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Abstract

If agents engage in resale, it changes bidding in the initial auction. Resale o¤ers
extra incentives for bidders with lower valuations to win the auction. However, if resale
markets are not frictionless, then use values a¤ect bidding incentives, and stronger
bidders still win the initial auction more often than weaker ones. I consider a �rst price
auction followed by a resale market with frictions, and con�rm the above statements.
While intuitive, our results di¤er from the two bidder case of Hafalir and Krishna
(2008): the two bidders win with equal probabilities regardless of their use values. The
reason is that they face a common (resale) price at the relevant margin, a property
that fails with more than two bidders. Numerical simulations show that asymmetry in
winning probabilities increases in the number of bidders, and in large markets resale
loses its e¤ect on allocations.

1 Introduction

In many markets agents may engage in resale activities after an auction is run. The presence
of resale opportunities allow e¢ciency enhancing trades to take place after the auction. It
also a¤ects the way bidders behave in the initial auction and the probability with which
each bidder wins the auction. This second e¤ect is the topic of our paper. Intuitively, resale
should favor bidders with lower valuations, since the possibility of resale o¤ers them extra
incentives (beyond the use value of the object) to win the auction. On the other hand,
bidders with higher valuations may depress their bids counting on the possibility of buying
the object at the resale stage. These observations suggest that buyers with low value are
more likely to win the initial auction if resale is possible than when it is not.
The way resale markets operate is crucial, if we were to fully understand how strongly

the possibility of resale a¤ects bidding (and allocation) in the initial auction. If the resale
markets were frictionless (perfectly competitive), then agents took the (resale) market price
of the object as given. In this case, it is only the resale price that a¤ects willingness to pay,
and thus each bidder should bid similarly and win the auction with the same probability re-
gardless of their valuations. However, very often resale markets are not frictionless, because
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of the small number of buyers, institutional details, or frictions arising from asymmetric
information. In this case the resale stage takes the form of multilateral bargaining under
incomplete information, and strategic considerations between the di¤erent potential buyers
are present. Therefore, one cannot appeal to the price mechanism to obtain a competitive
resale price that is independent of the identity and strategies of the bidders in the auction
and at the resale stage. The �nal allocation then is not necessarily the e¢cient one, and
it may depend on who won the initial auction. The only way that a bidder with a high
valuation can guarantee to obtain the object for sure is to win the auction itself. Therefore,
use values a¤ect bidding incentives, and one may expect that a stronger bidder have an
incentive to bid more and win the initial auction more often than weaker ones.
The above discussion implies that when resale markets operate with frictions we may

expect an allocation that is in between the allocations obtaining with perfect resale markets
and no resale markets at all. In this paper I study such a situation. A single object is
sold to privately informed buyers using a �rst price auction without revealing bids. After
the auction a resale market opens where the same buyers participate as in the auction.
Con�rming the intuition from above, I formally show that resale indeed allows a weaker
bidder to win more often than without resale, but less often than a stronger bidder if there
are more than two bidders in the auction. Since asymmetric information introduces frictions
into the resale market, it is not surprising that use values play a role for the bidders and
thus stronger bidders are more likely to win than weaker ones. Despite being intuitive,
our result is in contract with two papers that consider a similar setup to ours with two
buyers.1 Garratt and Troger (2006) consider a setup with a pure speculator (no use value)
and a genuine buyer, while Hafalir and Krishna (2008) consider the more general case of two
genuine bidders. They show that regardless of the exact distribution of valuations for the
two genuine buyers, both produce the same bid distribution and both win the auction with
a 50% probability. Although, the resale markets of those papers are clearly not frictionless
(because of the small number of buyers and the fact that bargaining is under incomplete
information), they achieve the result that each bidder wins with equal probability regardless
of their use values, as it would be expected with a frictionless resale market.
The logic behind this symmetrization result is that although the resale price is endoge-

nously determined together with the bidding strategies in the auction, but from the point
of view of the relevant "marginal types" it is exogenous and common to the two bidders.
Therefore, the relevant types are price takers at the margin, and they face a common price,
so the resale market behaves as if it were frictionless at the margin. To gain intuition,
suppose that one of the bidders is weaker in the sense that he is more likely to have a low
valuation. Such a weak bidder bids more aggressively than the strong bidder and thus may
win the object even if his valuation is lower than that of his rival. Therefore, he has a prof-
itable resale opportunity at the resale stage. If he wins the auction by a small margin, then
his take it or leave it resale o¤er r will be accepted by the strong bidder with probability 1,
and his utility is equal to r.2 Therefore, his gain from winning at the margin, his e¤ective
valuation is equal to r. A similar observation applies to the strong bidder: if he loses the
auction by a small margin, then he buys the object for sure at the resale price r. Therefore,
the two bidders have the same marginal gains from winning (e¤ective valuations) r, which

1The papers below also study other auction formats, like second price auctions, and other questions like
revenue consequences, that are not addressed here.

2The reason is that the weak bidder o¤ers such a resale price in equilibrium that is accepted by at least
some types of the strong bidder. Therefore, the type of the strong bidder who lost by a small margin against
the particular type of the weak bidder should de�nitely accept the resale o¤er, otherwise no type would.
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leads to bid symmetrization.
Our paper shows that this logic fails when there are more than two bidders, and weaker

bidders win the auction with a lower probability than stronger bidders. The argument relies
on the fact that a common price for the marginal types does not exist anymore, and conse-
quently the e¤ective valuations of the bidders are not equalized. More precisely, I assume
that there are nw weak bidders and ns strong bidders with their valuations distributed ac-
cording to distribution functions Fw and Fs respectively, with Fs �rst order stochastically
dominating Fw.

3 I also assume that the bidder who won the initial auction makes the resale
o¤er which takes the form of a second price auction with a reserve price.4 The key intuition
for the failure of symmetrization is that the e¤ective valuations of di¤erent bidders are not
equalized any more. More speci�cally, strong bidders have higher e¤ective valuation for the
object. To build intuition, consider the case of several weak bidders and only one strong
bidder. A weak bidder will still sell the object in the resale stage if he beats the strong
bidder in the initial auction by a small margin and thus he still gains the resale price in this
case. However, when he beats another weak bidder by a small margin, then he may not sell
the object in the resale stage, because his resale o¤er may exceed the valuation of the strong
bidder. When he does not sell the object in the resale stage, his e¤ective valuation is equal
to his use value for the object, which is less than the resale revenue he expects in case of a
resale. Therefore, his expected e¤ective value for the object is between r and the use value,
and thus it is strictly lower than r. The e¤ective valuation of the strong buyer is equal to r,
since if he loses by a small margin then he still buys at the resale stage for sure. Combining
the two observations yields that the e¤ective valuation of the strong bidder is higher than
that of a weak bidder, and thus intuition suggests that the strong bidder produces a more
aggressive bid distribution than the weak bidders. Section 4 con�rms this intuition formally
for the case of several strong bidders as well.
I also show that, under further assumptions, resale acts toward symmetrization even if

does not go all the way. More precisely, I show that weak bidders are more likely to win
the auction if resale is allowed than in the benchmark case with no resale. The intuition is
simple: while e¤ective valuations are not equalized when there are more than two bidders,
but (as we saw above) the e¤ective valuation of a weak (strong) bidder is higher (lower) than
his use value and thus the weak bidder wins the initial auction with a higher probability
than in the case without resale.
It is also interesting how the number of bidders a¤ect the probability with which a weak

or a strong bidder wins the initial auction. We know from Hafalir and Krishna (2008) that
when there is one weak and one strong bidder, then they each have a 50% chance of winning
in the initial auction when resale is allowed and the strong bidder wins with more than
50% probability when resale is not allowed. I construct a measure for symmetrization for
the case when there are nw > 1 weak bidders and one strong bidder. Let �rs(nw) denote
the probability that the strong bidder wins the initial auction when resale is allowed and
�ns (nw) when resale is not allowed. Let

�(nw) =
�rs(nw)� 1

nw+1

�ns (nw)� 1
nw+1

3To facilitate analysis, I adopt the assumption of Maskin and Riley (2000) that states that Fs=Fw is
increasing. This assumption, reverse hazard rate dominance, is stronger than �rst order stochastic domi-
nance.

4As I discuss it later, conducting such a resale auction is optimal for the winner of the initial auction on
the equilibrium path.
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measure the amount of symmetrization that takes place compared to the case without
resale. The Hafalir and Krishna result can be rewritten as �(1) = 0, i.e. there is complete
symmetrization with two bidders. I show that when Fs(x) = x and Fw(x) =

p
x, then

function � is increasing in nw and gets close to 1 when nw is relatively large. This result
implies that the more bidders there are, the more similar the allocation of the initial auction
to the auction with no resale is. Indeed, our conjecture is that resale becomes ine¤ective in
the limit and lim

nw!1
� = 1 holds.5 This result indicates that resale is less important in larger

markets, because the outcome of the initial auction tends to be more e¢cient as the market
size grows.
To prove existence of equilibrium, I analyze a system of ordinary di¤erential equations

extending the method of Lebrun (1997) to auctions with resale. His method also applies,
under further assumptions, to prove uniqueness of equilibrium. Future work should shed
light on whether more general uniqueness results can be achieved.
The literature on auctions with resale is still relatively small. Zheng (2002) asks under

what conditions the Myerson�s auction can be an equilibrium outcome with resale if the
initial seller can choose his mechanism as he wishes. Hafalir and Krishna (2008b) analyzes
revenue and e¢ciency in a �rst price auction using their �rst paper. None of these papers
analyze a full blown asymmetric information model of a �rst price auction when there are
more than two bidders. Cheng and Tan (2009) show that a two bidder private values auction
with resale can be analyzed as a common value auction with no resale. They also show
that their argument could be extended to more than two bidders, but do not consider the
question of bid symmetrization. In a work independent from ours, Lebrun (2009) considers
the case of many bidders studying a more speci�c case than ours and addressing only some
of our questions.6 He assumes that there is only one strong and n weak bidders. He shows
existence and uniqueness of equilibrium under similar distributional assumptions to ours.
He also shows that the strong bidder is more likely to win the auction than any of the weak
bidders, but does not consider comparative statics results in the number of bidders or the
question whether resale achieves some symmetrization as we do it in our paper. Moreover,
our paper also provides an intuition for the results by introducing the concept of e¤ective
valuation. There is also a literature that considers the case where asymmetric information
plays a smaller role. For example, Gupta and Lebrun (1999) assume that after the auctions
valuations are revealed. Haile (2003) assumes that ex-ante bidders are symmetric, but after
the auctions each receives a further shock a¤ecting his valuation, which is the source of
resale in their model.
The rest of the paper is organized as follows. In Section 2 I setup the model and de�ne

equilibrium. Section 3 contains existence and uniqueness results and characterizes the equi-
librium. Section 4 provides results related to the question of symmetrization, while Section
5 discusses comparative statics results as the market size changes. The two Appendices
contain some proofs.

5The intuition is that when there are many bidders all bidders bid close to their valuation and thus the
initial auction is already e¢cient and thus resale loses its bite. As I discuss it later, this intuition carries
over also to the case where ns > 1 or the number of objects grows with the number of bidders and thus the
bid functions do not converge to the valuations.

6This is only true for our setup of �rst price auctions with no bid disclosure. He also considers other
common auctions and bid revelation protocols that our paper does not cover.
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2 Setup and equilibrium

Hafalir and Krishna (2008) study auctions with resale when there are two bidders, I ex-
tend their work by considering the case of n bidders. Assume that there is an indivisible
object and there are n risk neutral bidders whose valuations are distributed independently
according to distribution functions F1; F2; :::; Fn that admit strictly positive and continuous
density functions f1; f2; :::; fn. For simplicity I assume that there are ns strong and nw
weak bidders, with distribution functions Fs and Fw that have common support [0; 1]. The
common support assumption is only for convenience, most of our results would go through
even if this assumption was dropped. To be able to benchmark our results with standard
asymmetric auctions without resale7 , I assume that Fs(x)=Fw(x) is strictly increasing in x.

I also assume that Fs satis�es the regularity condition of Myerson (1981), i.e. x� 1�Fs(x)
fs(x)

is

increasing in x. This assumption ensures that the resale problem of the monopolist behaves
in a tractable manner.
The timing of the game is simple: �rst there is a �rst price auction where the bids

(including the winning bid) are not revealed. Then the winner of this auction may resell
the object to one of the other n � 1 bidders. I assume that at the resale stage the current
owner (the winner of the initial auction) conducts a second price auction with an optimally
chosen reserve price.8 If a bidder with type y owns the object at the end of the game (after
the resale market has closed) and his overall payment was m, then his utility is y �m. If
a bidder does not own the object, and his overall payment in the game was m (possibly
negative), then his utility is �m.
Our equilibrium concept is Perfect Bayesian equilibrium. In such an equilibrium each

bidder places a bid b and o¤ers a reserve price r (if he won the initial auction), such that no

other pair (eb; er) would yield a higher expected utility, given the strategies of the other players.
Note, that the de�nition of the equilibrium already assumes that if a buyer with type y did
not buy in the original auction and he faces a reserve price r � y, then he participates in
the resale mechanism and uses his dominant strategy, i.e. bids y in the second price resale
auction. I consider an equilibrium where each strong bidder uses strictly increasing and
continuous strategy bs : [0; 1] ! R

+
0 and each weak bidder employs strictly increasing and

continuous strategy bw : [0; 1] ! R
+
0 in the initial auction stage. Moreover, I assume that

the bidders have the same support for bidding, i.e. bw(0) = bs(0) = b and bw(1) = bs(1) = b.
I call such an equilibrium a regular equilibrium. It is then easy to prove that b = 0 must
hold in a regular equilibrium, otherwise the bidders with the lowest valuations would make
negative payo¤s. Since increasing functions are almost everywhere di¤erentiable, we can
assume without loss of generality that the bid functions are di¤erentiable and characterize
the equilibrium as a solution to a system of ordinary di¤erential equations.

3 Equilibrium analysis

To characterize the equilibrium I start the analysis with the resale stage taking the bid
functions (bw; bs) as given. First, I study the case when each buyer used the equilibrium bid
in the initial auction. As we will see, this case will pin down the equilibrium reserve price

7See Maskin and Riley (2000).
8Under our assumptions such a mechanism is optimal for the seller at the resale stage on the equilibrium

path. However, for some large deviations in the initial auction, such a mechanism may not be optimal
anymore.
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uniquely under the assumption of monotone virtual utilities. The �rst Lemma shows that
at any given bid level only one side can be a seller at the resale stage and he will sell to the
other group of bidders:

Lemma 1 Suppose that bw(y) = b > (<)bs(y) for some y; b. Then it is optimal for a strong
(weak) buyer with type y not to o¤er the good for resale, but a weak (strong) buyer with type
y makes a resale o¤er that is accepted with positive probability by a strong (weak) buyer.
When bw(y) = bs(y) neither the strong, nor the weak bidder with type y has a pro�table
resale opportunity, so it is optimal for such a bidder not to make a resale o¤er at all.

Proof. If bs(y) < bw(y), then under our our assumptions there exists x > y and z < y such
that bs(x) = bw(y) and bs(z) = bw(y). Therefore, upon winning a weak buyer with type y
knows that the type of the ns strong buyers are less than x. Since x > y holds, the winner
of the auction has a pro�table resale opportunity by o¤ering an auction with any reserve
price r 2 (y; x). Upon winning the initial auction, a strong buyer with type y knows that
the weak buyers� type are less than z < y and the other strong buyers� type are less than
y, so resale cannot be conducted pro�tably. The case when bw(y) = bs(y) can be handled
similarly.
It is a well known result in the literature (see Maskin and Riley (2000)) that when

ns = nw = 1 and there is no resale, then for all y 2 (0; 1)

bw(y) > bs(y):

Hafalir and Krishna showed that in the same setup when resale is allowed a similar result is
still true. This leads to the conjecture that for an arbitrary number of bidders with resale
it holds that bw(y) > bs(y). I �rst explore this possibility in my analysis. Then Lemma 1
implies that in equilibrium the strong buyers do not make resale o¤ers and the weak buyers
do, and they resell the object with positive probability to the strong buyers. Using the
notation of the proof of Lemma 1 a weak buyer with type y faces ns strong buyers with
valuations on [0; x]. Let r(y) be the optimally chosen reserve price at the resale stage by a
weak buyer with type y.

Lemma 2 Suppose that for all y it holds that bw(y) � bs(y). Under the monotone virtual
utility assumption the equilibrium reserve price is unique. Moreover, running a second price
auction with an optimal reserve price is optimal for a weak bidder with type y who bid bw(y)
in the initial auction. The optimal reserve price r(y) is characterized by

r(y)� Fs(x)� Fs(r)
fs(r)

= y;

where x = b�1s (bw(y)) � y:

Proof. First, note that the winner of the initial auction faces ns strong buyers with val-
uations on [0; x]; i.e. he solves for an optimal auction for the case of symmetric bidders
with independent private values. As Myerson (1981) has shown the optimal auction is a
second price auction with an optimally chosen reserve price, which yields the second result.
Moreover, the optimal reserve price does not depend on the number of bidders (ns) and
thus it is the same as in the ns = 1 case. However, this is the monopsony case of Hafalir
and Krishna (2008) who show that a unique optimal reserve price exists when ns = 1, which
concludes the �rst result of the Lemma. They show that r(y) solves

max
r
(Fs(x)� Fs(r))r + Fs(r)y;
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with �rst order condition

r � Fs(x)� Fs(r)
fs(r)

= y: (1)

The (unique) equilibrium reserve price is described by equation (1). Since x = b�1s (bw(y))
is determined by functions bw; bs, therefore there is a unique optimal reserve price given the
bid functions bw; bs. The rest of the analysis uses the calculated r(y) function to derive
a necessary �rst order condition for a regular equilibrium in the original auction. Let
�s(b) and �w(b) denote the equilibrium inverse bid functions. Under the assumption that
bw(y) > bs(y) for all y 2 (0; 1) it holds for all b 2 (0; b) that �s(b) > �w(b). Moreover,
�s(b) = �w(b) and �s(0) = �w(0). Suppose that a bidder considers a small deviation from
his equilibrium bid in the initial auction. For a small enough deviation it still holds that a
weak bidder can only be a seller in the resale stage and only sells to a strong bidder, while
a strong bidder can only be a buyer in the resale stage and only buys from a weak bidder.
Moreover, the envelope theorem implies that a weak bidder with type y upon making a
small deviation from bid bw(y) does not have an incentive to change the reserve price in the
resale stage, i.e. he still o¤ers a second price auction with a reserve price r(y).
The above observations simplify our analysis signi�cantly. First, I start with the problem

of a strong bidder with type �s(b) who bids bb restricting attention to a case of small deviation
i.e. where bb� b is small in absolute value. Then he wins the initial auction with probability
Fns�1s (�s(bb))Fnww (�w(bb)) and in this case his utility is �s(b) � bb; since he is not going to
resell the object. If he loses the initial auction, but he is the highest type among the strong
bidders and a weak bidder wins whose type is less than r�1(�s(b)), then he buys the object
in the resale stage. In the case he is able to buy his payment is equal to maxfr(x); v2sg,
where x is the type of the winning weak bidder and v2s � �s(b) is the second highest type
among all the strong bidders, i.e. the highest type among the other strong bidders. Also,
let eUs(�s(b); x) denote the expected utility of a strong bidder with type �s(b) if the auction
was won by a weak bidder with type x and the strong bidder with type �s(b) buys the
object in the resale stage. Formally,

eUs(�s(b); x) = �s(b)� E[maxfr(x); v2sg j v2s � �s(b)]; (2)

where E stands for the expected value operator. The utility of this strong buyer can be
written as

Us(�s(b);bb) = Fns�1s (�s(bb))Fnww (�w(bb))[�s(b)�bb]+

+Fns�1s (�s(b))

Z r�1(�s(b))

�w(bb)

nwF
nw�1
w (x)fw(x)eUs(�s(b); x)dx:

The �rst order condition for optimum becomes then

nwF
nw�1
w (�w(b))fw(�w(b))�

0
w(b)F

ns�1
s (�s(b))[�s(b)� b� eUs(�s(b); �w(b))]+

+(ns � 1)Fns�2s (�s(b))fs(�s(b))�
0
s(b)F

nw
w (�w(b))[�s(b)� b] = Fns�1s (�s(b))F

nw
w (�w(b)):

Using (2) and de�ning

er(b) = E[maxfr(�w(b)); v2sg j v2s � �s(b)]

yields that
nwF

nw�1
w (�w(b))fw(�w(b))�

0
w(b)F

ns�1
s (�s(b))[er(b)� b]+
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+(ns � 1)Fns�2s (�s(b))fs(�s(b))�
0
s(b)F

nw
w (�w(b))[�s(b)� b] = Fns�1s (�s(b))F

nw
w (�w(b)):

(3)
The interpretation of er is simple: this is the expected amount that a strong bidder with
type �s(b) needs to pay in the resale stage if he loses against a weak bidder by a very small
margin. Note, that in case of such a loss he surely buys the object in the resale stage and
thus er becomes his e¤ective valuation. As one can see the e¤ective valuation of the strong
bidder is equal to er if he lost against a weak bidder by a small margin, because then he
buys the object at the resale stage for sure and pays an expected amount er. On the other
hand, his e¤ective valuation is his use value (�s) if he lost against a strong bidder, because
then he cannot by the object, so by not buying it in the initial auction he foregoes a (gross)
pro�t of �s.
Now, I turn to the analysis of the weak bidders� problem. Denote his type by �w(b) and

his bid bb; again restricting attention to the case where bb � b is small in absolute value. By
the above argument such a bidder chooses a reserve price r(�w(b)) regardless of bb. Then he
will own the object eventually if and only if all the weak bidders have type less than �w(bb)
and all the strong bidders have type less than r(�w(b)). He will resell the object if the

highest type of the strong bidders is between �s(bb) and r(�w(b)) and all the weak bidders
have types lower than �w(bb). Let Rb(�w(b); x) denote the expected revenue from resale if a
reserve price r(�w(b)) is set and the highest type among the strong buyers is x � r(�w(b))
and thus resale occurs. Formally,

Rb(�w(b); x) = E[maxfr(�w(b)); v2sg j v1s = x]:

Note, that
Rb(�w(b); �s(b)) = er(b): (4)

Again, if a weak bidder just barely wins against a strong bidder, then his e¤ective valuation
is his expected resale price er(b). Let us also de�ne the expected resale price �(b) if a weak
bidder wins, beating another weak bidder with the same type �w(b), but resale takes place
to a lower bidder, the strong bidder with the highest type. Formally,

�(b) = E[maxfv2s ; r(�w(b))g j v1s 2 [r(�w(b)); �s(b)]] =

=

R �s(b)
r(�w(b)

nsF
ns�1
s (x)fs(x)Rb(�w(b); x)dx

Fnss (�s(b))� Fnss (r(�w(b)))
:

The utility function of the weak bidder can be written as

Uw = F
ns
s (r(�w(b)))F

nw�1
w (�w(bb))[�w(b)�bb]+

+Fnw�1w (�w(bb))
Z �s(bb)

r(�w(b)

nsF
ns�1
s (x)fs(x)(Rb(�w(b); x)�bb)dx:

The �rst order condition becomes (using (4))

nsF
ns�1
s (�s(b))fs(�s(b))�

0
s(b)F

nw�1
w (�w(b))[er(b)� b]+

+(nw � 1)Fnw�2w (�w(b))fw(�w(b))�
0
w(b)F

ns
s (r(�w(b)))(�w(b)� b)+

+(nw � 1)Fnw�2w (�w(b))fw(�w(b))�
0
w(b)[F

ns
s (�s(b))� Fnss (r(�w(b)))](�(b)� b) = (5)
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= Fnss (�s(b))F
nw�1
w (�w(b)):

The e¤ective valuation of the weak bidder is equal to er if he won against a strong bidder
by a small margin, because then he resells the object at the resale stage for sure and obtains
an expected revenue er. The e¤ective valuation is his use value (�s) if he lost against a weak
bidder, and all the strong bidders have low valuations, because then he will not resell the
object, ending up consuming the object himself. Finally, if he won against a weak bidder by
a small margin, and there is a strong bidder with a relatively high valuation, then he will
be able to resell the object, grossing an expected revenue � .
The system of equations (3), (5) de�nes a system of ordinary di¤erential equations, since

functions er and � are uniquely determined by �w; �s: As standard, the initial condition
�s(0) = �w(0) = 0 cannot be used to solve our system, since the system does not satisfy the
Lipschitz condition at b = 0. Therefore, following the rest of the literature9 I impose an end
condition �s(b) = �w(b) = 1 with an unknown value for b. Then we obtain the following
result:

Lemma 3 Suppose that for some b it holds that �s(b) = �w(b) = 1 and the system of
di¤erential equations has a strictly increasing solution on [0; b) such that �s(0) = �w(0) = 0
holds and for all b 2 (0; b) it holds that �s(b) > �w(b): Then the solution of this di¤erential
equation (�w; �s) forms a pair of equilibrium inverse bid functions.

Proof. If the above conditions hold, then one only needs to show that the bidders cannot
use a large deviation in the initial auction to increase their overall utilities. This is shown
in the Appendix.
The proof in the Appendix requires checking several additional cases, since if a bidder

uses a large deviation in the initial auction, then he needs to recalculate his optimal reserve
price at the resale stage. Moreover, weak bidders may become buyers and strong bidders
may become sellers at the resale stage. Checking those conditions is somewhat tedious, but
using that under our conditions reserve prices behave monotonically in types and initial bids
provides a su¢cient amount of monotonicity to preserve the second order conditions.
At this point it is also important to consider the case where bs(x) > bw(x) for some x or

where for some b it holds that �s(b) < �w(b). One can show that such a case cannot occur
in equilibrium. To do that formally let us consider two di¤erent subcases. First, suppose
that there exists a value b� such that �s(b

�) = �w(b
�). Then by construction it holds that

er(b�) = lim
b&b�

�(b�) = �s(b
�) = �w(b

�):

Then using (3) it holds that at b = b�

(Fns�1s (�s(b))F
nw
w (�w(b)))

0

Fns�1s (�s(b))F
nw
w (�w(b))

=
(Fnss (�s(b))F

nw�1
w (�w(b)))

0

Fnss (�s(b))F
nw�1
w (�w(b))

=
1

�� b� :

This implies that at b = b� it holds that (
Fns�1

s
(�s(b))F

nw
w

(�w(b))

F
ns
s (�s(b))F

nw�1

w (�w(b))
)0 = 0 or

(
Fw(�w(b))

Fs(�s(b))
)0 = 0.

9See for example Lebrun (1997).
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Figure 1: The weak bidder is more aggressive

Since by assumption Fw(x)=Fs(x) is strictly decreasing in x, therefore the last equation
implies that

(
Fw(�w(b))

Fw(�s(b))
)0 > 0

holds at b = b�. The last inequality then implies that

b > 0; �w(b) = �s(b)! �0w(b) > �
0
s(b): (6)

Using that in equilibrium it holds that �s(b) = �w(b) = 1 implies that there exists
an " such that for all b 2 (b � "; b) it holds that �s(b) > �w(b). Therefore, either for all
b 2 (0; b) it holds that �s(b) > �w(b) as conjectured or there exists a b� 2 (0; b) such that
�s(b

�) = �w(b
�) and for all b 2 (b�; b) it holds that �s(b) > �w(b). However, inequality (6)

implies that at such a point b� it holds that �0w(b
�) > �0s(b

�), which means that for a small
enough " it holds that �w(b

� + ") > �s(b
� + "), which contradicts with the de�nition of b�.

Therefore, no such b� > 0 may exist. The �gure below illustrates the argument. Therefore,
the only other case possible is if for all b 2 (0; b) it holds that �w(b) > �s(b). However, the
�gure below shows that it must hold for a small enough " that �S(b� ") > �w(b� "), which
concludes the proof that for all b 2 (0; b) it holds that �s(b) > �w(b) or for all x 2 (0; 1) it
holds that bw(x) > bs(x).

9



The following conclusion can be drawn from this discussion:

Corollary 1 Every pair of regular equilibrium inverse bid functions (�w; �s) satis�es equa-
tions (3), (5) with boundary conditions �s(b) = �w(b) = 1 and �s(0) = �w(0) = 0 for some
b > 0. Moreover, for every pair of regular equilibrium inverse bid functions (�w; �s) for all
b 2 (0; b) it holds that �s(b) > �w(b).

The above two results imply that �nding a regular equilibrium is equivalent to �nding
an appropriate b. The proof of this result is in the Appendix:

Proposition 1 There exists a regular equilibrium of the auction game.

The proof uses techniques from ordinary di¤erential equations to conclude existence.
However, the fundamental theorem for ordinary di¤erential equations cannot be used with-
out some relevant restrictions. Fortunately, one can show that Lipschitz continuity holds
for the relevant parameters and thus existence can be guaranteed. On the other hand, the
proof does not imply uniqueness of the solution. The standard technique used by Lebrun
(1997) for auctions without resale is to show that if b1 > b2, then for all b � 0 it holds that
�s1(b) > �s2(b) and �w1(b) > �w2(b) and thus it cannot hold for both end values b1; b2
that �s(0) = 0. However, when resale is allowed and showing that such a monotonicity of
solutions in the end value b is still true is complicated for the general case. The Appendix
proves the following result that shows uniqueness under further assumptions:

Proposition 2 Assume that ns = 1; nw = 2 and Fs satis�es the monotone virtual utility
assumptions or ns = 1; Fs satis�es the monotone virtual utility assumptions, and function
Fs
fsx2

is decreasing in x. Then there is a unique regular equilibrium.

The condition that Fs
fsx2

is decreasing in x is relatively mild and holds for example for

Fs = xt for any t > 0. Beyond proving uniqueness of a (regular) equilibrium for a class
of games, this result also proves useful in Section 5 when I consider numerical examples
to conduct comparative statics in the number of weak bidders nw. Lebrun (2009) provides
a similar uniqueness result under somewhat di¤erent distributional assumptions assuming
that there is a unique strong buyer.

4 Bid distributions

It is well known for static auctions without resale that in our setup the weak bidder bids
more aggressively than the strong bidder, but produces a weaker bid distribution. Formally,
let �w; �s be the (unique) equilibrium bid functions without resale. Then Maskin and Riley
(2000) show10 that for all v 2 (0; 1) it holds that �w(x) > �s(x) and that Fw(�w(x)) <
Fs(�s(x)). For the case of resale with one strong and one weak bidder the Hafalir and
Krishna (2008) result implies that the bid functions are such that bw(x) > bs(x) and that
Fw(bw(x)) = Fs(bs(x)). In other words, if there is resale opportunity, the weak bidder
becomes even more aggressive compared to the strong one and the weak bidder produces
the same bid distribution as the strong bidder winning the object 50% of the time. The
main intuition is that each bidder knows that if the weak bidder barely wins with a bid b,

10Maskin and Riley (2000) proves this result for the case where ns = nw = 1, but an extension of their
results to the case of multiple bidders is routine.
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then there is a sure resale at a price r(�w(b)). Therefore, when bidding each bidder takes
this r as his e¤ective valuation. The weak bidder knows that if he barely wins he will resell
the object for sure at price r, so that is how much the object is worth for him. For the
same reason the strong bidder knows that if he loses by a small margin, then he will buy
the object at a resale price r, which is then how much he values the object when bidding
for it.
This logic clearly fails when there are more than two bidders. Suppose that there are

two weak bidders and one strong bidder. The strong bidder can make the same reasoning as
before and thus his e¤ective valuation is equal to the resale price at which he buys r(�w(b)).
However, when a weak bidder wins by a small margin, then he may not be able to sell the
object if the second highest bid was made by the other weak bidder. In this case his value
from winning is equal to his type �w(b), while in the case when he is able to sell the object
his eventual utility is the resale price r(�w). The expected e¤ective valuation is then strictly
between �w and r, which is less than the e¤ective valuation of strong buyer, which is equal
to r. Therefore, one may believe the strong buyer has more incentives to bid aggressively
than the weak buyer and thus produces a stronger bid distribution.
Let us establish this result formally for the case when ns > 1 or nw > 1 holds. Let

us divide equations (3) and (5) by Fns�1s (�s(b))F
nw
w (�w(b)) and F

ns
s (�s(b))F

nw�1
w (�w(b))

respectively. Substituting that er < �s implies then that if ns > 1 then for all b 2 (0; b) it
holds that

(Fns�1s (�s(b))F
nw
w (�w(b)))

0

Fns�1s (�s(b))F
nw
w (�w(b))

<
1

er(b)� b :

Using that er > �w; � implies through (5) that if nw > 1 then

(Fnss (�s(b))F
nw�1
w (�w(b)))

0

Fnss (�s(b))F
nw�1
w (�w(b))

>
1

er(b)� b :

Therefore, if ns > 1 or nw > 1 (or both) holds, then for all b 2 (0; b) it holds that

(Fnss (�s(b))F
nw�1
w (�w(b)))

0

Fnss (�s(b))F
nw�1
w (�w(b))

>
(Fns�1s (�s(b))F

nw
w (�w(b)))

0

Fns�1s (�s(b))F
nw
w (�w(b))

or that

(
Fnss (�s(b))F

nw�1
w (�w(b))

Fns�1s (�s(b))F
nw
w (�w(b))

)0 > 0:

But this last inequality implies that

(
Fs(�s(b))

Fw(�w(b))
)0 > 0:

Noting that Fs(�s(b)) = Fw(�w(b)) implies that for all b 2 (0; b) it holds that

Fs(�s(b))

Fw(�w(b))
< 1;

which means that the strong bidders produce a stronger bid distribution than the weak
ones and thus win more often in the initial auction if there are more than two bidders in
the auction. The following theorem states the result formally:
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Theorem 1 Let ns; nw � 1 and ns + nw � 3. Then in a regular equilibrium it holds for
any b 2 (0; b) that

Fs(�s(b)) < Fw(�w(b))

and thus a strong bidder produces a more aggressive bid distribution than a weak bidder and
wins the auction with a higher probability.

The logic of Theorem 1 suggests that (returning to the two group case) the asymmetry
in bid distributions is reduced by the possibility of resale. Without resale the e¤ective
valuations are �s and �w for the strong and weak bidders respectively. With resale the
e¤ective valuation of the strong bidder belongs to the interval [r; �s], while that of the weak
bidder to the interval [�w; r]. Therefore, the asymmetry in e¤ective valuations is reduced
compared to the case without resale and thus one may expect that the bid distributions are
more equal than in the case without resale.
The following result shows that our conjecture is valid for a case that can be handled

formally:

Proposition 3 Let ns = 1; nw = 2 and assume that fs is decreasing in x and Fw= 4
p
x is

increasing in x. De�ne �(x) as
bs(�(x)) = bw(x):

Let �s; �w denote the equilibrium bid functions of the auction without resale and let !(x) be
de�ned as

�s(!(x)) = �w(x):

Then it holds that for all x 2 (0; 1) that

�(x) > !(x) > x

and thus the bid distribution is more symmetric in the auction with resale than in the auction
without resale.

The proof can be found in Appendix 2. This example shows that the bid function is
more skewed in the case where resale is allowed in the sense that the weak bidders bids
much more aggressively than the strong bidder if resale is allowed. But this means that
a weak bidder has a higher probability to win in the case with resale compared to the no
resale case, although less than the strong bidder as long as there are at least three bidders.
Although the formal analysis is not extended to the case where bidders are coming from

more than two groups (i.e. not only strong and weak, but also other type distributions),
using the concept of e¤ective valuations it is possible gain intuition for that case as well.
So, suppose that there are three bidders (strong, medium and weak) ordered in the sense
of stochastic dominance assumed in the two-group case above. Using a similar analysis as
above one can show that bid distributions are not symmetrized, since the e¤ective valuations
of the three bidders are di¤erent.
Following the above analysis for the two group case, it can also be conjectured that the

strong bidder produces a stronger bid distribution than the medium and the medium than
the weak one. This conjecture requires establishing that the e¤ective valuations of the three
bidders (in case of a tie in the original auction) are ranked in the order of strong, medium
and weak. However, proving such a ranking is much harder than in the case of two groups
and I do not pursue it here.11

11The main problem is that now the e¤ective valuation of a bidder is a weighted average of the e¤ective
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5 Bidding and number of buyers

It is interesting to consider some numerical results to illustrate the extent of asymmetry
in bid distributions when there are more than three bidders in an auction with resale. For
simplicity I consider the case with one strong bidder and several weak bidders and, ns = 1;
nw � 1 and assume that Fs(x) = x and Fw(x) =

p
x. One can then write up the �rst

order conditions and specify conditions (5), (3) for the case at hand. Using program package
Mathematica one can obtain numerical solutions for this speci�cation.12

To characterize the asymmetry in bid distributions with a simple measure I use the
probability of winning the auction as our starting point. Let �r!; �

r
s denote the probability

under resale that a given weak bidder wins, and the probability that a strong bidder wins,
respectively. Let �n!; �

n
s denote the probability with no resale that a given weak bidder wins,

and the probability that a strong bidder wins, respectively. By construction

nw�
r
w + �

r
s = nw�

r
w + �

r
s = 1.

Our measure for asymmetry comparing the case with and without resale is

�(nw) =
�rs � 1

nw+1

�ns � 1
nw+1

:

Note, that this speci�cation is a special case of Proposition 3 when nw = 2 and thus it must
hold that

0 < �(2) < 1;

because with resale the weak bidder wins more often than without resale. Also, we know it
from Hafalir and Krishna (2008) that

�(1) = 0

and thus our conjecture is that our measure of asymmetry yields � 2 (0; 1) for any nw > 1.
This conjecture is valid for the case of several bidders as it is highlighted by the following
results:

�(2) � 0:41; �(3) � 0:57; �(4) � 0:65; �(5) � 0:7; �(9) � 0:82:
As one can see, the asymmetry is increasing in the number of bidders and in large markets
the opportunity of resale does not change winning probabilities much compared to the case of
no resale where asymmetries in winning probabilities are large. The reason seems intuitive:
as the number of bidders nw becomes large, it holds that the bid functions converge to x,
i.e. bid shading disappears in the limit regardless of whether there is resale or not. But then
resale cannot take place in the limit with positive probability and thus the two allocations
have to be similar in the limit. This argument relies on the fact that when there are many
bidders and only one object, the level of competition in the limit becomes overwhelming
and thus the bid each person makes converges to his valuation. However, a similar insight
can be gained from the case where as the number of bidders goes up, also the number of

valuations weighted by the probabilities of tieing with any of the two other bidders. It may be that,
conditional on tieing, the medium bidder �nds it much less likely to tie with the weak bidder than the
strong bidder. If tieing with a strong or medium bidder leads to a much higher (conditional) e¤ective
valuation than tieing with a weak one, then this may imply that the medium bidder has higher e¤ective
valuation than a strong bidder even if the conditional e¤ective valuation of the strong bidder is higher.
12The calculations are available from the author upon request.
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objects goes up. In this case, intuition suggests that in the limit the price converges to
the Walrasian equilibrium price, and each bidder whose type is above the competitive price
places a bid slightly above the competitive price, while bidders with lower valuations place
a bid equal to their valuations. If every bidder does so, then the outcome of the auction is
e¢cient and thus resale seems to lose bite in the limit. In other words, resale plays less and
less role as the number of bidders goes up.

6 Conclusions

I have studied auctions with resale when there are many bidders and derived existence,
uniqueness and characterization results under the assumption that the winner of the initial
auction makes the resale o¤er, which takes the form of a second price auction with a reserve
price. I have shown that the symmetrization result of Hafalir and Krishna (2008) does not
hold when there are more than two bidders and a strong bidder is more likely to win than a
weak bidder in the initial auction. I also prove that while complete symmetrization does not
take place, but the bid distributions are more symmetric in the case with resale than in the
case without and thus resale works toward symmetrization, even if it does not go all the way.
Numerical simulations suggest that the more bidders there are the more similar the allocation
to the benchmark case without resale and thus the more asymmetric the bid distributions
and winning probabilities are between strong and weak bidders. Future research should shed
light on whether one can derive more general uniqueness results and analytical comparative
statics results as the number of bidders change. Another open question is to what extent
changing the resale mechanism would change our results.

7 Appendix

Proof of Lemma 3:
Proof. We prove that even a large deviation in the auction is not pro�table for any bidder.
We start with the incentive problem of the strong bidder with type �s(b) when he considers

bidding bb. Our goal is to show that @
@�s(b)

@U

@bb
� 0, which implies that the second order

conditions hold globally for the strong bidder.
Case 1: Let bb < b �rst. Then this strong bidder buys in the resale stage with positive

probability from weak buyers. This happens if a weak buyer wins and his type is less than
r�1(�s(b)), but larger than �w(bb). Moreover, if he loses against a type x 2 (�w(bb); �w(b))
of a weak bidder, then for the strong bidder with type �s(b) to be able to buy at the resale
stage it must hold that the highest other strong type does not bid more than bw(x) or, in
other words, that the highest other strong type is less than �s(bw(x)). The utility of the
strong bidder is then

Us(�s(b);bb) = Fns�1s (�s(bb))Fnww (�w(bb))[�s(b)�bb]+

+

Z �w(b)

�w(bb)

nwF
nw�1
w (x)fw(x)F

ns�1
s (�s(bw(x)))f�s(b)�E[maxfr(x); v2sg j v2s � �s(bw)]gdx+

+Fns�1s (�s(b))

Z r�1(�s(b))

�w(b)

nwF
nw�1
w (x)fw(x)eUs(�s(b); x)dx:
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Therefore,

@Us

@bb
= (ns � 1)Fns�2s (�s(bb))fs(�s(bb))�0s(bb)Fnww (�w(bb))[�s(b)�bb]+

+nwF
nw�1
w (�w(bb))fw(�w(bb))�0w(bb)Fns�1s (�s(bb))fE[maxfr(�w(bb)); v2sg j v2s � �s(bb)]�bbg:

From the last formula it follows in a straightforward manner that

@

@�s(b)

@Us

@bb
> 0,

which concludes the proof for the �rst case. The intuition for this result is fairly straight-
forward: if a strong bidder just overtakes a weak bidder (who is the high bidder) by bidding
less than his equilibrium bid, then he will surely buy the object in the resale stage and pays
an expected amount of E[maxfr(�w(bb)); v2sg j v2s � �s(bb)]. This quantity is independent
of the real type �s(b), so all types have the same incentive to bid slightly higher. How-
ever, when overtaking another strong bidder, the e¤ective gain is �s(b), since upon losing
against a strong bidder there is never any buying opportunity in the resale stage. Obviously,
this value is just equal to the valuation and thus buyers with higher valuation have more
incentives to increase their bids.
Case 2: Let bb > b but r(�w(bb)) < �s(b). In this case the high bidder is still buying

from a weak winner at the resale stage, but also starts selling to other strong bidders. Let
rs(�s(b);bb) denote the reserve price set by a strong bidder if his type is �s(b) and he bid bb
in the initial auction. Then the utility of the strong bidder can be written as

Us(�s(b);bb) = Fns�1s (rs(�s(b);bb))Fnww (�w(bb))[�s(b)�bb]+

+Fns�1s (�s(b))

Z r�1(�s(b))

�w(bb)

nwF
nw�1
w (x)fw(x)eUs(�s(b); x)dx+

+Fnww (�w(bb))
Z �s(bb)

rs(�s(b);bb)

(ns � 1)Fns�2s (x)fs(x)(E[maxfrs(�s(b);bb); v3sg j v2s = x]�bb)dx:

When taking a derivative with respect to bb one can use the envelope theorem by invoking
that @Us

@rs
= 0 and thus the indirect e¤ect that enters through the dependence of rs on bb can

be neglected. Therefore,
@Us

@bb
=

nwF
nw�1
w (�w(bb))fw(�w(bb))�0w(bb)[Fns�1s (rs(�s(b);bb))�s(b)�Fns�1s (�s(b))eUs(�s(b); �w(bb))]+

+nwF
nw�1
w (�w(bb))fw(�w(bb))�0w(bb)�

�
Z �s(bb)

rs(�s(b);bb)

(ns � 1)Fns�2s (x)fs(x)E[maxfrs(�s(b);bb); v3sg j v2s = x]dx+

+Fnww (�w(bb))�0s(bb)(ns � 1)Fns�2s (�s(bb))fs(�s(bb))E[maxfrs(�s(b);bb); v3sg j v2s = �s(bb)]�

� @
@bb
(Fnww (�w(bb))Fns�1s (�s(bb))):
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To proceed, note that
@

@b

@

@bb
(Fnww (�w(bb))Fns�1s (�s(bb))) = 0:

Moreover, it holds at rs = rs(�s(b);bb) that

@

@rs
fFns�1s (rs(�s(b);bb))�s(b)+

+

Z �s(bb)

rs(�s(b);bb)

(ns � 1)Fns�2s (x)fs(x)E[maxfrs(�s(b);bb); v3sg j v2s = x]g = 0;

because it is optimal to choose rs(�s(b);bb) in the given situation by construction. Therefore,

@

@b

@Us

@bb
=

nwF
nw�1
w (�w(bb))fw(�w(bb))�0w(bb)[Fns�1s (rs(�s(b);bb))�0s(b)�

@

@b
Fns�1s (�s(b))eUs(�s(b); �w(bb))]:

Finally,

Fns�1s (�s(b))eUs(�s(b); �w(bb)) =
Z �s(b)

0

(ns�1)Fns�2s (x)fs(x)f�s(b)�E[maxfr(�w(bb)); xg]gdx

and thus
@

@b
Fns�1s (�s(b))eUs(�s(b); �w(bb)) = �0s(b)Fns�1s (�s(b)).

Putting everything together yields that

@

@b

@Us

@bb
= nwF

nw�1
w (�w(bb))fw(�w(bb))�0w(bb)�0s(b)[Fns�1s (rs(�s(b);bb))� Fns�1s (�s(b))] > 0;

which concludes the proof for Case 2.
Case 3: Let bb > b and r(�w(bb)) > �s(b), but �w(bb) < �s(b). In this case the situation is

simpli�ed, our strong bidder sells to other strong bidders at the resale stage and does not
have any trade with the weak bidders. Therefore, one can write down a simpli�ed version
of the Case 2 utility function (line 2 from above is now missing) and then conduct a similar
analysis to above to conclude that the cross partial has the required sign. The details are
omitted.
Case 4: Let bb > b and r(�w(bb)) > �s(b), but �w(bb) > �s(b). In this case our strong

bidder sells with positive probability to other strong bidders at the resale stage and if
�w(bb) � �s(b) is large enough, then sells to weak bidders as well. We concentrate on the
case when he sells to both strong and weak bidders, otherwise we are back to case 3. In this
case the bidder sells on the margin and thus his e¤ective valuation becomes his expected
revenue when he barely wins. To formally write this expected value let vis be the ith highest
other strong bidder�s type and viw the same for the weak group. Let group k 2 fw; sg be
the group that provides the bidder that ties with our strong bidder and j the other group.
Then the revenue from resale upon barely winning is

E[maxfrs(�s(b);bb);maxfv2k; v1wgg j bj(v1j ) = bb]:
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This quantity is clearly increasing in �s(b) and thus the e¤ective valuation is increasing in
�s(b), which implies using standard arguments that the single crossing conditions holds.
Now, we turn to the incentives of the weak bidders. We have the same four cases as

above:
Case 1: Let bb < b and �s(bb) � �w(b). In this case our weak bidder buys from other weak

bidders and does not trade with the strong bidders at the resale stage.
Case 2: Let bb < b, but �s(bb) > �w(b). In this case our weak bidder buys from other

weak bidders and may sell to the strong bidders at the resale stage.
Case 3: Let bb � b, but rw(�w(b);bb) > �w(bb). In this case our weak bidder does not trade

with other weak bidders and sells to the strong bidders at the resale stage.
Case 4: Let bb � b, and rw(�w(b);bb) � �w(bb). In this case our weak bidder sells to other

weak bidders and sells to the strong bidders at the resale stage.
The proof of the second order condition is the same for these four cases as above with

the obvious changes in notation, so it is omitted.
Proof of Proposition 1:

Proof. Let us start the proof by de�ning b�(b) as

Fnss (r(�w))�w + (F
ns
s (�s)� Fnss (r(�w)))� = Fnss (�s)b� .

Then one can rewrite equation (5) as

nsF
ns�1
s (�s(b))fs(�s(b))�

0
s(b)F

nw�1
w (�w(b))[er(b)� b]+

+(nw � 1)Fnw�2w (�w(b))fw(�w(b))�
0
w(b)F

ns
s (�s)(b� � b) = Fnss (�s(b))Fnw�1w (�w(b)):

After simpli�cations this formula is equivalent to

nsfs(�s)�
0
s(b)Fw(�w)[er(b)�b]+(nw�1)fw(�w)�0w(b)Fs(�s)(b�(b)�b) = Fs(�s)Fw(�w): (7)

A similar simpli�cation applied to formula (3) implies that

nwfw(�w)�
0
w(b)Fs(�s(b))[er(b)� b] + (ns � 1)fs(�s)�0s(b)Fw(�w)[�s � b] = Fs(�s)Fw(�w):

(8)
Before analyzing the above system in more details, we note that for all b in the solution

�s � er � � � e� � �w (9)

with equality if and only if �s = �w. To see this �rst note that at b = b < 1 it holds that
�s = �w = er = � = e� = 1 by de�nition. Then equations (7) and (8) imply that

fs(1)Fw(1)�
0
s(b) = fw(1)Fs(1)�

0
w(b):

By assumption
fs(1)Fw(1) > fw(1)Fs(1)

and thus
�0s(b) < �

0
w(b);

implying that for some " > 0 it holds that for all b 2 (b� "; b)

�s(b) > �w(b).
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A similar argument implies that for any b < b

�s(b) = �w(b) > b) �0s(b) < �
0
w(b)

and thus (9) must hold for all b in the solution of system (7), (8) as long as �s(b) > b holds.
Next, note that as long as

ns[er(b)� b] > (ns � 1)[�s � b] (10)

and
nw[er(b)� b] > (nw � 1)(b�(b)� b) (11)

hold, the system satis�es the Lipschitz property and thus there is a unique solution on [b; b].
It is easy to see that �0s; �

0
w > 0 must hold as long as (10) and (11) hold. Moreover, (11)

follows directly from (9).
Therefore, we only need to show that (10) holds for all b > 0 in the relevant range where

�s(b) > b. Let b = b
� be such that

ns[er(b)� b] = (ns � 1)[�s � b]

and for all b > b� condition (10) holds. Then it must hold that

nser0(b�) � (ns � 1)�0s(b�) + 1: (12)

Using the de�nition of er it holds that

erFns�1s (�s) = F
ns�1
s (r(�w))r(�w) +

Z �s

r(�w)

(ns � 1)Fns�2s (x)fs(x)xdx:

Using this formula and that ns[er(b�)� b�] = (ns � 1)[�s(b�)� b�] implies that

nser0(b�)Fs(�s(b�)) = �0s(b�)(ns � 1)(�s(b�)� b�)fs(�s(b�)):

Using the assumption that �0w(b
�) = 0 implies through (8) that

�0s(b
�)(ns � 1)(�s(b�)� b�)fs(�s(b�)) = Fs(�s);

and thus
nser0(b�) = 1:

But this last formula contradicts with (12), because �0s(b
�) > 0.

We have thus proven that the Lipschitz conditions cannot be violated as long as �s(b) > b
holds and that for all such b it also holds that �0s(b); �

0
w(b) > 0. Therefore, for all b two

things can happen. Either one can �nd a value eb � 0 such that �s(eb) = eb and for all b > eb
it holds that �0s(b); �

0
w(b) > 0 and �s(b) > b. If that is not possible, then it must hold

that �s(0) > 0. If one can show that there exists a b such that the �rst case occurs with
eb = 0, then our proof is complete. First, for b = 1 it holds that eb = 1, while for b = 0 the
second case follows with �s(0) = 1. To complete the argument we need to appeal to the
monotonicity properties of our system of ordinary di¤erential equations to conclude that
there exist an intermediate value b such that eb = 0. Take a sequence of bi starting with low
values for the end condition. Since for all such systems the Lipschitz conditions holds, there
there exists a unique solution and �s(0) is continuous in b thus there are two cases. Either
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for all higher values of b it still holds that �s(0) > 0, but that is ruled out since for b = 1
this is clearly not the case. Therefore, one must reach a value where �s(0) becomes zero by
the continuity of �s(0) in b.
Proof of Proposition (2):

Proof. Suppose there are two equilibria, with di¤erent upper end of the bid distribution,

b
1
; b
2
. Without loss of generality, let b

1
> b

2
and denote the corresponding solutions of our

di¤erential equation system as �1s; �
1
w and �

2
s; �

2
w. But construction it holds that

�1s(b
2
) < �2s(b

2
) = 1

and
�1w(b

2
) < �2w(b

2
) = 1:

Using ns = 1, the system of di¤erential equation can be written for i = 1; 2 as

�i
0

w =
Fw(�

i
w)

fw(�iw)

1

nw(ri(�iw)� b)

and

�i
0

s =
Fs(�

i
s)(r

i(�iw)� b) + Fs(ri(�iw))(nw � 1)(ri(�iw)� �iw)
fs(�is)(r

i(�iw)� b)2
:

First, suppose that �2w(
bb) = �1w(

bb) and �2s(bb) > �1s(
bb). Then under our assumptions

r2(bb) > r1(bb) and thus �20w (bb) < �1
0

w (
bb) must hold. But then for all b > bb it must hold that

�2w(b) < �
1
w(b), which contradicts with our starting assumptions.

Now, suppose that �2w(
bb) > �1w(bb) and �2s(bb) = �1s(bb) = �s. By the optimality condition

for the resale o¤er it holds that

ri(�iw)� �iw =
Fs(�

i
s)� Fs(ri(�iw))
fs(ri(�iw))

:

Therefore,

�i
0

s =
Fs(�

i
s)(r

i(�iw)� b) + Fs(ri(�iw))(nw � 1)
Fs(�

i

s
)�Fs(ri(�iw))

fs(ri(�iw))

fs(�is)(r
i(�iw)� b)2

:

Let !(r) = Fs(�s)�Fs(r)
fs(r)

and

�(r) =
Fs(�s)(r �bb) + Fs(r)(nw � 1)!(r)

fs(�s)(r �bb)2
: (13)

To show that �2
0

s (
bb) < �10s (bb) it is su¢cient then to show that

�(r2) < �(r1).

First, we establish the result for the nw = 2 case. Since by construction r
2 > r1, therefore

it is su¢cient to show that �0(r) < 0 for all r, where �0 is the partial derivative of � with
respect to r. After taking a derivative

�0(r) =
Fs(�s)(r �bb)(nw � 2) + (nw � 1)Fs(r)(r �bb)(!0 � 1)� 2(nw � 1)Fs(r)!(r)

(fs(�s)(r �bb)2)2
:
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If nw = 2, then �
0(r) < 0 holds trivially, if !0 � 1. Note, that

!0(r) = (
1� Fs(r)
fs(r)

)0 � (1� Fs(�s)
fs(r)

)0.

The assumption of monotone virtual utilities implies that ( 1�Fs(r)
fs(r)

)0 � 1. First, suppose

that f 0s(r) � 0. Then ( 1�Fs(�s)fs(r)
)0 � 0 and thus

!0(r) � 1:

Second, if f 0s(r) � 0, then !0(r) � 0 holds by construction.
Finally, we establish the result for the case where nw > 2 and Fs satis�es our extra

assumptions. Equation (13) can be rewritten as

�(r) =
Fs(�s)

1

r�bb
+ Fs(r)(nw�1)!(r)

(r�bb)2

fs(�s)
:

To show that � is decreasing in r, it is su¢cient to have that Fs(r)!(r)

(r�bb)2
is decreasing in r.

Rewriting this expression yields

Fs(r)!(r)

r2
r2

(r �bb)2
;

and since r2

(r�bb)2
is decreasing in r, it is su¢cient to show that

Fs(r)!(r)

r2
=
Fs(r)(Fs(�s)� Fs(r))

fs(r)r2
:

is decreasing in r. But this expression is decreasing in r as long as Fs(r)
fs(r)r2

is decreasing in

r, which was one of our assumptions.
We have thus shown the strict monotonicity of �s; �w in b. But then it is routine to

establish that there must be a unique b such that �s(0) = 0 holds, which concludes the
proof.

8 Appendix 2

In this Appendix, I establish the result claimed in the Example of the main text, i.e. that
in the three bidder auction considered in the Example, the asymmetry of bid distributions
between the bidders is reduced by the presence of resale compared to the benchmark case
of no resale. I assume that fs is decreasing and that

Fw
4
p
x
is increasing in x. Note, that

these assumptions (together with the assumption that Fs=Fw is increasing) imply that
Fs(x)
x

and Fw(x)
x

are decreasing in x. These assumptions are strong su¢cient conditions, and I
conjecture that they can be relaxed signi�cantly without changing the results.
Evaluating (3) at b = bw(x) and using that when ns = 1 then er = r; one obtains that

b0w(x) =
(r(x)� bw(x))2Fw(x)fw(x)

(Fw(x))2
: (14)
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Letting � = �s(bw), and combining (14) with (5) (again evaluated at b = bw(x) and using
that � = er = r when ns = 1) imply that

�0(x) =
fw(x)

Fw(x)fs(�(x))

Fs(�(x))(r(x)� bw(x)) + Fs(x)(r(x)� x)
(r(x)� bw(x))

: (15)

Now, let us examine the situation with three bidders like above but with no resale. Let
�w; �s denote the bid functions of a weak bidder and the strong, with inverse functions

w; 
s and let !(x) = 
s(�w(x)). I show below that it must hold that �(x) > !(x) > x for
all x 2 (0; v) for all x 2 (0; v), which implies that there is less asymmetry in the distribution
of bids produced by the two types of bidders when resale is allowed. Following the analysis
of Maskin and Riley (2000) it is routine to establish that

!0(x) =
fw(x)

Fw(x)

Fs(!(x))(2!(x)� x� �w(x))
fs(!(x))(x� �w(x))

; (16)

and

�0w(x) =
(!(x)� �w(x))2Fw(x)fw(x)

(Fw(x))2
:

I prove at the end of this Appendix that �00(1) > !00(1) and �0(1) = w0(1): Thus, since
�(1) = !(1); it follows that �(x) > w(x) for all x 2 (1 � "; 1) for a low enough ". Take
the largest value y < 1 where �(y) = !(y). By construction �0(y) � !0(y) must hold, but
I show that whenever �(y) = !(y) = k holds it also holds that �0(y) < !0(y), which yields
contradiction and establishes the proof that no such point y exists and thus for all x 2 (0; 1)
it holds that �(x) > !(x). First, note that

�0(y) =
fw(y)

Fw(y)fs(k)
(Fs(k) +

Fs(y)(r(y)� y)
(r(y)� bw(y))

)

and

!0(y) =
fw(y)

Fw(y)fs(k)
(Fs(k) +

Fs(k)(2k � 2y)
(y � �w(y))

):

Therefore, it is su¢cient to prove that

Fs(y)(r(y)� y)
(r(y)� bw(y))

<
Fs(k)(2k � 2y)
(y � �w(y))

. (17)

Next, note that r(u) 2 argmax
r

r(Fs(�(u))�Fs(r))+u(Fs(r) and the �rst order condition
implies that

Fs(�(u))� Fs(r(u))� fs(r(u))(r(u)� u) = 0. (18)

Since by assumption fs is a decreasing function, therefore

0 = Fs(�(u))� Fs(r(u))� fs(r(u))(r(u)� u) � fs(r(u))(�(u) + u� 2r(u)

or r(u) � �(u)+u
2 holds and thus r(y) � k+y

2 . Equation (14) implies that

r(y)� bw(y) =
Z y

0

(
Fw(u)

Fw(y)
)2r0(u)du:
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Di¤erentiating �rst order condition (18) by u yields

fs(�)�
0(u) = fs(r)(2r

0(u)� 1) + f 0s(r)(r(u)� u):

Since by assumption f 0s � 0, therefore the last equation implies that r0(u) � 1
2 for all u.

Moreover, since Fw
x
is decreasing in x it holds that for all u � y

(
Fw(u)

Fw(y)
)2 � u2

y2
.

The above then imply that

r(y)� bw(y) =
Z y

0

(
Fw(u)

Fw(y)
)2r0(u)du � y

6
.

Also, we know it from Maskin and Riley (2000) that in an auction without resale the
weak bidders bid more aggressively if they face a strong bidder than if they face only weak
bidders.13 Therefore,

�w(y) �
1

(Fw(y))2

Z y

0

2Fw(u)fw(u)udu:

Using that (Fw(x))
2

p
x

is an increasing function it follows that if y � u, then (Fw(u)
Fw(y)

)2 �
p
up
y

and thus a �rst order stochastic dominance argument yields that

�w(y) �
1

(Fw(y))2

Z y

0

2Fw(u)fw(u)udu �
1p
y

Z y

0

p
u

2
udu =

y

3
: (19)

Putting everything together and also using that k > y yields that

Fs(y)(r(y)� y)
(r(y)� bw(y))

<
Fs(k)(k � y)=2

y=6
=
3Fs(k)(k � y)

y
=

=
2Fs(k)(k � y)

2y=3
� 2Fs(k)(k � y)

y � �w(y)
;

which concludes the proof.
Proof that �00(1) > !00(1) and �0(1) = w0(1):
The �rst order conditions (15) and (16) imply that at the upper end of the support of

valuations (v = 1) it holds that !0(1) = �0(1) = fw(1)
fs(1)

< 1, since !(1) = �(1) = r(1) = 1

holds. Also, for all x 2 (0; 1) it holds that x < r(x) < �(x) and thus 1 > r0(1) > �0(1) =
!0(1).14 Now, I show that �00(1) > !00(1). Using (15) and (16), it is su¢cient to show that
at x = 1 it holds that

(
Fs(�(x))(r(x)� bw(x)) + Fs(x)(r(x)� x)

(r(x)� bw(x))
)0 > (

Fs(!(x))(2!(x)� x� �w(x))
(x� �w(x))

)0:

Since �0(1) < 1 holds, it follows that at x = 1

(
Fs(�(x))(r(x)� bw(x)) + Fs(x)(r(x)� x)

(r(x)� bw(x))
)0 > (

Fs(�(x))(2r(x)� x� bw(x))
(r(x)� bw(x))

)0.

13They only establish it for the case of two bidders, but extending their results is routine.
14The inequalities are strict as long as fw(1) > 0, which we assumed throughout.
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Therefore, it is su¢cient to establish that at x = 1

(
Fs(�(x))(2r(x)� x� bw(x))

(r(x)� bw(x))
)0 > (

Fs(!(x))(2!(x)� x� �w(x))
(x� �w(x))

)0;

which is equivalent to

(
(2r(x)� x� bw(x))
(r(x)� bw(x))

)0 > (
(2!(x)� x� �w(x))

(x� �w(x))
)0;

since !0(1) = �0(1). This last inequality is equivalent to

1� r0(1)
1� bw(1)

<
2(1� !0(1))
1� �w(1)

. (20)

Since r(1) = �(1) = 1 and for all x 2 (0; 1) it holds that r(x) < 1+�(x)
2 , thus it follows that

r0(1) > 1+�0(1)
2 = 1+!0(1)

2 and thus

1� r0(1)
1� bw(1)

<
1� !0(1)
2(1� bw(1))

.

Therefore, inequality (20) is satis�ed if

4(1� bw(1)) > 1� �w(1).

Also, (19) implies that �w(1) � 1=3 and thus it is su¢cient to prove that bw(1) <
5
6 . To

prove this last inequality, consider the problem of bidder 3 with type v3 = 1 and note that
by bidding bw(1) he surely gets the object at a price of bw(1). Suppose now, that he deviates
and bids zero in the auction stage and obtains the object at the resale stage only. In this
case, resale always takes place because the winning bidder o¤ers a resale price less than 1
with probability 1 and thus one needs to only establish that bidder 3 pays less than 5=6
for the object in expectation. To estimate the expected resale price, note that if a bidder

(other than 3) wins with type x then his resale o¤er is r(x) � x+�(x)
2 < x+1

2 . Since
Fw(x)
x

is
decreasing, thus distribution Fw is stochastically dominated by distribution G(x) = x. Let
W be the distribution function for the type of the winner when the strong bidder bids zero
in the original auction. Then

W (x) = Fw(x)
2 � x2;

and thus the expected price is estimated as

EP =

Z 1

0

r(x)dW (x) <

Z 1

0

x+ 1

2
� 2xdx = 5

6
;

which concludes the proof.
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