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Abstract

This note discusses a pitfall of using the generalized impulse response function (GIRF) in

vector autoregressive (VAR) models (Pesaran and Shin, 1998). The GIRF is general because it

is invariant to the ordering of the variables in the VAR. The GIRF, in fact, is extreme because

it yields a set of response functions that are based on extreme identifying assumptions that

contradict each other, unless the covariance matrix is diagonal. With an empirical example, the

present note demonstrates that the GIRF may yield quite misleading economic inferences.
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1 A Pitfall of the GIRF

Notwithstanding its popularity, the orthogonalized impulse response function (OIRF; Sims, 1980)

analysis of structural vector autoregressive (VAR) models is subject to the so-called Wold-ordering

problem.1 That is, when one changes the order of the VAR with an alternative identifying assump-

tion, she may obtain dramatically different response functions (Lütkepohl, 1991). Pesaran and Shin

(1998) propose an ordering-invariant approach, the generalized impulse response function (GIRF),

based on the work of Koop et al. (1996). The GIRF has been employed by many researches, to

name a few, Boyd et al. (2001), Cheung et al. (2004), and Huang et al. (2008).

However, it is important to recognize that there is a pitfall of using the GIRF. Let ψg
yj

(n) and

ψo
yj

(n) denote the GIRF and the OIRF at time t+n, respectively, when there is one standard error

shock at time t to the jth variable in an m-variate VAR with yt = [y1,t y2,t · · · ym,t]
′. Pesaran and

Shin’s (1998) Proposition 3.1 implies ψg
y1

(n) = ψo
y1

(n).2 Define ψ̃o
yj

(n) as the OIRF when yj,t is

ordered first in yt. Then, ψg
y1

(n) = ψ̃o
y1

(n). Now re-order the vector so that yt = [y2,t y1,t · · · ym,t]
′,

which yields ψg
y2

(n) = ψ̃o
y2

(n) by the proposition and because the GIRF is invariant to the ordering

of the variables in yt. Repeat this procedure until we get ψg
ym(n) = ψ̃o

ym
(n). Collecting these

response functions, then, the GIRF for the entire system is,

ψg(n) =
{

ψ̃o
y1

(n) ψ̃o
y2

(n) · · · ψ̃o
ym

(n)
}

The GIRF, therefore, is not general in effect because it employs extreme identifying assumptions

that each variable is ordered first. More seriously, ψ̃o
yi

(n) and ψ̃o
yj

(n) are not consistent with each

other when i 6= j if the covariance matrix is non-diagonal.3,4 Hence, the GIRFs conflict each other.

This result trivially applies to vector error correction models also. In next section, I show that such

inconsistency may lead to misleading economic inferences.

1The OIRF recursively identifies the structural shocks by using the Choleski decomposition of the covariance
matrix, which yields a unique lower triangular matrix. This scheme, therefore, assumes that the variable ordered first
in the VAR is contemporaneously unaffected by all other variables.

2The GIRF and the OIRF coincide for the first variable in yt.
3ψ̃o

yi
(n) assumes yi,t is not contemporaneously affected by all other variables including yj,t, while ψ̃o

yj
(n) needs an

assumption that yj,t is not contemporaneously affected by all other variables including yi,t.
4If it is diagonal, there is no gain of using a structural VAR model, because it coincides with a reduced-form VAR,

in other words, equation-by-equation least squares estimations.
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2 An Empirical Illustration

This section provides an empirical illustration to compare the implications of the GIRF with those

of the OIRF. I use a trivariate VAR model of the US per capita investment (i), consumption (c),

and real GDP (y), measured in logarithms, as Pesaran and Shin (1998) did. The data frequency

is quarterly and observations span from 1947Q1 to 2008Q4, obtained from the Federal Reserve of

St. Louis FRED data bank.

Note that the GIRFs to (one standard error) investment shock (Panel 1-a in Figure 1) coincide

with the OIRFs to an i-shock when i is assumed to be contemporaneously unaffected by other two

variables, c and y (Panel 1-b). Note also that under this assumption, the OIRFs to a y-shock are

very different from the corresponding GIRFs. However, the GIRFs to a y-shock are identical to the

OIRFs when y is ordered first in the VAR (Panel 1-d) by construction. Again, the other OIRFs

under that assumption are quite different from the corresponding GIRFs. Likewise, the GIRFs to

a c-shock are identical only to the OIRFs to a c-shock when c is ordered first (Panel 1-c).

What I claim here is that one has to estimate and report response functions based on her

economic model. For example, if one interprets y-shocks as an output (supply) shock, while i-

shocks and c-shocks are treated as expenditure (demand) shocks, she may employ an ordering

[y i c] assuming that y does not contemporaneously respond to demand shocks. Then, she will

report the response functions to an i-shock, for instance, that are very different from the GIRFs

both quantitatively and qualitatively. If one believes that i is primarily driven by animal spirit,

she may employ [i y c] instead and reports quite smaller responses of i to a y-shock than the

corresponding GIRF. The responses of i to a c-shock are again a lot different in Panels 1-b and 1-d

as i exhibits delayed overshooting for a year, while the GIRF produces bigger responses of i to a

c-shock and delayed overshooting persists only for a half year.

I am not claiming that the OIRF is better than the GIRF because there are many other

alternative options available.5 It seems more reasonable to me to use an identifying assumption

that consistently describes the underlying economic models rather than to use the GIRF with a

combination of extreme assumptions that conflict with each other.

5For example, one may employ over-identified or partially identified systems. A just-identified non-recursive system
can also be considered.

3



3 Conclusion

This note points out that there is a pitfall of using the GIRF. Economic inferences based on the

GIRF can be misleading because the GIRF employs a set of extreme identifying assumptions that

contradict each other unless the covariance matrix is diagonal. Our empirical example demonstrates

that this is by no means a negligible matter.

4



References

Boyd, D., G. M. Caporale, R. Smith, 2001. Real Exchange Rate Effects on the Balance of Trade:

Cointegration and the Marshall-Lerner Condition. International Journal of Finance and Eco-

nomics 6, 187–200.

Cheung, Y.-W., K. S. Lai, M. Bergman, 2004. Dissecting the PPP Puzzle: The Unconventional

Roles of Nominal Exchange Rate and Price Adjustments. Journal of International Economics 64,

135–150.

Huang, Y., S. N. Neftci, F. Guo, 2008. Swap Curve Dynamics Across Markets: Case of US Dollar

versus HK Dollar. Journal of International Financial Markets, Institutions, and Money 18, 79–93.

Koop, G., M. H. Pesaran, S. Potter, 1996. Impulse Response Analysis in Nonlinear Multivariate

Models. Journal of Econometrics 74.

Lütkephol, H., 1991. Introduction to Multiple Time Series Analysis. Springer-Verlag, Berlin, Ger-

many.

Pesaran, M. H., Y. Shin, 1998. Generalized Impulse Response Analysis in Linear Multivariate

Models. Economics Letters 58, 17–29.

Sims, C., 1980. Macroeconomics and Reality. Econometrica 48, 1–48.

5



Firgue 1. Impulse Response Function to One Standard Error Shock
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