
Munich Personal RePEc Archive

Linear Programming by Solving Systems

of Differential Equations Using Game

Theory

Ciuiu, Daniel

Technical University of Civil Engineering, Bucharest, Romania,

Romanian Institute for Economic Forecasting

June 2009

Online at https://mpra.ub.uni-muenchen.de/17191/

MPRA Paper No. 17191, posted 09 Sep 2009 07:25 UTC

BALCOR 2009 SEPTEMBER 02-06, CONSTANTA, ROMANIA

BALCOR The 9th Balkan Conference on Operational Research 727

Linear Programming by Solving Systems of
Differential Equations Using Game Theory

Daniel Ciuiu
1,2

1

 Department of Mathematics and Computer Science,

Technical University of Civil Engineering, Bucharest, Romania.

2
 Romanian Institute for Economic Forecasting, Bucharest, Romania.

e-mail: dciuiu@yahoo.com

Abstract— In this paper we will solve some linear

programming problems by solving systems of differential

equations using game theory.

The linear programming problem must be a classical

constraints problem or a classical menu problem, i.e. a

maximization/minimization problem in the canonical form

with all the coefficients (from objective function, constraints

matrix and right sides) positive.

Firstly we will transform the linear programming problem

such that the new problem and its dual have to be solved in

order to find the Nash equilibrium of a matriceal game.

Next we find the Nash equilibrium by solving a system of

differential equations as we know from evolutionary game

theory, and we express the solution of the obtained linear

programming problem (by the above transformation of the

initial problem) using the Nash equilibrium and the

corresponding mixed optimal strategies. Finally, we

transform the solution of the obtained problem to obtain the

solution of the initial problem.

We make also a ++C program to implement the algorithm

presented in the paper.

Index Terms— Linear programming, evolutionary game

theory, Nash equilibrium.

I. INTRODUCTION

The classical method to solve the linear programming
problem is the SIMPLEX algorithm [10,2,1]. In [1] there
is presented a SIMPLEX algorithm when the variables are
bordered.

Other methods (iterative ones) to solve the linear
programming problem are interior/exterior point methods
[2]. These methods have the same advantage as the
iterative methods to solve linear systems: they avoid the
problem of miss conditioned problem [8].

The ellipsoidal algorithm of Hacian is an exterior point
method and solves the linear programming problem [2]

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥
=⋅

0x

bxA

xcmin T

 (1)

and it’s dual

⎪
⎪
⎩

⎪⎪
⎨

⎧

∈
≤⋅

Rx

cuA

ubmax
T

T

. (1’)

It results that the solutions of the primal and dual

problem ∗x and ∗u must be solutions of the system

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤−
≤⋅

≥
=⋅

0ubxc

cuA

0x

bxA

TT

T . (2)

This system can be written [2]

 where,yS β≤⋅ (2’)

 and

bc

A0

0I

0A

0A

S

TT

T
nn

mnn

mm

mm

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

=

×

×

×

×

 (2”)

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−

=β

0

c

0

b

b

n . (2’’’)

Of course, ()TTT u,xy = [2]. If we denote by L the

size of the problem and if we put L22−=ε , we take

εββ +=′ ii . The ellipsoidal algorithm is as follows.

Algorithm ellipsoidal

 L)1n(n16K ∗+∗∗←

 0t ←

 n
L22 I2nB ∗∗←

for K,1k =

 if β ′<∗ tS then

 write 'solution=', t

 stop

 else

BALCOR 2009 SEPTEMBER 02-06, CONSTANTA, ROMANIA

BALCOR The 9th Balkan Conference on Operational Research 737

 Choose i such that ′≥∗ ii tS β

 T
iSa ←

 ⎟
⎠
⎞

⎜
⎝
⎛ ∗∗∗+∗−← aBa)1n(/aBtt T

 ()∗−← 1n/nB 22

 () () ()()aBa/aBaB)1n/(2B TT ∗∗∗∗∗∗+−

 endif

 endif

 next k

 if Kk = then

 write 'no solution'

end

The ellipse (){ ⋅⋅−∈= −1
k

T
k

n
k BtxxE R

() }1tx k ≤− , where kt and kB are the vector t and the

matrix B at iteration k in the above algorithm, has the

volume () ()L2n
k 2EVol −−< [2].

An interior point method is the projective algorithm of
Karmarkar [2]. Firstly we must reduce the problems (2)
and (2’) to the standard Karmarkar form [2]

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥
=⋅
=⋅
⋅

0x

1xe

0xA

xcmin

1
T

11

1
T
1

, (3)

where e has all the components equal to 1 .

Next we take
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−=

0bbc

IAA0

000A

A
TTT

TT ,
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0

c

b

b

and

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

= −

+

s

u

u

x

y , and we obtain the constraints' system [2]

⎪⎩

⎪
⎨
⎧

≥
=⋅

0y

byA
. (4)

Next we take () [] []+⋅+++= nlogn|P|logn1mL 22

1n + , where []α is the integer part of α , m is the

number of constraints of the primal problem and n is the

dimension of the variable. We take also L2n ⋅=µ ,

()0AA =
′

 and yx 1 ⋅=′
µ

. It results that

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥′
=′⋅
=′⋅µ

′

0x

1xe

bxA
T . (5)

Because µ has a high value we can multiply the last

equation 1xeT =′⋅ by constants and subtract from the
others, and we obtain the restrictions from the standard

Karmarkar form with AA1 ′= and xx1 ′= . If we add to

the matrix A′ a null column, to the vector e another

component equal to 1 and another component to x ′ we

obtain the matrix Â , the vector e having also all the

components equal to 1 and the variable vector x̂ with the
first components from x ′ . The initial primal problem has
a finite optimum solution if and only if [2]

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≥
=⋅
=⋅

0x̂

1x̂e

0x̂Â

x̂min

T

r

 (6)

has the minimum equal to 0 (r is the dimension of x̂).

In this case the first n components of x̂ are the
components of the solution of the primal problem, next

m components are the components of +u and next m

components are the components of
−u . The solution of

the dual problem is −+ − uu .

The algorithm of Karmarkar solves a problem in the
standard form of Karmarkar. Denoting by Π the set of
the feasible solution of such linear programming problem,
we need a function Φ having the following properties:

1. If Π∈a , 0a > and 0acT > then () Π∈Φ a

and () 0a >Φ .

2. If the minimum of the problem in the standard
Karmarkar form is zero then either

() 0acT =Φ⋅ , either ()() () δ−≤Φ afaf .

For this we take () ()
i

n

1i

nT

x

xc
xf

=
∏

= , ()
2
1,0∈α and

α−
α−α=δ

1

2

. Of course, the dimension of the problem's

solution is considered to be n . We take also ()adiagD =

the diagonal matrix using the given vector a , cDc ⋅=′ ,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
= Te

DA
B , () cDBBcc

1TT
p ′⋅=

−′ and

p

p
p

c

c
ĉ = . If

we denote by pĉ
n

a'b ⋅
α

−= and by
bDe

bD
T

b
′⋅⋅

′⋅= we define

() ba =Φ .

Algorithm Karmarkar

 ea
n
1 ∗←

 [] 1/Ln2K +δ∗∗←

if 0acT =∗ then

 write 'solution is ', a

 Stop

else

 for K,1k =

 ab ←

 ()aa Φ←

 if 0acT =∗ then

 write 'solution is ', a

BALCOR 2009 SEPTEMBER 02-06, CONSTANTA, ROMANIA

BALCOR The 9th Balkan Conference on Operational Research 747

 Stop

 endif

 if () () δ−> bfaf then

 write 'solution is greater then 0'

 Stop

 endif

endif

Find Π∈v an extremal point such that the cost is less

than or equal to acT ∗

write 'solution is ', v

end

Genetic algorithms can be also used to solve the linear
programming problem. If we have to maximize or
minimize a function RR:f → we consider the

population mRP ⊂ , and the components of Px∈ are
called chromosomes.

The general structure of a genetic algorithm is the
following [7,6]:

1. Generate the initial population.

2. Generate the new individuals of P .

3. Apply genetic mutations on the new
individuals.

4. Select a part of the new population.

5. Repeat the steps 42 − until it is fulfilled a
stopping condition, or for a given number of
steps.

The initial population is usually random [7,6,5]. The
new generation is generated by the cross-over at the
chromosome k : if we have two individuals with the
chromosomal chains

()
()⎪⎩

⎪
⎨
⎧

=
=

+

+
T

m1kk1

T
m1kk1

y,...,y,y,...,yy

x,...,x,x,...,xx
 (7)

we obtain the offsprings

()
()⎪⎩

⎪
⎨
⎧

=
=

+

+
T

m1kk12

T
m1kk11

x,...,x,y,...,yz

y,...,y,x,...,xz
. (7’)

The genetic mutations are modifications small enough

for a chromosome kx . These mutations can be chaotic

(random) or deterministic, made to improve the objective
function (we increase or decrease the value with a small
step) [7,6,5]. If the problem is not an optimization one we
build a function to maximize it (fitness) or one to
minimize it (error).

If we have to minimize a function we order the
population increasing on the objective function,
respectively we order the population decreasing. Next we
remove the last individuals [7,6,5].

The stopping condition is

 ()() ()() ε<−− n1n xfxf , (8)

where ε is a given error and
()nx is the best individual in

the population at the step n .

The VNS (Variable Neighborhood Search) method is
presented in [4]. In fact it is a more general method to
solve the problem

()

⎪⎩

⎪
⎨
⎧

∈
∈

Xx

xfmin
Sx , (9)

where SX ⊆ .

The first step in VNS is the VND (Variable
Neighborhood Descent), which finds a local optimum:

Algorithm VND

for maxl,1l =

 Choose the neighborhood structure lN

Choose x as initial solution.

repeat

 1l ←

 repeat

 Find the best neighbor ()xx lN∈′

 if () ()xfxf <′ then

 xx ′←

 1l ←

 else

 1ll +←

 until maxll =

until no improvement of x

end

Using this algorithm, we use the VNS algorithm [4]:

Algorithm VNS

for maxk,1k =

 Choose the neighborhood structure kN

Choose x as initial solution.

Choose a stopping condition.

repeat

 1k ←

 repeat

 Generate a random ()xx kN∈′ .

 Using the above VND algorithm find a local optimum

"x starting with the initial solution x ′
 if () ()xf"xf < then

 "xx ←

 1k ←

 else

 1kk +←

 until maxkk =

until stopping condition

end

To avoid being blocked in a valley (in a neighborhood

of a local minimum) the last neighborhood structure kN

for maxk,1k = must fulfill the relation [4]:

 () XxxX k

k

1k

max

∈∀⊆
=
NU . (10)

A particular case of such neighborhood structure is the
nested neighborhood structure [4]:

BALCOR 2009 SEPTEMBER 02-06, CONSTANTA, ROMANIA

BALCOR The 9th Balkan Conference on Operational Research 757

() () ()

() Xx
xX

x...xx

max

max

k

k21 ∈∀
⎪⎩

⎪
⎨
⎧

⊆
⊂⊂⊂

N

NNN

. (10’)

Therefore the VNS algorithm explores increasingly far
neighborhoods of the current local minimum, with a
descent method, and re-centers the search when we find a
better solution then the incumbent [3,4].

The stopping condition can be the maximum number of
iterations, the maximum number of iterations between two
improvements of the local minimum, or maximum CPU
time allowed [3].

The VNDS (Variable Neighborhood Decomposition
Search) is presented in [3]. The difference between this
method and VNS is that instead of searching the local

minimum "x starting from x ′ in the whole S we solve at
each iteration a sub-problem in some subspace

()xV kk N⊆ with kVx ∈′ .

The linear programming problems that we solve are
general enough: the classical constraints problem (the
maximization problem in the canonical form) and the
classical mixture problem (the minimization problem in
the canonical form), and for both problems the involving
terms are positives. For this we need some results from
game theory [9,10,11] that we will present in the
following.

Definition 1. A game is in the normal form if

()ii ,D,I π=Γ , where I is the set of the players, iD is the

set of pure strategies of the player i , and RD: i

n

1i
i →π ×

=

is a function with ()diπ being the utility of the player i if

the player j uses the strategy jd and ()n1 d,...,dd = .

Definition 2. The game is finite if { }n,...,2,1I = is finite.

The game is with complete information if iD are finite.

Definition 3. A mixed strategy of the player i is a

probability distribution ix on iS .

We denote by i∆ the set of mixed strategies of the

player i and by i
1i

n

∆×=Θ
=

. We denote also by ()ii dx the

probability that the player i uses the pure strategy id .

Because in the case of non-cooperative games the mixed

strategies jx are independent, we obtain the following

formula for the average utility of the player i :

 () () () ()ddxx,...,xuxu ijj

n

1jDd
n1ii

ii

π⋅== ∏∑
=∈

. (11)

Definition 4. () Θ∈= −ii x,xx is a Nash equilibrium if

for any iiy ∆∈ we have () ()iiii x,yuxu −≥ .

Theorem 1 ([9,10,11]). For any finite game with

complete information the set NEΘ of Nash equilibriums
is not empty.

Definition 5. A player2 − game with complete

information is called bimatriceal.

In this case { } { } () ij121 Aj,i,n,...,1D,m,...,1D =π==

and () ij2 Bj,i =π .

Definition 6. The game is matriceal if BAT −= .

An important result from game theory that we use in
this paper [9,10,11] is that the Nash equilibrium for the
matriceal game given by the matrix A with all the
elements positives is computed as follows. We solve first
the linear programming problems

 and

0x

exA

xemin
T

T

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥
≥⋅
⋅

 (12)

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥
≤⋅

⋅

0y

eyA

yemax T

, (12’)

where e is a vector with all the components equal to 1 . If
A is a nm× matrix, e has m components for the first
problem and n components for the second.

The problems (12) and (12’) are dual each other, hence
the optimal objective function value is the same, and we

denote it by z . If the optimal solutions are x and y the

Nash equilibrium is ()21 s,s and the game value (the

payoff of the first player in the case of Nash equilibrium)

is
z
1v = , where xvs1 ⋅= and yvs2 ⋅= .

II. THE ALGORITHM

 A method to obtain the Nash equilibrium of a non-
cooperative game is to solve first the system of differential
equations [11]

 () () ()() ()txxux,eutx ikii
k
iiik ⋅−= −

′
 (13)

with the initial conditions

 () ()0x0x = , (13’)

where () ii tx ∆∈ is the mixed strategy of the player i at

the moment t and k
i

e is the pure strategy k of the player

i .

Theorem 2([11]). For any () ()Θ∈ Intx 0 the solution x

of the system of differential equations (13) with the initial
conditions (13’) has the property that there exists a Nash

equilibrium NEx Θ∈∗ such that () *

t

xtxlim =
∞→

.

For a matriceal game the Cauchy problem (13)+(13’)
becomes

()

()()⎪⎩

⎪
⎨
⎧

−⋅
⋅⋅⋅−=

′

′

j
jT

j

i
T

ii

yAyAy

xyAxAx
 (14)

with the initial conditions

() ()

() ()⎪⎩

⎪
⎨
⎧

=
=

0

0

y0y

x0x
, (14’)

where x is the mixed strategy of the first player, y is the

mixed strategy of the second player, iA is the row i of

the matrix A and ()jA is the column j of the matrix A .

BALCOR 2009 SEPTEMBER 02-06, CONSTANTA, ROMANIA

BALCOR The 9th Balkan Conference on Operational Research 767

We present now the method to solve some nonlinear
programming problems. Suppose that the linear
programming problem is in the form

 or

0x

bxA

xcmax T

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥
≤⋅
⋅

 (15)

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥
≥⋅
⋅

0x

bxA

xcmin T

, (15’)

where all the involved terms are positive. We can notice
that both problems are in the canonical form. First
problem is the classical constraints problem, because we
have positive benefits and positive quantities for the
restricted elements. The second is the classical menu
problem because we have positive costs and positive
quantities of the menu components. We will solve such
problems by the numerical method as follows.

Firstly we reduce the problems to the form (12) or
(12’) and we consider the matriceal game for which we
can find the Nash equilibrium by solving the initial
problem and its dual. The way to reduce the problem to a
matriceal game is the division of all the elements of the
constraints matrix A by the product of the corresponding

elements from c and b : we take
ji

ij

cb

A

ijA ⋅← . We obtain

in this way the matrix of the game in the first case or its
transpose in the second case. To remain in the same order
of the values of the matrix we can multiply A by a
constant equal to the product of the averages of the b
values and of c values.

We use next the change of the variable ()τ−−= 1lnt

and we have to solve the system of differential equations

() () ()
() ()() ()⎪⎩

⎪
⎨
⎧

⋅τ−⋅=τ

⋅τ⋅⋅⋅−=τ

τ−
′

τ−
′

1
1

j
jT

j

1
1

i
T

ii

yAyAxy

xyAxAx
 (16)

with the initial conditions (14’). These initial conditions
are the same as for (14) because for 0=τ we have 0t = .
In order to use the theorem 2 we take into account that

() ∞=τ−−
→τ

1lnlim
1

. The initial conditions must be such

that () ()()00
y,x is an interior point of ∆ . In our ++C

program we take
()

m
10

i
x = and

()
n
10

j
y = (first player has

m pure strategies, and the second one has n pure
strategies).

Therefore the Nash equilibrium is

() () ()()1y,1xy,x =∗∗ . We will compute this Nash

equilibrium by numerical methods [8] considering the

function nm1nm RR:f +++ →

()

()
()()

()() ⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τ

τ−
−⋅

τ−
−⋅
τ−

⋅⋅−

τ−
⋅⋅−

1

yAyAx

1

yAyAx
1

xyAxA

1

xyAxA

n
nT

1
1T

m
T

m

1
T

1

........................

........................

y

x
,f . (17)

In [8] there are presented numerical methods to solve
Cauchy problems for differential equations. Therefore
there are considered only scalar versions of the function
f from (17). For a system of differential equation we

divide the interval []1,0 in 500 intervals, and we take

02.0h = . Denoting by hkk ⋅=τ , by
() ()k
k xx τ=

and by y
k  yk  we can solve the Cauchy problem

using either the Euler method

()
()

()
()

()
() ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
τ⋅+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−

−−

−

1k

1k

1k1k

1k

k

k

y

x
,fh

y

x

y

x
, (18)

for 500,1k = , the modified Euler method

()
()

()
()

() ()()
where

y

x

y

x
2

ggh

1k

1k

k

k 21 +
−

−
+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
 (19)

() ()
()

() ()
()

()
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+τ=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
τ=

−

−

−

−

−

−

1

1k

1k

1k
2

1k

1k

1k
1

gh
y

x
,hfg

y

x
,fg

 (19’)

for 500,1k = , or the Runge-Kutta method

()
()

()
()

() () () ()()
6

gg2g2gh

1k

1k

k

k 4321

y

x

y

x +⋅+⋅+
−

−
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
, where (20)

() ()
()

() ()
()

()

() ()
()

()

() ()
()

()
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+τ=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+τ=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+τ=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
τ=

−

−

−

−

−

−

−

−

−

−

−

−

3

1k

1k

1k
4

2

2
h

1k

1k

2
h

1k
3

1

2
h

1k

1k

2
h

1k
2

1k

1k

1k
1

gh
y

x
,hfg

g
y

x
,fg

g
y

x
,fg

y

x
,fg

 (20’)

for 500,1k = .

If the matriceal game has the obtained value v (the first
player’s payoff in the case of Nash equilibrium) and the
obtained Nash equilibrium using the above methods is

()21 s,s the objective function value is
v

1
, the primal

solution in the case of maximization is
()

i

i1
i

cv

s
x

⋅
= , and

BALCOR 2009 SEPTEMBER 02-06, CONSTANTA, ROMANIA

BALCOR The 9th Balkan Conference on Operational Research 777

the dual solution is
()

i

i2
i

bv

s
y

⋅
= . In the case of

minimization we switch s1 and s2. The above value of v is
computed if we do not multiply the elements Aij by the
constant equal to the product of the averages of the b
values and of c values. In the contrary case the first value
of v must be divided first by this constant (the case of our

++C program).

III. APPLICATIONS

Example 1. At a concrete station there are used cement,
gravel sand and water to product three types of concrete:

1B , 2B and 3B .

An unit of 1B uses 8 units of cement, 5 units of

gravel, one unit of sand and 4 units of water, and it
ensures a benefit of 3 monetary units.

An unit of 2B uses 3 units of cement, one unit of

gravel, 6 units of sand and 3 units of water, and it
ensures a benefit of 3 monetary units.

An unit of 3B uses 5 units of cement, 4 units of

gravel, 2 units of sand and 3 units of water, and it
ensures a benefit of 8 monetary units.

If the concrete station has 17 units of cement, 22

units of gravel, 32 units of sand and 25 units of water,
compute the maximum benefit and the optimal solution.

We have to solve the linear programming problem

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≥
≤⋅+⋅+⋅

≤⋅+⋅+
≤⋅++⋅
≤⋅+⋅+⋅
⋅+⋅+⋅

0x

25x3x3x4

32x2x6x

22x4xx5

17x5x3x8

x8x3x3max

i

321

321

321

321

321

. (21)

By the SIMPLEX method we obtain 2.27max = , the

solution ()T4.3,0,0x = , the dual prices ()T0,0,0,6.1y = ,

the slack variables ()T8.14,2.25,4.8,0 and the reduced

costs ()T0,8.1,8.9 .

For numerical methods we consider 02.0h
500

1 ==

and the computations are done with five decimals.

If we use the Euler method we obtain 19994.27max = ,

the solution ()T39999.3,0,0x = , the dual prices

()T0,0,00001.0,6.1y −= , the slack variables

()T80002.14,20001.25,40002.8,00003.0 and the reduced

costs ()T0,8.1,8.9 .

By the modified Euler method we obtain
19967.27max = , the solution

()T39999.3,00002.0,0x −= , the dual prices

()T0,0,00002.0,6.1y −= , the slack variables

()T80008.14,20012.25,40005.8,00009.0 and the reduced

costs ()T00005.0,79999.1,79994.9 − .

If we use the Runge-Kutta method we obtain

19739.27max = , the solution ()T39999.3,0,0x = , the

dual prices ()T0,0,00001.0,59986.1y −= , the slack

variables ()T80004.14,20005.25,40004.8,00006.0 and

the reduced costs ()T00074.0,79957.1,79883.9 − .

Example 2. We must create a mixture such that it

contains the elements 1E (at leas 17 units), 2E (at least

25 units), 3E (at least 28 units) and 4E (at least 11

units). For this we use the substances 1S , 2S , 3S and

4S .

An unit of 1S contains 4 units of 1E , 2 units of 2E ,

8 units of 3E and one unit of 4E , and it costs 5

monetary units.

An unit of 2S contains 3 units of 1E , 3 units of 2E ,

4 units of 3E and 2 units of 4E , and it costs 4

monetary units.

An unit of 3S contains 7 units of 1E , one unit of 2E ,

2 units of 3E and 5 units of 4E , and it costs 7

monetary units.

An unit of 4S contains 4 units of 1E , 6 units of 2E ,

3 units of 3E and 3 units of 4E , and it costs 2

monetary units.

Compute the minimum cost and the optimal solution.

We have to solve the linear programming problem

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≥
≥⋅+⋅+⋅+
≥⋅+⋅+⋅+⋅

≥⋅++⋅+⋅
≥⋅+⋅+⋅+⋅
⋅+⋅+⋅+⋅

0x

11x3x5x2x

28x3x2x4x8

25x6xx3x2

17x4x7x3x4

x2x7x4x5min

i

4321

4321

4321

4321

4321

. (22)

By the SIMPLEX method we obtain 92859.17min = ,

the solution ()T42857.3,0,0,21429.2x = , the dual prices

()T0,61906.0,02381.0,0y = , the slack variables

()T5.1,0,0,57143.5 and the reduced costs

()T0,73907.5,4524.1,0 .

For numerical methods we use the same 02.0h = , and
for all the methods (including SIMPLEX) we use the
same precision as in example 1 (5 decimals).

If we use the Euler method we obtain 37677.18min = ,

the solution ()T02379.7,0,0,86584.0x = , the dual prices

()T0,65636.0,0,0y = , the slack variables

()T93722.10,00192.0,87443.18,55852.14 − and the

reduced costs ()T03093.0,68728.5,37457.1,25087.0− .

By the modified Euler method we obtain

54166.18min = , the solution

()T74172.6,0,00002.0,01166.1x −= , the dual prices

()T0,65476.0,0,0y = , the slack variables

BALCOR 2009 SEPTEMBER 02-06, CONSTANTA, ROMANIA

BALCOR The 9th Balkan Conference on Operational Research 787

()T23679.10,31835.0,47359.17,01346.14 and the reduced

costs ()T03573.0,69048.5,38097.1,23806.0− .

If we use the Runge-Kutta method we obtain

27518.19min = , the solution

()T05398.7,0,00001.0,03345.1x −= , the dual prices

()T0,65496.0,0,0y = , the slack variables

()T19538.11,42952.1,39076.19,3497.15 and the reduced

costs ()T03512.0,69008.5,38016.1,23969.0− .

IV. CONCLUSIONS

Because the expression τ−1 appears at the

denominator in (17) for the last step (computation of)1(x

and)1(y) we can not use the modified Euler method or

the Runge-Kutta method. This because we can not

compute ()2g in (19’) or ()4g in (20’), hence we use the

Euler method for the last step. This is also the reason for
that increasing the number of steps does not guarantee a
better solution: the components of f become huge
because of the denominator, and the increasing of the
error can be higher then the decreasing given by small h .
When we test the program we can take 1000n = or

100n = , but for 500n = we obtain solutions closer to
those obtained by the SIMPLEX algorithm.

We notice also that some values for the constraints and
for the reduced costs (the constraints of the dual) are
negatives. This means that the constraint is not fulfilled

(for instance if the constraint is ii bxA ≤⋅ with iA the

line i of the matrix of constraints, and the constraint

value is 5.0− , the value of the left side is greater then ib

by 5.0). We can say the same thing for the constraints

ii bxA ≥⋅ and for the reduced costs. If some of the

constraints of the problem are too important to be fulfilled
we have to multiply x by a positive constant such that all
these constraints become fulfilled. Next we compute the
new value of the objective function and the other
constraints. We do the same thing with y if some reduced

costs are important. If we do this with x and y we

compute the objective function for the primal and the dual
problem, and next the average of the two values.

The initial solution of the linear programming problem

in the standard Karmarkar form is
n
1

ia = (the center of

the simplex). In the same way we choose the initial
conditions of the system of differential equations (16)
()

m
10

i
x = and

()
n
10

j
y = .

The use of systems of differential equations to find a
Nash equilibrium is analogous to the mutations in genetic
algorithms [6,7]. The difference is that the mutations are
only to one chromosome, and, even in applications we
apply successive mutations after cross-over these
mutations have the same size (001.0 for instance [7]) and
the sense of the partial derivative of the fitness function on
the considered chromosome. The derivative of the

component ix (which can be looked as a chromosome) in

our paper has not only the sense, but also the absolute
value of the difference between the payoff using the pure

strategy i and that using the mixed strategy x , multiplied

by the size of jx and divided by τ−1 . The same thing we

can say about y . In fact another difference to genetic

algorithms is that instead of a population in our paper we
have two individuals of two antagonist population. It is a
completion to the genetic algorithms, because we deal
with what these individuals do during their life. The
genetic algorithms use selection [5,6,7] and our algorithm
uses accommodation. Genetic algorithms can be also used
to solve differential equations [5].

An open problem is how to reduce more general linear
programming problem to our case. Another open problem
is to extend our method to the quadratic programming and
to the convex programming.

REFERENCES

[1] N. Andrei, Programare matematică avansată. Teorie şi metode
computaţionale. Ed. Tehnică, Bucureşti, 1999.

[2] A. Bătătorescu, Metode de optimizare liniară. Ed. Universităţii
Bucureşti, 2003.

[3] P. Hansen, N. Mladenovic and D. Perez-Brito, "Variable
Neighborhood Decomposition Search", Journal of Heuristics, No.
7, pp. 335-350, 2001.

[4] P. Hansen and N. Mladenovic, "Variable Neighborhood Search",
in Search Methodologies. Introductory tutorials in Optimization
and Decision Support Techniques, Editors E.K. Burke and G.
Kendall, Springer, 2005, pp. 211-238.

[5] G.D. Mateescu, "On the Application of Genetic Algorithms to
Differential Equations", Romanian Journal of Economic
Forecasting, No. 2, pp. 5-9, 2006.

[6] G.D. Mateescu, "Algoritmi genetici de optimizare", Working
Papers of Macroeconomic Modeling Seminar, No. 061002, pp.
21-28, 2006.

[7] G.D. Mateescu, C. Sâman and M. Buneci, "Algoritmi genetici",
Working Papers of Macroeconomic Modeling Seminar, No.
071402, pp. 21-31, 2007.

[8] G. Păltineanu, P. Matei and R. Trandafir, Analiză numerică. Ed.
Conspress, Bucureşti, 1998.

[9] A. Ştefănescu, Competitive Models in Game Theory and
Economic Analysis. Ed. Universităţii Bucureşti, 2000.

[10] A. Ştefănescu and C. Zidăroiu, Cercetări operaţionale. Ed.
Didactică şi Pedagogică, Bucureşti, 1981.

[11] J. Weibull, Evolutionary game theory. MIT Press, 1996.

