madrid pays a high fixed 
salary and bonus, or if Seville pays very low wages. A slightly higher market size of 
Real Madrid and a slightly higher effort from its talents are sufficient to ensure that 

π1 > π2.  
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Appendix 
 
Case 6(b): The talent derivatives for team 1 and the conditions under which they are 
positive. 
 

, 

, 

 
 
All three above are positive for the same condition below. The condition requires an upper 
bound of effort equal to 2.99. 
 

 
 

 
 

 
 

 
 

 
 
It is positive for the following condition. This condition does not require an upper bound of 
effort. 
 

 
 
 

∑ t1

∑ e
=

c2 Hs - m1L2 He c2 Hs - m1L - q H b - 2m2LL m2H b q + e c2 H- s + m1LL3
∑ t1

∑ b
=

q Hs - m1 L He c2 H- s + m1L + q H b - 2m2 LL m2H b q + e c2 H- s + m1LL3

∑ t1

∑ c2
=

e Hs - m1L2 He c2 Hs - m1 L - q H b - 2 m2 LL m2H b q + e c2 H- s + m1 LL3

ikjj1 § m1 § 1.5 & 0.333333 H- 2 s + 2m1L < q § 1 & 1 § e < -
3 q

2 s - 2 m1
»» 1.5 < m1 < 2 & 0.5 H- 3 + 2m1L < s § 0.5 & 

0.333333 H-2 s + 2m1L < q § 1 & 1 § e < -
3 q

2 s - 2 m1

y{zz
∑ t1

∑ m1
=

q m2 H b q H b - m2 L - e c2 Hs - m1 L H b + m2 LLH b q + e c2 H- s + m1 LL3 > 0

∑ t1

∑ q
= -

Hs - m1L m2 H b q H- b + m2L + ec2 Hs - m1L H b + m2LLH b q + ec2 H- s + m1LL3 < 0

∑ t1

∑ s
=

q m2 H b q H- b + m2 L + e c2 Hs - m1 L H b + m2LLH b q + e c2 H- s + m1LL3
< 0

∑ t1

∑ m2
=

Hs - m1L He c2 Hs - m1L - q H b - 2 m2LLH b q + e c2 H- s + m1LL2

1 § m1 § 1.5 & ikjj0 < q < 0.3333333 H- 2 s + 2 m1 L & e ¥ 1 » » q ã 0.33333333 H- 2 s + 2 m1 L & e > 1 » »
0.33333333 H- 2 s + 2 m1 L < q § 1 & e > -

3 q

2 s - 2 m1

y{zz » » 1.5 < m1 § 2 & ikjj0 < s < 0.5 H- 3 + 2 m1 L & 0 < q § 1 & e ¥ 1 » » s ã 0.5 H- 3 + 2 m1L & H0 < q < 1 & e ¥ 1 » » q ã 1 & e > 1L » »
0.5 H- 3 + 2 m1 L < s § 0.5 & ikjj0 < q < 0.33333333 H- 2 s + 2 m1 L & e ¥ 1 » » q ã 0.333333333 H- 2 s + 2 m1 L & e > 1 » »

0.333333333 H- 2 s + 2 m1 L < q § 1 & e > -
3 q

2 s - 2 m1

y{zz » » m1 > 2
y{zz
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