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Abstract— In this paper we will solve some linear 

programming problems by solving systems of differential 

equations using game theory. 

The linear programming problem must be a classical 

constraints problem or a classical menu problem, i.e. a 

maximization/minimization problem in the canonical form 

with all the coefficients (from objective function, constraints 

matrix and right sides) positive. 

Firstly we will transform the linear programming problem 

such that the new problem and its dual have to be solved in 

order to find the Nash equilibrium of a matriceal game. 

Next we find the Nash equilibrium by solving a system of 

differential equations as we know from evolutionary game 

theory, and we express the solution of the obtained linear 

programming problem (by the above transformation of the 

initial problem) using the Nash equilibrium and the 

corresponding mixed optimal strategies. Finally, we 

transform the solution of the obtained problem to obtain the 

solution of the initial problem. 

We make also a ++C  program to implement the algorithm 

presented in the paper. 

Index Terms— Linear programming, evolutionary game 

theory, Nash equilibrium. 

I. INTRODUCTION 

The classical method to solve the linear programming 
problem is the SIMPLEX algorithm  [10,2,1]. In [1] there 
is presented a SIMPLEX algorithm when the variables are 
bordered. 

Other methods (iterative ones) to solve the linear 
programming problem are interior/exterior point methods 
[2]. These methods have the same advantage as the 
iterative methods to solve linear systems: they avoid the 
problem of miss conditioned problem [8]. 

The ellipsoidal algorithm of Hacian is an exterior point 
method and solves the linear programming problem [2] 
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and it’s dual 
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It results that the solutions of the primal and dual 

problem ∗x  and ∗u  must be solutions of the system 
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This system can be written [2] 
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Of course, ( )TTT u,xy =  [2]. If we denote by L  the 

size of the problem and if we put L22−=ε , we take 

εββ +=′ ii . The ellipsoidal algorithm is as follows. 

Algorithm ellipsoidal 

 L)1n(n16K ∗+∗∗←   

 0t ←   

 n
L22 I2nB ∗∗←   

for  K,1k =   

 if β ′<∗ tS  then 

  write 'solution=', t  

  stop 

 else 
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  Choose i  such that ′≥∗ ii tS β  

    T
iSa ←   

    ⎟
⎠
⎞

⎜
⎝
⎛ ∗∗∗+∗−← aBa)1n(/aBtt T   

    ( )∗−← 1n/nB 22   

    ( ) ( ) ( )( )aBa/aBaB)1n/(2B TT ∗∗∗∗∗∗+−     

  endif 

 endif 

 next k  

 if Kk =  then 

  write 'no solution' 

end 

The ellipse ( ){ ⋅⋅−∈= −1
k

T
k

n
k BtxxE R  

( ) }1tx k ≤− , where kt  and kB  are the vector t  and the 

matrix B  at iteration k in the above algorithm, has the 

volume ( ) ( )L2n
k 2EVol −−<  [2]. 

An interior point method is the projective algorithm of 
Karmarkar [2]. Firstly we must reduce the problems (2) 
and (2’) to the standard Karmarkar form [2] 
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where e  has all the components equal to 1 . 

Next we take 
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y , and we obtain the constraints' system [2] 
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Next we take ( ) [ ] [ ]+⋅+++= nlogn|P|logn1mL 22  

1n + , where [ ]α  is the integer part of α , m  is the 

number of constraints of the primal problem and n  is the 

dimension of the variable. We take also L2n ⋅=µ , 

( )0AA =
′

 and yx 1 ⋅=′
µ

. It results that 
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Because µ  has a high value we can multiply the last 

equation 1xeT =′⋅  by constants and subtract from the 
others, and we obtain the restrictions from the standard 

Karmarkar form with AA1 ′=  and xx1 ′= . If we add to 

the matrix A′  a null column, to the vector e  another 

component equal to 1  and another component to x ′  we 

obtain the matrix Â , the vector e  having also all the 

components equal to 1  and the variable vector x̂  with the 
first components from x ′ . The initial primal problem has 
a finite optimum solution if and only if [2] 
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x̂min

T

r

                               (6) 

has the minimum equal to 0  ( r  is the dimension of x̂ ). 

In this case the first n  components of x̂  are the 
components of the solution of the primal problem, next 

m  components are the components of +u  and next m  

components are the components of 
−u . The solution of 

the dual problem is −+ − uu . 

The algorithm of Karmarkar solves a problem in the 
standard form of Karmarkar. Denoting by Π  the set of 
the feasible solution of such linear programming problem, 
we need a function Φ  having the following properties: 

1. If Π∈a , 0a >  and 0acT >  then ( ) Π∈Φ a  

and ( ) 0a >Φ . 

2. If the minimum of the problem in the standard 
Karmarkar form is zero then either 

( ) 0acT =Φ⋅ , either ( )( ) ( ) δ−≤Φ afaf . 

For this we take ( ) ( )
i

n

1i

nT

x

xc
xf

=
∏

= , ( )
2
1,0∈α  and 

α−
α−α=δ

1

2

. Of course, the dimension of the problem's 

solution is considered to be n . We take also ( )adiagD =  

the diagonal matrix using the given vector a , cDc ⋅=′ , 

⎟⎟
⎠
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⎝

⎛ ⋅
= Te

DA
B , ( ) cDBBcc

1TT
p ′⋅=

−′  and 

p

p
p

c

c
ĉ = . If 

we denote by pĉ
n

a'b ⋅
α

−=  and by 
bDe

bD
T

b
′⋅⋅

′⋅=  we define 

( ) ba =Φ . 

Algorithm Karmarkar 

 ea
n
1 ∗←   

 [ ] 1/Ln2K +δ∗∗←   

if 0acT =∗  then 

 write 'solution is ', a  

 Stop 

else 

 for K,1k =  

   ab ←   

   ( )aa Φ←   

  if 0acT =∗  then 

   write 'solution is ', a   
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   Stop 

  endif 

  if ( ) ( ) δ−> bfaf  then 

   write 'solution is greater then 0' 

   Stop 

  endif 

endif 

Find Π∈v  an extremal point such that the cost is less 

than or equal to acT ∗   

write 'solution is ', v   

end 

Genetic algorithms can be also used to solve the linear 
programming problem. If we have to maximize or 
minimize a function RR:f →  we consider the 

population mRP ⊂ , and the components of Px∈  are 
called chromosomes. 

The general structure of a genetic algorithm is the 
following [7,6]: 

1. Generate the initial population. 

2. Generate the new individuals of P . 

3. Apply genetic mutations on the new 
individuals. 

4. Select a part of the new population. 

5. Repeat the steps 42 −  until it is fulfilled a 
stopping condition, or for a given number of 
steps. 

The initial population is usually random [7,6,5]. The 
new generation is generated by the cross-over at the 
chromosome k : if we have two individuals with the 
chromosomal chains 
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we obtain the offsprings 
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The genetic mutations are modifications small enough 

for a chromosome kx . These mutations can be chaotic 

(random) or deterministic, made to improve the objective 
function (we increase or decrease the value with a small 
step) [7,6,5]. If the problem is not an optimization one we 
build a function to maximize it (fitness) or one to 
minimize it (error). 

If we have to minimize a function we order the 
population increasing on the objective function, 
respectively we order the population decreasing. Next we 
remove the last individuals [7,6,5]. 

The stopping condition is 

                          ( )( ) ( )( ) ε<−− n1n xfxf ,                     (8) 

where ε  is a given error and 
( )nx  is the best individual in 

the population at the step n . 

The VNS  (Variable Neighborhood Search) method is 
presented in [4]. In fact it is a more general method to 
solve the problem 

                                    
( )
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Xx

xfmin
Sx ,                               (9) 

where SX ⊆ . 

The first step in VNS  is the VND  (Variable 
Neighborhood Descent), which finds a local optimum: 

Algorithm VND 

for  maxl,1l =    

 Choose the neighborhood structure  lN   

Choose x  as initial solution. 

repeat 

  1l ←   

 repeat 

  Find the best neighbor ( )xx lN∈′   

  if ( ) ( )xfxf <′  then 

    xx ′←   

    1l ←   

  else 

    1ll +←   

 until  maxll =   

until no improvement of  x   

end 

Using this algorithm, we use the VNS  algorithm [4]: 

Algorithm VNS 

for  maxk,1k =  

 Choose the neighborhood structure kN   

Choose x  as initial solution. 

Choose a stopping condition. 

repeat 

  1k ←   

 repeat 

 Generate a random ( )xx kN∈′ . 

 Using the above VND  algorithm find a local optimum 

"x  starting with the initial solution x ′   
  if ( ) ( )xf"xf <  then 

    "xx ←   

    1k ←   

  else 

    1kk +←   

 until maxkk =   

until stopping condition 

end 

To avoid being blocked in a valley (in a neighborhood 

of a local minimum) the last neighborhood structure kN  

for maxk,1k =  must fulfill the relation [4]: 

                          ( ) XxxX k

k

1k

max

∈∀⊆
=
NU .                 (10) 

A particular case of such neighborhood structure is the 
nested neighborhood structure [4]: 
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NNN

.   (10’)  

Therefore the VNS algorithm explores increasingly far 
neighborhoods of the current local minimum, with a 
descent method, and re-centers the search when we find a 
better solution then the incumbent [3,4]. 

The stopping condition can be the maximum number of 
iterations, the maximum number of iterations between two 
improvements of the local minimum, or maximum CPU  
time allowed [3]. 

The VNDS  (Variable Neighborhood Decomposition 
Search) is presented in [3]. The difference between this 
method and VNS  is that instead of searching the local 

minimum "x  starting from x ′  in the whole S  we solve at 
each iteration a sub-problem in some subspace 

( )xV kk N⊆  with kVx ∈′ . 

The linear programming problems that we solve are 
general enough: the classical constraints problem (the 
maximization problem in the canonical form) and the 
classical mixture problem (the minimization problem in 
the canonical form), and for both problems the involving 
terms are positives. For this we need some results from 
game theory [9,10,11] that we will present in the 
following. 

Definition 1.  A game is in the normal form if 

( )ii ,D,I π=Γ , where I  is the set of the players, iD  is the 

set of pure strategies of the player i , and RD: i

n

1i
i →π ×

=
 

is a function with ( )diπ  being the utility of the player i  if 

the player j  uses the strategy jd  and ( )n1 d,...,dd = . 

Definition 2.  The game is finite if { }n,...,2,1I =  is finite. 

The game is with complete information if iD  are finite. 

Definition 3. A mixed strategy of the player i  is a 

probability distribution ix  on iS . 

We denote by i∆  the set of mixed strategies of the 

player i  and by i
1i

n

∆×=Θ
=

. We denote also by ( )ii dx  the 

probability that the player i  uses the pure strategy id . 

Because in the case of non-cooperative games the mixed 

strategies jx  are independent, we obtain the following 

formula for the average utility of the player i : 

      ( ) ( ) ( ) ( )ddxx,...,xuxu ijj

n

1jDd
n1ii

ii

π⋅== ∏∑
=∈

.     (11) 

Definition 4. ( ) Θ∈= −ii x,xx  is a Nash equilibrium if 

for any iiy ∆∈  we have ( ) ( )iiii x,yuxu −≥ . 

Theorem 1 ([9,10,11]).  For any finite game with 

complete information the set NEΘ  of Nash equilibriums 
is not empty. 

Definition 5.  A player2 −  game with complete 

information is called bimatriceal. 

In this case { } { } ( ) ij121 Aj,i,n,...,1D,m,...,1D =π==  

and ( ) ij2 Bj,i =π . 

Definition 6.  The game is matriceal if BAT −= . 

An important result from game theory that we use in 
this paper [9,10,11] is that the Nash equilibrium for the 
matriceal game given by the matrix A  with all the 
elements positives is computed as follows. We solve first 
the linear programming problems 

                             and
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,                             (12’) 

where e  is a vector with all the components equal to 1 . If 
A  is a nm×  matrix, e  has m  components for the first 
problem and n  components for the second. 

The problems (12) and (12’) are dual each other, hence 
the optimal objective function value is the same, and we  

denote it by z . If the optimal solutions are x  and y  the 

Nash equilibrium is ( )21 s,s  and the game value (the 

payoff of the first player in the case of Nash equilibrium) 

is 
z
1v = , where xvs1 ⋅=  and yvs2 ⋅= . 

II. THE ALGORITHM 

 A method to obtain the Nash equilibrium of a non-
cooperative game is to solve first the system of differential 
equations [11] 

                  ( ) ( ) ( )( ) ( )txxux,eutx ikii
k
iiik ⋅−= −

′
           (13) 

with the initial conditions 

                                     ( ) ( )0x0x = ,                              (13’) 

where ( ) ii tx ∆∈  is the mixed strategy of the player i  at 

the moment t  and k
i

e  is the pure strategy k  of the player 

i . 

Theorem 2([11]). For any  ( ) ( )Θ∈ Intx 0   the solution  x   

of the system of differential equations (13) with the initial 
conditions (13’) has the property that there exists a Nash 

equilibrium NEx Θ∈∗  such that ( ) *

t

xtxlim =
∞→

. 

For a matriceal game the Cauchy problem (13)+(13’) 
becomes 
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T
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with the initial conditions 
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y0y
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,                            (14’) 

where x  is the mixed strategy of the first player, y  is the 

mixed strategy of the second player, iA  is the row i  of 

the matrix A  and ( )jA  is the column j  of the matrix A . 
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We present now the method to solve some nonlinear 
programming problems. Suppose that the linear 
programming problem is in the form 
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,                            (15’) 

where all the involved terms are positive. We can notice 
that both problems are in the canonical form. First 
problem is the classical constraints problem, because we 
have positive benefits and positive quantities for the 
restricted elements. The second is the classical menu 
problem because we have positive costs and positive 
quantities of the menu components. We will solve such 
problems by the numerical method as follows. 

Firstly we reduce the problems to the form (12) or 
(12’) and we consider the matriceal game for which we 
can find the Nash equilibrium by solving the initial 
problem and its dual. The way to reduce the problem to a 
matriceal game is the division of all the elements of the 
constraints matrix A  by the product of the corresponding 

elements from c  and b : we take 
ji

ij

cb

A

ijA ⋅← . We obtain 

in this way the matrix of the game in the first case or its 
transpose in the second case. To remain in the same order 
of the values of the matrix we can multiply A  by a 
constant equal to the product of the averages of the b  
values and of c  values. 

We use next the change of the variable  ( )τ−−= 1lnt   

and we have to solve the system of differential equations 
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with the initial conditions (14’). These initial conditions 
are the same as for (14) because for 0=τ  we have 0t = . 
In order to use the theorem 2 we take into account that 

( ) ∞=τ−−
→τ

1lnlim
1

. The initial conditions must be such 

that ( ) ( )( )00
y,x  is an interior point of ∆ . In our ++C  

program we take 
( )

m
10

i
x =  and 

( )
n
10

j
y =  (first player has 

m  pure strategies, and the second one has n  pure 
strategies). 

Therefore the Nash equilibrium is 

( ) ( ) ( )( )1y,1xy,x =∗∗ . We will compute this Nash 

equilibrium by numerical methods [8] considering the 

function nm1nm RR:f +++ →  
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In [8] there are presented numerical methods to solve 
Cauchy problems for differential equations. Therefore 
there are considered only scalar versions of the function  
f   from (17). For a system of differential equation we 

divide the interval  [ ]1,0   in  500   intervals, and we take  

02.0h =  . Denoting by  hkk ⋅=τ  , by  
( ) ( )k
k xx τ=   

and by  y
k  yk    we can solve the Cauchy problem 

using either the Euler method 
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for 500,1k = , the modified Euler method 
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for 500,1k = , or the Runge-Kutta method 
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for 500,1k = . 

If the matriceal game has the obtained value v (the first 
player’s payoff in the case of Nash equilibrium) and the 
obtained Nash equilibrium using the above methods is 

( )21 s,s  the objective function value is 
v

1
, the primal 

solution in the case of maximization is 
( )

i

i1
i

cv

s
x

⋅
= , and 
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the dual solution is 
( )

i

i2
i

bv

s
y

⋅
= . In the case of 

minimization we switch s1 and s2. The above value of v is 
computed if we do not multiply the elements Aij by the 
constant equal to the product of the averages of the b  
values and of c  values. In the contrary case the first value 
of v must be divided first by this constant (the case of our 

++C  program).  

III. APPLICATIONS 

Example 1. At a concrete station there are used cement, 
gravel sand and water to product three types of concrete: 

1B , 2B  and 3B . 

An unit of 1B  uses 8  units of cement, 5  units of 

gravel, one unit of sand and 4  units of water, and it 
ensures a benefit of 3  monetary units. 

An unit of 2B  uses 3  units of cement, one unit of 

gravel, 6  units of sand and 3  units of water, and it 
ensures a benefit of 3  monetary units. 

An unit of 3B  uses 5  units of cement, 4  units of 

gravel, 2  units of sand and 3  units of water, and it 
ensures a benefit of 8  monetary units. 

If the concrete station has 17  units of cement, 22  

units of gravel, 32  units of sand and 25  units of water, 
compute the maximum benefit and the optimal solution. 

We have to solve the linear programming problem 
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i

321

321

321

321

321

.                 (21) 

By the SIMPLEX method we obtain 2.27max = , the 

solution ( )T4.3,0,0x = , the dual prices ( )T0,0,0,6.1y = , 

the slack variables ( )T8.14,2.25,4.8,0  and the reduced 

costs ( )T0,8.1,8.9 . 

For numerical methods we consider 02.0h
500

1 ==  

and the computations are done with five decimals. 

If we use the Euler method we obtain 19994.27max = , 

the solution ( )T39999.3,0,0x = , the dual prices 

( )T0,0,00001.0,6.1y −= , the slack variables 

( )T80002.14,20001.25,40002.8,00003.0  and the reduced 

costs ( )T0,8.1,8.9 . 

By the modified Euler method we obtain 
19967.27max = , the solution 

( )T39999.3,00002.0,0x −= , the dual prices 

( )T0,0,00002.0,6.1y −= , the slack variables 

( )T80008.14,20012.25,40005.8,00009.0  and the reduced 

costs ( )T00005.0,79999.1,79994.9 − . 

If we use the Runge-Kutta method we obtain 

19739.27max = , the solution ( )T39999.3,0,0x = , the 

dual prices ( )T0,0,00001.0,59986.1y −= , the slack 

variables ( )T80004.14,20005.25,40004.8,00006.0  and 

the reduced costs ( )T00074.0,79957.1,79883.9 − . 

Example 2. We must create a mixture such that it 

contains the elements 1E  (at leas  17  units), 2E  (at least 

25  units), 3E  (at least 28  units) and 4E  (at least 11  

units). For this we use the substances 1S , 2S ,  3S  and 

4S . 

An unit of 1S  contains 4  units of 1E , 2  units of 2E , 

8  units of 3E  and one unit of 4E , and it costs 5   

monetary units. 

An unit of 2S  contains 3  units of 1E , 3  units of 2E , 

4  units of 3E  and 2  units of 4E , and it costs 4   

monetary units. 

An unit of 3S  contains 7  units of 1E , one unit of 2E , 

2  units of 3E  and 5 units of 4E , and it costs 7  

monetary units. 

An unit of 4S  contains 4  units of 1E , 6  units of 2E , 

3  units of 3E  and 3  units of 4E , and it costs 2   

monetary units. 

Compute the minimum cost and the optimal solution. 

We have to solve the linear programming problem 
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4321

4321

4321

4321

4321

.           (22) 

By the SIMPLEX method we obtain 92859.17min = , 

the solution ( )T42857.3,0,0,21429.2x = , the dual prices 

( )T0,61906.0,02381.0,0y = , the slack variables 

( )T5.1,0,0,57143.5  and the reduced costs 

( )T0,73907.5,4524.1,0 . 

For numerical methods we use the same 02.0h = , and 
for all the methods (including SIMPLEX) we use the 
same precision as in example 1 ( 5  decimals). 

If we use the Euler method we obtain 37677.18min = , 

the solution ( )T02379.7,0,0,86584.0x = , the dual prices 

( )T0,65636.0,0,0y = , the slack variables 

( )T93722.10,00192.0,87443.18,55852.14 −  and the 

reduced costs ( )T03093.0,68728.5,37457.1,25087.0− . 

By the modified Euler method we obtain 

54166.18min = , the solution 

( )T74172.6,0,00002.0,01166.1x −= , the dual prices 

( )T0,65476.0,0,0y = , the slack variables 
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( )T23679.10,31835.0,47359.17,01346.14  and the reduced 

costs ( )T03573.0,69048.5,38097.1,23806.0− . 

If we use the Runge-Kutta method we obtain 

27518.19min = , the solution 

( )T05398.7,0,00001.0,03345.1x −= , the dual prices 

( )T0,65496.0,0,0y = , the slack variables 

( )T19538.11,42952.1,39076.19,3497.15  and the reduced 

costs ( )T03512.0,69008.5,38016.1,23969.0− . 

IV. CONCLUSIONS 

Because the expression τ−1  appears at the 

denominator in (17) for the last step (computation of )1(x  

and )1(y ) we can not use the modified Euler method or 

the Runge-Kutta method. This because we can not 

compute ( )2g  in (19’) or ( )4g  in (20’), hence we use the 

Euler method for the last step. This is also the reason for 
that increasing the number of steps does not guarantee a 
better solution: the components of f  become huge 
because of the denominator, and the increasing of the 
error can be higher then the decreasing given by small h . 
When we test the program we can take 1000n =  or 

100n = , but for 500n =  we obtain solutions closer to 
those obtained by the SIMPLEX algorithm. 

We notice also that some values for the constraints and 
for the reduced costs (the constraints of the dual) are 
negatives. This means that the constraint is not fulfilled 

(for instance if the constraint is ii bxA ≤⋅  with iA  the 

line i  of the matrix of constraints, and the constraint 

value is 5.0− , the value of the left side is greater then ib  

by 5.0 ). We can say the same thing for the constraints 

ii bxA ≥⋅  and for the reduced costs. If some of the 

constraints of the problem are too important to be fulfilled 
we have to multiply x  by a positive constant such that all 
these constraints become fulfilled. Next we compute the 
new value of the objective function and the other 
constraints. We do the same thing with y  if some reduced 

costs are important. If we do this with x  and y  we 

compute the objective function for the primal and the dual 
problem, and next the average of the two values. 

The initial solution of the linear programming problem 

in the standard Karmarkar form is 
n
1

ia =  (the center of 

the simplex). In the same way we choose the initial 
conditions of the system of differential equations (16) 
( )

m
10

i
x =  and 

( )
n
10

j
y = . 

The use of systems of differential equations to find a 
Nash equilibrium is analogous to the mutations in genetic 
algorithms [6,7]. The difference is that the mutations are 
only to one chromosome, and, even in applications we 
apply successive mutations after cross-over these 
mutations have the same size ( 001.0  for instance [7]) and 
the sense of the partial derivative of the fitness function on 
the considered chromosome. The derivative of the 

component ix  (which can be looked as a chromosome) in 

our paper has not only the sense, but also the absolute 
value of the difference between the payoff using the pure 

strategy i  and that using the mixed strategy x , multiplied 

by the size of jx  and divided by τ−1 . The same thing we 

can say about y . In fact another difference to genetic 

algorithms is that instead of a population in our paper we 
have two individuals of two antagonist population. It is a 
completion to the genetic algorithms, because we deal 
with what these individuals do during their life. The 
genetic algorithms use selection [5,6,7] and our algorithm 
uses accommodation. Genetic algorithms can be also used 
to solve differential equations [5]. 

An open problem is how to reduce more general linear 
programming problem to our case. Another open problem 
is to extend our method to the quadratic programming and 
to the convex programming. 
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