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“Entities should not be multiplied beyond necessity.”

Occam’s razor

Numerous economic models employ a continuum of negligible agents with a

sequence of idiosyncratic shocks and random matchings. Several attempts

have been made to build a rigorous mathematical justification for such

models, but these attempts have left many questions unanswered. In this

paper, we develop a discrete time framework in which the major, desirable

properties of idiosyncratic shocks and random matchings hold. The agents

live on a probability space, and the probability distribution for each agent

is naturally replaced by the population distribution. The novelty of this

approach is in the assumption of unknown identity. Each agent believes

that initially he was randomly and uniformly placed on the agent space,

i.e., the agent’s identity (the exact location on the agent space) is unknown

to the agent.
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1. Introduction

The Problem

A large number of models in monetary theory, game theory, evolution theory, etc.,

consider negligible agents that experience idiosyncratic shocks and randomly meet each

other. Aliprantis, Camera, and Puzzello [3], Alós-Ferrer [5], Boylan [7], and Duffie and

Sun [9] review multiple examples of such models. The assumptions in these models are

often made in the spirit of the Law of Large Numbers. For example, it is often assumed

that the sample distribution of shocks does not depend on the agent subset and equals the

probability distribution (No Aggregate Uncertainty property). Another usual assumption

requires the fraction of the agents from one set who meet agents from another set to be

equal the measure of the second set (Mixing property).3

Some economists have pointed out serious contradictions among standard assumptions

about idiosyncratic shocks and random matchings. One of the most famous contradictions

was described by Feldman and Gilles [10], who showed that for the unit interval of agents

with Borel σ-algebra, it is impossible to simultaneously satisfy No Aggregate Uncertainty

property on all measurable agent subsets.4 Judd [19] proved that the measure of the

realizations for which the sample distribution function of idiosyncratic shocks does not

exist on the whole agent space has inner measure zero and outer measure one. The

second contradiction was described by McLennan and Sonnenschein [21]. The authors

noticed that a measure preserving matching cannot simultaneously be mixing on all pairs

of measurable agent subsets.

Notwithstanding the contradictions in the standard assumptions, the economic models

that employ these assumptions are still widely used. By using idiosyncratic shocks and

random matchings on a space of negligible agents, one wants to achieve two important

goals. The first is to eliminate an agent’s influence on the aggregate characteristics of the

economy; this is achieved by using negligible agents. The second is to provide an analogue

3The term “meeting” will be used only with respect to one agent meeting another. A one-time process

of all the agents being paired up with each other will be called a “matching.”
4Contradictions mentioned in this paragraph will be considered in detail in Subsection 2.3. “Standard

Approach Inconsistencies.”
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of the Law of Large Numbers with respect to agent attributes, shocks, and meetings.

Although the Law of Large Numbers holds increasingly large finite populations, a näıve

replacement of a large but finite agent space with a space of negligible agents creates

multiple problems arising from significant differences in these spaces. As an example of

such a difference, every function is measurable on a finite space with the natural discrete

σ-algebra, whereas a σ-algebra of an infinite agent space might seriously restrict the set

of measurable functions.

In this paper, we suggest a new approach to resolve the conflicting issues of the stan-

dard assumptions of idiosyncratic shocks and random matchings on a space of negligible

agents. Using this approach, we build a mathematically valid discrete time model of

shocks and matchings that are independent from the history. The construction justifies

the use of numerous existing economic models. Obviously, it is almost impossible to build

a universal solution, however, the new approach lays out a foundation for many other

models, depending on the properties required.

Existing Solutions

There have been three distinct approaches to the idiosyncratic shocks problem. In the

first approach, a continuum economy is approximated either with a finite or countable set

of agents. Using this approach, Feldman and Gilles [10] showed the existence of a finitely

additive measure on the agent space such that the Law of Large Numbers-like properties

are satisfied. Al-Najjar [1] considered finite but increasingly large economies in which the

continuum-like Law of Large Numbers holds for any subinterval of the [0, 1] agent set.

Instead of the Lebesgue integral, Uhlig [23] used the Pettis integral, which captures the

idea of a normalized countable sum of shocks and thus gives the desired properties.

Hammond and Sun in [17] and [18] studied the behavior of aggregate shocks of a

sequence of the agents randomly chosen from a continuum population. They found the

Monte Carlo limit measure of the shocks, thus connecting the properties of continuum

populations with the properties of random countable subsets. Al-Najjar [2] discussed the

equivalence of large discrete and continuum population games.

The approach of finite or countable economies can also be applied to random matchings.

Gilboa and Matsui [13] considered a continuous time model with a countable population

of individuals, each of whom meets someone only once during his lifetime. The authors
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satisfied No Aggregate Uncertainty property for any measurable agent subset. Boylan [7]

considered simultaneous matching of countably many agents and formulated the Law of

Large Numbers-like properties with respect to a finite set of agent types. In [8] Boylan

discussed the limit properties of random matchings in discrete time games with a finite

number of agents as the number of agents increases to infinity and the time grid becomes

finer.

In the second approach, the σ-algebra is extended to satisfy desired properties. For any

arbitrary iid random variables on the unit interval of agents Judd [19] built an extension

of the sample space so that there is no aggregate uncertainty on the whole agent space.

Green [14] endowed the unit interval of agents with a σ-algebra richer than the Borel σ-

algebra, and constructed a family of iid random variables with no aggregate uncertainty

on any subinterval. Sun [22] used hyperfinite Loeb spaces to demonstrate a similar result

for an arbitrary agent space.

Duffie and Sun [9] applied the approach of extending the σ-algebra to random match-

ings. They employed hyperfinite Loeb spaces to construct a random matching with respect

to a finite set of agent types. The authors built an agent space and a matching satisfying

the Law of Large Numbers-like properties. The matching is independent in types with

respect to any agent types assignment.

The third approach was introduced by Feldman and Gilles [10]. In this approach, the

main property of idiosyncratic shocks—independence—is relaxed. Developing the idea of

dependent shocks, Alós-Ferrer [5] considered a randomly rotated circumference of a con-

tinuum of agents to construct a dependent random matching. The rotated circumference

is naturally mapped onto the original one. The shock of an agent is the shock that was

originally at the point of the circumference before the rotation. The matching satisfies

No Aggregate Uncertainty property with respect to a finite set of types, except for inde-

pendence of the matches. In [6], Alós-Ferrer extended the result to multiple populations.

Aliprantis, Camera, and Puzzello in [3] and [4] did not suggest any solution to the

problem of idiosyncratic shocks or random matching, but did build a set-theoretical foun-

dation for a matching. They also developed a theory of anonymity. Anonymity, which

plays an important role in some matching models, requires that an agent and his partner
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have non-intersecting sets of previous partners.5 Thus, meeting agents cannot meet again

in the future, directly or through their partners, and therefore do not need to act strate-

gically with respect to their current partners. Previous partners can be defined in several

different ways; this leads to different definitions of anonymity. Aliprantis, Camera, and

Puzzello constructed a sequence of anonymous matchings for a countable population. At

the same time, the role of anonymity in randomness of the matchings was not discussed.

Why Do We Need a Further Solution?

Although multiple remedies have been suggested for the problems of idiosyncratic

shocks and random matchings, no solution is close to being perfect. Finite or countable

approximations do not provide an infinitely additive measure and therefore might cause

problems with integration: the integral might not coincide with the Lebesgue integral.

Correlated shocks and meetings lack one of the most important properties of randomness

across the agents: independence.

Duffie and Sun [9] found a random matching with respect to a finite set of agent types.

Due to a finite set of agent types, the Law of Large Numbers-like properties use simple

form formulations, with the clauses “for all random realizations” and “for all agents sets”

rearranged. At the same time, multiple economic models require infinite, and sometimes

continuum, sets of agent types.6 Due to this requirement of infinite or continuum agent

types, Duffie and Sun’s solution cannot be applied to such models.

Finally, to our knowledge, no paper simultaneously incorporates both idiosyncratic

shocks and random matchings. Thus, it is difficult if not impossible to apply any of the

existing solutions to economic models with idiosyncratic shocks and random matchings.

The Main Idea

The existing solutions explicitly or implicitly assume that the agents know their iden-

tities. Identity is the agent’s location on the agent space. Thus, an agent knows his

identity if he correctly associates himself with the corresponding element of the agent

space (identity). Because of this assumption of known identity, the standard approach

requires a sample space that allows us to model uncertainty the agents face about their

5See, for example, Green and Zhou [15].
6For example, the models with continuum money holdings, see Green and Zhou [15], or models with

continuum action sets, see Gale [12].
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future shocks and meetings. Therefore, two separate spaces are needed: agent space and

sample space.

However, the requirement of identity knowledge is often excessive and has no influence

on the results. What the models really require is that the agents initially be assigned some

attributes, like endowment, products they consume, etc. In assigning these attributes,

there is no need to distinguish the agents based on their identities. In a symmetric

equilibrium, the agents do not use identity knowledge in choosing their actions. Thus, the

use of a symmetric equilibrium also implies that the agents do not know their identities.

Employing the idea of unknown identity, we eliminate the sample space and consider

only one space—the identity/agent space, which is essentially a probability space.7 The

randomness the agents face comes from their unknown identities. Each agent believes

that he was randomly and uniformly placed on the identity space, as if he were randomly

assigned an identity. The shocks and meetings are some predetermined functions of the

identities and are known to everyone. However, the agents do not know their identities

and therefore perceive future shocks and meetings as random. Based on the previous

shocks and meetings, the agents update their identities beliefs using the Bayesian rule.

The updated beliefs about identities still allow uncertainty about future events the agents

face.

One might think about an identity as being comprised of agent attributes and a sequence

of predetermined events (shocks, meetings) that will happen to the agent. Initially, the

agent does not know his identity (attributes and the sequence of events), although there

is no randomness in assigning identities to the agents. This is why the identity space is

the same as the agent space. As time goes by, every agent learns a bigger and bigger part

of this sequence of events. However, based on the known part of the sequence, he cannot

efficiently predict events that have not yet had happened.

The difference between the standard and new approaches can be seen through the

following example. Suppose that we have six agents, and the shocks take values from

set {1, 2, 3, 4, 5, 6}. In the standard approach, each agent is represented by a die, and to

determine the shocks, we have to throw all six dice, one per agent. An agent’s shock is

7Eliminating the sample space as an unnecessary detail explains Occam’s razor in the epigraph of this

paper.
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the number on his die. Thus, in the standard approach, the shocks can be the same, or all

agents can have different shocks. In the new approach, there are also six dice (identities),

however, each die has only one number on it: 1, 2, 3, 4, 5, or 6, a die per each number.

The agents are randomly assigned to the dice on a one-to-one basis. The shock is the

number on the agent’s die, and different agents always have different shocks. Thus, in the

standard approach, there is aggregate uncertainty; the average shock might be different

for different realizations. In the new approach, there is no aggregate uncertainty, because

the sample distribution of the shocks is always the same.

The approach of unknown identities is based on Kolmogorov’s definition of randomness,

see Kolmogorov [20]. Namely, random variables—shocks—are some measurable functions

on the agent space. The agent’s identity is not known to the agent; the agent believes that

his identity is uniformly distributed on the agent space. With time, the agent updates

his identity belief based on the events observed.

The Results

The unknown identity assumption allows us to redefine shocks and matchings. In

order to define independence of shocks and matchings, we employ the concept of history,

i.e., all events that the agent has observed on his own (i.e., his own shocks) or through

communication during the meetings (shocks of other agents). Shocks and matchings are

independent from the history if the agents cannot make any informative conclusion about

the future based on their histories. Theorem 1 demonstrates that anonymity is required

for the matchings to be independent from the history.

In Theorem 2 we construct a space of negligible agents and a sequence of shocks and

anonymous matchings on this agent space that are independent from the history. To

achieve this goal, we combine the discrete approach for a countable population (Aliprantis,

Camera, and Puzzello [3] and [4]) with measure- and probability-theory tools. The Law

of Large Numbers-like properties on this new space hold with respect to the σ-algebra

generated by the histories.

The new approach allows us to combine in one model both idiosyncratic shocks and

random matchings. The Law of Large Numbers-like properties hold in every important

aspect for both shocks and matchings for any history-generated agent subset. The new
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approach is important for applications as it incorporates several features the previous

solutions failed to justify.

Plan of the Paper

The rest of the paper is organized as follows. Section 2 discusses the standard approach

to idiosyncratic shocks and random matchings and shows the problems arising from using

this approach. Section 3 provides new definitions of independent shocks and matchings

and discusses the connection between these two objects and anonymity. Section 4 proves

the existence of independent shocks and matchings. Section 5 is our conclusion.

2. Standard Approach

In this section, we discuss what is usually understood by idiosyncratic shocks and ran-

dom matchings. Particular assumptions vary from paper to paper and are often vaguely

formulated. Thus, we give here the most general setup as we understand it when the

agents first experience shocks and then meet pairwise with each other. Some parts of this

setup are given in multiple papers on idiosyncratic shocks and random matchings. These

papers include Alós-Ferrer [5], Boylan [7], Duffie and Sun [9], Feldman and Gilles [10],

Gale [12], Green [14], Judd [19], McLennan and Sonnenschein [21], and Sun [22]. For

simplicity and without loss of generality, time is not taken into account in this section.

After defining the properties, we discuss their possible alternative formulations and the

problems which arise in this standard approach.

2.1. The Setup

Let A be the agent space with σ-algebra A and probability measure µ. Let (Ω,F ,P)

be the sample space. Measure µ is assumed to be atomless, i.e., the agents are negligible.

Every agent a ∈ A first experiences shock ξa and then meets another agent in accordance

with some rule Ma.
8 The rest of the assumptions describe those two objects, ξ and

M, and fall into three different categories: assumptions about shocks ξa (shocks are

8The singular form “shock” will be used to refer to one random variable, or to refer to its realization

for one agent. Plural “shocks” will be used to refer to many random variables, or to realizations for

different agents.
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idiosyncratic), assumptions about matching M (meetings are random), and assumptions

about joint properties of shocks and matching.

Idiosyncratic Shocks

An idiosyncratic shock is a function ξ : A × Ω → R (denoted also as ξa : Ω → R or

ξω : A → R) with the following properties:

A1. Measurability: for any a ∈ A function ξa(·) is F -measurable; for any ω ∈ Ω function

ξω(·) is A-measurable;9

A2. Identical Distribution: shock ξa(·) has the same cdf F (·) for every agent a ∈ A;

A3. Independence: for any different agents a1, a2, . . . , al ∈ A corresponding shocks ξa1(·),

ξa2(·), . . . , ξal
(·) are independent;

A4. No Aggregate Uncertainty: for any random realization the sample cdf of the shocks

equals F (·) on any measurable agent subset,10

∀ω ∈ Ω, ∀B ∈ A, ∀x ∈ R µ({a ∈ B : ξω(a) ≤ x}) = F (x)µ(B).

Random Matching

A random matching, which determines whom everyone meets for each ω ∈ Ω, is a

mapping M : A × Ω → A (also denoted as Ma : Ω → A or Mω : A → A) with the

following properties:

B1. No Agent Is Idle: no agent meets himself,

∀ω ∈ Ω, ∀a ∈ A Mω(a) 6= a;

B2. Involution: the partner’s partner is the agent himself,

∀ω ∈ Ω, ∀a ∈ A Mω(Mω(a)) = a;

9By measurability we mean separate measurability, in contrast to joint measurability.
10We formulate here No Aggregate Uncertainty property with respect to the distribution. Some authors

formulate it with respect to the average, see Feldman and Gilles [10]:
∫

B

ξω(a) dµ(a) = µ(B)

∫

R

x dF (x) ∀ω ∈ Ω,∀B ∈ A.
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B3. Measurability: for any a ∈ A operator Ma(·) is F -measurable; for any ω ∈ Ω

operator Mω(·) is A-measurable;11

B4. Measure Preserving: for any a ∈ A operator Ma(·) does not change measure of any

measurable agent subset,

∀ω ∈ Ω, ∀B ∈ A µ(Mω(B)) = µ(B);

B5. Uniform Distribution: probability of meeting an agent from some subset equals the

measure of this subset,

∀a ∈ A, ∀B ∈ A P({ω : Ma(ω) ∈ B}) = µ(B);

B6. Independence: for any different agents a1, a2, . . . , al ∈ A their partners Ma1(·),

Ma2(·), . . . , Mal
(·) are independent;

B7. Mixing: the fraction of the agents from one subset who meet agents from another

subset equals the measure of the second subset,

∀ω ∈ Ω, ∀B1, B2 ∈ A µ(Mω(B1) ∩ B2) = µ(B1)µ(B2).

In addition to properties A1-A4 and B1-B7, some independence is usually assumed be-

tween the shocks and matching. Although different papers use different and often vague

independence formulations, these formulations have one element in common: indepen-

dence of an agent’s future from the current/past events.

Example 1. To illustrate how the standard approach works, consider the following

example. For simplicity of the example, the agent space is discrete and consists of eight ele-

ments, A = {a1, a2, a3, a4, a5, a6, a7, a8}. Each agent a experiences shock ξa : Ω → {−1, 1},

P(ξa(ω) = 1) = P(ξa(ω) = −1) = 1/2; shocks are independent across the agents. The

matching rule is the following. Consider all deterministic one-to-one matchings satisfying

properties B1 (No Agent Is Idle) and B2 (Involution). Consider a random matching in

which all deterministic matchings are equally probable. We assume that the agents are

matched independently of the shocks.

In this example, properties A1 and B3 (Measurability), A2 (Identical Distribution), A3

(Independence), B1 (No Agent Is Idle), B2 (Involution), and B4 (Measure Preserving)

11See Footnote 9 about separate and joint measurability.



11

hold by construction. However, properties A4 (No Aggregate Uncertainty), B5 (Uniform

Distribution), B6 (Independence), and B7 (Mixing) do not hold. For example, property

B5 (Uniform Distribution) does not hold, because no agent can meet himself, and thus the

distribution of Agent a1’s partners differs from the distribution of Agent a2’s partners;

property B6 (Independence) does not hold, because Agent a1 meeting Agent a2 infers

Agent a2 meeting Agent a1.�

2.2. Different Formulations of the Properties

In defining idiosyncratic shocks and random matching, we used “for all ω ∈ Ω” formu-

lations, which are essentially similar to “for almost all ω ∈ Ω” formulations. However,

some properties dealing with agent subsets allow multiple variations. For example, con-

sider property A4 (No Aggregate Uncertainty). The following alternative formulations

are possible:

A4’. For any measurable agent subset, there is no aggregate uncertainty on it with

probability one, i.e., for any B ∈ A, for almost all ω ∈ Ω holds

∀x ∈ R µ({a ∈ B : ξω(a) ≤ x}) = µ(B)F (x);

A4”. With probability one, there is no aggregate uncertainty on any measurable agent

subset, i.e., for almost all ω ∈ Ω, for any B ∈ A holds

∀x ∈ R µ({a ∈ B : ξω(a) ≤ x}) = µ(B)F (x).

The difference between A4’ and A4” formulations is in the location of the clause “for

any B ∈ A” with respect to the clause “for almost all ω ∈ Ω.” In A4’, we first fix the agent

subset, and then we say that for almost all realizations, there is no aggregate uncertainty

on this subset. In A4”, for almost all realizations, there is no aggregate uncertainty on any

measurable agent subset. Obviously, A4’ follows from A4”, but not vice versa. Similar

to A4’ and A4”, different formulations can be used for other properties, like B4 (Measure

Preserving), B5 (Uniform Distribution), etc.

To illustrate the difference between A4’ and A4” formulations, consider the following

example.12 Take a sequence {τi : Ω → [0, 1]}i∈N of uniformly distributed on [0, 1] inde-

pendent random variables. For any set B ⊂ [0, 1] define νω(B) = limn→∞
#{i<n:τi(ω)∈B}

n
, if

12This example has the same idea as the one given by Al-Najjar [1], Footnote 17.
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it exists. From the Strong Law of Large Numbers it follows that for any B with measure

µ(B), with probability one νω(B) exists and νω(B) = µ(B), or A4’-type property holds.

However, for any particular ω, sequence τi(ω) consists of a countable number of elements,

therefore there exist measurable sets B such that νω(B) 6= µ(B), for example

B = [0, 1] \ ∪i∈N{τi(ω)},

i.e., A4”-type property does not hold.

2.3. Standard Approach Inconsistencies

Although the standard approach with A4”-type formulations looks intuitively natural,

it contains multiple contradictions. We consider two famous problems one can face while

using this approach. The examples show that idiosyncratic shocks or random matching

with A4”-type properties do not exist.

There Always Exists an Agent Subset with Aggregate Uncertainty

Proposition 1 of Feldman and Gilles [10] shows that for the unit interval of agents with

Borel σ-algebra and Bernoulli shocks, for any realization, there always exists a measurable

agent subset with aggregate uncertainty. This result can be generalized. Consider an

agent space. For an arbitrary ω ∈ Ω take some m and define Bm = {a ∈ A : ξω(a) < m}.

If property A4” holds, then for any non-degenerate distribution of shocks ξω(·), we can

always choose m so that µ(Bm) ∈ (0, 1). Denoting the average shock on B ∈ A as EBξω(·),

we have EBm
ξω(·) < EBm

ξω(·). The last inequality means that aggregate uncertainty

exists either on Bm, or on Bm, or on both Bm and Bm.

Thus, it is impossible to achieve No Aggregate Uncertainty property simultaneously on

all measurable agent subsets for any ω ∈ Ω, i.e., property A4” cannot be satisfied.

Measure Preserving Matching Cannot Be Mixing

Property B7 (Mixing) says that for any realization ω ∈ Ω exactly µ(B2) fraction of the

agents from subset B1 are matched with the agents from subset B2:

µ(Mω(B1) ∩ B2) = µ(B1)µ(B2).
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Take B1 such that µ(B1) ∈ (0, 1) and B2 ≡ Mω(B1).
13 Then

µ(Mω(B1) ∩ B2) = µ(B1) > µ(B1)
2 = µ(B1)µ(B2),

i.e., for any ω ∈ Ω, properties B4 (Measure Preserving) and B7 (Mixing) do not hold

simultaneously on all measurable pairs of agent subsets.

3. Independent Shocks and Matchings

In the previous section, we showed that idiosyncratic shocks and random matchings

do not exist in the standard approach. This section defines shocks and matchings us-

ing unknown identities. We show how the standard properties relate to the new ones.

Throughout the section, we construct an example to illustrate new definitions.

3.1. Basic Definitions

Consider a set of identities A with σ-algebra A and atomless probability measure µ :

A → [0, 1]. The same space serves as the agent space. Each agent α has general knowledge

about (A,A, µ). However, the agent does not know his identity a(α) ∈ A—the location on

the identity space. The uncertainty an agent faces comes from his unknown identity: he

believes that the identity was drawn at random from A: for any B ∈ A holds Pα(a(α) ∈

B) = µ(B), as if the agent was randomly placed on the identity space. Without loss of

generality, for the rest of the paper we will identify agent α and his identity a(α).

Example 2. Although we assume that the agent space consists of an uncountable

number of negligible agents, we consider a simplified example of a discrete space of eight

agents,

A = {a1, a2, a3, a4, a5, a6, a7, a8},

with discrete σ-algebra A and counting measure µ(·). Each agent knows that there exist

exactly eight agents; however, no agent knows who he is among these eight agents. Every

agent a believes that he was randomly and uniformly placed on the agent space, therefore

for any i = 1, 2, . . . , 8 holds P(a = ai) = 1/8.�

Definition. A shock is a random variable ξ : A → Y for some measurable space (Y, Σ).

13This example was taken from McLennan and Sonnenschein [21].
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For the rest of the paper, we assume that Y = R
m with Σ being the Borel σ-algebra on

R
m. Using this multidimensional space Y , one is able to model several real-valued shocks

at every period of time. Although we use the same multidimensional real-valued shock

space (Y, Σ) for every period of time, this is clearly not a limitation.

Such a definition of a shock replaces property A1 (Measurability), because a random

variable is measurable by definition. Unknown identity assumption replaces property

A2 (Identical Distribution), because the agents become ex ante identical in their beliefs

about identities. Unknown identity assumption together with atomless measure assump-

tion replaces property A3 (Independence), because independently chosen agents have

independent identities.

Example 2 (continued). Consider the following shocks (see Fig. 1 below):

ξ(a1) = ξ(a3) = ξ(a5) = ξ(a6) = 1, ξ(a2) = ξ(a4) = ξ(a7) = ξ(a8) = −1.

Each agent knows the mapping of the identities into shocks, however, each agent believes

that he will experience shock −1 or 1 with probability 1/2 because

P(a : ξ(a) = 1) = P(a ∈ {a1, a3, a5, a6}) = 4/8 = 1/2,

P(a : ξ(a) = −1) = P(a ∈ {a2, a4, a7, a8}) = 4/8 = 1/2.�

Definition of a matching, in addition to measurability as in the definition of a shock,

requires some additional properties.

Definition. A matching is an operator M : A → A with the following properties:

C1. No Agent Is Idle: no agent meets himself,

∀a ∈ A M(a) 6= a;

C2. Involution: the partner’s partner is the agent himself,

∀a ∈ A M(M(a)) = a;

C3. Measurability: M maps measurable sets into measurable sets,

∀B ∈ A M(B) ∈ A;
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C4. Measure Preserving: M does not change the measure of a measurable set,

∀B ∈ A µ(M(B)) = µ(B).

Unknown identity assumption replaces property B5 (Uniform Distribution), because

all agents become ex ante identical; unknown identity assumption along with atomless

measure assumption replace property B6 (Independence), because partners of indepen-

dently chosen agents are independent. Properties C1-C4 (No Agent Is Idle, Involution,

Measurability, and Measure Preserving) are equivalent to corresponding properties B1-

B4. Property C2 (Involution) gives existence of matching M−1 ≡ M. Because of property

C1 (No Agent Is Idle), a composition of two arbitrary matchings need not be a matching.

To see this, notice that in a composition of a matching with itself, every agent is matched

with himself, which contradicts C1 (No Agent Is Idle).

Example 2 (continued). Consider the following matching M satisfying properties

C1 and C2 (see Fig. 1): Agent a1 meets with Agent a5, Agent a2 meets with Agent a6,

Agent a3 meets with Agent a7, and Agent a4 meets with Agent a8. This matching M

satisfies properties C3 (Measurability) and C4 (Measure Preserving), because it is a one-

to-one mapping on a finite agent space with the discrete σ-algebra and counting measure.��

Matching

Shocks

Agents a1 a2 a3 a4 a5 a6 a7 a8

✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻

1 -1 1 -1 1 -1 1 -1

Figure 1. Shocks and matchings for Example 2.

Before proceeding to independent shocks and matchings, we need to define history to

capture the idea of independence of the future from current and past events.

3.2. History

Time is discrete, t ∈ T ⊆ Z. At the beginning of each period t, the agents experience

shocks ξt(a), and at the end of each period they meet in accordance with matching Mt.

We denote agent a’s history measured right before the matching (or after the current

period shock) by Ht : A → Ht, and right before the shock (or after the previous period
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matching) by H ′
t : A → H′

t, where Ht and H′
t stand for the corresponding spaces of all

histories with σ-algebras. The history evolves in accordance with transition functions

ht : H′
t × Y → Ht and h′

t : Ht−1 × Ht−1 → H′
t such that Ht(a) = ht(H

′
t(a), ξ(a)) and

H ′
t(a) = h′

t(Ht−1(a), Ht−1(Mt−1(a)). These transition functions, which are assumed to

be jointly measurable, determine how much the agents remember from the past and how

much information they share during the meetings. We assume that the agent’s own

shocks and information sharing during the meetings are the only two possible sources for

the history:

σ(Ht(·)) ⊆ σ ({ξt0 ◦ Mt1 ◦ . . . ◦ Mtl(·)}t0≤t1<...<tl<t,l≥1, {ξt0(·)}t0≤t) ; (1)

σ(H ′
t(·)) ⊆ σ ({ξt0 ◦ Mt1 ◦ . . . ◦ Mtl(·)}t0≤t1<...<tl<t,l≥1, {ξt0(·)}t0<t) . (2)

Definition. The maximal history H̃t(·), H̃ ′
t(·) is the history with transition functions

H̃t(a) = hM(H̃ ′
t(a), ξ(a)) ≡ (H̃ ′

t(a), ξ(a));

H̃ ′
t(a) = h′

M(H̃t−1(a), H̃t−1(Mt−1(a)) ≡ (H̃t−1(a), H̃t−1(Mt−1(a)).

Thus, under the maximal history, the agents share their full histories during the meetings

and do not forget anything from the past (their own shocks and the their partners’s

histories).

Example 3. Suppose in a 3-period model the agents meet in accordance with Fig. 2,

where the arrows represent meetings and circles represent shocks. Thus, Agent 1 meets

Agent 5 in period 1, Agent 3 in period 2, and Agent 2 in period 3.

For the maximal history, at the end of period 3 (after the matching) Agent 1 knows

his shocks at periods 1, 2, and 3 (known to Agent 1 shocks at the end of period 3 are

denoted by large circles), Agent 2’s shocks at periods 1, 2, and 3 (because they met at

period 3), Agent 3’s and Agent 4’s shocks at periods 1 and 2 (because Agent 1 met with

Agent 3 and Agent 2 met with Agent 4 at period 2), and Agent 5’s, Agent 6’s, Agent 7’s,

and Agent 8’s shocks at period 1. At the same time, Agent 1 at the end of period 3 does

not know, for example, Agent 3’s shock at period 3.�
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Figure 2. Shocks and matchings for Example 3.

Let At be the minimal σ-algebra in which history Ht(a) is a measurable function:

At = σ(Ht(·)), and A′
t be the minimal σ-algebra in which history H ′

t(a) is a measurable

function: A′
t = σ(H ′

t(·)). From formulas (1) and (2) follows that At,A
′
t ⊆ A.14

Example 2 (continued). Consider maximal history (see Fig. 1). Before the shock,

σ-algebra Ã′
1 = {∅, A} is trivial, and before the matching σ-algebra (see Fig. 1)

Ã1 = σ({a : ξ(a) = −1}, {a : ξ(a) = 1}) = {∅, {a1, a3, a5, a6}, {a2, a4, a7, a8}, A}.

After the matching, σ-algebra

Ã′
2 = σ(Ã1,M ◦ Ã1) = σ({a1, a5}, {a2, a7}, {a3, a6}, {a4, a8}).

�

3.3. Independence

Property B7 (Mixing) was not correctly defined due to the fact that no matching can

be mixing on the whole nontrivial σ-algebra A, as we showed in subsection 2.3. “Standard

Approach Inconsistencies.” However, if we consider a family of σ-algebras {At} generated

by the histories, the sequence of matchings {Mt} might be mixing in the sense of Mt

being mixing on At for each t. In the same way, at time t there might be no future

aggregate uncertainty simultaneously on all agent subsets from the history-generated σ-

algebra A′
t. In this subsection, we define independence of shocks and matchings from the

history.

14Inclusion At,A
′

t
⊆ A does not simply follow from measurability of transition functions and shocks

and matchings, because there might be no “start time,” and therefore some knowledge might not be

related to shocks and matchings; this extra knowledge might have always existed.
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Definition. Shock ξt is independent from the history if

C5. Shock Independence: shock ξt is independent from σ-algebra A′
t ≡ σ(H ′

t(·)).

Property C5 (Shock Independence) replaces property A4 (No Aggregate Uncertainty),

because a shock is independent from the history-generated σ-algebra, and the fraction

of the agents getting their shocks within some measurable set does not depend on the

history.

To define a history-independent mixing property, we first need independence of a match-

ing from a σ-algebra. The definition is similar to the definition of the independence of a

random variable from a σ-algebra.

Definition. Matching M is independent from σ-algebra C if σ-algebras C and M ◦ C

are independent.

Example 2 (continued). It is easy to verify that σ-algebras Ã1 and M(Ã1) are

independent. Indeed, consider, for example, sets B = {a1, a3, a5, a6} ∈ Ã1 and C =

{a5, a7, a1, a2} ∈ M(Ã1). Then

µ(B ∩ C) = µ({a1, a5}) = 1/4 = 1/2 ∗ 1/2 = µ(B)µ(C).

Thus, matching M is independent from σ-algebra Ã1 ≡ σ(ξ).�

Definition. Matching Mt is independent from the history if

C6. Matching Independence: matching Mt is independent from σ-algebra At ≡

σ(Ht(·))).

Property C6 (Matching Independence) is a reformulation of Property B7 (Mixing). It

says that for any B, C ∈ At events B and Mt(C) are independent, or

µ(B ∩ Mt(C)) = µ(B)µ(Mt(C)) = µ(B)µ(C).

If an agent knows that his history belongs to B, then his partner’s history belongs to

M(C) with probability µ(C). In other words, the agent’s belief about partner’s history

does not depend on the agent’s own history.

Properties C5 and C6 (Shock and Matching Independence) replace joint independence

of matchings and shocks in the standard approach. Both definitions require the current

event (own shock or partner’s history) to be independent from the agent’s past. For the

matching, the past is Ht(·) and the event is Ht(M(·))—the partner’s history. For the
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shock, the past is H ′
t(·) and the event is ξt(·)—the shock. Consequently, independent

shocks and matchings defined above are equivalent to what is assumed by idiosyncratic

shocks and random matchings in the standard approach.

Later in this paper, we will say that shocks and matchings are independent. By in-

dependence of the shocks and matchings, we will mean that shocks and matchings are

independent from the history.

Table 1 summarizes correspondence between the standard and new properties.

Old Property New Property

Shocks

A1 (Measurability) Shock definition

A2 (Identical Distribution) Unknown identity

A3 (Independence) Unknown identity, atomless measure

A4 (No Aggregate Uncertainty) C5 (Shock Independence)

Matchings

B1 (No Agent Is Idle), B2 (Involution),

B3 (Measurability), B4 (Measure Pre-

serving)

C1 (No Agent Is Idle), C2 (Involution),

C3 (Measurability), C4 (Measure Pre-

serving)

B5 Uniform Distribution Unknown identity

B6 Independence Unknown identity, atomless measure

B7 Mixing C6 (Matching Independence)

Joint Independence

Independence of shocks and matchings C5 (Shock Independence), C6 (Matching

Independence)

Table 1. Correspondence of the Properties.

Both independent shocks and matchings are defined through a particular history, which

determines σ-algebras A′
t and At. The same shocks and matchings can be either inde-

pendent or not for different histories. All histories can be partially ordered based on

the amount of information they contain. The maximal history, under which the agents
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remember everything from the past and share complete information during the meetings,

bears the maximal amount of information and thus is superior to any other history. If

the shocks and matchings are independent for some history, they stay independent for

any function of that history, because any functions of independent random variables are

independent, too. If shocks and matchings are not independent for some history, they

obviously are not independent for a superior history.

3.4. Anonymity in Matchings

The anonymity property, which requires any two agents to meet at most once, directly

or through their partners, plays an important role in many economic models (see, for

example, Green and Zhou [15]). This property is needed to ensure that the current action

of an agent can not influence the behavior of his future partners. In this subsection, we

establish a connection between independence of matchings and anonymity.

We define strongly anonymous matchings similar to Aliprantis, Camera, and Puzzello [3].

Namely, let

Πt(a) =
⋃

t1<t2<...<tl<t,l≥0

{Mt1 ◦ Mt2 ◦ . . . ◦ Mtl(a)}

be the set of all agent a’s previous direct and indirect partners before the matching at

time t, including agent a himself. (For l = 0 we assume that Mt1 ◦ . . . ◦ Mtl(a) = a.) By

direct partners we mean all agents with whom agent a met directly:

⋃

t1<t

{Mt1(a)} ,

and by indirect partners we mean all agents with whom agent a met through other agents:

⋃

t1<t2<...<tl<t,l≥2

{Mt1 ◦ Mt2 ◦ . . . ◦ Mtl(a)} .

Sets {Πt(a)}a∈A determine if matching Mt is strongly anonymous.

Definition. Matching Mt is strongly anonymous if no meeting agents have common

direct or indirect partners:

∀a ∈ A Πt(a) ∩ Πt(Mt(a)) = ∅.

Example 3 (continued). The matchings in the matching scheme depicted at Fig. 2

are strongly anonymous for the maximal history. For example, Π1(a1) = {a1}, Π2(a1) =
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{a1, a5}, and Π3(a1) = {a1, a3, a5, a7}. Thus,

Π3(a1) ∩ Π3(M3(a1)) = ∅

because Π3(M(a1)) = Π3(a2) = {a2, a4, a6, a8}.�

The concept of a strongly anonymous matching is very strict; we can allow a possi-

bility of common partners if it has zero probability. To do this, we introduce µ-strongly

anonymous matchings.

Definition. Matching Mt is µ-strongly anonymous if, with probability one, the meeting

agents do not have common direct or indirect partners:

µ ({a : Πt(a) ∩ Πt(Mt(a)) = ∅}) = 1.

The following theorem demonstrates that a matching independent from the maximal

history should be µ-strongly anonymous. If the history differs from the maximal history,

the requirement of µ-strong anonymity can be weakened, because any other history is a

function of the maximal history.

Theorem 1. Let shocks ξt ∈ R
m have at least one continuous component. Then any

independent from the maximal history matching Mt is µ-strongly anonymous.

Proof of Theorem 1. Fix time period t. We can consider only continuous component

for each of the shocks. Let B be the set of all agents who have previous direct or indirect

partners in common with their matches, B ≡ {a : Πt(a) ∩ Πt(Mt(a)) 6= ∅}. Thus,

B =
⋃

t1<t2<...<tl<t,l≥0

t′1<t′2<...<t′
l′

<t,l′≥0

Bt1t2...tl
t′1t′2...t′

l′
,

where

Bt1t2...tl
t′1t′2...t′

l′
=

{

a ∈ A : Mt1 ◦ Mt2 ◦ . . . ◦ Mtl(a) = Mt′1
◦ Mt′2

◦ . . . ◦ Mt′
l′
(Mt(a))

}

.

Denote ηt1t2...tl
t0

(a) = ξt0 ◦ Mt1 ◦ Mt2 ◦ . . . ◦ Mtl(a). Obviously,

Bt1t2...tl
t′1t′2...t′

l′
⊆

{

a ∈ A : ηt1t2...tl
min(t1,t′1)(a) = η

t′1t′2...t′
l′

min(t1,t′1)(Mt(a))
}

.

Matching Mt is independent from the maximal history, therefore Mt is independent

from At, and random variables ηt1t2...tl
min(t1,t′1) and η

t′1t′2...t′
l′

min(t1,t′1) ◦Mt are independent as ηt1t2...tl
min(t1,t′1) is
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At-measurable and η
t′1t′2...t′

l′

min(t1,t′1) ◦Mt is M ◦At-measurable. From Feller [11] Theorem V.4.4.

follows that

µ
({

a : ηt1t2...tl
min(t1,t′1)(a) = η

t′1t′2...t′
l′

min(t1,t′1)(Mt(a))
})

= 0.15

Therefore, measure of each Bt1t2...tl
t′1t′2...t′

l′
equals zero. As B is a union of a countable number

of sets Bt1t2...tl
t′1t′2...t′

l′
, set B has measure zero, too, i.e., matching Mt is µ-strongly anonymous.�

Theorem 1 states that a sequence of independent matchings should be µ-strongly anony-

mous, i.e., µ-strong anonymity follows from independence of the matchings. The opposite

statement generally is not true, i.e., independence does not follow from strong anonymity

because, if the matchings are not independent, the meeting agents might have dependent

shocks.16

3.5. An Example of an Economic Model with Idiosyncratic

Shocks and Random Matchings

In this subsection, we provide an example of an economic model that uses idiosyncratic

shocks and random matchings, and discuss the assumptions the authors make. We demon-

strate that the existing solutions for idiosyncratic shocks and random matchings problem

do not fit the assumptions of this model, whereas the new approach easily justifies them.

Green and Zhou [15] describe the following discrete time model of infinitely lived agents,

t = 0, 1, . . . The agents of measure one are uniformly and independently assigned types

from interval (0, 1]. There is a perfectly divisible fiat money in the economy. The money

15Theorem V.4.4. of Feller [11] states that a convolution of two distributions, one of which is con-

tinuous, is also continuous, i.e., it does not have any mass points. The distribution of the difference of

two independent random variables is the convolution of the distributions of the first random variable and

(minus) the second random variable. Thus, the difference of two independent random variables, one of

which is continuous, equals zero with probability zero, and therefore one random variable equals another

with probability zero.
16In the standard approach with fixed matching, for any two agents with given different sets of previous

(direct and indirect) partners, the two σ-algebras generated by independent shocks of the two meeting

agents’ partners are independent. However, this result cannot be extended to a random matching, where

the sets of partners might depend on the realization of the sample space. To see this, consider a one-

period model in which the agents first experience some shocks, and then two agents with the highest

shocks and two agents with the lowest shocks meet. Although the matching is anonymous (there is only

one period), the meeting agents obviously have dependent histories (shocks).
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is randomly distributed among the agents in the beginning. Type i agent can consume

goods j ∈
[

i, i + 1
2

]

(mod 1). Each period, an agent with type i produces one unit of

nonstorable good i and randomly meets another agent. During the meeting, the agent

observes his partner’s type. Because only one agent in the pair can consume the good

produced by the other agent, one of the agents in each pair is the seller and the other one

is the buyer. The buyer submits his bid, and the seller submits his offer. Both the bid

and the offer include a price and a quantity. The buyer gets the quantity he bid at the

price the seller offered if the bid quantity does not exceed the offer quantity and the offer

price does not exceed the bid price.

The assumptions in the model are made in the spirit of the Law of Large Numbers.

In particular, the sample distributions of the matchings are the same for all realizations.

Also, all buyers and sellers face the same distributions of corresponding offers and bids.

The encounters are assumed to be independent across time. An agent’s history consists of

all previous encounters. The authors consider a symmetric equilibrium in which the agents

are anonymous, and the strategies depend on their histories and initial attributes (types

and money holdings) only. The matchings are random in the sense that the partner’s

offer/bid is independent from the agent’s history.

The random matching solution suggested by Duffie and Sun [9], which suites Green and

Zhou’s setup better than any other existing solution, is not applicable here for several

reasons. The most important of these is that the Mixing property in Green and Zhou’s

paper is formulated with respect to the bids and offers, which, based on the equilibrium

definition, depend on the initial attributes and agents’ histories. The initial attributes

are chosen from an uncountable set, and the bids and offers are similarly chosen from

uncountable sets. Therefore, the number of bids- and offers-generated sets of agents

can be uncountable. At the same time, Duffie and Sun’s solution deals with A4’-type

properties, thus it can satisfy Mixing property at most on a countable collection of the

agent subsets. In addition to Mixing property reason, other issues were not addressed

in the Duffie and Sun’s solution. These issues include real-valued attributes (types and

money holdings), real-valued bids and offers, history-dependent strategies, and possible

strategies randomization.
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Thus, A4’-type properties considered in the literature on idiosyncratic shocks and ran-

dom matchings do not fit the models such as Green and Zhou’s [15], in which history-

generated σ-algebra of the agents might be uncountable. A4”-type properties would

resolve the conflicting issues with all history-generated σ-algebras, however, as we showed

earlier, the standard approach with A4”-type properties has inner contradictions. All

other solutions one can find in the literature also fail to satisfy what we believe the eco-

nomic models with idiosyncratic shocks and random matchings often require.

To justify the assumptions of this model in the new approach, notice that initial money

holdings and agent types can be modeled as initial independent random variables. The

offers/bids are corresponding random variables for each period of time. The Law of

Large Numbers-type properties hold with respect to history generated (through initial

characteristics, shocks, bids/offers, and matchings) agent subsets. The problem of the

meeting of two agents with the same type can be resolved by excluding such agents along

with those who directly or indirectly meet them (such agent subset has measure zero).

Thus, the new approach provides a mathematical justification of Green and Zhou’s model,

whereas the standard approach fails to do so.

4. Existence

The following theorem constitutes the main result of the paper. It establishes the

existence of an agent space with a sequence of independent shocks and matchings for the

maximal history. As any other history is a function of the maximal history, the result of

the theorem holds for any history.

Theorem 2. For any m-dimensional cdf F (·), there exists a probability space (A,A, µ)

with a continuum of atomless agents, and a sequence of shocks {ξt}t∈T with cdf F (·)

and strongly anonymous matchings {Mt}t∈T, T ⊆ Z. Both shocks and matchings are

independent from the maximal history.

To prove Theorem 2, we first construct a probability space (Θ,Q, ν) with a sufficient

number of random independent variables. Then, we create countably many copies of

space Θ and allocate random variables to these copies. The agent space we are looking

for is the union of all the copies. At each period of time, the shock is a random variable
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on the corresponding copy of the original probability space Θ, and the agents from one

copy meet corresponding agents from another copy based on the recursive block-partition

suggested by Aliprantis, Camera, and Puzzello [4]. Finally, we prove that the shocks and

matchings constructed are independent.

Although for some F (·) it might be possible to find a probability space (A,A, µ) with

different from a continuum number of agents (finite, countable, or more than continuum)

with independent shocks and matchings, Theorem 2 says that for any F (·) there at least

exists a space with exactly continuum of agents, where F (·) need not be continuous, but

can also be discrete, or singular, or a mix of all three types.

In the proof, we construct the shocks and matchings simultaneously with the agent

space, which includes σ-algebra and probability measure. Thus, the agent space is not

arbitrary, and for a randomly chosen agent space independent shocks and matchings might

not exist.

The rest of the section is devoted to the formal proof of Theorem 2.

Proof of Theorem 2.

For simplicity and without loss of generality we assume that T = Z.

Agent Space

By Kolmogorov theorem (see Wentzell [24]), there exists a probability space (Θ,Q, ν)

with a countable number of independent random variables {ξi
t}i∈N,t∈T, each of which is

distributed in accordance with m-dimensional cdf F (·). Consider spaces Ai, i ∈ N, of

which every one is an exact copy of (Θ,Q, ν). Let functions Si naturally map Θ onto sets

Ai (see Fig. 3). Define agent space A = A0 ⊔A1 ⊔A2 ⊔ . . . and function s(a) — the space

number to which a ∈ A belongs: a ∈ As(a). By S−1(a) we understand corresponding

S−1
i (a), where i = s(a).

Random variables ξi
t have only two indexes, i ∈ N and t ∈ T. As a result, by Kolmogorov

theorem, we can take [0, 1]|T|∗|N|∗m as space Θ (see Wentzell [24]), and
∞
⊔

i=0

[0, 1]|T|∗|N|∗m as

agent space A. Using cardinal arithmetic (see Halmos [16]), one can show that

|A| =

∣

∣

∣

∣

∣

∞
⊔

i=0

[0, 1]|T|∗|N|∗m

∣

∣

∣

∣

∣

= |[0, 1]|,

i.e., agent space A we constructed has a continuum of agents.
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Figure 3. Agent space A construction.

Shocks

Define shocks ξt : A → R in the following way: ξt|Ai = ξi
t. Variables ξt(·) consist

of different components ξi
t(S

−1(·)), depending on the space Ai to which the argument

belongs. We also can write

ξt(a) = ξ
s(a)
t (S−1(a)). (3)

Fig. 4 illustrates the construction.

A

A0 A1 A2 A3

ξt = ξ0
t ξ1

t ξ2
t ξ3

t ♣ ♣ ♣

Figure 4. Construction of shock ξt.

After defining σ-algebra and measure later in this section, we will demonstrate that the

shocks are measurable and have cdf F (·).

Matchings

Consider any bijective index k(·) : T → N (for example, k(0) = 0, k(1) = 1,

k(−1) = 2,. . . ). The index is needed because time is indexed at most with the set of

integer numbers, and probability spaces Ai in the definition of the agent space are in-

dexed with the set of natural numbers. With the index, we are able to replace the time
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space with the space of natural numbers. Which of the two equal concepts is used, time

or index, will be clear from each formula.

The matchings scheme is represented in Fig. 5. At time k = 0, agents from A0 meet

with the corresponding agents (based on the natural mapping) from A1, agents from A2

meet with A3, agents from A4 meet with A5, and so on. At time k = 1, agents from

{A0, A1} meet with the corresponding agents from {A2, A3}, agents from {A4, A5} meet

with {A6, A7}, and so on. At time k = 2, agents from {A0, A1, A2, A3} meet with the

corresponding agents from {A4, A5, A6, A7}, and so on. In other words, if we denote the

binary expansion of i by . . . x2x1x0, then at time period with index k agents from A...xk...x1x0

meet with the corresponding agents from A...xk...x1x0
, where xk = 1−xk. The matchings we

defined obviously satisfy properties C1 (No Agent Is Idle) and C2 (Involution). Properties

C3 (Measurability) and C4 (Measure Preserving) will be satisfied by the definitions of σ-

algebra and measure.
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k = 1

k = 2

A0 A1 A2 A3 A4 A5 A6 A7

A0 A1 A2 A3 A4 A5 A6 A7

A0 A1 A2 A3 A4 A5 A6 A7

Figure 5. Matchings scheme.

For any θ ∈ Θ, agents {Si(θ)}i∈N meet in accordance with the recursive block-partition

from Aliprantis, Camera, Puzzello [4]. Theorem 13 of the same paper states that such
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matchings are strongly anonymous. Thus, our matchings {Mt}t∈T are strongly anony-

mous, too.

For a′ = Mk1 ◦Mk2 ◦ . . . ◦Mkl
(a), one can see that the binary expansion of s(a′) of the

copy of the space to which a′ belongs differs from the binary expansion of s(a) in digits

k1, k2, . . . , kl. Therefore,

a′ = SGk1k2...kl
(s(a))(S

−1(a)), (4)

where Gk1k2...kl
(·) is the function of changing k1, k2, . . . , kl-th digits of the binary expansion

of the argument. For any permutation of indexes k1, k2, . . . , kl the result of matchings

Mk1 ,Mk2 , . . . ,Mkl
is the same, because it does not matter in which order to change the

digits. Therefore, for any set of indexes k1, k2, . . . , kl and for any permutation τ , the

following commutativity equation holds:

Mk1 ◦ Mk2 ◦ . . . ◦ Mkl
≡ Mkτ(1)

◦ Mkτ(2)
◦ . . . ◦ Mkτ(l)

.

This commutativity of the matchings is illustrated in Fig. 6. For example, for Agent 1

holds M0 ◦ M1(a1) = a4 = M1 ◦ M0(a1).

k = 1

k = 0

Agent
1

Agent
2

Agent
3

Agent
4

✲✛ ✲✛

✲✛ ✲✛

Figure 6. Commutativity of the matchings.

Though the matchings we constructed are commutative, by no means do we want to

say that commutativity is required for any of the properties we considered (e.g., strong

anonymity or independence).

σ-Algebra

Following the definition, σ-algebras At and A′
t are generated by the maximal histories:

At = σ
(

{ξt}, {ξt0 ◦ Mt1 ◦ Mt2 ◦ . . . ◦ Mtl}t0≤t1<t2<...<tl<t,l≥0

)

;

A′
t = σ (At−1,Mt−1(At−1)) .
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Note that At ⊆ A′
t+1 ⊆ At+1. Define σ-algebra A as the minimal σ-algebras in which all

shocks and matchings are measurable:

A = σ
(

{ξt0 ◦ Mt1 ◦ . . . ◦ Mtl}t0≤t1<...<tl,l≥0

)

.

By defining σ-algebra A in this way, we made all the shocks and matchings measurable.

Thus, for matchings {Mt}t∈T property C3 (Measurability) is satisfied, and shocks {ξt}t∈T

are random variables for σ-algebra A.

Probability

In order to define a probability measure on (A,A), we use probability measure ν on

(Θ,Q). Namely, for any B ∈ A define

µ(B) = lim
j→∞

1

j + 1

j
∑

i=0

ν(S−1(B ∩ Ai)).

To show that the probability is correctly defined for any B ∈ A, notice that A is generated

by shocks and matchings. Thus, it is enough to show that the definition is correct for any

B from a σ-algebra generated by a finite number of shocks and matchings. The latter is

equivalent to showing that the definition is correct for any

B =
⋂

(k0,...,kl)∈W

{a ∈ A : ξk0 ◦ Mk1 ◦ . . . ◦ Mkl
(a) ∈ Bk0...kl

} ,

where W = {(k0, . . . , kl)}k0,...,kl,l≥0 is a finite collection of different ordered index sets, and

{Bk0...kl
}(k0,...,kl)∈W is a collection of Borel sets indexed by W . From Eq. (4) and Eq. (3),

for any a ∈ A holds

ξk0 ◦ Mk1 ◦ . . . ◦ Mkl
(a) = ξ

Gk1k2...kl
(s(a))

k0
(S−1(a)),

and

B =
⋂

(k0,...,kl)∈W

{

a ∈ A : ξ
Gk1k2...kl

(s(a))

k0
(S−1(a)) ∈ Bk0...kl

}

=
⋂

(k0,...,kl)∈W

{

⋃

i∈N

{

a ∈ Ai : ξ
Gk1k2...kl

(i)

k0
(S−1(a)) ∈ Bk0...kl

}

}

=
⋃

i∈N







⋂

(k0,...,kl)∈W

{

a ∈ Ai : ξ
Gk1k2...kl

(i)

k0
(S−1(a)) ∈ Bk0...kl

}







.



30

Hence, values

ν(S−1(B ∩ Ai)) = ν



S−1





⋂

(k0,...,kl)∈W

{

a ∈ Ai : ξ
Gk1k2...kl

(i)

k0
(S−1(a)) ∈ Bk0...kl

}









= ν





⋂

(k0,...,kl)∈W

{

θ ∈ Θ : ξ
Gk1k2...kl

(i)

k0
(θ) ∈ Bk0...kl

}





do not depend on i because of the independence and identical distribution of random

variables
{

ξ
Gk1k2...kl

(i)

k0
(·)

}

(k0,...,kl)∈W
. Therefore, for an arbitrary B ∈ A measure µ(·) is

defined correctly. We have also proved that for any i ∈ N and B ∈ A holds

µ(B) = ν(S−1(B ∩ Ai)).

A

✬
✫

✩
✪

✬
✫

✩
✪

✬
✫

✩
✪

✬
✫

✩
✪

⑦ ⑦ ⑦ ⑦
A0 A1 A2 A3

s s s s

Figure 7. A typical measurable set.

Fig. 7 illustrates a typical measurable set: if B ∈ A contains some part of Ai0 , then it

contains equivalent parts of all other Ai’s, in accordance with measure ν ◦ S−1
i .

Shocks ξt(·) have desired distribution function F (X), because for any measurable C

µ(ξt ∈ C) = ν(S−1(Ai ∩ {a : ξt ∈ C})) = ν(ξi
t ∈ C).

By definition, matching Mk naturally maps Ai onto Aj, where j’s binary expansion differs

from the i’s binary expansion in the k-th digit. Therefore, for any B ∈ A sets Mk(B)

and B have the same measure, i.e., property C4 (Measure Preserving) is satisfied.

Independence

Now we can show that matchings {Mt}t∈T and shocks {ξt}t∈T are independent, i.e.,

properties C5 (Shock Independence) and C6 (Matching Independence) hold.
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For property A5 (Shock Independence), the history of an agent before the shock at

time t is a function of the previous shocks and matchings. Therefore, for any i ∈ N

A′
t ∩ Ai ⊂ Si

(

σ
(

{

ξj
t′

}

t′<t,j∈N

))

;

σ(ξt) ∩ Ai = Si

(

σ
(

ξi
t

))

.

Since random variables {ξi
t} are independent, we have

σ
(

{

ξj
t

}

t<t,j∈N

)

⊥ σ(ξi
t);

A′
t ∩ Ai ⊥ σ(ξt) ∩ Ai;

A′
t ⊥ ξt,

i.e., shocks {ξt}t∈T are independent from the history.

To prove property A6 (Matching Independence), denote Wi—the space indexes of the

agents whose shocks are known to the agents from set Ai before the matching at time

t, and W ′
i—the space indexes of the agents whose shocks are known to the partners of

agents from set Ai before the matching at time t:

Wi =
⋃

a∈Ai,l≥0,t1<...<tl<t

{s(Mt1 ◦ . . . ◦ Mtl(a))};

Wi =
⋃

a∈Ai,l≥0,t1<...<tl<t

{s(Mt1 ◦ . . . ◦ Mtl ◦ Mt(a))}.

Due to strong anonymity, sets Wi and W ′
i do not intersect. From the definition of sets

Wi and W ′
i follows

At ∩ Ai ⊂ Si

(

σ
(

{

ξj
t′

}

t′≤t,j∈Wi

))

;

(At ◦ Mt) ∩ Ai ⊂ Si

(

σ
(

{

ξj
t′

}

t′≤t,j∈W ′
i

))

.

Since random variables {ξj
t }t∈T,j∈N are independent and sets W and W ′ do not intersect,

we have

σ
(

{

ξj
t′

}

t′≤t,j∈Wi

)

⊥ σ
(

{

ξj
t′

}

t′≤t,j∈W ′
i

)

;

(At ∩ Ai) ⊥ (At ◦ Mt ∩ Ai);

At ⊥ (At ◦ Mt);

Mt ⊥ At,
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i.e., matchings {Mt}t∈T are independent from the history.�

5. Discussion

In this paper, we have formulated a discrete time model of a continuum of agents with a

consistent set of assumptions C1-C6 about shocks and matchings and proved its existence.

The shocks are independent from the agents’ histories (idiosyncratic shocks). The histories

of the meeting agents are also independent (independent matchings). The matchings are

strongly anonymous, and this means that the meeting agents cannot meet again in the

future, directly of through the partners. An important result of the paper is that the

properties hold for all history-generated agent subsets. This result was not obtained in

any previous paper.

The model suggested in this paper is flexible and allows us to explore a wide range of

extensions. Some of these extensions are as follows:

(1) Dependent shocks. In addition to independent matchings, the agents can experi-

ence shocks that depend on the histories.

(2) Dependent partners. The agents might not meet randomly: instead, the agents

with high shocks might have a higher chance to meet other agents with high shocks.

(3) Finitely lived agents. Some agents die and some agents are born during every

period of time.

(4) Nonanonymous matchings. The agents have a non-zero chance of meeting the

current partner in the future.
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