Social choice with approximate interpersonal comparisons of well-being

Marcus Pivato

Department of Mathematics, Trent University

1. September 2009

Online at http://mpra.ub.uni-muenchen.de/17222/
MPRA Paper No. 17222, posted 11. September 2009 06:30 UTC
Social choice with approximate interpersonal comparisons of well-being*

Marcus Pivato, Trent University, Canada

September 9, 2009

Abstract

Some social choice models assume that precise interpersonal comparisons of utility (either ordinal or cardinal) are possible, allowing a rich theory of distributive justice. Other models assume that absolutely no interpersonal comparisons are possible, or even meaningful; hence all Pareto-efficient outcomes are equally socially desirable. We compromise between these two extremes, by developing a model of ‘approximate’ interpersonal comparisons of well-being, in terms of an incomplete preorder on the space of psychophysical states. We then define and characterize ‘approximate’ versions of the classical egalitarian and utilitarian social welfare orderings. We show that even very weak assumptions about interpersonal comparability can yield preorders on the space of social alternatives which, while incomplete, are far more complete than the Pareto preorder. We also develop a variant of Harsanyi’s Social Aggregation Theorem.

The philosophical and practical problems surrounding interpersonal utility comparisons (IPUC) are well known; see e.g. Sen (1979), Griffin (1986), Davidson (1986), Gibbard (1986), Barrett and Hausman (1990), Fleurbaey and Hammond (2004), Hausmann and McPherson (2006; §7.2), and especially Elster and Roemer (1991). The apparent meaninglessness (or at least, practical impossibility) of IPUC has elicited at least five responses. One response is to restrict welfare economics to questions of Pareto efficiency only (Robbins, 1935, 1938). Economists then can only recommend policies which are clearly Pareto-superior to the status quo. If no policy alternative is Pareto-superior to any other, then the choice between them is a ‘political’ question, and not the business of economists.

A second, opposite approach is to axiomatize that some specific form of IPUC is possible, and investigate which social choice rules arise naturally under this IPUC axiom. This approach was pioneered by Sen (1970b), and has been spectacularly successful; see d’Aspremont and Gevers (2002) for a summary. However, since it explicitly sidesteps the

*I am grateful to Özgür Evren, Klaus Nehring, Efe Ok, and Clemens Puppe for reading parts of earlier drafts of this paper and for their valuable comments and corrections. They are not responsible for any errors or deficiencies which remain.
question of how IPUC could be possible, the resulting theoretical edifice is in danger of being no more than an academic exercise. If someone rejects the IPUC hypotheses of the theorems, she can dismiss their conclusions. Even if she accepts the IPUC hypotheses in principle, she may be unable to translate an abstract social choice theorem into a concrete policy recommendation, without some way to operationalize the required IPUC between real people.

Thus, a third approach is to ‘pseudo-operationalize’ IPUC, by using money as a proxy for utility. In some schemes, a policy is recommendable if it can be made Pareto-superior to the status quo, once the ‘winners’ pay the ‘losers’ adequate financial compensation — either hypothetical (e.g. the Kaldor-Hicks (1939) compensation principle) or actual (e.g. the Thompson (1966) insurance mechanism). In Groves (1973)-Clarke (1971) mechanisms, preference-strength is identified with ‘willingness to pay’; people vote for public policy by bidding sums of money. However, such ‘money-metric utilitarianism’ favours the rich, who tend to assign less marginal utility to each dollar than the poor (ceteris paribus), due to risk-aversion and/or satiation. A wealthy minority can literally ‘buy’ its preferred policy alternative by bidding a sufficiently large sum of money.

A fourth approach explicitly rejects any kind of IPUC (monetary or otherwise), and considers social choice mechanisms which select a point on the Pareto frontier using only the profile of individual’s (noncomparable) preferences, constrained by ‘procedural’ criteria such as ‘Monotonicity’ or ‘Independence of Irrelevant Alternatives’. In the theory of bargaining (i.e. social choice over a convex set, with cardinal noncomparable utility), the Nash (1950), ‘relative-egalitarian’ (Kalai and Smorodinsky, 1975), and ‘relative utilitarian’ (Segal, 2000) solutions achieve this goal. However, there are other bargaining solutions which do require explicit IPUC, and which are uniquely characterized by combinations of axioms which may be quite desirable in some situations; see Kalai (1977) or Myerson (1981). Thus, a rejection of IPUC does not necessarily yield desirable bargaining outcomes. Furthermore, in the theory of voting (i.e. social choice over a discrete set, with ordinal noncomparable preferences) Arrow’s Impossibility Theorem essentially says that there is no ‘satisfactory’ voting rule which eschews IPUC.

A fifth approach is to altogether reject ‘welfarism’ — the idea that social choices should be determined by utility data — and instead argue that these choices should be based on more tangible or objective measures of quality of life, such as Rawls’ (1971) ‘primary goods’, Sen’s (1985, 1988) ‘functionings and capabilities’, Cohen’s (1993) ‘midfare’, Roemer’s (1996) ‘advantage’, or the ‘quality-adjusted life-years’ of healthcare economics (Tsuchiya and Miyamoto, 2009). However, this trades the problem of IPUC for another, equally thorny problem. ‘Quality of life’ is comprised of many factors: mental and physical health, wealth and economic opportunity, political and personal freedom, social prestige, quality of personal relationships, etc. — and each of these factors must be split into several subfactors to be properly quantified. But to have an appropriate object for optimization on the part of the social planner, we must combine all of these variables into a single numerical ‘index’, which purports to measure ‘overall quality of life’. What is the correct way to define this index? Why are we justified in employing the same index for two people with wildly different preferences and life-goals? Any attempt to answer these questions rapidly
becomes embroiled in philosophical issues which are dangerously close to the questions of IPUC we were trying to escape in the first place.

In reality, it does seem possible to make at least crude interpersonal comparisons. For example, if Zara and her family and friends are physically comfortable, healthy, and safe, while Juan and his family and friends are suffering in a concentration camp or dying of hemorrhagic fever, it seems fairly uncontroversial to assert that Zara’s utility is higher than Juan’s. Likewise, if Zara scores much higher than Juan in every item on a comprehensive list of measures of health, well-being, and quality of life, then again it seems plausible that Zara’s utility is higher than Juan’s.

Of course, if Zara, Juan and their families are in roughly equal physical circumstances, and they both have roughly equal scores on all measures of well-being, then it is difficult to say who is happier; such ‘high-precision’ IPUC might not be possible. However, we will show that even even a crude, ‘low-precision’ IPUC can be leveraged to define social preference relations which are far more complete than the Pareto ordering. Furthermore, only such low-precision IPUC are required to decide many public policy issues; e.g. whether to transfer wealth from the fabulously rich to the abject poor; whether to spend public resources on emergency medical care or disaster relief; whether to quarantine a few people to protect millions from a deadly plague, etc.

Changing minds. Some kind of IPUC is implicit whenever social policy makes ‘redistributive’ choices (moving along the Pareto frontier). IPUC is also necessary when the psychologies of the agents are themselves variables which can be modified by policy. Most social choice models assume a fixed population of agents with fixed preferences over the set of possible states of the (physical) world; we then seek the ‘optimal’ world-state according to some ordering determined by these preferences. Each agent’s preferences presumably arise from her ‘psychology’, which is assumed to be exogenous and immutable. However, in some situations, her psychology is endogenous and mutable. For example, if the agent is mentally ill (e.g. clinically depressed), and we provide her with appropriate therapy (e.g. antidepressants), then she effectively becomes a slightly different person, with different preferences (e.g. she may no longer wish to kill herself). Furthermore, different therapies may lead to slightly different post-therapeutic individuals. Thus, a social choice over psychotherapeutic alternatives necessarily involves comparing the preferences of different people.

Another, more long-term example involves the use of propaganda campaigns to mold public preferences. For example, in developing countries with excessive population growth, governments sometimes try to persuade their citizens to prefer smaller family sizes. It is debatable whether such campaigns are successful; but if they were, then the post-propaganda population would contain people with different preferences than the pre-propaganda population; furthermore, different propaganda campaigns might lead to different preference profiles. Hence any social choice over propaganda campaigns is again a choice over worlds containing slightly different individuals.

An even longer-term example is social choice involving future generations. Different policies will lead to different future populations, with different psychologies and differ-
ent preferences. For example, suppose it were discovered that a certain genetic variation caused mild chronic depression in 20% of the population. Suppose, furthermore, that it was possible to entirely eliminate this genetic variation from future generations through a systematic campaign of gene therapy, thereby presumably saving 20% of all future persons from genetically induced depression. We face a choice of whether or not to launch the gene therapy campaign; this is a choice over two different possible futures, with two psychologically different societies. An especially acute version of the ‘future generations’ problem confronts attempts to derive constitutions from an ‘original position’, as in Buchanan and Tullock (1962) and Rawls (1971).

To address these issues, we introduce a space Ψ of ‘psychological types’ as well as the usual space Φ of personal ‘physical states’. An individual’s ‘psychophysical state’ is thus an ordered pair (ψ, φ) ∈ Ψ × Φ. The element φ encodes the person’s current health, wealth, physical location, consumption bundle, etc. The element ψ encodes the individual’s personality, mood, knowledge, beliefs, values, desires, and any other relevant ‘psychological’ information. Thus, each ψ ∈ Ψ defines some preference order (⪯ψ) over Φ.

By definition, Ψ is the space of all possible human psychologies which could ever exist; hence the set {⪯ψ}ψ∈Ψ is the set of all possible preference relations which could ever be part of any profile. A particular ‘society’ ψ ∈ ΨI is obtained by making some selection from Ψ (here, I is set indexing the population). Societies change over time, and some of these changes may be socially desirable. Hence, the true space of ‘social alternatives’ is not {ψ} × ΦI for some fixed ψ ∈ ΨI. The true space of social alternatives is ΨI × ΦI, and it is over this space which the social planner must optimize. We refer to an element of ΨI × ΦI as a world.

Intertemporal comparisons. Further evidence that people have at least some limited faculty for IPUC is the fact that people remember their pasts and choose their futures. Define a preorder (～) on Ψ, where ψ1 ～ ψ2 means “ψ2 is a possible future self of ψ1”. Equivalently: ψ2 remembers being ψ1 at some point during her past, and ψ1 anticipates possibly becoming ψ2 at some point during her future. Thus, P(ψ) := {ψ′ ∈ Ψ ; ψ′ ～ ψ} is ψ’s set of past selves, and F(ψ) := {ψ′ ∈ Ψ ; ψ ～ ψ′} is ψ’s set of possible future selves. If ψ has accurate memory of her own past, she can correctly make judgements of the form, “I was happier in university than I was in high school”, or “I would be happier now to study piano than I would have been as a teenager.” This means that she can make interpersonal comparisons between elements of P(ψ) × Φ. On the other hand, to be able to make optimal intertemporal choices, she must choose between various possible futures, perhaps involving different future selves; she therefore must make accurate comparisons between elements of F(ψ) × Φ. For example, a person choosing whether to get an education, try a new experience, avoid ‘temptation’, undergo psychotherapy, meditate in search of ‘inner peace’, or take a psychoactive drug (especially an addictive one) is clearly choosing amongst possible ‘future selves’ in F(ψ). Also, the idea that people can be held partly ‘responsible’ for their preferences (e.g. for deliberately cultivating ‘expensive tastes’, for maintaining a more or less ‘cheerful’ disposition, or for emiserating themselves with unrealistic life-goals)
implicitly presupposes some ability to choose over $\mathcal{F}(\psi)$. However, once we recognize that people routinely make interpersonal comparisons across $[\mathcal{P}(\xi) \cup \mathcal{F}(\xi)] \times \Phi$, it seems plausible that they can make interpersonal comparisons involving at least some other elements of $\Psi \times \Phi$.

Contents. Section §1 deals with technical preliminaries. In §2, we introduce a model of ‘approximate’ IPUC in a purely ordinal framework, in the form of a weak interpersonal preference ordering (‘wipo’): a (partial) preorder on the space $\Psi \times \Phi$ of psychophysical states. In §3 (still in an ordinal setting), we use wipos to define (partial) preorders over $\Psi^I \times \Phi^I$, which we call social preferences over worlds (‘sprows’). We focus on two natural examples: the ‘Suppes-Sen’ sprow (§3.1) and the ‘approximate egalitarian’ sprow (§3.2). In §4.1, we introduce hedometers: ordinal utility functions which are compatible with the interpersonal comparisons determined by a wipo, and discuss when a wipo is entirely characterized by its set of hedometers. Then, in §4.2, we study welfarist sprows, which are obtained by coupling a social welfare ordering on \mathbb{R}^I with a collection of hedometers. Theorem 4.6 shows that the approximate egalitarian sprow is maximal in the class of welfarist sprows which ensure ‘minimal equity’, while being decisive between all ‘fully comparable’ pairs of worlds (the smallest class for which one could reasonably require decisiveness).

In §5 we turn to a cardinal utility framework. A lottery is a probability distribution over $\Psi \times \Phi$, and a wipol is a (partial) preorder over lotteries, which satisfies something like the von Neumann-Morgenstern axioms. A world-lottery is a probability measure over the set of all possible worlds. In §5.1, we consider (partial) preorders over world-lotteries (sprowls); we show that any sprowl must extend and refine the approximate utilitarian sprowl, which ranks world-lotteries according to the ‘per capita average lottery’ (Theorem 5.5). If the wipol can be characterized using a set of ‘hedometes’, then the approximate utilitarian sprowl can be interpreted as maximizing the per capita average expected value of these hedometers on $\Psi \times \Phi$ (Proposition 5.6).

In §6, we consider a rather different model of approximate interpersonal comparisons, obtained by treating the hedometer as a random variable. This leads to a ‘profile-independent’ version of Harsanyi’s Social Aggregation Theorem (Theorem 6.2) and also provides a purely ‘welfarist’ account of the importance of personal liberty (§6.2). Finally, in §7, we construct three more mathematically complicated models of wipos, based on specific psychological assumptions about how interpersonal comparisons could be made.

To facilitate reading, all but the simplest proofs are relegated to an appendix. It is not necessary to read all these sections in order. The following figure illustrates the lattice of logical dependencies between the sections.
Related literature. Some ideas presented here have precursors in the literature. Sen (1970a, 1972, and Chapter 7* of 1970b) was the first to suggest using ‘approximate’ interpersonal comparisons to define an incomplete social ordering over the space of social alternatives; he developed a model quite similar to the ‘approximate utilitarian’ sprowl of §5.1. A similar model was recently explored by Baucells and Shapley (2006, 2008). Finally, the wipo construction in §7.3 is inspired by the ideas of Ortuño-Ortín and Roemer (1991).

Fishburn (1974), Barthélym (1982), and Pini et al. (2009) have also considered the aggregation of a profile of incomplete individual preference orders into an incomplete social order; each obtained weakened versions of the classic impossibility theorems. However, these results have no connection to this paper, because they make no reference to IPUC. In these earlier papers, the incompleteness of preference orders represents personal ambivalence, whereas in our model, it represents interpersonal incomparability (indeed, in our model, each individual’s preferences over her physical state are complete).

1 Preliminaries

Let \(\mathcal{X} \) be a set. A preorder on \(\mathcal{X} \) is a binary relation \((\preceq)\) which is transitive and reflexive, but not necessarily complete or antisymmetric. A complete order is a preorder \((\preceq)\) such that, for all \(x, y \in \mathcal{X} \), either \(x \preceq y \) or \(y \preceq x \). (For example, a social welfare order (SWO) is a complete order on \(\mathbb{R}^2 \).) A preorder is antisymmetric (or ‘strict’) if, for all \(x, y \in \mathcal{X} \), we have \((x \preceq y \preceq x) \iff (x = y) \). A linear order is an antisymmetric complete order. We will assume each individual’s preferences can be described by a complete order (not necessarily linear), but that interpersonal comparisons can only be described by an (incomplete) preorder. There are four distinct notions of ‘optimality’ for incomplete preorders. We define:

\[
\begin{align*}
\text{strDom} (\mathcal{X}, \preceq) & := \{x^* \in \mathcal{X} : x^* \text{ is strictly dominant: } x^* \succ x, \ \forall x \in \mathcal{X} \setminus \{x^*\}\}; \\
\text{wkDom} (\mathcal{X}, \preceq) & := \{x^* \in \mathcal{X} : x^* \text{ is weakly dominant: } x^* \succeq x, \ \forall x \in \mathcal{X}\}; \\
\text{strUnd} (\mathcal{X}, \preceq) & := \{x^* \in \mathcal{X} : x^* \text{ is strictly undominated: } x^* \not\preceq x, \ \forall x \in \mathcal{X} \setminus \{x^*\}\}; \\
\text{wkUnd} (\mathcal{X}, \preceq) & := \{x^* \in \mathcal{X} : x^* \text{ is weakly undominated: } x^* \not\succeq x, \ \forall x \in \mathcal{X}\}.
\end{align*}
\]

Thus, \(\text{strDom} (\mathcal{X}, \preceq) = \text{wkDom} (\mathcal{X}, \preceq) \cap \text{strUnd} (\mathcal{X}, \preceq) \subseteq \text{wkDom} (\mathcal{X}, \preceq) \cup \text{strUnd} (\mathcal{X}, \preceq) \subseteq \text{wkUnd} (\mathcal{X}, \preceq) \). \hspace{1cm} (1)

All four of these optimal sets can be empty. If \(\mathcal{X} \) is finite, then \(\text{wkUnd} (\mathcal{X}, \preceq) \) is always nonempty; even then, each of the other three optimal sets can sometimes be empty. Clearly \(\text{strDom} (\mathcal{X}, \preceq) \neq \emptyset \) if and only if \(\text{wkDom} (\mathcal{X}, \preceq) \) is a singleton set, in which case \(\text{strDom} (\mathcal{X}, \preceq) = \text{wkDom} (\mathcal{X}, \preceq) \). If \((\preceq) \) is complete, then \(\text{strDom} (\mathcal{X}, \preceq) = \text{strUnd} (\mathcal{X}, \preceq) \) and \(\text{wkDom} (\mathcal{X}, \preceq) = \text{wkUnd} (\mathcal{X}, \preceq) \). If \((\preceq) \) is antisymmetric, then \(\text{strDom} (\mathcal{X}, \preceq) = \text{wkDom} (\mathcal{X}, \preceq) \) and \(\text{strUnd} (\mathcal{X}, \preceq) = \text{wkUnd} (\mathcal{X}, \preceq) \). If \((\preceq) \) is linear, then all four sets are equal.

The symmetric factor of \((\preceq) \) is the relation \((\approx)\) defined by \((x \approx x') \iff (x \preceq x' \text{ and } x' \preceq x) \). The antisymmetric factor of \((\preceq) \) is the relation \((\prec)\) defined by \((x \prec x') \iff (x \preceq x' \text{ and } x' \not\preceq x) \).
x' and $x' \not\preceq x$). If neither $x \preceq x'$ nor $x' \preceq x$ holds, then x and x' are incomparable; we then write $x \not\preceq x'$. If (\preceq_1) and (\preceq_2) are two partial orders on \mathcal{X}, then (\preceq_2) extends (\preceq_1) if, for all $x, x' \in \mathcal{X}$: $(x \preceq_1 x') \implies (x \preceq_2 x')$. It follows that $(x \approx x') \implies (x \approx_2 x')$, while $(x \preceq_1 x') \implies (x \preceq_2 x'$ or $x \not\preceq_1 x')$. (In particular, every preorder is extended by the ‘trivial’ preorder where $x \approx x'$ for all $x, x' \in \mathcal{X}$). We say (\preceq_2) refines (\preceq_1) if, for all $x, x' \in \mathcal{X}$:

$$(x \preceq_1 x') \implies (x \preceq_2 x') \text{ and } (x \approx_1 x') \implies (x \approx_2 x' \text{ or } x \not\approx_2 x').$$

That is: every pair of elements which is comparable under (\preceq_1) remains comparable under (\preceq_2), and the antisymmetric part of (\preceq_2) extends the antisymmetric part of (\preceq_1). (Thus, if $x \not\preceq_2 x'$, then either $x \not\approx_1 x'$ or $x \not\preceq_1 x'$.) For example, the ‘lexmin’ SWO refines the ‘maxmin’ SWO (see Example 4.1 below).

If (\preceq_2) extends and refines (\preceq_1), then for all $x, x' \in \mathcal{X}$, we have

$$(x \preceq_1 x') \implies (x \preceq_2 x') \text{ and } (x \approx_1 x') \implies (x \approx_2 x'). \quad (2)$$

Let $\{\preceq_\lambda\}_{\lambda \in \Lambda}$ be a collection of preorders on \mathcal{X} (where Λ is some indexing set). The meet of $\{\preceq_\lambda\}_{\lambda \in \Lambda}$ is the preorder (\preceq_Λ) defined by $(x_1 \preceq_\lambda x') \iff (x_1 \preceq_\lambda x', \forall \lambda \in \Lambda)$. To clarify the meanings of these concepts, and for later reference, we state the following facts.

Lemma 1.1 Let \mathcal{X} be a set and let $\{\preceq_\lambda\}_{\lambda \in \Lambda}$ be a collection of preorders on \mathcal{X}.

(a) Let (\preceq_Λ) be the meet of $\{\preceq_\lambda\}_{\lambda \in \Lambda}$. Then (\preceq_Λ) is also a preorder on \mathcal{X}. For every $\lambda \in \Lambda$, the preorder (\preceq_Λ) extends (\preceq_λ) (but doesn’t necessarily refine it).

(b) Let (\preceq_Λ) be a preorder on \mathcal{X}, and suppose that, for every $\lambda \in \Lambda$, the preorder (\preceq_λ) extends and refines (\preceq_Λ). Then (\preceq_Λ) also extends and refines (\preceq_Λ).

(c) Let (\preceq_Λ) be a complete order on \mathcal{X}, and let (\preceq_2) be another preorder.

$$(\text{either extends or refines } (\preceq_1)) \implies (\preceq_\Lambda \text{ is also a complete order on } \mathcal{X}).$$

$$(\text{extends and refines } (\preceq_1)) \implies (\preceq_\Lambda \text{ is identical with } (\preceq_1)).$$

(d) Let (\preceq_1) and (\preceq_2) be complete orders on \mathcal{X}. Then

$$(\text{extends } (\preceq_1)) \iff (\preceq_1 \text{ refines } (\preceq_2)).$$
(e) Let \((\preceq_1) \) and \((\preceq_2) \) be antisymmetric preorders on \(X \). Then

\[
\left((\preceq_1) \text{ extends } (\preceq_2) \right) \iff \left((\preceq_1) \text{ refines } (\preceq_2) \right).
\]

(f) Let \((\preceq_1) \) and \((\preceq_2) \) be linear orders on \(X \). Then

\[
\left((\preceq_1) \text{ extends } (\preceq_2) \right) \iff \left((\preceq_1) \text{ refines } (\preceq_2) \right) \iff \left((\preceq_1) \text{ is identical with } (\preceq_2) \right).
\]

(g) Let \((\preceq_1) \) and \((\preceq_2) \) be any preorders on \(X \). [i] If \((\preceq_1) \) extends \((\preceq_2) \), then

\[
\text{wkDom}(X, \preceq_1) \subseteq \text{wkDom}(X, \preceq_2) \quad \text{and} \quad \text{strUnd}(X, \preceq_1) \subseteq \text{strUnd}(X, \preceq_2).
\]

[ii] If \((\preceq_1) \) refines \((\preceq_2) \), then

\[
\text{strDom}(X, \preceq_1) \subseteq \text{strDom}(X, \preceq_2) \subseteq \text{wkUnd}(X, \preceq_1) \subseteq \text{wkUnd}(X, \preceq_2).
\]

2 Weak interpersonal preference orderings

Let \(\Psi \) be the space of psychological states, and let \(\Phi \) be the space of personal physical states. For any \(\psi \in \Psi \), let \((\preceq_\psi) \) be a complete order on \(\Phi \), describing the preferences of a \(\psi \)-type personality. We can also regard \((\preceq_\psi) \) as a (very incomplete) preorder on \(\Psi \times \Phi \), such that, for any distinct \((\psi_1, \phi_1), (\psi_2, \phi_2) \in \Psi \times \Phi \), we have \((\psi_1, \phi_1) \preceq_\psi (\psi_2, \phi_2) \) if and only if \(\psi_1 = \psi = \psi_2 \) and \(\phi_1 \preceq \phi_2 \). A weak interpersonal preference ordering (or wipo) is a preorder \((\preceq_\psi) \) on \(\Psi \times \Phi \) which satisfies two axioms:

(W1) \(\text{(Nonpaternalism)} \) For any \(\psi \in \Psi \), the preorder \((\preceq_\psi) \) extends and refines \((\preceq_\psi) \). That is:

for all \(\phi_1, \phi_2 \in \Phi \),

\[
\left((\psi, \phi_1) \preceq_\psi (\psi, \phi_2) \right) \iff \left(\phi_1 \preceq_\psi \phi_2 \right) \quad \text{and} \quad \left((\psi, \phi_1) \prec_\psi (\psi, \phi_2) \right) \iff \left(\phi_1 \prec_\psi \phi_2 \right).
\]

(W2) \(\text{(Minimal interpersonal comparability)} \) For all \(\psi_1, \psi_2 \in \Psi \), and all \(\phi_1 \in \Phi \), there exists some \(\phi_2 \in \Phi \) such that \((\psi_1, \phi_1) \preceq_\psi (\psi_2, \phi_2) \), and there exists some \(\phi_2' \in \Phi \) such that \((\psi_2, \phi_2') \preceq_\psi (\psi_1, \phi_1) \).

Axiom (W2) just says there exists at least one physical state (possibly very extreme) which is clearly better for \(\psi_2 \) than the physical state \(\phi_1 \) is for \(\psi_1 \), and one physical state for \(\psi_2 \) which is clearly worse for \(\psi_2 \) than the \(\phi_1 \) is for \(\psi_1 \). If \((\preceq_\psi) \) was a complete ordering on \(\Psi \times \Phi \), we would have a complete system of interpersonal utility level comparisons—but we will presume that \((\preceq_\psi) \) is normally quite incomplete.
The incompleteness of (≤) can be interpreted either ‘epistemologically’ or ‘metaphysically’. In the epistemological interpretation, we suppose there is, in reality, an underlying complete order (≤∗) on Ψ × Φ, which extends and refines (≤), and which describes the ‘true’ interpersonal comparison of well-being between different psychophysical states. However, (≤∗) is unknown to us (and perhaps, unknowable). The partial preorder (≤) reflects our incomplete knowledge of (≤∗).

In the metaphysical interpretation, there is no underlying true, complete ordering of Ψ × Φ; if ψ1 ≠ ψ2, then it is only meaningful to compare (ψ1, φ1) and (ψ2, φ2) when they yield unambiguously different levels of well-being (e.g. because φ1 is a state of great suffering and φ2 is a state of great happiness). The partial preorder (≤) encodes all the interpersonal comparisons which can be meaningfully made between different psychological types. If (ψ1, φ1) ⊁ ≺ (ψ2, φ2), then it is simply meaningless to inquire which of (ψ1, φ1) or (ψ2, φ2) experiences a greater level of well-being.

A physics analogy may clarify this distinction. Suppose Ψ represents spatial position, and Φ represents some time measurement, so that an ordered pair (ψ, φ) represents an event which occurred at position ψ at time φ. Suppose the relation “(ψ1, φ1) ≤ (ψ2, φ2)” means: “The event (ψ1, φ1) happened before the event (ψ2, φ2)”. In the epistemological interpretation, the comparison between φ1 and φ2 is subject to some ‘measurement error’, which may depend on the distance from ψ1 to ψ2 (say, because it is difficult to determine the exact time of occurrence of far away events). This measurement error might make it impossible for us to determine whether (ψ1, φ1) ≤ (ψ2, φ2) or (ψ2, φ2) ≤ (ψ1, φ1) —but in the setting of classical physics, one of these two statements is definitely true. However, in the setting of special relativity, if (ψ2, φ2) occurs outside of the ‘light cone’ of (ψ1, φ1), then neither statement is true; event (ψ2, φ2) occurred neither before nor after (ψ1, φ1). Indeed, the words ‘before’ and ‘after’ only have meaning for events which occur inside one another’s light cones.

We will generally remain agnostic about whether to adopt the epistemological or metaphysical interpretation. However, some of our analysis (e.g. the concept of ‘hedometers’) clearly tends towards the epistemological interpretation.

2.1 Weak interpersonal comparisons of utility

Suppose that Φ = ℝ; that is, each person’s physical state can be entirely described by a single real number (measuring her ‘well-being’ or ‘utility’). For all ψ ∈ Ψ, we suppose that (≤) is the standard linear ordering on ℝ; however, different individuals potentially have different ‘utility scales’, so given (ψ1, r1), (ψ2, r2) ∈ Ψ × ℝ, it is not necessarily possible to compare (ψ1, r1) and (ψ2, r2) if ψ1 ≠ ψ2. A wipo on Ψ × ℝ is thus a weak interpersonal comparison of utility (or wicu).

Example 2.1: Let be a metric on Ψ (measuring the ‘psychological distance’ between individuals).

(a) Suppose all individuals have cardinal utility functions with the same scale (so for any ψ, ψ′ ∈ Ψ and r1 < r2 ∈ ℝ, the change from (ψ, r1) to (ψ, r2) represents the same ‘increase
in happiness’ for \(\psi \) as the change from \((\psi', r_1) \) to \((\psi', r_2) \) represents for \(\psi' \). However, suppose the ‘zeros’ of different people’s utility functions are set at different locations (so \((\psi, 0) \) is not necessarily equivalent to \((\psi', 0) \)). The precise deviation between utility zeros of two individuals is unknown, but it is bounded by psychological distance between them. Formally, let \(c > 0 \) and \(\gamma \in (0, 1) \) be constants. For any \((\psi_1, r_1), (\psi_2, r_2) \in \Psi \times \mathbb{R} \), stipulate that \((\psi_1, r_1) \prec (\psi_2, r_2) \) iff \(r_1 + c \cdot d(\psi_1, \psi_2)^\gamma < r_2 \), while \((\psi_1, r_1) \approx (\psi_2, r_2) \) iff \((\psi_1, r_1) = (\psi_2, r_2) \).

See Figure 1(a,b).

(b) Suppose all individuals have cardinal utility functions with the same zero point (so for all \(\psi, \psi' \), the point \((\psi, 0) \) is equivalent to \((\psi', 0) \) — perhaps being the utility of some ‘neutral’ state, like nonexistence or eternal unconsciousness). However, different utility functions have different scales. The precise deviation between utility scales of two individuals is unknown, but it is bounded by psychological distance between them. Formally, let \(c > 1 \)
be a constant. For any \((\psi_1, r_1), (\psi_2, r_2) \in \Psi \times \mathbb{R}\), stipulate that \((\psi_1, r_1) \prec (\psi_2, r_2)\) if either \(r_1 \geq 0\) and \(c^{d(\psi_1, \psi_2)} \cdot r_1 < r_2\); or \(r_1 < 0\) and \(c^{-d(\psi_1, \psi_2)} \cdot r_1 < r_2\). Meanwhile, \((\psi_1, r_1) \simeq (\psi_2, r_2)\) iff either \((\psi_1, r_1) = (\psi_2, r_2)\) or \(r_1 = 0 = r_2\). See Figure 1(c).

Now let \(\Phi\) be any space of physical states, and for each \(\psi \in \Psi\), let \(u_\psi : \Phi \rightarrow \mathbb{R}\) be a utility function representing the preference order \((\preceq_\psi)\) on \(\Phi\). Let \((\preceq_\star)\) be a wicu on \(\Psi \times \mathbb{R}\); then we can define a **wicu-mediated wipo** \((\preceq)\) on \(\Psi \times \Phi\) by:

\[
(\psi_1, \phi_1) \preceq (\psi_2, \phi_2) \iff (\phi_1, u_\psi(\phi_1)) \preceq_\star (\phi_2, u_\psi(\phi_2)).
\]

2.2 Hedometers

Suppose there was a scientific instrument which, when applied to any person, could objectively measure her current happiness or well-being in some standard units. Call this hypothetical instrument a **hedometer**, and represent it as a function \(h : \Psi \times \Phi \rightarrow \mathbb{R}\). Thus, if \(h(\psi, \phi) < h(\psi', \phi')\), then psychology \(\psi\) is happier in physical state \(\phi'\) than in state \(\phi\). Thus, the hedometer yields an ordinal utility function representing the preference ordering \((\preceq_\psi)\) of any fixed psychological type \(\psi\). However, since \(h\) objectively measures utility in standard units, it can also be used to make interpersonal comparisons: if \(h(\psi, \phi) < h(\psi', \phi')\), then, objectively, psychology \(\psi'\) is happier in physical state \(\phi'\) than psychology \(\psi\) is in state \(\phi\).

Unfortunately, no such instrument exists, and even we had a putative hedometer in front of us, there would be no way of verifying its accuracy. However, suppose we have a collection of **possible hedometers**; that is, a set \(\mathcal{H}\) of functions \(h : \Psi \times \Phi \rightarrow \mathbb{R}\) such that:

- For all \(\psi \in \Psi\), the function \(h(\psi, \cdot) : \Phi \rightarrow \mathbb{R}\) is an ordinal utility function for the preference ordering \((\preceq_\psi)\).

- For any \((\psi, \phi), (\psi', \phi') \in \Psi \times \Phi\), if \((\psi', \phi')\) is much happier than \((\psi, \phi)\), then \(h(\psi', \phi') > h(\psi, \phi)\) (but not conversely).

One of the elements of \(\mathcal{H}\) is the ‘true’ hedometer, but we don’t know which one. Thus, we could define a wipo \((\preceq_\mathcal{H})\) on \(\Psi \times \Phi\) as follows: for all \((\psi, \phi), (\psi', \phi') \in \Psi \times \Phi\),

\[
(\psi, \phi) \preceq_\mathcal{H} (\psi', \phi') \iff (h(\psi, \phi) \leq h(\psi', \phi'), \text{ for all } h \in \mathcal{H}).
\]

We will see later that many wipos can be represented in this way (§4.1).

Example 2.2: (Wipo by jury) Let \(J\) be some jury of individuals, and assume each \(j \in J\) possesses a complete wipo \((\preceq_j)\) on \(\Psi \times \Phi\), which expresses \(j\)’s own (subjective) interpersonal comparisons of well-being. The orders \(\{\preceq_j\}_{j \in J}\) may disagree with one another (although
all of them must satisfy axiom (W1)). Let \((\preceq_j)\) be the meet of the collection \(\{\preceq_j\}_{j \in \mathcal{J}}\); then Lemma 1.1(a,b) implies that \((\preceq_j)\) is a wipo.\(^1\)

Suppose each of the complete orders \((\preceq_j)\) can be represented by a function \(h_j : \Psi \times \Phi \rightarrow \mathbb{R}\). Then the jury’s wipo \((\preceq)\) is defined by eqn.(4).

In §7, we will develop more technically complicated examples of wipos, based on more detailed and plausible psychological models of interpersonal comparability. First, however, in §3–§6, we will apply wipos to make social welfare judgements.

3 Social preferences over worlds

Let \(\mathcal{I}\) be a finite set (representing a population). A society is an element of \(\psi \in \Psi^\mathcal{I}\), which assigns a ‘psychology’ \(\psi_i\) to each member \(i\) of the population \(\mathcal{I}\). A situation is an element \(\phi \in \Phi^\mathcal{I}\) which assigns a physical state \(\phi_i\) to each \(i \in \mathcal{I}\). A world is an ordered pair \((\psi, \phi) \in \Psi^\mathcal{I} \times \Phi^\mathcal{I}\) —that is, a society together with a situation. If \(\sigma : \mathcal{I} \rightarrow \mathcal{I}\) is a permutation, and \((\psi, \phi) \in \Psi^\mathcal{I} \times \Phi^\mathcal{I}\), then define

\[
\sigma(\psi, \phi) := (\psi', \phi'), \quad \text{where } \psi'_i := \psi_{\sigma(i)} \text{ and } \phi'_i := \phi_{\sigma(i)} \text{ for all } i \in \mathcal{I}. \tag{5}
\]

Let \((\preceq)\) be a wipo on \(\Psi \times \Phi\). A \((\preceq)\)-social preference over worlds (or sprow) is a preorder \((\preceq)\) on \(\Psi^\mathcal{I} \times \Phi^\mathcal{I}\) which satisfies two properties:

Par\(^2\) For any \((\psi^1, \phi^1), (\psi^2, \phi^2) \in \Psi^\mathcal{I} \times \Phi^\mathcal{I}\),

\[
\left((\psi^1_i, \phi^1_i) \preceq (\psi^2_i, \phi^2_i), \quad \forall i \in \mathcal{I} \right) \implies \left((\psi^1, \phi^1) \preceq (\psi^2, \phi^2) \right),
\]

and

\[
\left((\psi^1_i, \phi^1_i) \prec (\psi^2_i, \phi^2_i), \quad \forall i \in \mathcal{I} \right) \implies \left((\psi^1, \phi^1) \prec (\psi^2, \phi^2) \right).
\]

Anon\(^\square\) For all \((\psi, \phi) \in \Psi^\mathcal{I} \times \Phi^\mathcal{I}\), if \(\sigma : \mathcal{I} \rightarrow \mathcal{I}\) is any permutation, then \((\psi, \phi) \sim \sigma(\psi, \phi)\). (Here, \(\sim\) is the symmetric factor of \((\preceq)\)).

Axiom (Anon\(^\square\)) makes sense because the elements of \(\mathcal{I}\) are merely ‘placeholders’, with no psychological content. All information about the ‘psychological identity’ of individual \(i\) is encoded in the ‘psychological state variable’ \(\psi_i\). Thus, if \((\psi^1, \phi^1), (\psi^2, \phi^2)\) are two worlds, and \(\psi^1_i \neq \psi^2_i\), then it may not make any sense to compare the welfare of \((\psi^1_i, \phi^1_i)\) with \((\psi^2_i, \phi^2_i)\) (unless such a comparison is allowed by \((\preceq)\)), because \(\psi^1_i\) and \(\psi^2_i\) represent different people (even though they have the same index). On the other hand, if \(\psi^1_i = \psi^2_i\),

\(^1\)Note that we must require unanimous consensus in the definition of \((\preceq)\); if we merely required majoritarian or supermajoritarian support [e.g. we say \((\psi_1, \phi_1) \preceq_j (\psi_2, \phi_2)\) if at least 66% of all \(j \in \mathcal{J}\) think \((\psi_1, \phi_1) \preceq_j (\psi_2, \phi_2)\)], then the relation \((\preceq_j)\) could have cycles.
then it makes perfect sense to compare \((\psi_i^1, \phi_i^1) \) with \((\psi_j^2, \phi_j^2) \), even if \(i \neq j \), because \(\psi_i^1 \) and \(\psi_j^2 \) are in every sense the *same* person (even though this person has different indices in the two worlds).

Axiom \((\text{Par}^\Xi)\) is sometimes called ‘Weak Pareto’. We might also consider sprows which also satisfy the following ‘Strong Pareto’ property:

\[(\text{SPar}^\Xi) \quad \text{For any } (\psi^1, \phi^1), (\psi^2, \phi^2) \in \Psi^I \times \Phi^I, \text{ if } (\psi^1, \phi^1) \preceq (\psi^2, \phi^2) \text{ for all } i \in I, \text{ and } (\psi_i^1, \phi_i^1) \prec (\psi_i^2, \phi_i^2) \text{ for some } i \in I, \text{ then } (\psi^1, \phi^1) \preceq (\psi^2, \phi^2).\]

3.1 The Suppes-Sen sprov

The *Suppes-Sen* sprov\(^2\) \((\preceq)\) is defined as follows: for any \((\psi, \phi), (\psi', \phi') \in \Psi^I \times \Phi^I, \ (\psi, \phi) \preceq (\psi', \phi')\) if and only if there is a permutation \(\sigma : I \rightarrow I\) such that, for all \(i \in I, \ (\psi_i, \phi_i) \leq (\psi_{\sigma(i)}, \phi_{\sigma(i)}).\) We will see shortly that \((\preceq)\) is the ‘minimal’ \((\preceq)\)-sprov, which is extended (and often refined) by every other \((\preceq)\)-sprov (see Proposition 3.4(b)).

Example 3.1: (*Cost-benefit analysis*)

Given two worlds \((\psi^1, \phi^1), (\psi^2, \phi^2) \in \Psi^I \times \Phi^I\), let \(I_1 := \{i \in I; (\psi_i^1, \phi_i^1) \succeq (\psi_i^2, \phi_i^2)\}\) be the set of ‘losers’ under the change from world \((\psi^1, \phi^1)\) to world \((\psi^2, \phi^2)\), and let \(I_1 := \{i \in I; (\psi_i^1, \phi_i^1) \prec (\psi_i^2, \phi_i^2)\}\) be the set of ‘winners’. Let \(I_0 := I \setminus (I_1 \cup I_1)\) be everyone else. Suppose that:

- There is a bijection \(g : I_0 \rightarrow I_0\) such that, for every \(i \in I_0, \ (\psi_i^1, \phi_i^1) \approx (\psi_i^2, \phi_i^2); \)
- There is an injection \(h : I_1 \rightarrow I\) such that, for all \(i \in I_1, \ (\psi_{h(i)}, \phi_{h(i)}) \preceq (\psi_i^2, \phi_i^2) \prec (\psi_i^1, \phi_i^1) \preceq (\psi_{h(i)}, \phi_{h(i)})\). (6)

Thus, we can pair up every ‘loser’ \(i\) in \(I_1\) with some ‘winner’ \(h(i)\) in \(I\) such that the gains for \(h(i)\) clearly outweigh the losses for \(i\) in the change from \((\psi^1, \phi^1)\) to \((\psi^2, \phi^2)\).

Claim 3.1. \((\psi^1, \phi^1) \preceq (\psi^2, \phi^2)\).

Proof. Define \(\sigma : I \rightarrow I\) as follows: \(\sigma(i) := g(i)\) for all \(i \in I_0; \ \sigma(i) := h(i)\) for all \(i \in I_1; \ \sigma(i) := h^{-1}(i)\) for all \(i \in h(I_1) \subseteq I_1; \) and \(\sigma(i) := i\) for all other \(i \in I \setminus h(I_1).

It remains to show that \((\psi_i^1, \phi_i^1) \preceq (\psi_{\sigma(i)}^2, \phi_{\sigma(i)}^2)\) for all \(i \in I\). There are three cases: (1) \(i \in I_0; \) (2) \(i \in I_1\) or \(i \in h(I_1)\); and (3) \(i \in I \setminus h(I_1).

(1): If \(i \in I_0, \) then \((\psi_i^1, \phi_i^1) \approx (\psi_{\sigma(i)}^2, \phi_{\sigma(i)}^2) = (\psi_i^2, \phi_i^2)\) by definition of \(g\).

(2): If \(i \in I_1\) and \(j = h(i) \in I_1,\) then \((\psi_i^1, \phi_i^1) \preceq (\psi_i^2, \phi_i^2) \prec (\psi_j^1, \phi_j^1) \preceq (\psi_j^2, \phi_j^2).\) However, \(\sigma(i) = j\) and \(\sigma(j) = i;\) hence \((\psi_i^1, \phi_i^1) \preceq (\psi_{\sigma(j)}^2, \phi_{\sigma(j)}^2)\) and \((\psi_j^1, \phi_j^1) \preceq (\psi_{\sigma(i)}^2, \phi_{\sigma(i)}^2).\)

(3): If \(i \in I \setminus f(I_1),\) then \(\sigma(i) = i\) and \((\psi_i^1, \phi_i^1) \prec (\psi_i^2, \phi_i^2); \) so \((\psi_i^1, \phi_i^1) \prec (\psi_{\sigma(i)}^2, \phi_{\sigma(i)}^2).\)

\(\diamond\) Claim 3.1*

\(^2\)This sprov is based on the *grading principle*, a partial social welfare order defined by Suppes (1966) on \(\mathbb{R}^2,\) and extended to \(\mathbb{R}^n\) by Sen (1970b, 89, p.150-156). It was later named the ‘Suppes-Sen’ ordering by Saposnik (1983), who showed that, on \(\mathbb{R}^n,\) it is equivalent to the rank-dominance ordering.
For example, suppose \(\mathcal{I} = \{i, j\} \), fix \(\psi_i, \psi_j \in \Psi \), and let \(\phi^1, \phi^2 \in \Phi^2 \) be two situations such that \(\phi_i^1 \preceq \phi_i^2 \) while \(\phi_j^2 \preceq \phi_j^1 \). Thus, a change from situation \(\phi^1 \) to \(\phi^2 \) would help Isolde \((i)\) and hurt Jack \((j)\) —thus, neither situation is Pareto-preferred to the other. Borrowing Harsanyi’s well-known example, suppose I have an extra ticket to a Chopin concert which I can’t use, and let \(\phi^1 \) be the situation where I give the ticket to Jack, while \(\phi^2 \) is the situation where I give the ticket to Isolde. Both Isolde and Jack want the ticket. However Isolde is a classical pianist and Chopin fanatic who has been complaining bitterly for months that she couldn’t get a ticket to this sold-out concert, whereas Jack doesn’t even like classical music; he only wants the ticket because going to any concert is slightly preferable to spending a boring evening at home. Assume that, other than the concert issue, Jack and Isolde have roughly similar levels of well-being. Then we might reasonably suppose that \((\psi_i, \phi_i^1) \preceq (\psi_j, \phi_j^2) \preceq (\psi_i, \phi_i^2) \preceq (\psi_i, \phi_i^1)\). Thus, the change from \(\phi^1 \) to \(\phi^2 \) helps Isolde more than it hurts Jack, so \(\phi^2 \) is socially preferable to \(\phi^1 \); hence \((\psi, \phi^1) \preceq (\psi, \phi^2)\). (To see this, set \(\mathcal{I}_i := \{j\}, \mathcal{I}_j := \{i\} \), and \(h(j) := i \) in eqn.\((6)\).) \(\diamond\)

Note that we can perform the interpersonal ‘cost-benefit analysis’ in Example 3.1 without even a utility function, much less a complete system of IPUC. However, even if the wipo \((\succeq)\) is a complete ordering on \(\Psi \times \Phi \), the sprow \((\preceq)\) is still a very partial ordering of \(\Psi^2 \times \Phi^2 \). In Example 3.1, the number of ‘big winners’ in \(\mathcal{I}_j \) must exceed the number of losers (even small losers) in \(\mathcal{I}_i \), so that every loser can be matched up with some ‘big winner’ whose gains outweigh her losses. Thus, \((\preceq)\) might not recognize the social value of a change \(\phi^1 \leadsto \phi^2 \) where a wealthy 51% majority \(\mathcal{I}_i \) sacrifices a pittance so that destitute 49% minority \(\mathcal{I}_j \) can gain a fortune —something which classic utilitarianism would recognize. In particular, it is necessary, but not sufficient, for a clear majority to support the change \(\phi^1 \leadsto \phi^2 \); thus, \((\preceq)\) is actually much less decisive than simple majority vote.

Example 3.2: Suppose that \(\Phi = \mathbb{R} \), as in §2.1. Then for any \((\psi^1, r^1), (\psi^2, r^2) \in \Psi^2 \times \mathbb{R}^2 \), \((\psi^1, r^1) \preceq (\psi^2, r^2)\) if and only if there is a permutation \(\sigma : \mathcal{I} \rightarrow \mathcal{I} \) such that, for all \(i \in \mathcal{I} \), \((\psi^1, r^1_i) \preceq (\psi^2, r^2_{\sigma(i)})\). Let \(\mathcal{I} = \{1, 2\} \) and fix \(\psi = (\psi_1, \psi_2) \in \Psi^2 \); then \((\preceq)\) induces a preorder \((\succeq)\) on \(\mathbb{R}^2 \), where, for all \(r, r' \in \mathbb{R}^2 \), we have \(r' \succeq r \) iff \((\psi, r') < (\psi, r) \).

(a) Let \((\preceq)\) be the wipo on \(\Psi \times \mathbb{R} \) from Example 2.1(a), and let \(\delta := c \cdot d(\psi_1, \psi_2) \). Fix \(r \in \mathbb{R}^2 \). For any \(r' \in \mathbb{R}^2 \), \(r' \succeq r \) iff either \(r'_1 \leq r_1 \) and \(r'_2 \leq r_2 \), or \(r'_2 \leq r_1 - \delta \) and \(r'_1 \leq r_2 - \delta \). See Figure 2.

(b) Let \((\preceq)\) be the wipo on \(\Psi \times \mathbb{R} \) from Example 2.1(b), and let \(C := c \cdot d(\psi_1, \psi_2) \). Then for any \(r, r' \in \mathbb{R}^2 \), \(r' \succeq r \) iff either \(r'_1 \leq r_1 \) and \(r'_2 \leq r_2 \), or \(r'_2 \leq r_1 / C \) and \(r'_1 \leq r_2 / C \). \(\diamond\)

Example 3.3: (Bargaining problems) Let \(\mathcal{B} \subset \mathbb{R}^2 \) be some compact, convex set —for example, the set of feasible utility profiles in a bilateral bargaining problem. Let \(\mathcal{P} \) be the Pareto frontier of \(\mathcal{B} \). Classic bargaining solutions prescribe a single point on \(\mathcal{P} \) —usually the set of points which are weakly dominant relative to some SWO on \(\mathcal{B} \).
Figure 2: Upper and lower contour sets of the relation \((\triangleleft, \psi)\) on \(\mathbb{R}^2\) induced by the Suppes-Sen sprow \((\triangleright)\) in Example 3.2(a). Each contour set contains two overlapping regions, corresponding to the two possible conditions implying the relation \(r_1 \triangleright r_2\) (or vice versa).

The sprow of Example 3.2(b) generates similar pictures: simply replace ‘\(r_j - \delta\)’ with ‘\(r_j/C\)’ and ‘\(r_j + \delta\)’ with ‘\(Cr_j\)’ everywhere. The difference between Examples 3.2(a) and (b) is in scaling. Using the sprow of Example 3.2(b), if we multiply \(r\) by a scalar, we see exactly the same pictures. However, using the sprow of 3.2(a), if we multiply \(r\) by, say, 2, then the ‘incomparable’ region (right) will be only half as wide.

Fix \(\psi \in \Psi^2\), and let \((\triangleleft, \psi)\) be the preorder on \(\mathbb{R}^2\) from Example 3.2. An incomplete preorder like \((\triangleleft, \psi)\) may not have any weakly dominant points in \(\mathcal{B}\); instead, we consider the set \(\mathrm{wkUnd}\left(\mathcal{B}, \triangleleft, \psi\right)\) of points which are weakly \((\triangleleft, \psi)\)-undominated in \(\mathcal{B}\) (see eqn.(1) in §1 for definition). For any \(b \in \mathcal{B}\), we have \(b \in \mathrm{wkUnd}\left(\mathcal{B}, \triangleleft, \psi\right)\) if there is no \(b' \in \mathcal{B} \setminus \{b\}\) such that \(b \nless b'\). This means: (1) There is no \(b' \in \mathcal{B}\) which Pareto-dominates \(b\); and (2) There is no \(b' \in \mathcal{B}\) such that \(b_1 < b'_2 - \delta\) and \(b_2 < b'_1 - \delta\).

Let \(\mathcal{P}'\) be the reflection of \(\mathcal{P}\) across the diagonal. Let \(\mathcal{P}'' := \mathcal{P} - (\delta, \delta)\); then \(b \in \mathrm{wkUnd}\left(\mathcal{B}, \triangleleft, \psi\right)\) if (1) \(b \in \mathcal{P}\) and (2) There is no \(b' \in \mathcal{P}''\) which Pareto-dominates \(b\).

The set \(\mathrm{wkUnd}\left(\mathcal{B}, \triangleleft, \psi\right)\) is shown in Figure 3(A).

\(\diamond\)

Proposition 3.4 Let \((\triangleleft)\) be a wipo.

(a) \((\triangleleft)\) is a \((\triangleleft)\)-sprow.

(b) If \((\triangleleft)\) is any \((\triangleleft)\)-sprow, then \((\triangleleft)\) extends \((\triangleleft)\).

If \((\triangleleft)\) also satisfies \((\text{SPar}_{\triangleleft})\), then \((\triangleleft)\) also refines \((\triangleleft)\).
Figure 3: Solving bilateral bargaining problems with sprows. (A) The Suppes-Sen bargaining solution \(\text{wkUnd}(B, \mathfrak{a}) \) of Example 3.3. (B) The approximate egalitarian bargaining solution \(\text{wkUnd}(B, \mathfrak{a}) \) of Example 3.6. (C) The approximate utilitarian bargaining solution \(\text{wkUnd}(B, \mathfrak{a}) \) of Example 5.3.

(c) (Pareto Indifference) Let \((\leq)\) be any \((\preceq)\)-sprow, and let \((\psi^1, \phi^1), (\psi^2, \phi^2) \in \Psi^T \times \Phi^T\). If \((\psi^1_i, \phi^1_i) \preceq (\psi^2_i, \phi^2_i) \) for all \(i \in I \), then \((\psi^1, \phi^1) \preceq (\psi^2, \phi^2) \).

(d) If \(\{\leq_{\lambda}\}_{\lambda \in \Lambda} \) is a collection of \((\preceq)\)-sprows (where \(\Lambda \) is some indexing set), and \((\leq)\) is their meet, then \((\leq)\) is also a \((\preceq)\)-sprow.

3.2 Approximate egalitarianism

Given a wipo \((\preceq)\) on \(\Psi \times \Phi \), the \((\preceq)\)-approximate egalitarian sprow \((\leq)\) on \(\Psi^T \times \Phi^T \) is defined as follows: For any \((\psi^1, \phi^1), (\psi^2, \phi^2) \in \Psi^T \times \Phi^T\),

\[
(\psi^1, \phi^1) \preceq (\psi^2, \phi^2) \iff \exists f : I \to I \text{ (possibly not injective)} \quad \text{such that, for all } i \in I, \quad (\psi^1_i, \phi^1_i) \preceq (\psi^2_{f(i)}, \phi^2_{f(i)})
\]

In other words, for every person \(i \) in the world \((\psi^2, \phi^2)\), no matter how badly off, we can find some person \(f(i) \) in the world \((\psi^1, \phi^1)\) who is even worse off. In particular, this means that even the ‘worst off’ people in \((\psi^2, \phi^2)\) (i.e. elements of \(I \) which are ‘minimal’ with respect to \((\preceq)\)) are still better off than someone in \((\psi^1, \phi^1)\). If \((\preceq)\) is a complete ordering on \(\Psi \times \Phi \), then all people in world \((\psi^1, \phi^1)\) are comparable with all people in \((\psi^2, \phi^2)\), and \((\leq)\) is equivalent to the classical ‘maximin’ egalitarian social welfare ordering.

Example 3.5: Suppose that \(\Phi = \mathbb{R} \), as in §2.1. Then for any \((\psi^1, r^1), (\psi^2, r^2) \in \Psi^T \times \mathbb{R}^T\),

\[
(\psi^1, r^1) \preceq (\psi^2, r^2) \iff \exists f : I \to I \text{ (possibly not injective)} \quad \text{such that, for all } i \in I, \quad (\psi^1_i, r^1_i) \preceq (\psi^2_{f(i)}, r^2_{f(i)})
\]
Let $I = \{1, 2\}$ and fix $\psi = (\psi_1, \psi_2) \in \Psi^I$; then (\preceq_{ψ}) induces a preorder (\preceq_{ψ}) on \mathbb{R}^2, where $r' \preceq_{\psi} r$ iff $(\psi, r') \preceq_{\psi} (\psi, r)$. In particular, let (\simeq) be the wipo of Example 2.1(a), and let $\delta := c \cdot d(\psi_1, \psi_2)^\gamma$. For any $r, r' \in \mathbb{R}^2$, $r' \prec_{\psi} r$ iff either (1) $r_1 \leq r_1'$ and $r_2 \leq r_2'$; or (2) $r_1 \leq r_1'$ and $r_1 \leq r_2 - \delta$; or (3) $r_2 \leq r_2'$ and $r_2 \leq r_1' - \delta$. See Figure 4.

Example 3.6: (Bargaining problems) Let $B \subset \mathbb{R}^2$ be some compact, convex set (e.g. a bargaining set), as in Example 3.3. Let (\preceq_{ψ}) be the preorder on \mathbb{R}^2 from Example 3.5, and let \mathcal{P} be the Pareto frontier of B. Recall from Example 3.3 that the appropriate ‘bargaining solution’ in this setting is the *weakly undominated set* $\text{wkUnd}(B, \preceq_{\psi})$. We have:

Claim 3.6: $\text{wkUnd}(B, \preceq_{\psi}) = \{b \in \mathcal{P} : |b_1 - b_2| \leq \delta\}$ (see Figure 3(B)).
Given \((\psi^1, \phi^1), (\psi^2, \phi^2) \in \Psi^I \times \Phi^I\), let \(I_0, I_1, I_2\) be as in Example 3.1. We say \((\psi^2, \phi^2)\) is a **Hammond equity improvement** over \((\psi^1, \phi^1)\) if

- There is a bijection \(g : I_0 \rightarrow I_0\) such that, for every \(i \in I_0\), \((\psi^1_{g(i)}, \phi^1_{g(i)}) \approx (\psi^2_{g(i)}, \phi^2_{g(i)})\);
- There is an injection \(h : I_1 \rightarrow I_1\) such that, for all \(i \in I_1\),

\[
(\psi^1_{h(i)}, \phi^1_{h(i)}) \preceq (\psi^2_{h(i)}, \phi^2_{h(i)}) \preceq (\psi^2_r, \phi^2_r) \preceq (\psi^1_r, \phi^1_r). \quad (7)
\]

In other words, we can pair up every ‘loser’ \(i\) in \(I_1\) with some ‘winner’ \(h(i)\) in \(I_1\) such that Hammond’s (1976) equity condition is satisfied: both before and after the change, \(i\) is better off than \(h(i)\), but the change narrows the gap between them.

For example, recall the ‘concert ticket’ story from Example 3.1, but now with a different scenario. Suppose Isolde and Jack have roughly equally strong desires to attend the concert. However, Isolde is a miserable, depressed person, whereas Jack is a happy, contented person. Isolde will be less happy than Jack no matter who gets the ticket; thus, we have \((\psi^1_i, \phi^1_i) \preceq (\psi^2_j, \phi^2_j) \preceq (\psi^2_j, \phi^2_j) \preceq (\psi^1_r, \phi^1_r)\). Thus, the change from \(\phi^1\) to \(\phi^2\) reduces inequality, so it is a Hammond equity improvement. (To see this, set \(I_1 := \{j\}, I_2 := \{i\}\), and \(h(j) := i\) in eqn.\((7)\).)

The next result says that the approximate egalitarian sprow \(\leq\) is ‘Hammond equity promoting’.

Proposition 3.7 For any \((\psi^1, \phi^1), (\psi^2, \phi^2) \in \Psi^I \times \Phi^I\), if \((\psi^2, \phi^2)\) is a Hammond equity improvement over \((\psi^1, \phi^1)\), then \((\psi^1, \phi^1) \leq (\psi^2, \phi^2)\).

Proof. Let \(g : I_0 \rightarrow I_0\) and \(h : I_1 \rightarrow I_1\) be as in eqn.\((7)\). Define \(f : I \rightarrow I\) as follows: For all \(i \in I_0\), let \(f(i) := g(i)\). For all \(i \in I_1\), let \(f(i) := h(i)\). For all \(i \in I_2\), let \(f(i) = i\). Then clearly, for all \(i \in I\), we have \((\psi^1_{f(i)}, \phi^1_{f(i)}) \preceq (\psi^2_r, \phi^2_r)\); hence \((\psi^1, \phi^1) \leq (\psi^2, \phi^2)\), as desired. \(\square\)

4 Hedometry and Welfarism

4.1 Hedometers

Let \(\mathcal{X}\) be a set and let \((\preceq)\) be a preorder on \(\mathcal{X}\). A **weak utility function** for \((\preceq)\) is a function \(u : \mathcal{X} \rightarrow \mathbb{R}\) which is ‘nondecreasing’ in the following sense:

\[
\text{For all } x, y \in \mathcal{X}, \quad (x \preceq y) \implies (u(x) \leq u(y)). \quad (8)
\]

It follows that \((x \approx y) \implies (u(x) = u(y))\). Note that \((8)\) is a rather weak requirement—for example, any constant function is a weak utility function. A **strong utility function** (or Richter-Peleg function) is a function \(u : \mathcal{X} \rightarrow \mathbb{R}\) which satisfies \((8)\) and also satisfies:

\[
\text{For all } x, y \in \mathcal{X}, \quad (x < y) \implies (u(x) < u(y)). \quad (9)
\]
Under mild hypotheses, preorders on topological spaces admit continuous strong utility functions (Richter, 1966; Peleg, 1970), or semicontinuous strong utility functions (Jaffray, 1975; Sondermann, 1980). Likewise, if a preorder on a space of lotteries satisfies versions of the vNM axioms of ‘Linearity’ and ‘Continuity’, then it has a linear strong utility function (Aumann, 1962).

As observed by Evren and Ok (2009), every preorder (≤) admits a weak multiutility representation. That is, there is a set U of weak utility functions for (≤) such that

\[u(x) \leq u(y), \text{ for all } u \in U \] \tag{10}

(For example: for all x ∈ X, define \(u_x : \mathcal{X} \rightarrow \mathbb{R} \) by \(u_x(y) := 1 \) if \(y \succeq x \) and \(u_x(y) := 0 \) if \(y \not\succeq x \); then it is easy to see that \(U := \{ u_x ; x \in \mathcal{X} \} \) is a weak multiutility representation.) Unfortunately, such a representation will not be sufficient for our purposes, because every element of U may violate statement (9).

A strong multiutility representation for (≤) is a set U of strong utility functions for (≤) which satisfies statement (10). Preorders admit such representations under fairly mild hypotheses. For example, suppose (≤) is separable, meaning there is a countable subset \(\mathcal{Y} \subseteq \mathcal{X} \) which is dense (i.e. for all \(x < z \in \mathcal{X} \), there exists some \(y \in \mathcal{Y} \) such that \(x < y < z \)); then (≤) has a strong multiutility representation (Mandler, 2006, Thm.1). Furthermore, if \(\mathcal{X} \) is a locally compact separable metric space and (≤) is a continuous preorder, then (≤) admits a strong multiutility representation comprised entirely of continuous strong utility functions (Evren and Ok, 2009, Corollary 1).

Now let (≤) be a wipo on \(\Psi \times \Phi \). Motivated by the scenario of §2.2, we will refer to a strong utility function for (≤) as a hedometric. That is, a hedometric for (≤) is a function \(h : \Psi \times \Phi \rightarrow \mathbb{R} \) such that, for all \((\psi_1, \phi_1), (\psi_2, \phi_2) \in \Psi \times \Phi \), \(\left((\psi_1, \phi_1) \preceq (\psi_2, \phi_2) \right) \implies \left(h(\psi_1, \phi_1) \leq h(\psi_2, \phi_2) \right) \) and \(\left((\psi_1, \phi_1) \prec (\psi_2, \phi_2) \right) \implies \left(h(\psi_1, \phi_1) < h(\psi_2, \phi_2) \right) \). Let \(H_{\mathcal{X}}(\leq) \) be the set of hedometrics for (≤). We say that (≤) is hedometric if it has a strong multiutility representation (10), with \(U = H_{\mathcal{X}}(\leq) \). The aforementioned results imply that wipos are hedometric under broad hypotheses, and that \(H_{\mathcal{X}}(\leq) \) itself is nonempty under even broader hypotheses.

3See also Levin (1983a,b, 1984, 2000), Mehta (1986), Herden (1989a,b,c, 1995), and the monographs by Nachbin (1965) and Bridges and Mehta (1995).

4Mandler’s (2006) result is formulated in terms of weak multiutility representations, but an examination of the proof reveals that it actually establishes a strong multiutility representation. Ok (2002) and Evren and Ok (2009) have also constructed strong multiutility representations for topological preorders using semicontinuous utility functions, as well as sufficient conditions for the set U in (10) to be finite; see also Yılmaz (2008). Evren and Ok (2009) have also established the existence of (semi)continuous weak multiutility representations for topological preorders. Much earlier, Dushnik and Miller (1941) showed that any irreflexive partial order was the intersection of all its linear extensions; this result was extended to preorders by Donaldson and Weymark (1998), and to a very broad class of binary relations by Duggan (1999). However, the linear extensions involved in these intersections cannot generally be represented by utility functions. Finally, Stecher (2008, Thm.2) provides conditions under which a strict partial order (≺) on \(\mathcal{X} \) can be represented by an ‘interval-valued’ utility function. This means there is a collection \(U \) of \(\mathbb{Q} \)-valued utility functions such that, for all \(x, y \in \mathcal{X} \), if \(x < y \), then \(u(x) < v(y) \) for all \(u, v \in U \) (but the converse might not hold).
4.2 Welfarism

A social welfare order (SWO) is a complete preorder (\(\succeq\)) on \(\mathbb{R}^T\) satisfying two axioms:

(Par\(\mathfrak{A}\)) For any \(r, r' \in \mathbb{R}^T\), if \(r_i \leq r'_i\) for all \(i \in \mathcal{I}\), then \(r \succeq r'\). If \(r_i < r'_i\) for all \(i \in \mathcal{I}\), then \(r \prec r'\).

(Anon\(\mathfrak{A}\)) If \(\sigma : \mathcal{I} \rightarrow \mathcal{I}\) is any permutation, and \(r \in \mathbb{R}^T\), then \(r \approx \sigma(r)\).

Example 4.1: (a) The egalitarian SWO (\(\succeq\)) is defined as follows. For all \(r^1, r^2 \in \mathbb{R}^T\), \(r^1 \succeq r^2\) if and only if \(\min_{i \in \mathcal{I}} (r^1_i) \leq \min_{i \in \mathcal{I}} (r^2_i)\). (Thus, \(r^1 \approx r^2\) whenever \(\min_{i \in \mathcal{I}} (r^1_i) = \min_{i \in \mathcal{I}} (r^2_i)\).)

(b) Suppose \(\mathcal{I} := [1...I]\). Let \(\hat{\mathbb{R}}^T := \{r \in \mathbb{R}^T \mid r_1 \leq r_2 \leq \cdots \leq r_I\}\). For any \(r \in \mathbb{R}^T\), let \(\hat{r} \in \hat{\mathbb{R}}^T\) be the element obtained by arranging the entries of \(r\) in ascending order — e.g. \(\hat{r}_1 := \min_{i \in \mathcal{I}} r_i\) and \(\hat{r}_I := \max_{i \in \mathcal{I}} r_i\). For any \(k \in [1...I]\), the rank \(k\) dictatorship SWO (\(\succeq\)) is defined on \(\mathbb{R}^T\) by \(r \succeq r'\) iff \(\hat{r}_k \leq \hat{r}'_k\) (thus, (\(\succeq\)) is the rank 1 dictatorship).

(c) The lexmin SWO (\(\succeq_{\text{lex}}\)) is defined as follows: \(r^1 \succeq_{\text{lex}} r^2\) iff there exists some \(j \in [1...I]\) such that \(\hat{r}_k = \hat{r}'_k\) for all \(k \in [1...j]\), while \(\hat{r}_j < \hat{r}'_j\). Meanwhile, \(r^1 \approx_{\text{lex}} r^2\) iff \(r^1 = r^2\).

For any \((\psi, \phi) \in \Psi^T \times \Phi^T\) and function \(h : \Psi \times \Phi \rightarrow \mathbb{R}\), we define \(h(\psi, \phi) := (h(\psi_i, \phi_i))_{i \in \mathcal{I}} \in \mathbb{R}^T\).

Proposition 4.2 Let \((\preceq)\) be a wipo on \(\Psi \times \Phi\). Let (\(\succeq\)) be a complete preorder on \(\mathbb{R}^T\) satisfying axiom (Par\(\mathfrak{A}\)), and let \(h : \Psi \times \Phi \rightarrow \mathbb{R}\) be some function. Define the preorder \((\preceq_h)\) on \(\Psi^T \times \Phi^T\) by \((\psi, \phi) \preceq_h (\psi', \phi')\) iff \(h(\psi, \phi) \succeq h(\psi', \phi')\). Then

\[
\left(\preceq_h \text{ is a } (\preceq)\text{-sprow} \right) \iff \left(h \in \mathcal{H}_{\text{sp}}(\preceq) \text{ and } (\succeq) \text{ is a SWO} \right).
\]

Corollary 4.3 Let \((\preceq)\) be a wipo on \(\Psi \times \Phi\), and let \(\mathcal{H} \subseteq \mathcal{H}_{\text{sp}}(\preceq)\) be some collection of hedometers. Let (\(\succeq\)) be a SWO on \(\mathbb{R}^T\), and define the preorder \((\preceq_h)\) on \(\Psi^T \times \Phi^T\) by

\[
\left((\psi, \phi) \preceq_h (\psi', \phi') \right) \iff \left(h(\psi, \phi) \succeq h(\psi', \phi'), \text{ for all } h \in \mathcal{H} \right).
\]

Then \((\preceq_h)\) is a \((\preceq)\)-sprow.

Proof. Combine Proposition 4.2 with Lemma 3.4(d).

The set \(\mathcal{H}_{\text{sp}}(\preceq)\) generally contains many possible hedometers, which could yield different, contradictory sprows in Proposition 4.2. Corollary 4.3 mitigates this problem by requiring ‘unanimity’ over some ‘representative sample’ \(\mathcal{H}\) of hedometers. What constitutes a representative sample? The most conservative choice would be to set \(\mathcal{H} = \mathcal{H}_{\text{sp}}(\preceq)\).
Thus, for any SWO (\bowtie, \sqsubset) on \mathbb{R}^I, the (\leq, \sqsubset)-welfarist sprow (\leq_s) is defined as follows: for all $(\psi^1, \phi^1), (\psi^2, \phi^2) \in \Psi^I \times \Phi^I$,

$$((\psi^1, \phi^1) \leq (\psi^2, \phi^2)) \iff \left(\text{For all } h \in \mathcal{H}_\psi(\leq_s), \ h(\psi^1, \phi^1) \sqsubset h(\psi^2, \phi^2) \right).$$

(11)

The welfarist sprow (11) seems most plausible when (\leq_s) is hedometric, but it is well-defined whenever $\mathcal{H}_\psi(\leq_s) \neq \emptyset$.

Proposition 4.4 Let (\leq) be a hedometric wipo. Let (\bowtie, \sqsubset) be the egalitarian SWO in Example 4.1(a). The (\leq, \sqsubset)-welfarist sprow is the approximate egalitarian sprow (\leq_s) from §3.2. In other words, for any $(\psi^1, \phi^1), (\psi^2, \phi^2) \in \Psi^I \times \Phi^I$,

$$((\psi^1, \phi^1) \leq (\psi^2, \phi^2)) \iff \left(\min_{i \in I} h(\psi^1_i, \phi^1_i) \leq \min_{i \in I} h(\psi^2_i, \phi^2_i), \ \forall h \in \mathcal{H}_\psi(\leq_s) \right).$$

In general, a (\leq)-sprow will be a very incomplete preorder on $\Psi^I \times \Phi^I$, because (\leq) itself is an incomplete preorder of $\Psi \times \Phi$. Say that two worlds $(\psi, \phi), (\psi', \phi') \in \Psi^I \times \Phi^I$ are fully (\leq)-comparable if the set $\{(\psi_i, \phi_i)\}_{i \in I} \cup \{(\psi'_i, \phi'_i)\}_{i \in I}$ is totally ordered by (\leq). (For example, fix $\psi \in \Psi$, and suppose (ψ, ϕ) and (ψ', ϕ') are `ψ-clone worlds' where $\psi_i = \psi'_i = \psi$ for all $i \in I$; then (ψ, ϕ) and (ψ', ϕ') are fully (\leq)-comparable). In this case, a (\leq)-sprow really has no excuse for failing to order (ψ, ϕ) relative to (ψ', ϕ'), since every element of $\{(\psi_i, \phi_i)\}_{i \in I}$ is (\leq)-comparable to every element of $\{(\psi'_i, \phi'_i)\}_{i \in I}$. A (\leq)-sprow (\leq_s) is minimally decisive if (ψ, ϕ) and (ψ', ϕ') are (\leq_s)-comparable whenever they are fully (\leq)-comparable.

Example 4.5: The approximate egalitarian sprow (\leq_s) (see §3.2) is minimally decisive. To see this, suppose (ψ^1, ϕ^1) and (ψ^2, ϕ^2) are fully (\leq)-comparable. Then there exists some $m \in \{1, 2\}$ and some $j \in I$ such that $(\psi^m_j, \phi^m_j) \leq (\psi^m_i, \phi^m_i)$ for all $(n, i) \in \{1, 2\} \times I$. Suppose $m = 1$, and define $f : I \rightarrow I$ by $f(i) = j$ for all $i \in I$; then we have $(\psi^1_{f(i)}, \phi^1_{f(i)}) = (\psi^1_j, \phi^1_j) \leq (\psi^2_i, \phi^2_i)$ for all $i \in I$; hence $(\psi^1, \phi^1) \leq_s (\psi^2, \phi^2)$.

We will now show that very few welfarist sprows are minimally decisive, and among these, only the approximate egalitarian sprow has a desirable ‘equity’ property. To explain this, suppose $(\psi^1, \phi^1), (\psi^2, \phi^2) \in \Psi^I \times \Phi^I$ are fully (\leq)-comparable. The rank structure of the pair $((\psi^1, \phi^1), (\psi^2, \phi^2))$ is the complete order (\leq) on $\{1, 2\} \times I$ defined as follows: for all $n, m \in \{1, 2\}$ and $i, j \in I$, $(n, i) \leq (m, j)$ if and only if $(\psi^n_i, \phi^n_i) \leq (\psi^m_j, \phi^m_j)$. We will require the following axiom of ‘minimal richness’ for (\leq):

5A weaker form of ‘welfarism’ simply requires the social ordering of two worlds to be entirely determined by the pattern of individual preferences between those worlds; this follows from ‘Pareto Indifference’, which holds for any sprow, by Proposition 3.4(c). We here use ‘welfarism’ in the stronger sense employed by Sen (1970b) and d’Aspremont and Gevers (2002): the social ordering is determined by comparing the values of the individual’s utility functions (or in this case, a hedometer) on the the two worlds. For a detailed discussion of this distinction, see (d’Aspremont and Gevers, 2002, §3.3.1, p.489-494)
(MR) For any complete order \((\leq)\) on \(\{1, 2\} \times I\), there exist fully \((\leq)\)-comparable \((\psi^1, \phi^1)\) and \((\psi^2, \phi^2)\) in \(\Psi^I \times \Phi^I\) whose rank structure is \((\leq)\).

This is a very mild condition, which is satisfied by almost any collection of preferences. For example, suppose there exists some subset \(\Phi' \subseteq \Phi\) with \(|\Phi'| \geq 2 \times |I|\), and some \(\psi \in \Psi\) such that \((\leq)\) is a strict ordering of \(\Phi'\); then \((\leq)\) satisfies (MR). (Let \(\psi\) and \(\psi'\) be ‘\(\psi\)-clone societies’ with \(\psi_1 = \psi_i' = \psi\) for all \(i \in I\); then pick \(\{\phi_i\}_{i \in I}\) and \(\{\phi'_i\}_{i \in I}\) from \(\Phi'\) to obtain any desired rank structure.)

We will use the following ‘minimal’ version of Hammond’s equity condition:

(MinEq\(\mathbb{S}\)) There exist \((\psi, \phi), (\psi', \phi') \in \Psi^I \times \Phi^I\) and \(i, j \in I\) such that:

\[
\begin{align*}
(q1\mathbb{S}) & \quad (\psi_i, \phi_i) \prec (\psi'_i, \phi'_i) \preceq (\psi'_j, \phi'_j) \prec (\psi_j, \phi_j). \\
(q2\mathbb{S}) & \quad (\psi_i, \phi_i) \preceq (\psi_k, \phi_k) \approx (\psi'_k, \phi'_k) \quad \text{for all } k \in I \setminus \{i, j\}; \quad \text{and} \\
(q3\mathbb{S}) & \quad (\psi, \phi) \leq (\psi', \phi').
\end{align*}
\]

We now come to the main result of this section.

Theorem 4.6 Let \((\leq)\) be a wipo on \(\Psi \times \Phi\) which satisfies (MR), with \(\mathcal{H}_{\mathbb{S}}(\leq) \neq \emptyset\). Let \((\triangleright)\) be a SWO on \(\mathbb{R}^I\), and let \((\leq)\) be the \((\leq, \triangleright)\)-welfarist sprow on \(\Psi^I \times \Phi^I\).

(a) \((\leq)\) is minimally decisive if and only if \((\triangleright)\) refines a rank dictatorship SWO [Example 4.1(b)].

(b) If \((\leq)\) is minimally decisive and satisfies (MinEq), then \((\leq)\) is extended by the approximate egalitarian sprow \((\widehat{\leq})\).

(c) If \((\leq)\) refines \((\widehat{\leq})\), then \((\leq)\) is minimally decisive and satisfies (MinEq).

(d) \((\leq)\) extends \((\widehat{\leq})\) if and only if \(\leq\) is \((\leq)\) if and only if \(\leq\) is \((\leq)\).

Example 4.7: Let \((\triangleright)_\text{lex}\) be the lexmin SWO [Example 4.1(c)], and let \((\leq)_\text{lex}\) be the \((\leq, \triangleright)_\text{lex}\)-welfarist sprow. Then \((\leq)_\text{lex}\) is minimally decisive (by Lemma 4.9 in the Appendix) and satisfies (MinEq). If \((\psi^1, \phi^1) \leq (\psi^2, \phi^2)\), then \(h(\psi^1, \phi^1) \triangleright_h (\psi^2, \phi^2)\) for all \(h \in \mathcal{H}_{\mathbb{S}}(\leq)\); hence \(h(\psi^1, \phi^1) \triangleright_h (\psi^2, \phi^2)\) for all \(h \in \mathcal{H}_{\mathbb{S}}(\leq)\), so \((\psi^1, \phi^1) \leq (\psi^2, \phi^2)\). Thus, \((\leq)_\text{lex}\) extends \((\widehat{\leq})_\text{lex}\).

Let \(W(\leq)\) be the set of all welfarist srows for the wipo \((\leq)\), and consider the partial order relation \(\subseteq\) on \(W(\leq)\) i.e. \(\leq \subseteq \widehat{\leq} \subseteq \leq\) if \(\leq\) extends \((\widehat{\leq})\). If \((\leq)\) is hedometric then Proposition 4.4 says that \((\widehat{\leq}) \in W(\leq)\). In this case, Theorem 4.6(d) says that \((\leq)\) is a local \((\leq)\)-maximum in \(W(\leq)\), while Theorem 4.6(b) says that \((\leq)\) is the global \((\leq)\)-maximum for the set of minimally decisive and minimally equitable elements of \(W(\leq)\).
However, Theorem 4.6 applies even when \((\preceq)\) is not hedometric (so \((\preceq)\) itself might not be in \(W(\preceq)\)).

Let \(\mathcal{X} \subset \Psi^I \times \Phi^I\) be some set of ‘feasible’ worlds, and suppose the social planner wishes to find the \((\preceq)\)-optimal world in \(\mathcal{X}\). If \((\preceq)\) is welfarist, minimally decisive, and minimally equitable, then Lemma 1.1(g)[i] and Theorem 4.6(b) imply that \(\text{wkDom}(\mathcal{X}, \preceq) \subseteq \text{wkDom}(\mathcal{X}, \frac{\preceq}{\preceq})\) and \(\text{strUnd}(\mathcal{X}, \preceq) \subseteq \text{strUnd}(\mathcal{X}, \frac{\preceq}{\preceq})\). In particular, if there is a unique weakly \((\frac{\preceq}{\preceq})\)-dominant feasible world \((\psi, \phi)\) in \(\mathcal{X}\), then \((\psi, \phi)\) is the only possible weakly \((\frac{\preceq}{\preceq})\)-dominant feasible world in \(\mathcal{X}\). On the other hand, any strictly \((\frac{\preceq}{\preceq})\)-undominated feasible world is also strictly \((\frac{\preceq}{\preceq})\)-undominated.

Suppose further that \(\mathcal{X}\) is small enough that \((\preceq)\) is a complete ordering when restricted to \(\mathcal{X}\). Then \((\preceq)\) is also complete on \(\mathcal{X}\) (by Lemma 1.1(c)), and hence \((\preceq)\) refines \((\frac{\preceq}{\preceq})\) (by Lemma 1.1(d)). Thus, Lemma 1.1(g)[ii] says \(\text{strDom}(\mathcal{X}, \preceq) \subseteq \text{strDom}(\mathcal{X}, \frac{\preceq}{\preceq}) \subseteq \text{wkUnd}(\mathcal{X}, \preceq) \subseteq \text{wkUnd}(\mathcal{X}, \frac{\preceq}{\preceq})\). In particular, any bargaining solution proposed by \((\preceq)\) must be a subset of the approximate egalitarian bargaining solution described in Example 3.6 and portrayed in Figure 3(b).

Remark. Define a ‘weak hedometer’ to be any weak utility function for \((\preceq)\) [i.e. a function \(u : \Psi \times \Phi \rightarrow \mathbb{R}\) which satisfies statement (8) but not necessarily (9)]. Then every wipo is ‘weakly hedometric’, in the sense that statement (10) is always true when we take \(U\) to be the set of all weak hedometers. Thus, if we defined a ‘weakly welfarist sprow’ by replacing \(H_{\text{wef}}(\preceq)\) with the set of all weak hedometers in defining formulae (11), then we would have a concept applicable to any wipo. However, Proposition 4.2 warns that the resulting social order may not always be a sprow. Proposition 4.4 is still true (the proof does not use (9)]. However, the proof of Theorem 4.6 breaks down if (9) is violated.

5 Weak interpersonal comparisons of lotteries

The theory of wipos and sprows developed in sections 2-4 cannot model decision-making under uncertainty. We now remedy this. Let \(\mathbb{P}(\Phi)\) be the space of probability distributions over \(\Phi\) (with respect to some sigma algebra on \(\Phi\)). For all \(\psi \in \Psi\), let \((\preceq)\) be a complete preorder on \(\mathbb{P}(\Phi)\) which satisfies the von Neumann-Morgenstern (‘vNM’) axioms. (Thus, \((\preceq)\) could be represented as maximizing the expected value of a cardinal utility function).

Let \(\mathbb{P}(\Psi)\) be the space of probability distributions over \(\Psi\) (with respect to some sigma algebra on \(\Psi\)), and let \(\mathbb{P}(\Psi \times \Phi)\) be the space of *lotteries*—that is, probability measures on the product sigma algebra on \(\Psi \times \Phi\). For any \(\delta \in \mathbb{P}(\Psi)\) and \(\rho \in \mathbb{P}(\Phi)\), let \(\delta \otimes \rho \in \mathbb{P}(\Psi \times \Phi)\) denote the unique lottery over \(\Psi \times \Phi\) such that \((\delta \otimes \rho)(\Psi' \times \Phi') = \delta(\Psi') \cdot \rho(\Phi')\) for all measurable subsets \(\Psi' \subseteq \Psi\) and \(\Phi' \subseteq \Phi\).

Let \(\mathfrak{P} \subseteq \mathbb{P}(\Psi \times \Phi)\) be a convex set of lotteries. A *weak interpersonal preference order over lotteries* (or wipol) is a preorder \((\preceq)\) on \(\mathfrak{P}\) which satisfies the following axioms:
(Nonpat$^\succeq$) (Nonpaternalism) For all $\mu \in \mathbb{P}(\Psi)$ and $\rho_1, \rho_2 \in \mathbb{P}(\Phi)$, if $\mu \otimes \rho_1$ and $\mu \otimes \rho_2$ are in \mathcal{P}, and if $\mu\{\psi \in \Psi ; \rho_1 \preceq_\psi \rho_2\} = 1$, then $\mu \otimes \rho_1 \preceq \mu \otimes \rho_2$.

(Lin$^\succeq$) (Linearity) For all $\rho, \rho'_1, \rho'_2 \in \mathcal{P}$ and $s, s' \in (0, 1)$ with $s + s' = 1$, $(s \rho + s' \rho'_1) \preceq (s \rho + s' \rho'_2)$.

Axiom (Lin$^\succeq$) is a version of the standard vNM linearity axiom. To illustrate (Nonpat$^\succeq$), fix $\psi \in \Psi$, and let $\delta_\psi \in \mathbb{P}(\Psi)$ be the ‘sure thing’ distribution such that $\delta_\psi\{\psi\} = 1$. If $\delta_\psi \otimes \rho_1$ and $\delta_\psi \otimes \rho_2$ are in \mathcal{P}, then (Nonpat$^\succeq$) implies a more familiar ‘Nonpaternalism’ condition similar to (W1):

$$\left(\delta_\psi \otimes \rho_1 \preceq \delta_\psi \otimes \rho_2\right) \iff \left(\rho_1 \preceq_\psi \rho_2\right).$$

The intuitive arguments for the existence of a wipol on \mathcal{P} parallel the arguments made in the introduction for the existence of a wipo on $\Psi \times \Phi$: we have some (limited) ability to compare the welfare of people in different psychophysical states — especially when these are our own potential future psychophysical states — and this ability should extend to some ability to compare the welfare of people confronting lotteries over psychophysical states.

Example 5.1: For any $\rho \in \mathbb{P}(\Psi \times \Phi)$ and measurable function $h : \Psi \times \Phi \rightarrow \mathbb{R}$, we define

$$h^*(\rho) := \int_{\Psi \times \Phi} h(\psi, \phi) \, d\rho(\psi, \phi).$$

Let \mathcal{H} be a collection of functions $h : \Psi \times \Phi \rightarrow \mathbb{R}$ such that, for every $\psi \in \Psi$ and every $h \in \mathcal{H}$, the function $h(\psi, \bullet) : \Phi \rightarrow \mathbb{R}$ is a vNM cardinal utility function representing (\preceq_ψ). Define the ordering (\preceq) on \mathcal{P} as follows: for any $\rho, \rho' \in \mathcal{P}$,

$$\left(\rho \preceq \rho'\right) \iff \left(h^*(\rho) \leq h^*(\rho') \text{ for all } h \in \mathcal{H}\right).$$

Then (\preceq) is a wipol on \mathcal{P}. (In §5.2 we will see that many reasonable wipols can be represented in this fashion.)

5.1 Social preferences over world lotteries

Any policy chosen by the social planner will result in a world-lottery, a probability distribution ρ over $\Psi^I \times \Phi^I$. To decide the ‘best’ policy, the social planner must formulate a preference relation (\preceq) over $\mathbb{P}(\Psi^I \times \Phi^I)$. For any world-lottery $\rho \in \mathbb{P}(\Psi^I \times \Phi^I)$, and any $i \in I$, let $\rho_i \in \mathbb{P}(\Psi \times \Phi)$ be the lottery on the ith coordinate induced by ρ. That is, for any measurable subset $\mathcal{U} \subset \Psi \times \Phi$,

$$\rho_i[\mathcal{U}] := \rho\{\psi, \phi \in \Psi^I \times \Phi^I ; (\psi_i, \phi_i) \in \mathcal{U}\}.\quad (14)$$

For any convex subset $\mathcal{P} \subseteq \mathbb{P}(\Psi \times \Phi)$, let $\mathcal{P}^{\otimes I} := \{\rho \in \mathbb{P}(\Psi^I \times \Phi^I) ; \rho_i \in \mathcal{P}, \forall i \in I\}$; this is a convex subset of $\mathbb{P}(\Psi^I \times \Phi^I)$.

24
If $\sigma : \mathcal{I} \rightarrow \mathcal{I}$ is any permutation, define $\sigma : \Psi^I \times \Phi^I \rightarrow \Psi^I \times \Phi^I$ as in eqn.(5). For any $\rho \in \mathcal{P}(\Psi^I \times \Phi^I)$, we define $\sigma(\rho) = \rho'$ as follows:

$$\sigma(\rho) = \rho' \Leftrightarrow \rho' [\mathcal{U}] := \rho [\sigma^{-1}(\mathcal{U})].$$

It is easy to check that $\sigma(\Psi^I \times \Phi^I) = \Psi^I \times \Phi^I$. If (\preceq) is a wipol on Ψ, then a (\preceq)-social preference order over world-lotteries (or (\preceq)-sprowl) is a preorder (\preceq) on Ψ^I with the following properties:

(Par2) For all $\rho, \rho' \in \Psi^I$, if $\rho_i \preceq \rho_i'$ for all $i \in \mathcal{I}$, then $\rho \preceq \rho'$. Also, if $\rho_i \not\preceq \rho_i'$ for all $i \in \mathcal{I}$, then $\rho \not\prec \rho'$.

(Anon2) If $\sigma : \mathcal{I} \rightarrow \mathcal{I}$ is any permutation, then for all $\rho \in \Psi^I$, $\rho \sim \sigma(\rho)$.

(Lin2) For all $\rho_1, \rho_2, \rho_1', \rho_2' \in \Psi^I$, and $s, s' \in [0, 1]$ with $s + s' = 1$, if $\rho_1 \preceq \rho_2$ and $\rho_1' \preceq \rho_2'$, then $(s \rho_1 + s' \rho_1') \preceq (s \rho_2 + s' \rho_2')$.

Axioms (Par2) and (Anon2) are the world-lottery versions of the eponymous axioms in §3. Axiom (Lin2) is just the von Neumann-Morgenstern linearity axiom.

Fix a world-lottery $\rho \in \Psi^I$. For all $i \in \mathcal{I}$, let $\rho_i \in \Psi$ be as in eqn.(14). Define the per capita average lottery

$$\overline{\rho} := \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} \rho_i \in \Psi.$$

The approximate utilitarian (\preceq)-sprowl (\preceq) is then defined:

$$\forall \rho, \rho' \in \Psi^I, \quad \left(\rho \preceq \rho' \right) \Leftrightarrow \left(\overline{\rho} \preceq \overline{\rho'} \right).$$

(17)

For example, suppose (\preceq) is defined in terms of a family \mathcal{H} of ‘utility functions’ $h : \Psi \times \Phi \rightarrow \mathbb{R}$, as in Example 5.1. For any $h \in \mathcal{H}$, clearly, $h^*(\overline{\rho}) = \frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} h^*(\rho_i)$ is the per capita average expected value of h in the world-lottery described by ρ. Thus, combining statements (13) and (17) yields:

$$\left(\rho \preceq \rho' \right) \Leftrightarrow \left(\sum_{i \in \mathcal{I}} h^*(\rho_i) \leq \sum_{i \in \mathcal{I}} h^*(\rho_i'), \text{ for all } h \in \mathcal{H} \right).$$

(18)

Corollary 5.6 (below) shows that, for many reasonable wipols, the approximate utilitarian sprawling can be represented as in (18).

Example 5.2: Fix $\psi \in \Psi^I$. Then (\preceq) induces a preference order (\preceq) on $\mathcal{P}(\Phi^I)$, where, for all $\rho, \rho' \in \mathcal{P}(\Phi^I)$

$$\left(\rho \preceq \rho' \right) \Leftrightarrow \left((\delta_\psi \otimes \rho) \preceq (\delta_\psi \otimes \rho') \right).$$

(19)

(Here $\delta_\psi \in \mathcal{P}(\Psi^I)$ is the ‘sure thing’ probability measure with $\delta_\psi(\psi) = 1$.)
then statements (18) and (19) together become:

\[
\text{Here, we define the 'weight vector'} \ b
\]

In particular, suppose \(h \) \(h \) is as in eqn.(12).] Then statement (20) becomes:

\[
\text{Fix } h_0 \in \mathcal{H}. \text{ For all } h \in \mathcal{H} \text{ and } i \in \mathcal{I}, \text{ there exist constants } w_i = w_i(h) \in \mathbb{R}_+ \text{ and } b_i = b_i(h) \in \mathbb{R} \text{ such that, for all } \phi \in \Phi, \text{ we have } h(\psi_i, \phi) = w_i \cdot h_0(\psi_i, \phi) + b_i \text{ (because both } h(\psi_i, \bullet) \text{ and } h_0(\psi_i, \bullet) \text{ are vNM cardinal utility functions for } (\leq)) \text{. For any } h \in \mathcal{H}, \text{ define the 'weight vector' } w(h) := (w_i(h))_{i \in \mathcal{I}} \in \mathbb{R}^I_+. \text{ Next, define } \mathcal{W} := \{w(h) : h \in \mathcal{H}\} \subseteq \mathbb{R}^I_+. \text{ Then statement (20) becomes:}
\]

\[
\text{Fix } h_0 \in \mathcal{H}. \text{ For all } h \in \mathcal{H} \text{ and } i \in \mathcal{I}, \text{ there exist constants } w_i = w_i(h) \in \mathbb{R}_+ \text{ and } b_i = b_i(h) \in \mathbb{R} \text{ such that, for all } \phi \in \Phi, \text{ we have } h(\psi_i, \phi) = w_i \cdot h_0(\psi_i, \phi) + b_i \text{ (because both } h(\psi_i, \bullet) \text{ and } h_0(\psi_i, \bullet) \text{ are vNM cardinal utility functions for } (\leq)) \text{. For any } h \in \mathcal{H}, \text{ define the 'weight vector' } w(h) := (w_i(h))_{i \in \mathcal{I}} \in \mathbb{R}^I_+. \text{ Next, define } \mathcal{W} := \{w(h) : h \in \mathcal{H}\} \subseteq \mathbb{R}^I_+. \text{ Then statement (20) becomes:}
\]

\[
\text{(The constants } \{b_i(h)\}_{i \in \mathcal{I}} \text{ are irrelevant because they cancel from both sides of the right-hand inequality in (20), for any fixed } h \in \mathcal{H}.)
\]

In particular, suppose \(\mathcal{I} = \{1, 2\}; \text{ then } \mathcal{W} \subseteq \mathbb{R}^2_+. \text{ Let } A := \inf \{w_1/w_2 : w \in \mathcal{W}\} \text{ and }
\[A := \sup \{ w_1/w_2 : w \in W \} \]

As shown in Figure 5, we define a preorder \((\lesseqqgtr_{w,\psi}) \) on \(\mathbb{R}^2 \) by:

\[
\left(r \lesseqqgtr_{w,\psi} r' \right) \iff \begin{cases}
\text{(A)} & r'_1 \geq r_1 \text{ and } r'_2 \geq r_2; \\
\text{(B)} & r'_1 \geq r_1, \ r'_2 \leq r_2 \text{ and } S \geq -A; \\
\text{(C)} & r'_1 \leq r_1, \ r'_2 \geq r_2, \text{ and } S \leq -A \end{cases}
\]

(That is, \(S \) is the slope of the line through \(r \) and \(r' \).) We have:

Claim 5.2: Let \(\rho, \rho' \in \mathbb{P}(\Phi^T) \), and for \(i \in \{1, 2\} \), let \(r_i := h_0(\psi_i, \rho_i) \) and \(r'_i := h_0(\psi_i, \rho'_i) \), to obtain vectors \(r \) and \(r' \) in \(\mathbb{R}^2 \). Then \(\left(\rho \lesseqqgtr_{w,\psi} \rho' \right) \iff \left(r \lesseqqgtr_{w,\psi} r' \right) \).

Example 5.3: (Bargaining problems) Let \(B \subset \mathbb{R}^2 \) be some compact, convex set (e.g. a bargaining set), as in Example 3.3. Let \((\lesseqqgtr_{w,\psi}) \) be the preorder on \(\mathbb{R}^2 \) from Example 5.2. If \(b \in B \), then \(b \) is weakly \((\lesseqqgtr_{w,\psi}) \)-undominated iff the wedge \(\{ r' \in \mathbb{R}^2 : r' \lesseqqgtr_{w,\psi} r \} \) intersects \(B \) only at \(b \). Thus, if \(P \) is the Pareto frontier of \(B \), then \(\text{wkUnd} \left(B, \lesseqqgtr_{w,\psi} \right) \subseteq P \). Furthermore, if \(b \in P \), and \(T \) is the slope of the tangent line to \(P \) at \(b \), then \(b \in \text{wkUnd} \left(B, \lesseqqgtr_{w,\psi} \right) \) if \(-A \leq T \leq -A \). The set \(\text{wkUnd} \left(B, \lesseqqgtr_{w,\psi} \right) \) is shown in Figure 3(C).

Remark 5.4: ‘Approximate utilitarian’ social orderings defined like formula (18) have appeared at least twice before in the literature. Sen (1970a, 1972, and Chapt. 7 of 1970b) defined partial social orderings over a space \(X \) of social alternatives (not necessarily lotteries) by computing weighted utilitarian sums for all weight vectors in some convex cone \(W \subset \mathbb{R}_+^T \), as in (21). Under certain axioms, he showed that one could define a one-parameter family \(\{ \lesseqqgtr_{\alpha} \}_{\alpha \in [0,1]} \) of such social orderings, where \((\lesseqqgtr_{\cdot}) \) is the Pareto ordering (no comparability), and \((\lesseqqgtr_{\cdot}) \) is the classic utilitarian SWO (full comparability). (Indeed, Sen explicitly motivates his approach as an attempt to compromise between these extremes.)

If \(0 \leq \alpha < \beta \leq 1 \), then \(W_\beta \subset W_\alpha \), so that \((\lesseqqgtr_{\alpha}) \) extends and refines \((\lesseqqgtr_{\beta}) \), and represents a greater degree of interpersonal comparability (e.g. in Figure 5(C), the grey noncomparability wedges for \((\lesseqqgtr_{\beta}) \) are thinner than those for \((\lesseqqgtr_{\alpha}) \)). Unfortunately, aside from Fine (1975), there seems to have been little followup on Sen’s idea.

More recently, Baucells and Shapley (2006, 2008) have developed a theory which assigns, to every subcoalition \(J \subseteq I \), a (partial) preorder \((\lesseqqgtr_{J}) \) on a space \(\mathbb{P}(X) \) of lotteries over some set \(X \). They impose the Extended Pareto Rule (EPR): For any \(\rho, \rho' \in \mathbb{P}(X) \), and any two disjoint coalitions \(J, K \subseteq I \), if \(\rho_{J \cup K} \) and \(\rho'_{J \cup K} \), then \(\rho_{J \cup K} \lesseqqgtr_{J \cup K} \rho'_{J \cup K} \). Using a theory of lottery hedometers (see §5.2 below), they argue that all coalitions must have preference orderings defined by cones of utility functions, as in (18). In particular, two-person coalitions must have preference orderings as in formula (22): for any \(i, j \in I \), there exists constants \(\overline{A}_{ij} \geq \overline{A}_{ij} > 0 \) providing upper and lower bounds for the ‘conversion rates’ from \(i \)'s vNM

\[6 \] If \(b \) is a corner point of \(P \), then this inequality must hold for all tangent lines at \(b \).
utility function to \(j \)'s vNM utility function. Baucells and Shapley (2008, §2.5) then show that, for any distinct \(i, j, k \in I \), EPR imposes an interesting ‘no arbitrage’ condition on the conversion rates for the pairs \(\{i,j\}, \{j,k\} \) and \(\{i,k\} \). Furthermore, EPR forces \(\left(\lambda_{ij,k} \right) \) to lie in the intersection of regions determined by \(\left(\lambda_{i,j} \right) \), \(\left(\lambda_{j,k} \right) \) and \(\left(\lambda_{i,k} \right) \), so that \(\left(\lambda_{ij,k} \right) \) will often come closer to a complete ordering than any of the three pairwise orderings. In general, EPR forces larger coalitions to have more complete orderings (Baucells and Shapley, 2006, Prop.3). In particular, if there exists a spanning tree in \(I \) such that all links in this tree are two-person coalitions with complete preferences (i.e. \(A_{ij} = A_{ij} \)), then EPR forces \(\left(\lambda_{ij,k} \right) \) (the preference order of the grand coalition \(I \)) to be a complete, vNM preference relation on \(P(X) \), generated by a weighted average of the utility functions of all \(i \in I \) (Baucells and Shapley, 2008, Thm.4); this can be seen as a generalization of Harsanyi’s (1955) Social Aggregation Theorem. Baucells and Shapley (2006, Thm.6) obtain a similar result when \(I \) can be covered by a system of overlapping subcoalitions, each having a complete vNM preference. Baucells and Sarin (2003) have applied this theory to multicriteria decision-making.

Recall that Proposition 3.4(b) says the Suppes-Sen sprow \(\left(\succeq \right) \) is the ‘minimal’ \(\left(\preceq \right) \)-sprow, which is extended by every other sprow. Similarly, \(\left(\preceq \right) \) is the ‘minimal’ \(\left(\succeq \right) \)-sprowl.

Theorem 5.5 Let \(\left(\succeq \right) \) be a wipol on \(\Psi \). Every \(\left(\succeq \right) \)-sprowl on \(\Psi \otimes I \) extends and refines the approximate utilitarian \(\left(\succeq \right) \)-sprowl \(\left(\preceq \right) \).

Let \(\mathcal{X} \subset \mathbb{P}(\Psi \times \Phi) \) be some set of feasible world-lotteries (each corresponding to some ‘policy’), and suppose the social planner wishes to find the \(\left(\preceq \right) \)-optimal world-lottery in \(\mathcal{X} \) with respect to some sprowl \(\left(\succeq \right) \). Lemma 1.1(g) and Theorem 5.5 imply that

\[
\begin{align*}
\text{wkDom} \left(\mathcal{X}, \succeq \right) \subseteq \text{wkDom} \left(\mathcal{X}, \succeq \right) ;
\text{strUnd} \left(\mathcal{X}, \succeq \right) \subseteq \text{strUnd} \left(\mathcal{X}, \succeq \right) ;
\text{strDom} \left(\mathcal{X}, \succeq \right) \subseteq \text{strDom} \left(\mathcal{X}, \succeq \right) \subseteq \text{wkUnd} \left(\mathcal{X}, \succeq \right) \subseteq \text{wkUnd} \left(\mathcal{X}, \succeq \right) .
\end{align*}
\]

Thus, the set of \(\left(\succeq \right) \)-optimal policies will be closely tied to the set of \(\left(\preceq \right) \)-optimal policies, according to any of the four notions of ‘optimality’ defined in eqn.(1) of §1. In particular, any bargaining solution proposed by \(\left(\succeq \right) \) must be a subset of the approximate utilitarian bargaining solution described in Example 5.3 and portrayed in Figure 3(c). Furthermore, if \(\mathcal{X} \) is small enough that \(\left(\preceq \right) \) is a complete ordering when restricted to \(\mathcal{X} \), then Lemma 1.1(c) says that \(\left(\succeq \right) \) must be identical with \(\left(\preceq \right) \) on \(\mathcal{X} \).

5.2 Hedometry and welfarism

Let \(\Psi \subseteq \mathbb{P}(\Psi \times \Phi) \) be a convex subset, and let \(\left(\preceq \right) \) be a wipol on \(\Psi \). A **lottery hedometer** is a measurable function \(h : \Psi \times \Phi \rightarrow \mathbb{R} \) such that, for all \(\rho_1, \rho_2 \in \Psi \),

\[
\left(\rho_1 \preceq \rho_2 \right) \implies \left(h^*(\rho_1) \leq h^*(\rho_2) \right),
\]

28
where \(h^* \) is defined as in eqn.(12). (Thus, for any \(\psi \in \Psi \), the function \(h(\psi, \bullet) : \Phi \rightarrow \mathbb{R} \) is a vNM cardinal utility function representing the preference order \((\preceq)\).) Let \(\mathcal{H}^\text{lot}_\preceq(\preceq) \) be the set of lottery hedometers for \((\preceq)\). We say that \((\preceq)\) is hedometric if for any \(\rho, \rho' \in \mathcal{P} \), we have

\[
(\rho \preceq \rho') \iff (h^*(\rho) \leq h^*(\rho') \text{ for all } h \in \mathcal{H}^\text{lot}_\preceq(\preceq)).
\] (23)

Let \((\triangleright u) \) be the classic utilitarian SWO on \(\mathbb{R}^I \). In the terminology of §4.2, \((\triangleright u) \) is then the ‘\((\preceq, \triangleright u)\)-welfarist’ sprawl:

Proposition 5.6 Let \((\preceq)\) be a hedometric wipol on \(\mathcal{P} \) and let \((\triangleright u) \) be the approximate utilitarian \((\leq)\)-sprowl. For any \(\rho, \rho' \in \mathcal{P}^I \), we have

\[
(\rho \leq_\triangleright u \rho') \iff \left(\sum_{i \in I} h^*(\rho_i) \leq \sum_{i \in I} h^*(\rho'_i), \text{ for all } h \in \mathcal{H}^\text{lot}_\preceq(\leq) \right).
\]

When is a wipol hedometric? This is actually a special case of a broader question. Let \(X \) be any measurable space, and let \(\mathcal{P} \) be a convex set of probability measures on \(X \) with some topology. A vNM preorder is a preorder on \(\mathcal{P} \) satisfying axiom (Lin\(\preceq \)) and also satisfying:

\[
(\text{Cont} \preceq) \quad \text{For all } \rho, \rho' \in \mathcal{P}, \text{ and sequences } \{\rho_n\}_{n=1}^\infty \text{ and } \{\rho'_n\}_{n=1}^\infty, \text{ if } \rho_n \xrightarrow{n \to \infty} \rho \text{ and } \rho'_n \xrightarrow{n \to \infty} \rho', \text{ and } \rho_n \preceq \rho'_n \text{ for all } n \in \mathbb{N}, \text{ then } \rho \preceq \rho'.
\]

We say that \((\preceq)\) has an expected multiutility representation if there exists a collection \(U \) of measurable functions on \(X \) such that, for any \(\rho, \rho' \in \mathcal{P} \), we have

\[
(\rho \preceq \rho) \iff \left(u^*(\rho) \leq u^*(\rho') \text{ for all } u \in U \right).
\]

Clearly, a wipol is hedometric iff it admits an expected multiutility representation.

Example 5.7:

(a) If \(|X| = N\) is finite, then \(\mathcal{P} \) is the simplex in \(\mathbb{R}^N \), which we endow with the obvious Euclidean topology. Then any vNM preorder on \(\mathcal{P} \) has an expected multiutility representation (Shapley and Baucells, 1998, 1998; Theorem 1.8, p.12).

(b) Let \(X \) be a compact metric space, and let \(\mathcal{P} \) be the space of all Borel probability measures on \(X \), endowed with the weak* topology induced by the set \(C(X) \) of all continuous real-valued functions on \(X \). Then any vNM preorder on \(\mathcal{P} \) has an expected multiutility representation (Dubra et al., 2004).

(c) Let \(X \) be a sigma-compact metric space, and let \(\mathcal{P}_c \) be the space of compactly supported Borel probability measures with the weak* topology induced by \(C(X) \). Then any vNM preorder on \(\mathcal{P}_c \) has an expected multiutility representation (Evren, 2008, Thm.2). Also, if \(\mathcal{P} \) is the space of all Borel probability measures on \(X \), and \((\leq)\) is a vNM preorder on \(\mathcal{P} \) such that the set of point-masses in \(\mathcal{P} \) has a \((\leq)\)-maximal element and a \((\leq)\)-minimal element, then \((\leq)\) has an expected multiutility representation (Evren, 2008, Thm.3).
(d) However, let $\mathcal{X} = \mathbb{R}$, and let \mathfrak{P} be the space of Borel probability measures on \mathbb{R}, endowed with the weak* topology from the space $C_0(\mathbb{R})$ of bounded continuous real-valued functions. Then Evren (2008, Prop.1) has shown some vNM orders on \mathfrak{P} do not admit expected multiutility representations.

Thus, if $\Psi \times \Phi$ is a finite set or a compact metric space, then a wipol on $\Psi \times \Phi$ is hedometric whenever it satisfies axiom (Cont) with respect to a natural topology on \mathfrak{P}. However, if $\Psi \times \Phi$ is a non-compact space, the situation is more complicated. If $\Psi \times \Phi$ is just an abstract measurable space, the question is open.

6 Stochastic utilitarianism

We now turn to a very different model of approximate interpersonal utility comparisons. Suppose there exists a complete wipo (\preceq) on $\Psi \times \Phi$ which, in principle, would allow us to make precise interpersonal comparisons of well-being. The wipo (\preceq) is described by a ‘true hedometer’ $h : \Psi \times \Phi \to \mathbb{R}$ such that, for all $(\psi, \phi), (\psi', \phi') \in \Psi \times \Phi$, $(\psi, \phi) \preceq (\psi', \phi')$ if and only if $h(\psi, \phi) \leq h(\psi', \phi')$. However, the exact structure of (\preceq) is unknown. We model this by representing h as a random variable. That is, we introduce a probability space Ω, and represent h by a measurable function $H : \Psi \times \Phi \times \Omega \to \mathbb{R}$.

This model has at least three interpretations. In the first interpretation, we suppose that, for all $\psi \in \Psi$, we have perfect knowledge of the individual preference ordering (\preceq), which can be described by a cardinal utility function $u_\psi : \Phi \to \mathbb{R}$. However, the different utility functions $\{u_\psi\}_{\psi \in \Psi}$ are expressed on different ‘scales’, and the correct interpersonal calibration is unknown to us. For all $\psi \in \Psi$, there are (unknown) constants $a_\psi > 0$ and $b_\psi \in \mathbb{R}$, such that, for all $\phi \in \Phi$, $h(\psi, \phi) = a_\psi u_\psi(\phi) + b_\psi$. We don’t know the vectors $a := (a_\psi)_{\psi \in \Psi} \in \mathbb{R}_+^\Psi$ and $b := (b_\psi) \in \mathbb{R}^\Psi$ so we model them as a random variables. Thus, in this model, $\Omega := \mathbb{R}_+^\Psi \times \mathbb{R}^\Psi$ (with some probability measure), and $H : \Psi \times \Phi \times \mathbb{R}_+^\Psi \times \mathbb{R}^\Psi \to \mathbb{R}$ is defined by $H(\psi, \phi, a, b) := a_\psi \circ u_\psi(\phi) + b_\psi$, for all $(\psi, \phi, a, b) \in \Psi \times \Phi \times \mathbb{R}_+^\Psi \times \mathbb{R}^\Psi$.

In the second interpretation, we suppose we know the true hedometer h, so in principle we could make precise interpersonal comparisons. However, we have incomplete knowledge of the psychological ‘type’ of each person (as in a Bayesian game). We suppose there is some space Ξ of ‘true’ psychological types (which are hidden), and interpret Ψ as a space of ‘publicly visible’ personality types. The true hedometer is a known function $h : \Xi \times \Phi \to \mathbb{R}$, such that $h(\xi, \phi) : \Phi \to \mathbb{R}$ is the (correctly calibrated) cardinal utility function of a person whose true type is ξ. If a person’s visible personality is $\psi \in \Psi$, then her true psychological type $\xi(\psi) \in \Xi$ is unknown to us, and thus modelled as a random variable. Formally, we introduce a probability space Ω and define a measurable function $\xi : \Psi \times \Omega \to \Xi$. We then define $H : \Psi \times \Phi \times \Omega \to \mathbb{R}$ by $H(\psi, \phi, \omega) := h(\xi(\psi, \omega), \phi)$.

The third interpretation combines both forms of ambiguity. That is, we assume that we have incomplete knowledge of the psychological types of the individuals, and we also have incomplete knowledge of the correct calibration we need to compare utility functions between individuals.
6.1 A stochastic social aggregation theorem

Let \mathcal{X} be a set of social alternatives, and let $\mathbb{P}(\mathcal{X})$ be the set of lotteries over these alternatives. Let \mathcal{I} be a set of individuals. Harsanyi (1955, 1976) presented the following result as a strong argument for utilitarianism.

Social Aggregation Theorem. For each $i \in \mathcal{I}$, let (\preceq_i) be a vNM preference relation on $\mathbb{P}(\mathcal{X})$, represented by vNM utility function $u_i : \mathcal{X} \rightarrow \mathbb{R}$. Let (\preceq) be the social planner’s vNM preference relation over $\mathbb{P}(\mathcal{X})$, and suppose (\preceq) satisfies:

(Par) For any $\rho, \rho' \in \mathbb{P}(\mathcal{X})$, if $\rho_i \preceq \rho_i'$ for all $i \in \mathcal{I}$, then $\rho \preceq \rho'$.

Then there exist nonnegative constants $\{c_i\}_{i \in \mathcal{I}} \subset \mathbb{R}_+$, such that (\preceq) is represented by the vNM utility function $U : \mathcal{X} \rightarrow \mathbb{R}$ defined by $U(x) := \sum_{i \in \mathcal{I}} c_i u_i(x)$ for all $x \in \mathcal{X}$. □

Unfortunately, because of its ‘single-profile’ framework, the SAT is not an argument for utilitarianism. It does not prescribe a particular weighted utilitarian social choice function which the social planner must employ, independent of the profile of individual vNM preferences. Instead, the SAT says that, given a profile $\{\preceq_i\}_{i \in \mathcal{I}}$ of individual vNM preferences, and given a collective vNM preference (\preceq) (generated through whatever means), if (\preceq) satisfies (Par) for the profile $\{\preceq_i\}_{i \in \mathcal{I}}$, then (\preceq) can always be ‘rationalized’ as utilitarianism *ex post facto*, by a suitable choice of constants $\{c_i\}_{i \in \mathcal{I}}$. The constants $\{c_i\}_{i \in \mathcal{I}}$ might depend on the particular profile $\{\preceq_i\}_{i \in \mathcal{I}}$. A proper characterization of utilitarianism must specify some constants $\{c_i\}_{i \in \mathcal{I}}$ independent of the particular profile $\{\preceq_i\}_{i \in \mathcal{I}}$, and must apply to all conceivable profiles. See Weymark (1991) or Mongin (1994) for further discussion.

Let $\mathbb{P}(\Psi^I \times \Phi^I)$ be the space of probability distributions over $\Psi^I \times \Phi^I$. For any $\rho \in \mathbb{P}(\Psi^I \times \Phi^I)$ and $i \in \mathcal{I}$, let $\rho_i \in \mathbb{P}(\Psi \times \Phi)$ be the projection of ρ onto the ith coordinate, as defined by eqn.(14) in §5.1. Fix $\omega \in \Omega$, and let $H^*(\rho_i, \omega)$ be the ρ_i-expected value of H, given ω. That is:

$$H^*(\rho_i, \omega) := \int_{\Psi \times \Phi} H(\psi, \phi, \omega) \, d\rho_i(\psi, \phi).$$

Given ω, assume that individual i has a preference relation (\preceq_i) over $\mathbb{P}(\Psi^I \times \Phi^I)$ defined by $(\rho, \rho') \preceq_i \iff (H^*(\rho_i, \omega) \leq H^*(\rho'_i, \omega))$. This is a vNM preference relation on $\mathbb{P}(\Psi^I \times \Phi^I)$, with vNM utility function $h^\omega_i : \Psi^I \times \Phi^I \rightarrow \mathbb{R}$ defined by $h^\omega_i(\phi, \phi) := H(\psi_i, \phi_i, \omega)$.

As in §5.1, the social planner must formulate preference relation (\preceq) over $\mathbb{P}(\Psi^I \times \Phi^I)$. If (\preceq) satisfies the vNM axioms, then it can be represented by a vNM utility function $U : \Psi^I \times \Phi^I \rightarrow \mathbb{R}$. The problem is that the correct choice of U may depend on the true value of ω, which is unknown to the planner. For any measurable subset $\mathcal{S} \subseteq \Omega$, if the planner ‘observes’ \mathcal{S} (i.e. if she acquires enough information to know that $\omega \in \mathcal{S}$), then we suppose she formulates a vNM preference relation (\preceq) on $\mathbb{P}(\Psi^I \times \Phi^I)$, described by
a vNM utility function $U_S : \Omega \rightarrow R$. Let \mathcal{G} be the sigma-algebra on Ω and let $\pi : \mathcal{G} \rightarrow [0,1]$ be the probability measure. We suppose that the family $\{U_S\}_{S \in \mathcal{S}}$ of utility functions satisfies the following ‘Bayesian consistency’ condition:

$$(\text{Bayes}) \text{ For any } (\psi, \phi) \in \Omega \times \mathcal{F}, \text{ and any countable collection } \{S_n\}_{n=1}^\infty \subset \mathcal{S} \text{ of disjoint measurable sets, if } S = \bigsqcup_{n=1}^\infty S_n, \text{ then } U_S(\psi, \phi) = \frac{1}{\pi(S)} \sum_{n=1}^\infty \pi(S_n) U_{S_n}(\psi, \phi).$$

Intuitively, this says that the family $\{U_S\}_{S \in \mathcal{S}}$ behaves as if $U_S(\psi, \phi)$ is the expected value of the unknown ‘true’ social utility of the world (ψ, ϕ), conditioned on the observation S.

Indeed, we have the following:

$$(24) \text{ Lemma } 6.1 \text{ Suppose the family } \{U_S\}_{S \in \mathcal{S}} \text{ satisfies } (\text{Bayes}). \text{ Then there exists a measurable function } U : \Omega \times \mathcal{F} \rightarrow R \text{ such that, for any } S \in \mathcal{S} \text{ and } (\psi, \phi) \in \Omega \times \mathcal{F},$$

$$U_S(\psi, \phi) = \frac{1}{\pi(S)} \int_S U_\omega(\psi, \phi) \, d\pi[\omega].$$

The meanings of axioms (Par), (Anon), and (Nonindiff) are clear. Axiom (Welf) says that the function U is welfarist: $U_\omega(\psi, \phi)$ is entirely determined by the values of $H(\psi_i, \phi_i, \omega)$ (for all $i \in \mathcal{I}$), independent of ω (see footnote #5 in $\S 4$). Loosely speaking, this ensures that U cannot assign more ‘weight’ to some values of ω than others.

For any $S \in \mathcal{S}$, define $H_S : \Psi \times \Phi \rightarrow R$ by

$$H_S(\psi, \phi) := \frac{1}{\pi(S)} \int_S H(\psi, \phi, \omega) \, d\pi[\omega], \quad \text{for all } (\psi, \phi) \in \Psi \times \Phi.$$
Theorem 6.2 Let \(\{(\preceq_S)\}_{S \in \mathcal{S}} \) be a collection of vNM preference relations on \(\mathbb{P}(\Psi^I \times \Phi^I) \) satisfying axioms (Bayes), (Par), (Anon), (Nonindiff), and (Welf). Then for any \(S \in \mathcal{S} \), the relation \((\preceq_S) \) seeks to maximize the expected value of the utilitarian social welfare function \(\overline{U}_S : \Psi^I \times \Phi^I \rightarrow \mathbb{R} \) defined by

\[
\overline{U}_S(\psi, \phi) := \sum_{i \in I} h_S(\psi_i, \phi_i), \quad \text{for all } (\psi, \phi) \in \Psi^I \times \Phi^I.
\] (26)

Note that this model entirely obviates the ‘single-profile’ criticism of Harsanyi’s original SAT. By definition, \(\Psi \times \Omega \) encodes the space of all possible human psychologies which could ever exist; hence the hedometer \(H \) encodes all possible vNM preference relations which could ever manifest in any profile. Thus, Theorem 6.2 does not presuppose any particular profile; it prescribes \(\overline{U}_S \) as the social welfare function which the social planner must employ when she observes \(S \), independent of the profile of individual vNM preferences which actually obtains.

Also, for practical purposes, this model does not require the social planner to have precise information about people’s true preferences. The hidden variable \(\omega \) could contain a lot of information; indeed, the model is even applicable when \(\Psi \) is trivial, so that all information about people’s true preferences is hidden from the social planner. However, the model does require the social planner to have a correct model of the probability distribution of preferences, even if she doesn’t know which preferences actually obtain (i.e. the planner must know the true hedometer \(H : \Psi \times \Phi \times \Omega \rightarrow \mathbb{R} \), even if she doesn’t know the true value of \(\omega \)). Also, in keeping with the rest of this paper, the model assumes that interpersonal comparisons of utility are possible in principle, even if they are ambiguous in practice.

6.2 On liberty

Welfarist social choice theory has been criticized for not recognizing the value of personal liberty.\(^7\) Suppose \(\mathcal{X} \) is a feasible set, and individual \(i \) has utility function \(u_i : \mathcal{X} \rightarrow \mathbb{R} \). Let \(x^* \) be the \(u_i \)-maximal element of \(\mathcal{X} \). Intuitively, we feel that a social policy which allows \(i \) to choose \(x^* \) herself is more desirable than a social policy which forces \(x^* \) upon her —even though both policies yield the same utility for \(i \). Formally, we can imagine a policy which allows \(i \) to choose any element from some subset \(\mathcal{F} \subseteq \mathcal{X} \); the larger \(\mathcal{F} \) is, the more ‘freedom’ it offers \(i \), and hence, the more desirable the policy.

However, this account is puzzling, because by definition, elements of the set \(\mathcal{X} \) are supposed to encode all information relevant to \(i \)’s happiness or well-being, as measured by \(u_i \). Furthermore, any ‘freedom’ offered by \(\mathcal{F} \) is clearly a function of the ‘quality’ of the elements of \(\mathcal{F} \) as well as their quantity. For example, if \(\mathcal{F}' \) is obtained by adding an extremely undesirable option (e.g. ‘execution at dawn’) to \(\mathcal{F} \), then we would not feel that \(\mathcal{F}' \) offers \(i \) more freedom than \(\mathcal{F} \). This is because when \(i \) ‘freely chooses’ an element from \(\mathcal{F} \), we suppose what she really does is solve an optimization problem; adding options which are obviously grossly suboptimal does not enhance her optimization opportunities.

\(^7\)See Dowding and van Hees (2009) for a summary of this debate.
However, if this ‘optimization’ view of free choice is correct, then once \(F \) contains the global optimum \(x^* \), it seems futile to add any other options, because any other element of \(X \) is suboptimal, relative to \(x^* \). Hence any measure of ‘freedom’ which accounts for the ‘quality’ of elements in \(F \) leads us back to welfarism.

However, this objection assumes that we know the \(u_i \)-optimal element of \(X \), because we know \(u_i \). In reality, our knowledge of \(u_i \) is imperfect (cf. the second (‘Bayesian game’) interpretation of the random hedometer model). Even in a purely welfarist framework, liberty then acquires instrumental value: by offering \(i \) a larger feasible set \(F \) to freely choose from, we increase the probability that \(F \) contains her true optimum \(x^* \) (which is unknown to us); more generally, we increase the expected value of \(\max_{x \in F} u_i(x) \).

As before, let \(\Omega \) be a probability space, and \(H : \Psi \times \Phi \times \Omega \rightarrow \mathbb{R} \) represent a ‘random hedometer’. Fix a society \(\psi \in \Psi^I \). Suppose that social policy does not determine a single point \(\phi \in \Phi^I \); instead, a social policy determines, for each \(i \in I \), some subset \(F_i \subseteq \Phi \), leaving \(i \) the freedom to choose any element of \(F_i \). Presumably \(i \) chooses \(\arg \max_{\phi \in F_i} H(\psi_i, \phi, \omega) \).

Let us refer to the collection \((F_i)_{i \in I}\) as a freedom allocation.\(^8\) Given a choice between two freedom allocations \(F := (F_i)_{i \in I} \) and \(F' := (F'_i)_{i \in I} \), a utilitarian social planner will choose \(F \) over \(F' \) if it offers a higher expected utility sum, conditional on individual optimization; that is, if

\[
\int_{\Omega} \sum_{i \in I} \max_{\phi_i \in F_i} H(\psi_i, \phi_i, \omega) \, d\omega > \int_{\Omega} \sum_{i \in I} \max_{\phi'_i \in F'_i} H(\psi_i, \phi'_i, \omega) \, d\omega.
\]

Thus, a stochastic utilitarian may deem it socially optimal to grant considerable liberty to citizens.

7 Models of wipos

This section describes three models of how a weak interpersonal preference ordering might be constructed. These are not practical operationalizations, but are aimed instead at proving a philosophical point: under plausible assumptions, weak interpersonal comparisons can be well-defined in principle.

Most of the following constructions are obtained by ‘stitching together’ a collection of preorders. Let \(\mathcal{X} \) be a set and let \(\{\preceq_{\lambda}\}_{\lambda \in \Lambda} \) be a collection of preorders on \(\mathcal{X} \) (where \(\Lambda \) is some indexing set). The join of \(\{\preceq_{\lambda}\}_{\lambda \in \Lambda} \) is the transitive closure \((\preceq_J)\) of the union of the relations \(\{\preceq_{\lambda}\}_{\lambda \in \Lambda} \). That is, \(x \preceq_J x' \) if there exists a sequence \(x = x_0 \preceq_{\lambda_1} x_1 \preceq_{\lambda_2} \cdots \preceq_{\lambda_N} x_N = x' \), where \(\lambda_n \in \Lambda \) for all \(n \in [1\ldots N] \). It is easy to see that \((\preceq_J)\) is itself a preorder (it is transitive and reflexive), which extends \((\preceq_{\lambda})\) for every \(\lambda_0 \in \Lambda \). However, the asymmetric

\(^8\)Presumably the social planner is constrained in the sort of freedom allocations she can offer, but we will refrain from formally modelling these constraints. Also, we are unrealistically assuming that each \(i \in I \) can choose a point in \(F_i \) independent of the choices made by other \(j \in I \). In reality, the agents might interact (e.g. trade) and their choices will be interdependent, resulting in an \(I \)-player game.
factor (\(\preceq\)) does not necessarily extend the asymmetric factor (\(\prec\)), because elements which are strictly ordered by (\(\preceq\)) may be rendered equivalent through some chain of relations in the union of \(\{\preceq\}_\lambda\in\Lambda\). Many of the technical complications which follow arise in response to this problem.

7.1 Nonexample: Wipos based on multiple desiderata

We begin with a nonexample, which shows that one obvious strategy for defining a wipo fails. Let \(q : \Phi \rightarrow \mathbb{R}^K\) be some function, such that, for all \(k \in [1...K]\), the component \(q_k : \Phi \rightarrow \mathbb{R}\) is some quantitative measure of ‘quality of life’. For example, some of the coordinates of \(q\) might be the consumption levels of various physical goods; others might be various measures of physical health, or welfare indicators such as education level or opportunities for participation in the social, cultural and political life of the community; others might try to measure more intangible desiderata such as autonomy, security, dignity, liberty, or self-actualization. Some coordinates of \(q\) could measure Rawls’ (1971) ‘primary goods’ or Sen’s (1985, 1988) ‘functionings and capabilities’. Define preorder (\(\preceq\)) on \(\Psi \times \Phi\) by

\[
\left((\psi, \phi) \preceq (\psi', \phi')\right) \iff \left(q_k(\phi) \leq q_k(\phi')\right) \text{ for every } k \in [1...K].
\]

Suppose the collection \(\{q_1, \ldots, q_K\}\) is comprehensive enough that, for any \(\psi \in \Psi\), and any \(\phi, \phi' \in \Phi\), if \((\psi, \phi) \preceq (\psi', \phi')\), then \(\phi \preceq \phi'\) (but not conversely). Thus, if we define (\(\preceq\)) to be the join of (\(\preceq\)) and \(\{\preceq\}_{\psi \in \Psi}\), then we would expect (\(\preceq\)) to be a wipo. However, Pattanaik and Xu (2007; §3, Proposition 1) have shown that this is false, as long as different individuals have even slightly different preferences over \(\Phi\) (a principle they call ‘minimal relativism’). The problem is that the definition of (\(\preceq\)) clearly forces \((\psi, \phi) \approx (\psi', \phi')\) (and hence, \((\psi, \phi) \approx (\psi', \phi')\)) whenever \(q(\phi) = q(\phi')\). This is in fact a very strong assumption of interpersonal preference comparison, and leaves individuals with essentially no room to differ in their preference orderings.

To illustrate the problem, suppose \(K = 2\), let \(\phi_1, \phi_2 \in \Phi\), and suppose \(q(\phi_1) = (1,2)\), while \(q(\phi_2) = (2,1)\); thus, neither \(\phi_1 \preceq \phi_2\) nor \(\phi_2 \preceq \phi_1\). Let \(\psi, \psi' \in \Psi\), and suppose \(\phi_1 \preceq \phi_2\) while \(\phi_2 \preceq \phi_1\). Suppose we can find some \(\phi'_1\) very ‘close’ to \(\phi_1\) such that \(q(\phi'_1)\) is close to \((1,2)\) but dominates it; say \(q(\phi'_1) = (1.01, 2.01)\). Thus, \(\phi_1 \not\preceq \phi'_1\), but assuming \(\psi\) has continuous preferences, we have \(\phi'_1 \not\prec \phi_2\). Next, find some \(\phi'_2\) very ‘close’ to \(\phi_2\), such that \(q(\phi'_2)\) is close to \((2,1)\) but dominates it; say \(q(\phi'_2) = (2.01, 1.01)\). Thus, \(\phi_2 \not\prec \phi'_2\), but assuming \(\psi'\) has continuous preferences, we have \(\phi'_2 \not\prec \phi_1\). Putting it all together, we get

\[
\phi_1 \prec \phi'_1 \prec \phi_2 \prec \phi'_2 \prec \phi_1.
\]

Thus, if (\(\preceq\)) is the join of (\(\preceq\)), (\(\preceq\)) and (\(\preceq\)), then we get \(\phi_1 \preceq \phi'_1 \preceq \phi_2 \preceq \phi'_2 \preceq \phi_1\), so that \(\phi_1 \approx \phi_2\), contradicting the fact that \(\phi_1 \not\approx \phi_2\).
7.2 Wipos based on envy and pity

Suppose that each individual can attempt interpersonal comparisons between herself and other people, but not between two other people. Formally, for each \(\psi_1, \psi_2 \in \Psi \), let \((\preceq_v) \) be a wipo on \(\{\psi_1, \psi_2\} \times \Phi \) which agrees with \((\preceq_v) \) on \(\{\psi_1\} \times \Phi \) and agrees with \((\preceq_v) \) on \(\{\psi_2\} \times \Phi \).

The order \((\preceq_v) \) is a \(\psi_1 \)-type person’s comparison between herself and a \(\psi_2 \)-type person; if \((\psi_1, \phi_1) \preceq_v (\psi_2, \phi_2) \), then we might say that \(\psi_1 \) ‘envies’ \(\psi_2 \); whereas if \((\psi_1, \phi_1) \succeq_v (\psi_2, \phi_2) \), then we might say that \(\psi_1 \) ‘pities’ \(\psi_2 \). ‘Self-knowledge’ requires \((\preceq_v) \) to agree with \((\preceq_v) \), while ‘nonpaternalism’ requires \((\preceq_v) \) to agree with \((\preceq_v) \).

These interpersonal comparisons might not be correct; for example, \(\psi_1 \) might envy \(\psi_2 \), while \(\psi_2 \) simultaneously envies \(\psi_1 \) (i.e. we might have \((\psi_1, \phi_1) \prec_v (\psi_2, \phi_2) \) while \((\psi_2, \phi_2) \succeq_v (\psi_1, \phi_1) \)). However, if both \(\psi_1 \) and \(\psi_2 \) agree that \(\psi_1 \) is happier, we might take this to mean that \(\psi_1 \) objectively is happier than \(\psi_2 \). In other words, we could define a relation \((\preceq_v) \) on \(\Psi \times \Phi \) by

\[
(\psi_1, \phi_1) \preceq_v (\psi_2, \phi_2) \iff (\psi_1, \phi_1) \preceq_v (\psi_2, \phi_2) \text{ and } (\psi_1, \phi_1) \succeq_v (\psi_2, \phi_2). \tag{27}
\]

Unfortunately, the relation \((\preceq_v) \) defined by (27) might not be a wipo, because it might violate condition (W1): there may exist \(\psi \in \Psi \) and \(\phi, \phi' \in \Phi \) such that \(\phi' \succ \phi \), but \((\psi, \phi') \preceq_v (\psi, \phi) \).

Example 7.1: \(\Psi = \{0, 1, 2\} \), let \(\Phi = \mathbb{Z} \), and suppose \((\preceq_v) \) is the standard ordering on \(\mathbb{Z} \) for all \(\psi \in \Psi \). Suppose that each \(\psi \in \Psi \) believes that \((\psi-1, \phi+1) \prec_v (\psi, \phi) \prec_v (\psi+1, \phi-1) \), for all \(\phi \in \mathbb{Z} \) (here, we perform addition in \(\Psi \mod 3 \), so that \(2+1 \equiv 0 \mod 3 \), etc.). Thus, for all \(\psi \in \Psi \), if \(\psi' = \psi + 1 \mod 3 \), then the orderings \((\preceq_v) \) and \((\preceq_v) \) agree on \(\{\psi, \psi'\} \times \Phi \), so definition (27) is in force. But \((0, 9) \preceq_v (1, 8) \preceq_v (2, 7) \preceq_v (0, 6) \). Taking the transitive closure, we get \((0, 9) \preceq_v (0, 6) \), which contradicts the fact that \(9 \succ 6 \).

\[\Box\]

The system of envy/pity relations \(\{\preceq_v\}_{\psi_1, \psi_2 \in \Psi} \) is **consistent** if the following holds: for any \((\psi_1, \phi_1), (\psi_2, \phi_2) \in \Psi \times \Phi \) with \((\psi_1, \phi_1) \preceq_v (\psi_2, \phi_2) \) and \((\psi_1, \phi_1) \succeq_v (\psi_2, \phi_2) \), and any \((\psi', \phi') \in \Psi \times \Phi \):

- if \((\psi', \phi') \preceq_v (\psi_1, \phi_1) \), then also \((\psi', \phi') \preceq_v (\psi_2, \phi_2) \);
- if \((\psi', \phi') \succeq_v (\psi_2, \phi_2) \), then also \((\psi', \phi') \succeq_v (\psi_1, \phi_1) \).

This weak transitivity condition requires \(\psi' \) to respect any \(\{\psi_1, \psi_2\} \)-interpersonal comparisons on which both \(\psi_1 \) and \(\psi_2 \) agree. For example, if both \(\psi_1 \) and \(\psi_2 \) think that \(\psi_2 \) is happier than \(\psi_1 \), and \(\psi' \) envies \(\psi_1 \) then she must also envy \(\psi_2 \). (However, if \(\psi_1 \) and \(\psi_2 \) disagree about their relative happiness levels, then \(\psi' \) is not obliged to be consistent with either of them).
Proposition 7.2 Suppose that, for any $\psi_1, \psi_2 \in \Psi$, the relation $(\preceq \psi_1, \psi_2)$ is a wipo on $\{\psi_1, \psi_2\} \times \Phi$. Also suppose the system $\{\preceq \psi_1, \psi_2\}_{\psi_1, \psi_2 \in \Psi}$ is consistent. Then $(\preceq \psi_1, \psi_2)$ is a wipo.

7.3 Wipos from local expertise

Ortuño-Ortin and Roemer (1991) propose a model of interpersonal comparisons based on ‘local expertise’. For each $\psi \in \Psi$, let $\mathcal{N}_\psi \subset \Psi$ be a ‘neighbourhood’ of the point ψ, and assume that a ψ-type individual is capable of constructing a ‘local’ wipo $(\preceq \psi)$ over $\mathcal{N}_\psi \times \Phi$. We can justify ψ’s ability to make interpersonal comparisons of well-being over $\mathcal{N}_\psi \times \Phi$ in at least two ways:

- Each psychology $\nu \in \mathcal{N}_\psi$ is so ‘psychologically similar’ to ψ that a ψ-person can completely empathize with a ν-person, and accurately compare of their levels of well-being.

- $\mathcal{N} = \mathcal{P}(\psi) \cup \mathcal{F}(\psi)$, where $\mathcal{P}(\psi)$ and $\mathcal{F}(\psi)$ are the past and possible future psychologies of type ψ. As argued under the heading Intertemporal Comparisons in the introduction, ψ must be able to make interpersonal comparisons over $\mathcal{P}(\psi)$ and $\mathcal{F}(\psi)$, because she remembers her past and can make choices about her future.

We will require the system $\{\mathcal{N}_\psi, \preceq \psi\}_{\psi \in \Psi}$ to satisfy the following consistency condition:

(RO) If $\mathcal{N}_{\psi_1} \cap \mathcal{N}_{\psi_2} \neq \emptyset$, then the local wipos $(\preceq \psi_1)$ and $(\preceq \psi_2)$ agree on $(\mathcal{N}_{\psi_1} \cap \mathcal{N}_{\psi_2}) \times \Phi$.

(This condition is quite natural if we suppose that $(\preceq \psi_1)$ and $(\preceq \psi_2)$ are both fragments of some some underlying ‘objectively true’ interpersonal comparison structure.) We then define a global relation $(\preceq _{RO})$ as the join of $\{\preceq \psi\}_{\psi \in \Psi}$.

The relation $(\preceq _{RO})$ is not necessarily a wipo, because it might violate condition (W1). When stitching together the local relations $\{\preceq \psi\}_{\psi \in \Psi}$, we may introduce a preference cycle

$$(\psi_1, \phi_1) \preceq \psi_2, \phi_2 \preceq \cdots \preceq \psi_N, \phi_N \preceq (\psi_1, \phi_1') \preceq (\psi_1, \phi_1).$$

Taking the transitive closure, we get $(\psi_1, \phi_1) \preceq (\psi_1, \phi_1')$, contradicting the fact that $\phi_1 > \phi_1'$.

Example 7.3: Suppose $\Psi = \{0, 1, 2, 3\}$, and let $\mathcal{N}_\psi := \{j - 1, j, j + 1\}$ for all $\psi \in \Psi$ (where we perform addition mod 4, so that $3 + 1 \equiv 0 \mod 4$, etc.). Let $\Phi = \mathbb{Z}$, and suppose $(\preceq \psi)$ is the standard ordering on \mathbb{Z} for all $\psi \in \Psi$. Suppose that each $\psi \in \Psi$ believes that $(\psi - 1, \phi + 1) \preceq (\psi, \phi) \preceq (\psi + 1, \phi - 1)$, for all $\phi \in \mathbb{Z}$. Then each pair of local wipos agrees on their overlap, but $(0, 9) \preceq (1, 8) \preceq (2, 7) \preceq (3, 6) \preceq (0, 5) \preceq (0, 5)$. Taking the transitive closure, we get $(0, 9) \preceq (0, 5)$, which contradicts the fact that $5 > 9$. ♦
To prevent preference cycles, we need additional conditions. Given a neighbourhood system \(\mathcal{N} := \{ \mathcal{N}_\psi \}_{\psi \in \psi} \) and two points \(\psi, \psi' \in \psi \), an \textit{\(\mathcal{N} \)-chain} from \(\psi \) to \(\psi' \) is a sequence \(\psi = \psi_0, \psi_1, \psi_2, \ldots, \psi_N = \psi' \) such that, for all \(n \in [1...N] \), \(\psi_n \in \mathcal{N}_{\psi_{n-1}} \) (see Figure 6(A)).

We say that \(\mathcal{N} \)-chain-connects \(\psi \) if any two points in \(\psi \) can be connected with an \(\mathcal{N} \)-chain. If \(\psi := (\psi_0, \psi_1, \ldots, \psi_{n-1}, \psi_n, \psi_{n+1}, \ldots, \psi_N) \) is an \(\mathcal{N} \)-chain and \(\psi_{n+1} \in \mathcal{N}_{\psi_{n-1}} \), then \(\psi' := (\psi_0, \psi_1, \ldots, \psi_{n-1}, \psi_{n+1}, \ldots, \psi_N) \) is also an \(\mathcal{N} \)-chain; we say that \(\psi' \) and \(\psi \) are related by \textit{elementary homotopy}, and write \(\psi \sim \psi' \) (see Figure 6(B)). Note that \(\psi \) and \(\psi' \) have the same endpoints. Two \(\mathcal{N} \)-chains \(\psi \) and \(\psi' \) are \textit{homotopic} if \(\psi \) can be converted into \(\psi' \) through a sequence of elementary homotopies—that is, there is a sequence of \(\mathcal{N} \)-chains \(\psi = \psi_1 \approx \psi_2 \approx \cdots \approx \psi_N = \psi' \) (see Figure 6(C)). It follows that \(\psi \) and \(\psi' \) must have the same endpoints.

The \(\mathcal{N} \)-chain \(\psi \) is \textit{closed} if \(\psi_N = \psi_0 \). We say \(\psi \) is \textit{trivial} if \(\psi_0 = \psi_1 = \cdots = \psi_N \). We say \(\psi \) is \textit{nullhomotopic} if \(\psi \) is chain-homotopic to a trivial chain. The neighbourhood system \(\mathcal{N} := \{ \mathcal{N}_\psi \}_{\psi \in \psi} \) is \textit{simply connected} if it chain-connects \(\psi \), and any closed chain is nullhomotopic.

Example 7.4:

(a) Suppose \(\Psi \) is a simply connected topological space (e.g. \(\Psi = \mathbb{R}^N \)), and for each \(\psi \in \Psi \), let \(\mathcal{N}_\psi \) be a simply connected open neighbourhood of \(\psi \) (e.g. a ball). Then the system \(\mathcal{N} \) is simply connected.

(b) Suppose \(\Psi = \mathbb{Z}^N \), and for all \(\psi \in \Psi \), let \(\mathcal{N}_\psi \) be the unit box around \(\psi \)—that is, \(\mathcal{N}_\psi := \{ \psi' \in \mathbb{Z}^N : |\psi'_n - \psi_n| \leq 1, \forall n \in [1...N] \} \). Then \(\mathcal{N} \) is simply connected.
(c) The system in Example 7.3 is not simply connected. For example, the sequence
\((0, 1, 2, 3, 0)\) is a closed chain, but it is not nullhomotopic.

The local wipo \(\preceq\) on \(\mathcal{N}_\psi\) is **indifference-connected** if, for any \(\phi \in \Phi\) and \(\nu \in \mathcal{N}_\psi\), there is some \(\phi'\) such that \((\psi, \phi) \simeq (\nu, \phi')\) (Roemer and Ortuño-Ortin call this property ‘continuity’). Indifference-connectedness is a very strong property: in particular it implies that each wipo \(\preceq\) is a complete ordering of \(\mathcal{N}_\psi \times \Phi\). The system of local wipos \(\{\preceq\}_\psi\) is **consistent** if each wipo \(\preceq\) can be extended to an indifference-connected wipo \(\sim\), such that the system \(\{\mathcal{N}_\psi, \sim\}_\psi\) still has property (RO). Intuitively, this means that the wipo \(\preceq\) represents \(\psi\)’s incomplete perception of some underlying, objectively true system of complete interpersonal comparisons, encoded by \(\{\sim\}_\psi\). It is not necessary for us to have explicit knowledge of \(\{\sim\}_\psi\) — only to know that it exists.

Proposition 7.5 Suppose \(\mathcal{R}\) is simply connected, and the system \(\{\mathcal{N}_\psi, \preceq\}_\psi\) satisfies (RO).

(a) If the system \(\{\preceq\}_\psi\) is consistent, then the global relation \(\preceq\) is a wipo.

(b) Suppose, for all \(\psi \in \Psi\), that \(\preceq\) is indifference-connected. Then the global relation \(\preceq\) is wipo and a complete order on \(\Psi \times \Phi\).

Ortuño-Ortin and Roemer (1991) prove two special cases of Proposition 7.5(b): the case \(\Psi = \mathbb{Z}^N\) described in Example 7.4(b), and the case when \(\Psi = \mathbb{R}^N\), where, for each \(\psi \in \mathbb{R}^N\), the neighbourhood \(\mathcal{N}_\psi\) is arc-connected and has radius at least \(\epsilon\) around \(\psi\), for some fixed \(\epsilon > 0\). However, Proposition 7.5(b) requires indifference-connectedness, which may be an unreasonably strong assumption even for ‘local’ interpersonal comparisons.

7.4 Wipos from infinitesimal expertise

One might object that even the ‘local’ wipos posited in §7.3 assume an unrealistic level of interpersonal comparability. In response to this objection, we now consider a model which posits only ‘infinitesimal’ interpersonal comparisons. This will require some elementary differential geometry; see Warner (1983) for background.

Suppose \(\Psi\) and \(\Phi\) are differentiable manifolds, and let \(\Psi \times \Phi\) have the product manifold structure. For any \(\psi \in \Psi\), let \(T_\psi \Psi\) be the tangent space of \(\Psi\) at \(\psi\); for any \(\phi \in \Phi\), we similarly define the tangent spaces \(T_\phi \Phi\) and \(T_{(\psi, \phi)} (\Psi \times \Phi) \cong T_\psi \Psi \times T_\phi \Phi\). If \(\gamma : (-\epsilon, \epsilon) \longrightarrow \Phi\) is any smooth curve with \(\gamma(0) = \phi\), then let \(\gamma'(0) \in T_\phi \Phi\) be the velocity vector of \(\gamma\) at 0; if \(\vec{0}_\phi \in T_\psi \Psi\) is the zero vector, then \((\vec{0}_\phi, \gamma'(0))\) is an element of \(T_{(\psi, \phi)} (\Psi \times \Phi)\). Let \(\vec{0}_\phi\) be the zero vector in \(T_\phi \Phi\), and let \(\vec{0}_{(\psi, \phi)} := (\vec{0}_\psi, \vec{0}_\phi) \in T_{(\psi, \phi)} (\Psi \times \Phi)\).
For every \((\psi, \phi) \in \Psi \times \Phi\), let \((\prec)\) be a preorder on \(T_{(\psi, \phi)}(\Psi \times \Phi)\) with the following property: If \(\gamma : (\epsilon, \epsilon) \to \Phi\) is any smooth curve with \(\gamma(0) = \phi\), such that \(\phi \prec \psi(t)\) for all \(t > 0\), then \(\gamma(t) \prec \psi(0)\). Intuitively, if \(\vec{v} \in T_{(\psi, \phi)}(\Psi \times \Phi)\) and \(\vec{v} \prec \vec{0}_{(\psi, \phi)}\), then this means that infinitesimal movement through the manifold \(\Psi \times \Phi\) in the \(\vec{v}\) direction is regarded as a net improvement, even if it involves a change of psychological state as well as physical state. In other words, we are allowed to make ‘infinitesimal’ interpersonal comparisons of well-being: comparisons between individuals whose psychologies are only infinitesimally different. This yields a wipo \((\preceq)\) on \(\Psi \times \Phi\), defined as follows:

\[
(\psi_0, \phi_0) \preceq (\psi_1, \phi_1) \iff \exists \text{ smooth path } \gamma : [0, 1] \to \Psi \times \Phi \text{ with } \gamma(0) = (\psi_0, \phi_0), \quad \gamma(1) = (\psi_1, \phi_1), \text{ and } \gamma'(t) \preceq \gamma(t)\] for all \(t \in [0, 1]\).

In other words, it is possible to move from \((\psi_0, \phi_0)\) to \((\psi_1, \phi_1)\) along a path which, at every instant, is regarded as an ‘infinitesimal improvement’. We refer to \(\gamma\) as an improvement path.

The relation \((\preceq)\) is not necessarily acyclic, unless further conditions are imposed on the system of order relations \(\mathcal{X} = \{\prec\}_{(\psi, \phi) \in \Psi \times \Phi}\). The system \(\mathcal{X}\) is smooth if there exists an open cover \(\{\mathcal{O}_j\}_{j \in J}\) of \(\Psi\) (for some indexing set \(J\)), and for each \(j \in J\), a smooth function \(u_j : \mathcal{O}_j \times \Phi \to \mathbb{R}\) such that:

Sm1 For each \(j \in J\), each \(\psi_1, \psi_2 \in \mathcal{O}_j\), we have \(u_j(\{\psi_1\} \times \Phi) = u_j(\{\psi_2\} \times \Phi)\).

Sm2 For each \(j \in J\), each \((\psi, \phi) \in \mathcal{O}_j \times \Phi\), and each \(\vec{v} \in T_{(\psi, \phi)}(\Psi \times \Phi)\), if \(\vec{v} \prec \vec{0}_{(\psi, \phi)}\), then \(\nabla u_i(\psi, \phi)[\vec{v}] \geq 0\).

Sm3 For any \(j, k \in J\), if \(\mathcal{O}_j \cap \mathcal{O}_k \neq \emptyset\), then \(u_j\) and \(u_k\) are ‘ordinally equivalent’ on their domain overlap: for all \(\psi, \psi' \in \mathcal{O}_j \cap \mathcal{O}_k\) and all \(\phi, \phi' \in \Phi\), we have \(u_i(\psi, \phi) \leq u_i(\psi', \phi')\) if and only if \(u_j(\psi, \phi) \leq u_j(\psi', \phi')\).

Proposition 7.6 If \(\Psi\) is simply connected and \(\mathcal{X}\) is smooth, then \((\preceq)\) is a wipo.

Conclusion

Under quite mild and plausible assumptions about interpersonal comparability, it is possible to define a wipo—an incomplete preorder on a space of psychophysical states—which makes possible substantive interpersonal comparisons of well-being (§2 and §7). This allows us to construct a sprow: a preorder on the space of social alternatives which, while still incomplete, is far more complete than the Pareto preorder (§3). If the wipo can be represented by a set of ordinal utility functions; we can then use a social welfare order on \(\mathbb{R}^2\) to obtain a ‘welfarist’ sprow (§4). The ‘approximate egalitarian’ sprow occupies a special place amongst these welfarist sprrows (Theorem 4.6).
When we extend this model to choice under uncertainty, we find that every reason-
able social order extends and refines the ‘approximate utilitarian’ ordering (Theorem 5.5),
which, under mild topological hypotheses, also admits a ‘welfarist’ representation (Propo-
sition 5.6). A slightly different approach to stochastic interpersonal comparisons leads to
a profile-independent version of Harsanyi’s Social Aggregation Theorem (Theorem 6.2).

In summary: approximate interpersonal comparisons are intuitively plausible, and ad-
nit precise mathematical representations, from which a nontrivial theory of distributive
justice can be built. However, many questions remain unanswered. Is there a more direct
connection between the wipos of §2 and the wipols of §5? Are the converses of Theorem
4.6(b,c) true? Also, aside from the Suppes-Sen, approximate egalitarian, and approximate
utilitarian preorders, what other sprow(l)s have natural characterizations in the framework
we have developed? Finally, a practical question: how can we operationalize approximate
interpersonal welfare comparisons, so that these social orderings can be applied in practice?

Appendix: Proofs
Proofs from §1-§3.

Proof of Lemma 1.1. (a) is clear from the definition.

(b) Let \(x, x' \in X \). If \(x \preceq x' \), then \(x \preceq x' \) for all \(\lambda \); and thus, \(x \preceq x' \).

Suppose \(x < x' \). Then \(x \preceq x' \) for all \(\lambda \); and thus, \(x \preceq x' \); we must show that \(x \not\preceq x' \). By
contradiction, suppose \(x \preceq x' \). Then \(x \preceq x' \) for all \(\lambda \), which means \(x \succeq x' \), contradicting
the hypothesis that \(x < x' \).

(c) If \((\preceq) \) either extends or refines \((\preceq) \), then every pair in \(X \) which are \((\preceq) \)-comparable
are also \((\preceq) \)-comparable; hence if \((\preceq) \) is complete then \((\preceq) \) is also complete. The second
implication in (c) then follows from statement (2).

(d) \(\longrightarrow \) Suppose \(x \preceq x' \). Either \(x \succeq x' \) or \(x \succeq x' \), or both (because \((\preceq) \) is complete).

But if \(x \succeq x' \), then \(x \succeq x' \) (because \((\preceq) \) extends \((\preceq) \)); this contradicts the fact that \(x \preceq x' \).

Thus, we must have \(x \preceq x' \) and not \(x \succeq x' \); hence \(x \preceq x' \), as desired.

On the other hand, if \(x \approx x' \), then \(x \preceq x' \) or \(x \succeq x' \) (because \((\preceq) \) is complete).

\(\longleftarrow \) Suppose \(x \preceq x' \). Either \(x \preceq x' \) or \(x \preceq x' \) (because \((\preceq) \) is complete). But if \(x \succeq x' \),
then \(x \succeq x' \) (because \((\preceq) \) refines \((\preceq) \)); this contradicts the fact that \(x \preceq x' \). Thus, we
must have \(x \preceq x' \), as desired.

(e) \(\longrightarrow \) Let \(x \neq x' \). If \(x \preceq x' \), then \(x \preceq x' \); hence \(x \preceq x' \) (because \((\preceq) \) extends \((\preceq) \));
hence \(x \preceq x' \) (because \(x \neq x' \) and \((\preceq) \) is antisymmetric).
Proof of Proposition 3.4. For the proofs of (a) and (b), let $\langle \psi, \phi \rangle, \langle \psi', \phi' \rangle \in \Psi \times \Phi$.

(a) (Par) Suppose $\langle \psi_i, \phi_i \rangle \preceq \langle \psi'_i, \phi'_i \rangle$ for all $i \in I$. Let $\sigma : I \to I$ be the identity map. Then $\langle \psi_i, \phi_i \rangle \preceq \langle \psi'_{\sigma(i)}, \phi'_{\sigma(i)} \rangle$ all $i \in I$; hence $\langle \psi, \phi \rangle \preceq \langle \psi', \phi' \rangle$.

(Anon) Suppose $\langle \psi, \phi \rangle = \sigma(\psi, \phi)$ for some permutation $\sigma : I \to I$. Then $\langle \psi_i, \phi_i \rangle \approx \langle \psi'_{\sigma(i)}, \phi'_{\sigma(i)} \rangle$ all $i \in I$. Thus, $\langle \psi, \phi \rangle \approx \langle \psi', \phi' \rangle$.

(b) Suppose $\langle \psi, \phi \rangle \preceq \langle \psi', \phi' \rangle$. We must show that $\langle \psi, \phi \rangle \preceq \langle \psi', \phi' \rangle$. Let $\sigma : I \to I$ be a permutation such that $\langle \psi_i, \phi_i \rangle \preceq \langle \psi'_{\sigma(i)}, \phi'_{\sigma(i)} \rangle$ all $i \in I$. Then $\langle \psi, \phi \rangle \preceq \sigma(\psi', \phi') \approx \langle \psi', \phi' \rangle$. (Here "$\approx$" is by (Anon) and "$\preceq$" is by (Par), because $\langle \psi_i, \phi_i \rangle \preceq \langle \psi'_{\sigma(i)}, \phi'_{\sigma(i)} \rangle$ all $i \in I$.) Thus, $\langle \psi, \phi \rangle \preceq \langle \psi', \phi' \rangle$ by transitivity.

Suppose \preceq also satisfies (SPar), and suppose $\langle \psi, \phi \rangle \prec \langle \psi', \phi' \rangle$. We must show that $\langle \psi, \phi \rangle \prec \langle \psi', \phi' \rangle$. Let $\sigma : I \to I$ be a permutation such that $\langle \psi_i, \phi_i \rangle \preceq \langle \psi'_{\sigma(i)}, \phi'_{\sigma(i)} \rangle$ all $i \in I$. We must have $\langle \psi_i, \phi_i \rangle \prec \langle \psi'_{\sigma(i)}, \phi'_{\sigma(i)} \rangle$ for some $i \in I$, because if $\langle \psi_i, \phi_i \rangle \approx \langle \psi'_{\sigma(i)}, \phi'_{\sigma(i)} \rangle$ all $i \in I$, then $\langle \psi, \phi \rangle \approx \langle \psi', \phi' \rangle$, contradicting the assumption that $\langle \psi, \phi \rangle \prec \langle \psi', \phi' \rangle$. Thus $\langle \psi, \phi \rangle \prec \sigma(\psi', \phi') \approx \langle \psi', \phi' \rangle$. (Here "$\approx$" is by (Anon) and "($\prec$)" is by (SPar).) Thus, $\langle \psi, \phi \rangle \prec \langle \psi', \phi' \rangle$ by transitivity.

(c) follows immediately from (Par). To prove (d), it suffices to observe that, if every relation \preceq satisfies (Par) and (Anon), then their intersection \preceq must also. □

Proof of Claim 3.6*. For any $b, p \in B$, we have $b \bowtie p$ iff either (1) $b_1 \leq p_1$ and $b_2 \leq p_2$, or (2) $b_1 \leq p_1$ and $b_1 \leq p_2 - \delta$ or (3) $b_2 \leq p_2$ and $b_2 \leq p_1 - \delta$ (with one of the inequalities
being strict in each case). Case (1) is false if and only if \(b \in \mathcal{P} \). So, suppose \(b \in \mathcal{P} \). For \(k = 1, 2 \), let \(\overline{P}_k := \max \{ p_k ; (p_1, p_2) \in \mathcal{P} \} \). Then

\[
\left(b \in \text{wkUnd} \left(B, \mathcal{A}_n \right) \right) \iff \left(\forall \mathbf{p} \in \mathcal{P}, \text{ Case (2) is false and Case (3) is false} \right)
\]

\[
\iff \left(\forall \mathbf{p} \in \mathcal{P}, \left[b_1 \geq p_1 \text{ or } b_1 + \delta \geq p_2 \right] \text{ and } \left[b_2 \geq p_2 \text{ or } b_2 + \delta \geq p_1 \right] \right)
\]

\[
\iff \left(\forall \mathbf{p} \in \mathcal{P}, \left[(b_1 < p_1) \Rightarrow (b_1 + \delta \geq p_2) \right] \text{ and } \left[(b_2 < p_2) \Rightarrow (b_2 + \delta \geq p_1) \right] \right)
\]

\[
\iff \left(\forall \mathbf{p} \in \mathcal{P}, \left[(b_2 > p_2) \Rightarrow (b_1 + \delta \geq p_2) \right] \text{ and } \left[(b_1 > p_1) \Rightarrow (b_2 + \delta \geq p_1) \right] \right)
\]

\[
\iff \left(b_1 + \delta \geq b_2 \text{ and } b_2 + \delta \geq b_1 \right) \iff \left(|b_1 - b_2| \leq \delta \right).
\]

Here, \((*)\) is because \((b_1 < p_1) \Leftrightarrow (b_2 > p_2)\) for all distinct \(b, \mathbf{p} \in \mathcal{P} \). \(\square \)

Proofs from §4. We will often use the following fact (whose proof is obvious).

Fact 4.8. If \(h \in \mathcal{H}_{\varnothing} (\subseteq) \), and \(f : \mathbb{R} \rightarrow \mathbb{R} \) is strictly increasing, then \(f \circ h \in \mathcal{H}_{\varnothing} (\subseteq) \) also.

Proof of Proposition 4.2. “\(\iff \)” \((\leq_h)\) satisfies (Anon\(\subseteq \)) because \((\mathcal{A})\) satisfies (Anon\(\subseteq \)). If \(h \in \mathcal{H}_{\varnothing} (\subseteq) \), then \((\leq_h)\) satisfies (Par\(\subseteq \)) because \((\mathcal{A})\) satisfies (Par\(\subseteq \)).

“\(\Rightarrow \)” (by contradiction) If \((\mathcal{A})\) is not a SWO, then \((\mathcal{A})\) must violate axiom (Anon\(\subseteq \)); it follows that \((\leq_h)\) violates (Anon\(\subseteq \)).

Suppose \(h \not\in \mathcal{H}_{\varnothing} (\subseteq) \). Then either statement (8) or statement (9) is violated. If (8) is violated, then there exist \((\psi, \phi), (\psi', \phi') \in \Psi \times \Phi\) such that \((\psi, \phi) \triangleleft (\psi', \phi')\), but \(h(\psi, \phi) > h(\psi', \phi') \). Let \((\psi^1_h, \phi^1)\) and \((\psi^2_h, \phi^2)\) be the ‘clone worlds’ such that \((\psi^1_h, \phi^1) = (\psi, \phi)\) for all \(i \in \mathcal{I} \), while \((\psi^2_h, \phi^2) = (\psi', \phi')\) for all \(i \in \mathcal{I} \). Then \(h(\psi^1_h, \phi^1) > h(\psi^2_h, \phi^2) \) for all \(i \in \mathcal{I} \), so \(h(\psi^1_h, \phi^1) \uparrow h(\psi^2_h, \phi^2) \) by (Par\(\subseteq \)); hence \((\psi^1_h, \phi^1) \geq (\psi^2_h, \phi^2)\). But \((\psi^1_h, \phi^1) \leq (\psi^2_h, \phi^2)\) for all \(i \in \mathcal{I} \), so (Par\(\subseteq \)) requires that \((\psi^1_h, \phi^1) \triangleleft (\psi^2_h, \phi^2)\). Contradiction.

If statement (9) is violated, then there exist \((\psi, \phi), (\psi', \phi') \in \Psi \times \Phi\) such that \((\psi, \phi) \triangleleft (\psi', \phi')\), but \(h(\psi, \phi) \geq h(\psi', \phi') \). Let \((\psi^1_h, \phi^1)\) and \((\psi^2_h, \phi^2)\) be the same ‘clone worlds’ as the previous paragraph. Then \(h(\psi^1_h, \phi^1) \uparrow h(\psi^2_h, \phi^2) \) by (Par\(\subseteq \)), so \((\psi^1_h, \phi^1) \geq (\psi^2_h, \phi^2)\). But (Par\(\subseteq \)) requires that \((\psi^1_h, \phi^1) \triangleleft (\psi^2_h, \phi^2)\). Again we have a contradiction. \(\square \)
Proof of Proposition 4.4. \(\implies \) Let \(f : \mathcal{I} \to \mathcal{I} \) be such that \((\psi^1_{f(i)}, \phi^1_{f(i)}) \preceq (\psi^2_i, \phi^2_i)\) for all \(i \in \mathcal{I}\). Let \(h \in \mathcal{H}_\mathcal{D}(\mathcal{Z})\). Find \(i^* \in \mathcal{I}\) such that \(h(\psi^2_{i^*}, \phi^2_{i^*}) = \min_{i \in \mathcal{I}} h(\psi^2_i, \phi^2_i)\). If \(j^* = f(i^*)\), then \((\psi^1_{j^*}, \phi^1_{j^*}) \preceq (\psi^2_i, \phi^2_i)\), so statement (8) says \(h(\psi^1_{j^*}, \phi^1_{j^*}) \leq h(\psi^2_i, \phi^2_i)\); hence

\[
\min_{j \in \mathcal{I}} h(\psi^1_j, \phi^1_j) \leq h(\psi^1_{j^*}, \phi^1_{j^*}) \leq h(\psi^2_i, \phi^2_i) = \min_{i \in \mathcal{I}} h(\psi^2_i, \phi^2_i),
\]

as desired. This works for all \(h \in \mathcal{H}_\mathcal{D}(\mathcal{Z})\). (Note that this argument works even if \((\preceq)\) is not hemetric.)

\(\impliedby \) (by contrapositive) Suppose \((\psi^1, \phi^1) \not\preceq (\psi^2, \phi^2)\). Then there is some \(j \in \mathcal{I}\) such that, for every \(i \in \mathcal{I}\), \((\psi^1_i, \phi^1_i) \not\preceq (\psi^2_j, \phi^2_j)\). Thus, for every \(i \in \mathcal{I}\), there exists some \(h_i \in \mathcal{H}_\mathcal{D}(\mathcal{Z})\) such that \(h_i(\psi^1_i, \phi^1_i) > h_i(\psi^2_j, \phi^2_j)\) (because if \(h_i(\psi^1_i, \phi^1_i) \leq h_i(\psi^2_j, \phi^2_j)\) for all \(h \in \mathcal{H}_\mathcal{D}(\mathcal{Z})\), then we would have \((\psi^1_i, \phi^1_i) \preceq (\psi^2_j, \phi^2_j)\), because \((\preceq)\) is hemetric).

Without loss of generality, suppose for all \(i \in \mathcal{I}\) that \(h_i(\psi^2_j, \phi^2_j) = 0\) and \(h_i(\psi^1_i, \phi^1_i) = \epsilon_i > 0\). (If not, then Fact 4.8 says we can add a constant to \(h_i\) to make this so). Let \(\epsilon_* := \min_{i \in \mathcal{I}} \epsilon_i\); then \(\epsilon_* > 0\) because \(\mathcal{I}\) is finite. Let \(f : \mathbb{R} \to \mathbb{R}\) be an increasing function with the following properties:

(a) \(f(0) = 0\)

(b) \(\lim_{r \to -\infty} f(r) \geq -1\), so that \(f(\mathbb{R}) \subseteq (-1, \infty)\).

(c) \(f(\epsilon_*) \geq I\), where \(I := |\mathcal{I}|\).

For all \(i \in \mathcal{I}\), let \(h'_i := f \circ h_i\); then \(h'_i \in \mathcal{H}_\mathcal{D}(\mathcal{Z})\) by Fact 4.8. Finally, define \(h^* := \sum_{k \in \mathcal{I}} h'_k\); then it is easy to see that \(h^* \in \mathcal{H}_\mathcal{D}(\mathcal{Z})\) also. We have:

\[
h^*(\psi^2_j, \phi^2_j) = \sum_{k \in \mathcal{I}} h'_k(\psi^2_j, \phi^2_j) = \sum_{k \in \mathcal{I}} f[h_k(\psi^2_j, \phi^2_j)] = \sum_{k \in \mathcal{I}} f[0] = \sum_{k \in \mathcal{I}} 0 = 0. \tag{28}
\]

However, for all \(i \in \mathcal{I}\), we also have

\[
h^*(\psi^1_i, \phi^1_i) = \sum_{k \in \mathcal{I}} h'_k(\psi^1_i, \phi^1_i) = \sum_{k \in \mathcal{I}} f[h_k(\psi^1_i, \phi^1_i)] \geq \sum_{k \in \mathcal{I}\setminus\{i\}} (-1) \geq (\epsilon) f(\epsilon_*) \geq I + (I - 1) \cdot (-1) = 1. \tag{29}
\]

Here, \((\ast)\) is because \(f\) is increasing and \(\epsilon_i \geq \epsilon_*\). Thus,

\[
\min_{i \in \mathcal{I}} h^*(\psi^1_i, \phi^1_i) \geq 1 > 0 \quad \text{for all } h \in \mathcal{H}_\mathcal{D}(\mathcal{Z}).
\]

Thus, it is false that \(\min_{i \in \mathcal{I}} h(\psi^1_i, \phi^1_i) \leq \min_{i \in \mathcal{I}} h(\psi^2_i, \phi^2_i)\) for all \(h \in \mathcal{H}_\mathcal{D}(\mathcal{Z})\). This establishes the contrapositive of the desired implication. \(
\square
\)
Proof of Theorem 4.6 and ancillary results. For any \(f : \mathbb{R} \rightarrow \mathbb{R} \) and \(r \in \mathbb{R}^\mathcal{I} \), define \(f(r) := r' \in \mathbb{R}^\mathcal{I} \), where \(r'_i := f(r_i) \) for all \(i \in \mathcal{I} \). Recall the axiom of \textit{Ordinal Level Comparability} for a SWO:

\[
\text{(OLC)} \quad \text{For any increasing } f : \mathbb{R} \rightarrow \mathbb{R} \text{ and } r^1, r^2 \in \mathbb{R}^\mathcal{I} : \quad (r^1 \sqsubseteq r^2) \iff (f(r^1) \sqsubseteq f(r^2)).
\]

Lemma 4.9 Let \((\leq), (\triangleleft)\) and \((\preceq)\) be as in Theorem 4.6. Then

\[
(\leq) \text{ is minimally decisive} \iff (\triangleleft) \text{ satisfies (OLC)}.
\]

Proof. For any \(r^1, r^2 \in \mathbb{R}^\mathcal{I} \), the rank structure of the pair \((r^1, r^2)\) is the complete order \((\leq)\) on \([1, 2] \times \mathcal{I}\) defined as follows: for all \(n, m \in \{1, 2\} \) and \(i, j \in \mathcal{I} \), \((n, i) \leq (m, j)\) if and only if \(r^n_i \leq r^m_j \).

Claim 1: Let \(r^1, r^2, s^1, s^2 \in \mathbb{R}^\mathcal{I} \). If \((r^1, r^2)\) has the same rank structure as \((s^1, s^2)\), then there exists some increasing function \(f : \mathbb{R} \rightarrow \mathbb{R}\) with \(s^1 = f(r^1) \) and \(s^2 = f(r^2) \).

Proof. Let \(\mathcal{R} := \{r^1_i\}_{i \in \mathcal{I}} \cup \{r^2_i\}_{i \in \mathcal{I}} \) and \(\mathcal{S} := \{s^1_i\}_{i \in \mathcal{I}} \cup \{s^2_i\}_{i \in \mathcal{I}} \). Define \(f : \mathcal{R} \rightarrow \mathcal{S} \) by \(f(r^n_i) := s^n_i \). If \((r^1, r^2)\) has the same rank structure as \((s^1, s^2)\), then \(f \) is well-defined and order-preserving. Thus, we can extend \(f \) to an increasing function \(f : \mathbb{R} \rightarrow \mathbb{R} \) with \(s^1 = f(r^1) \) and \(s^2 = f(r^2) \).

Claim 2: Let \((\psi^1, \phi^1), (\psi^2, \phi^2) \in \Psi^\mathcal{I} \times \Phi^\mathcal{I}\) be fully \((\leq)\)-comparable. If \(h \in \mathcal{H}_{\psi, \phi}(\leq)\), \(r^1 := h(\psi^1, \phi^1) \), and \(r^2 := h(\psi^2, \phi^2) \), then the rank structure of \((r^1, r^2)\) is the same as the rank structure of \((\psi^1, \phi^1), (\psi^2, \phi^2)\).

Proof. This follows immediately from the formulae \((8)\) and \((9)\) defining ‘hedometer’.

\(\triangleleft\) **Claim 3**

\(\Rightarrow\) (by contrapositive) Suppose \((\triangleleft)\) violates (OLC). Then there exists some \(r^1, r^2 \in \mathbb{R}^\mathcal{I} \) and increasing \(g : \mathbb{R} \rightarrow \mathbb{R} \) such that \(r^1 \triangleright r^2 \) but \(g(r^1) \triangleright g(r^2) \).

Claim 3: There exist some fully \((\leq)\)-comparable \((\psi^1, \phi^1), (\psi^2, \phi^2) \in \Psi^\mathcal{I} \times \Phi^\mathcal{I}\) and \(h \in \mathcal{H}_{\psi, \phi}(\leq)\) such that \(h(\psi_1, \phi_1) = r^1 \) and \(h(\psi_2, \phi_2) = r^2 \).

Proof. Axiom (MR) says that we can find some fully \((\leq)\)-comparable \((\psi^1, \phi^1), (\psi^2, \phi^2) \in \Psi^\mathcal{I} \times \Phi^\mathcal{I}\) such that the rank structure of \((\psi^1, \phi^1), (\psi^2, \phi^2)\) is the same as the rank structure of \((r^1, r^2)\). Let \(h' \in \mathcal{H}_{\psi, \phi}(\leq)\) be any hedometer, let \(s^1 := h'(\psi^1, \phi^1) \), and \(s^2 := h'(\psi^2, \phi^2) \). Then Claim 2 says the rank structure of \((s^1, s^2)\) is the same as that of \((\psi^1, \phi^1), (\psi^2, \phi^2)\), and thus, the same as that of \((r^1, r^2)\). Thus, Claim 1 says there is an increasing function \(f : \mathbb{R} \rightarrow \mathbb{R} \) with \(r^1 = f(s^1) \) and \(r^2 = f(s^2) \). Let \(h := f \circ h' \); then \(h \in \mathcal{H}_{\psi, \phi}(\leq)\) by Fact 4.8, and \(r^1 := h(\psi^1, \phi^1) \), and \(r^2 := h(\psi^2, \phi^2) \), as desired.

Now, let \(h'' := g \circ h \); then \(h'' \in \mathcal{H}_{\psi, \phi}(\leq)\) by Fact 4.8, \(h''(\psi_1, \phi_1) = g(r^1) \) and \(h''(\psi_2, \phi_2) = g(r^2) \). But \(r^1 \triangleright r^2 \), while \(g(r^1) \triangleright g(r^2) \). Checking definition \((11)\), we see that neither
(ψ₁, φ₁) ≤ (ψ², φ²) nor (ψ², φ²) ≤ (ψ₁, φ₁). Thus, (ψ₁, φ₁) is not (≤)-comparable to (ψ², φ²); hence (≤) is not minimally decisive.

“⇐” Suppose (✓) satisfies (OLC).

Claim 4: Let r₁, r², s₁, s² ∈ R². If (r₁, r²) has the same rank structure as (s₁, s²), and r₁ ≰ r², then s₁ ≰ s².

Proof. Claim 1 says there is an increasing function f : R → R, with s₁ = f(r₁) and s² = f(r²). Thus, if r₁ ≰ r², then s₁ ≰ s², because (✓) satisfies (OLC).

Let (ψ₁, φ₁), (ψ², φ²) ∈ Ψ² × Φ² be fully (≤)-comparable and let h ∈ HED(≤). Let r₁ := h(ψ₁, φ₁) and r² := h(ψ², φ²). Since (✓) is a complete ordering of R², we have either r₁ ≰ r² or r² ≰ r₁. Without loss of generality, assume r₁ ≰ r².

Claim 5: For all h′ ∈ HED(≤), we have h′(ψ₁, φ₁) ≰ h′(ψ², φ²).

Proof. Let s₁ := h′(ψ₁, φ₁), and s² := h′(ψ², φ²). Claim 2 says the rank structure of (s₁, s²) is the same as that of ((ψ₁, φ₁), (ψ², φ²)), which is in turn the same as that of (r₁, r²). Thus, if r₁ ≰ r², then Claim 4 implies that s₁ ≰ s².

Combining Claim 5 with defining formula (11), we see that (ψ₁, φ₁) ≤ (ψ², φ²). Thus, (ψ₁, φ₁) is (≤)-comparable to (ψ², φ²). This argument works for any (ψ₁, φ₁), (ψ², φ²) ∈ Ψ² × Φ² which are fully (≤)-comparable. Thus, (≤) is minimally decisive.

Consider the following version of the ‘minimal equity’ property for a SWO (✓).

(MinEq≤) There exist r, r′ ∈ R² and i, j ∈ I such that:

(q1≤) rᵢ < r′ᵢ ≤ r′ⱼ < rⱼ;
(q2≤) rᵢ ≤ rₖ = r′ₖ for all k ∈ I \ {i, j}; and
(q3≤) r ≰ r′.

Lemma 4.10 Let (≤), (✓) and (≤) be as in Theorem 4.6. If (≤) is satisfies (MinEq≤), then (✓) satisfies (MinEq≤).

Proof. Find (ψ, φ), (ψ′, φ′) ∈ Ψ² × Φ² satisfying conditions (q1≤)-(q3≤) in axiom (MinEq≤).

Let h ∈ HED(≤), let r := h(ψ, φ), and let r′ := h(ψ′, φ′). We claim that r and r′ satisfy conditions (q1≤)-(q3≤).

(q1≤): We have (ψᵢ, φᵢ) < (ψ′ᵢ, φ′ᵢ) ≤ (ψ′ⱼ, φ′ⱼ) ≲ (ψⱼ, φⱼ), by (q1≤); thus, the formulae (8) and (9) (defining ‘hedometer’) imply that rᵢ < r′ᵢ ≤ r′ⱼ < rⱼ.

(q2≤): For all k ∈ I \ {i, j}, we have (ψᵢ, φᵢ) ≤ (ψⱼ, φⱼ) ≲ (ψ′ₖ, φ′ₖ) by (q2≤); thus, formula (8) implies that rᵢ ≤ rₖ = r′ₖ.

(q3≤): We have (ψ, φ) ≤ (ψ′, φ′) by (q3≤), so formula (11) requires that r ≰ r′. □
Lemma 4.11 Let \((\mathpzc{\triangle})\) and \((\mathpzc{\triangle}^\prime)\) be two SWOs on \(\mathbb{R}^I\), and suppose \((\mathpzc{\triangle})\) refines \((\mathpzc{\triangle}^\prime)\). If \((\mathpzc{\triangle})\) satisfies \((\text{MinEq}_{\mathpzc{\triangle}})\), then \((\mathpzc{\triangle}^\prime)\) also satisfies \((\text{MinEq}_{\mathpzc{\triangle}^\prime})\).

Proof. Suppose \(r, r' \in \mathbb{R}^I\) satisfy the conditions of \((\text{MinEq}_{\mathpzc{\triangle}})\) for \((\mathpzc{\triangle})\). Then \(r \mathpzc{\triangle} r'\). If \((\mathpzc{\triangle})\) refines \((\mathpzc{\triangle}^\prime)\), then Lemma 1.1(d) says \((\mathpzc{\triangle}^\prime)\) extends \((\mathpzc{\triangle})\). Thus, \(r \mathpzc{\triangle} r'\). Thus \(r, r' \in \mathbb{R}^I\) also satisfy the conditions of \((\text{MinEq}_{\mathpzc{\triangle}^\prime})\) for \((\mathpzc{\triangle}^\prime)\).

Lemma 4.12 Let \((\succeq)\) be a wipo and let \((\mathpzc{\triangle})\) and \((\mathpzc{\triangle}^\prime)\) be two SWOs on \(\mathbb{R}^I\). Let \((\triangleright k)\) be the \((\succeq, \mathpzc{\triangle})\)-welfarist sprow for \(k = 1, 2\). If \((\mathpzc{\triangle}^\prime)\) refines \((\mathpzc{\triangle})\), then \((\triangleright k)\) extends \((\mathpzc{\triangle})\).

Proof. Let \((ψ, φ), (ψ', φ') \in \Psi^I × Φ^I\). Then
\[
\left((ψ, φ) \succeq (ψ', φ') \right) \iff \left(h(ψ, φ) \mathpzc{\triangle} h(ψ', φ') \text{ for all } h \in H_{\text{Ed}(\succeq)} \right)
\]
\[
\overset{(*)}{\iff} \left(h(ψ, φ) \mathpzc{\triangle} h(ψ', φ') \text{ for all } h \in H_{\text{Ed}(\succeq)} \right)
\]
\[
\iff \left((ψ, φ) \succeq (ψ', φ') \right),
\]
where \((*)\) is because \((\mathpzc{\triangle})\) extends \((\mathpzc{\triangle}^\prime)\).

(Note that the proof of Lemma 4.12 breaks down if we replace ‘extends’ with ‘refines’.)

Proof of Theorem 4.6. (a) Lemma 4.9 says that \((\succeq)\) is minimally decisive if and only if \((\mathpzc{\triangle})\) satisfies \((\text{OLC})\). However, a well-known result of Hammond (1976) says that \((\mathpzc{\triangle})\) satisfies \((\text{OLC})\) if and only if \((\mathpzc{\triangle})\) refines the rank-\(k\) dictatorship SWO \((\mathpzc{\triangle}^k)\) for some \(k \in [1...I]\) (Moulin, 1988, Thm 2.4, page 40).

(b) From (a) we know that \((\mathpzc{\triangle})\) refines some rank-\(k\) dictatorship \((\mathpzc{\triangle}^k)\). If \((\succeq)\) satisfies \((\text{MinEq}_{\mathpzc{\triangle}})\), then Lemma 4.10 says that \((\mathpzc{\triangle})\) satisfies \((\text{MinEq}_{\mathpzc{\triangle}^k})\). Thus, Lemma 4.11 says that \((\mathpzc{\triangle}^k)\) also satisfies \((\text{MinEq}_{\mathpzc{\triangle}^k})\). But the only rank-\(k\) dictatorship which satisfies \((\text{MinEq}_{\mathpzc{\triangle}^k})\) is the egalitarian SWO \((\mathpzc{\triangle}_e)\). Thus, \((\mathpzc{\triangle})\) is \((\mathpzc{\triangle}^k)\), so \((\mathpzc{\triangle})\) refines \((\mathpzc{\triangle}_e)\). Then Lemma 1.1(d) says \((\mathpzc{\triangle}_e)\) extends \((\mathpzc{\triangle})\). Then Lemma 4.12 says \((\succeq)\) extends \((\mathpzc{\triangle}_e)\).

(c,d) Suppose \((\succeq)\) either extends or refines \((\succeq^k)\); we will show that \((\succeq)\) is minimally decisive and satisfies \((\text{MinEq})\).

Minimally Decisive. \((\succeq)\) is minimally decisive by Example 4.5. Thus, if \((\succeq)\) extends or refines \((\succeq^k)\), then \((\succeq)\) is also minimally decisive (because \((\succeq)\) can compare any pair of worlds which \((\succeq^k)\) can compare).
Minimal Equity. Using axiom (MR), find fully (≤)-comparable worlds \((\psi, \phi), (\psi', \phi') \in \Psi^\mathcal{I} \times \Phi^\mathcal{I}\) with individuals \(i, j \in \mathcal{I}\) such that \((\psi_i, \phi_i) \prec (\psi'_i, \phi'_i) \prec (\psi_j, \phi_j)\) and also \((\psi_i, \phi_i) \prec (\psi_k, \phi_k) \approx (\psi'_k, \phi'_k)\) for all \(k \in \mathcal{I} \setminus \{i, j\}\). Thus, \((\psi, \phi), (\psi', \phi')\) satisfy conditions (q1^\mathcal{I}) and (q2^\mathcal{I}) in the definition of (MinEq^\mathcal{I}). Also, \((\psi, \phi), (\psi', \phi')\) (define \(f : \mathcal{I} \to \mathcal{I}\) by \(f(k) = i\) for all \(k \in \mathcal{I}\)). However, \((\psi, \phi) \not\triangleleft^\mathcal{I} (\psi', \phi')(because (\psi_i, \phi_i) \prec (\psi'_i, \phi'_i)\) for all \(k \in \mathcal{I}\)). Thus, \((\psi, \phi), (\psi', \phi')\) also satisfy condition (q3^\mathcal{I}); hence \((\leq)\) satisfies (MinEq^\mathcal{I}).

So, if \((\leq)\) refines \((\triangleleft)\), then \((\leq)\) is minimally decisive and satisfies (MinEq); this proves (c). On the other hand, if \((\leq)\) extends \((\triangleleft)\), then part (b) implies that \((\triangleleft)\) also extends \((\leq)\), which means they must be equal. This proves (d). \(\square\)

Proofs from §5.

Proof of Claim 5.2^\mathcal{I}. For any \(w \in \mathcal{W}\), we have

\[
\sum_{i \in \mathcal{I}} w_i \cdot h_0(\psi_i, \rho_i') - \sum_{i \in \mathcal{I}} w_i \cdot h_0(\psi_i, \rho_i) = (w_1 r'_1 + w_2 r'_2) - (w_1 r_1 + w_2 r_2)
\]

\[
= w_1 \cdot (r'_1 - r_1) + w_2 \cdot (r'_2 - r_2) = w_2 \cdot \left(\frac{w_1}{w_2} \cdot (r'_1 - r_1) + (r'_2 - r_2)\right).
\]

Thus, statement (21) becomes

\[
(\rho \triangleleft^\mathcal{I} \rho') \iff (\left(\frac{w_1}{w_2}\right) \cdot (r'_1 - r_1) + (r'_2 - r_2) \geq 0, \text{ for all } w \in \mathcal{W})
\]

\[
\iff \begin{cases}
\text{(A)} & (r'_1 - r_1) \geq 0 \text{ and } (r'_2 - r_2) \geq 0; \\
\text{(B)} & (r'_1 - r_1) \geq 0 \geq (r'_2 - r_2) \text{ and } A \cdot (r'_1 - r_1) \geq (r_2 - r'_2); \text{ or} \\
\text{(C)} & (r'_2 - r_2) \geq 0 \geq (r'_1 - r_1) \text{ and } (r'_2 - r_2) \geq A \cdot (r'_1 - r_1).
\end{cases}
\]

If \(S := \frac{r'_2 - r_2}{r'_1 - r_1}\), then condition (B) in statement (30) is equivalent to \(r'_1 \geq r_1, r'_2 \leq r_2\) and \(S \geq -A\). Meanwhile, condition (C) is equivalent to \(r'_1 \leq r_1, r'_2 \geq r_2, \text{ and } S \leq -A\).

Thus, the right side of statement (30) is equivalent to the right side of statement (22). \(\square\)

Proof of Theorem 5.5. Let \((\leq)\) be a \((\preceq)\)-sprowl on \(\Psi^\mathcal{I}\). Let \(\mu, \mu' \in \Psi^\mathcal{I}\) be two world-lotteries. We must show that \((\rho \leq^\mathcal{I} \rho') \implies (\rho \leq \rho')\), and \((\rho \triangleleft^\mathcal{I} \rho') \implies (\rho \triangleleft \rho')\).

Without loss of generality, suppose \(\mathcal{I} = [1\ldots I]\), and define the permutation \(\sigma : \mathcal{I} \to \mathcal{I}\) by \(\sigma(i) := (i + 1) \mod I\). Define \(\tilde{\rho} := \frac{1}{I} \sum_{n=0}^{I-1} \sigma^n(\rho)\) and \(\tilde{\rho}' := \frac{1}{I} \sum_{n=0}^{I-1} \sigma^n(\rho')\). Then

\[
\rho = \frac{1}{I} \sum_{n=0}^{I-1} \rho \approx \frac{1}{I} \sum_{n=0}^{I-1} \sigma^n(\rho) = \tilde{\rho}.
\]

(31)
Proof of Proposition 5.6. Let $\rho^* \sim \cdot n(\rho)$ for all $n \in \mathbb{N}$, by axiom (Anon-\mathbb{N}). By a similar argument, $\rho' \sim \hat{\rho}'$. Meanwhile, for all $i \in I$, we have

$$\hat{\rho}_i = \bar{\rho} \quad \text{and} \quad \hat{\rho}'_i = \bar{\rho}' \quad \text{(32)}$$

where $\bar{\rho}$ and $\bar{\rho}'$ are the per capita average lotteries of ρ and ρ', as defined in eqn.(16). Thus,

$$\left(\rho \leq \rho' \right) \Longleftrightarrow \left(\bar{\rho} \leq \bar{\rho}' \right) \Longleftrightarrow \left(\hat{\rho}_i \leq \hat{\rho}'_i \right. \quad \text{for all } i \in I \left. \right)$$

Likewise,

$$\left(\rho \leq \rho' \right) \Longleftrightarrow \left(\bar{\rho} < \bar{\rho}' \right) \Longleftrightarrow \left(\hat{\rho}_i < \hat{\rho}'_i \right. \quad \text{for all } i \in I \left. \right)$$

Here, $(*)$ is by defining formula (17), $(†)$ is by eqn.(32), $(‡)$ is by axiom (Par-\mathbb{N}), and (\circ) is by eqn.(31) and the transitivity of (\leq). \hfill \Box

Proof of Proposition 5.6. Let $\bar{\rho}$ and $\bar{\rho}'$ be the per capita average lotteries of ρ and ρ', as defined in eqn.(16). For any measurable $h : \Psi \times \Phi \rightarrow \mathbb{R}$, we have

$$h^*(\bar{\rho}) = \frac{1}{|I|} \sum_{i \in I} h^*(\rho_i) \quad \text{and} \quad h^*(\bar{\rho}') = \frac{1}{|I|} \sum_{i \in I} h^*(\rho'_i) \quad \text{(33)}$$

because the function $h^* : \Psi \rightarrow \mathbb{R}$ is linear. Thus,

$$\left(\rho \leq \rho' \right) \Longleftrightarrow \left(\bar{\rho} \leq \bar{\rho}' \right) \Longleftrightarrow \left(h^*(\bar{\rho}) \leq h^*(\bar{\rho}') \right. \quad \text{for all } h \in \mathcal{H}^\text{lot}_{\mathbb{R}}(\mathbb{N}) \left. \right)$$

as desired. Here, $(*)$ is by defining formula (17); $(†)$ is by formula (23), and (\circ) is by eqn.(33). \hfill \Box

Proofs from §6.

Proof of Lemma 6.1. Fix $(\psi, \phi) \in \Psi^{\mathbb{I}} \times \Phi^{\mathbb{I}}$. Define the function $\mu_{(\psi, \phi)} : \mathcal{S} \rightarrow \mathbb{R}$ by $\mu_{(\psi, \phi)}[\mathcal{S}] := U_\mathcal{S}(\psi, \phi) \cdot \pi[\mathcal{S}]$, for all $\mathcal{S} \in \mathcal{G}$. Axiom (Bayes) says that $\mu_{(\psi, \phi)}$ is countably additive (i.e. $\mu_{(\psi, \phi)}[\bigcup_{n=1}^{\infty} \mathcal{S}_n] = \sum_{n=1}^{\infty} \mu_{(\psi, \phi)}[\mathcal{S}_n]$); hence it is a sigma-finite signed measure (because π is a probability measure and $|U_\mathcal{S}(\psi, \phi)| < \infty$ for all $\mathcal{S} \in \mathcal{G}$). Clearly, $\mu_{(\psi, \phi)}$ is absolutely continuous relative to $\rho \quad \text{[i.e. } (\rho[\mathcal{S}] = 0) \implies (\mu_{(\psi, \phi)}[\mathcal{S}] = 0)]$. Thus, the Radon-Nikodym Theorem (Conway, 1990, Thm.C.7, p.380) says there is a
\(\mathcal{G}\)-measurable function \(f_{(\psi, \phi)}: \Omega \rightarrow \mathbb{R}\) such that \(\mu_{(\psi, \phi)}[\mathcal{S}] = \int_{\mathcal{S}} f_{(\psi, \phi)} \, d\rho\) for all \(\mathcal{S} \in \mathcal{G}\). Now define \(U: \Psi^T \times \Phi^T \times \Omega \rightarrow \mathbb{R}\) by \(U_\omega(\psi, \phi) := f_{(\psi, \phi)}(\omega)\), for all \((\psi, \phi) \in \Psi^T \times \Phi^T\) and \(\omega \in \Omega\). Then for any \((\psi, \phi) \in \Psi^T \times \Phi^T\) and \(\mathcal{S} \in \mathcal{G}\), we have

\[
U_\mathcal{S}(\psi, \phi) = \frac{\mu_{(\psi, \phi)}[\mathcal{S}]}{\pi[\mathcal{S}]} = \frac{1}{\pi[\mathcal{S}]} \int_{\mathcal{S}} f_{(\psi, \phi)} \, d\rho = \frac{1}{\pi(\mathcal{S})} \int_{\mathcal{S}} U_\omega(\psi, \phi) \, d\pi[\omega],
\]

which yields eqn.(24).

Proof of Theorem 6.2. For any \(\omega \in \Omega\), if the vNM preference relation \((\preceq)\) satisfies (Par), then Harsanyi’s SAT implies that \((\preceq)\) can be represented as maximizing the expected value of a vNM utility function \(\tilde{U}_\omega: \Psi^T \times \Phi^T \rightarrow \mathbb{R}\) of the form:

\[
\tilde{U}_\omega(\psi, \phi) := \sum_{i \in I} c_i^\omega \cdot h_i^\omega(\psi, \phi) = \sum_{i \in I} c_i^\omega \cdot H(\psi_i, \phi_i, \omega), \quad \text{for all } (\psi, \phi) \in \Psi^T \times \Phi^T,
\]

for some nonnegative constants \(\{c_i^\omega\}_{i \in I} \subset \mathbb{R}_+\). Axiom (Nonindiff) says at least one of these constants is nonzero, while (Anon) implies that they must all be equal; hence we can assume without loss of generality that \(c_i^\omega = 1\) for all \(i \in I\), so that \(\tilde{U}_\omega(\psi, \phi) = \sum_{i \in I} H(\psi_i, \phi_i, \omega)\) for all \((\psi, \phi) \in \Psi^T \times \Phi^T\) and \(\omega \in \Omega\).

Now, \(U_\omega\) and \(\tilde{U}_\omega\) represent the same vNM preference relation \((\preceq)\), so there exist constants \(a(\omega) > 0\) and \(b(\omega) \in \mathbb{R}\) such that \(U_\omega = a(\omega) \tilde{U}_\omega + b(\omega)\). That is:

\[
U_\omega(\psi, \phi) = b(\omega) + a(\omega) \sum_{i \in I} H(\psi_i, \phi_i, \omega), \quad \text{for all } (\psi, \phi) \in \Psi^T \times \Phi^T \text{ and } \omega \in \Omega.
\]

Axiom (Welf) then implies that \(a(\omega_1) = a(\omega_2)\) and \(b(\omega_1) = b(\omega_2)\) for all \(\omega_1, \omega_2 \in \Omega\). Thus, there are constants \(a > 0\) and \(b \in \mathbb{R}\) such that

\[
U_\omega(\psi, \phi) = b + a \sum_{i \in I} H(\psi_i, \phi_i, \omega), \quad \text{for all } (\psi, \phi) \in \Psi^T \times \Phi^T \text{ and } \omega \in \Omega. \tag{34}
\]

Substituting (34) into (24), we get:

\[
U_\mathcal{S}(\psi, \phi) = \frac{1}{\pi(\mathcal{S})} \int_{\mathcal{S}} \left(b + a \sum_{i \in I} H(\psi_i, \phi_i, \omega) \right) \, d\pi[\omega]
= b + a \sum_{i \in I} \frac{1}{\pi(\mathcal{S})} \int_{\mathcal{S}} H(\psi_i, \phi_i, \omega) \, d\pi[\omega] = b + a \sum_{i \in I} \tilde{U}_{\mathcal{S}}(\psi_i, \phi_i), \tag{35}
\]

and where \(\tilde{U}_{\mathcal{S}}\) is defined as in eqn.(25). But clearly the vNM utility function \(U_\mathcal{S}\) in eqn.(35) is equivalent to the vNM utility function \(\tilde{U}_{\mathcal{S}}\) in eqn.(26).
Proofs from §7.

Proof of Proposition 7.2. Clearly, (\preceq) is reflexive. We must show that (\preceq) is transitive and satisfies properties (W1) and (W2).

Transitive. Suppose $(\psi_1, \phi_1) \preceq (\psi_2, \phi_2)$ and $(\psi_2, \phi_2) \preceq (\psi_3, \phi_3)$. We must show that $(\psi_1, \phi_1) \preceq (\psi_3, \phi_3)$.

We have $(\psi_2, \phi_2) \preceq (\psi_3, \phi_3)$, and $(\psi_2, \phi_2) \preceq (\psi_3, \phi_3)$, while $(\psi_1, \phi_1) \preceq (\psi_2, \phi_2)$, so consistency requires that $(\psi_1, \phi_1) \preceq (\psi_3, \phi_3)$.

Likewise, $(\psi_2, \phi_2) \succeq (\psi_1, \phi_1)$, and $(\psi_2, \phi_2) \succeq (\psi_1, \phi_1)$, while $(\psi_3, \phi_3) \succeq (\psi_2, \phi_2)$, so consistency requires that $(\psi_3, \phi_3) \succeq (\psi_1, \phi_1)$.

Thus, $(\psi_1, \phi_1) \succeq (\psi_3, \phi_3)$ and $(\psi_1, \phi_1) \preceq (\psi_3, \phi_3)$, so $(\psi_1, \phi_1) \preceq (\psi_3, \phi_3)$, as desired.

(W1) Fix $\psi \in \Psi$ and $\phi, \phi' \in \Phi$, with $\phi \succeq \phi'$. By hypothesis, (\preceq) is a wipo on $\{\psi\} \times \Phi$, so it agrees with (\preceq). Thus, $(\psi, \phi) \succeq (\psi, \phi')$; hence applying definition (27) (with $\psi_1 = \psi_2 = \psi$) we conclude that $(\psi_1, \phi_1) \preceq (\psi_1, \phi_1)$.

(W2) Fix $\psi_1, \psi_2 \in \Psi$ and $\phi_1 \in \Phi$. The relation (\preceq) is a wipo, so it satisfies (W2), so there is some $\phi'_2 \in \Phi$ such that $(\psi_1, \phi_1) \preceq (\psi_2, \phi'_2)$. Likewise, (\preceq) satisfies (W2), so there is some $\phi''_2 \in \Phi$ such that $(\psi_1, \phi_1) \succeq (\psi_2, \phi''_2)$. Let ϕ_2 be the (\succeq)-maximum of $\{\phi'_2, \phi''_2\}$ (well-defined because (\preceq) is a complete order of Φ). Then we have $(\psi_1, \phi_1) \succeq (\psi_2, \phi_2)$ and $(\psi_1, \phi_1) \preceq (\psi_2, \phi_2)$, and hence $(\psi_1, \phi_1) \preceq (\psi_2, \phi_2)$.

Through an identical construction, we can obtain some $\phi_2 \in \Phi$ such that $(\psi_1, \phi_1) \succeq (\psi_2, \phi_2)$. This works for all $\psi_1, \psi_2 \in \Psi$ and $\phi_1 \in \Phi$; thus, (\preceq) satisfies (W2). □

To prove Proposition 7.5 we need some technical preliminaries. A preference chain is a sequence $(\psi_1, \phi_1) \preceq (\psi_2, \phi_2) \preceq \cdots \preceq (\psi_N, \phi_N)$. Clearly, the underlying sequence $\Psi = (\psi_0, \psi_1, \psi_2, \ldots, \psi_N)$ must be an \mathcal{R}-chain; in this case we say that Ψ carries a preference chain between (ψ_1, ϕ_1) and (ψ_N, ϕ_N).

Lemma 8.7 Suppose (\preceq) is indifference-connected for all $\psi \in \Psi$. Suppose Ψ carries a preference chain between (ψ_1, ϕ_1) and (ψ_N, ϕ_N). If Ψ is homotopic to Ψ', then Ψ' also carries a preference chain between (ψ_1, ϕ_1) and (ψ_N, ϕ_N).

Proof. It suffices to prove this when $\Psi \succeq \Psi'$ (the general case follows by induction).

First suppose $\Psi := (\psi_0, \psi_1, \ldots, \psi_{n-1}, \psi_n, \psi_{n+1}, \ldots, \psi_N)$ carries the preference chain $(\psi_1, \phi_1) \preceq \cdots \preceq (\psi_{n-1}, \phi_{n-1}) \preceq (\psi_n, \phi_n) \preceq (\psi_{n+1}, \phi_{n+1}) \preceq \cdots \preceq (\psi_N, \phi_N)$. Suppose
Proof. Suppose \(\psi_{n+1} \in \mathcal{N}_{\psi_{n-1}} \) and \(\psi' := (\psi_0, \psi_1, \ldots, \psi_{n-1}, \psi_{n+1}, \ldots, \psi_N) \). Then \((\psi_n, \phi_n) \preceq (\psi_{n+1}, \phi_{n+1}) \), because \((\psi_n, \phi_n) \preceq (\psi_{n+1}, \phi_{n+1}) \) and \(\psi_n, \psi_{n+1} \in \mathcal{N}_{\psi_{n-1}} \cap \mathcal{N}_{\psi_n} \); and \((\preceq) \) agrees with \((\preceq) \) on \((\mathcal{N}_{\psi_{n-1}} \cap \mathcal{N}_{\psi_n}) \times \Phi \) by (RO). Thus, \((\psi_{n-1}, \phi_{n-1}) \preceq (\psi_{n+1}, \phi_{n+1}) \), because \((\psi_{n-1}, \phi_{n-1}) \preceq (\psi_{n+1}, \phi_{n+1}) \) is transitive. Then, we get a preference chain \((\psi_{n-1}, \phi_{n-1}) \preceq (\psi_{n+1}, \phi_{n+1}) \preceq \cdots \preceq (\psi_N, \phi_N) \) supported on \(\psi' \), as desired.

Now suppose \(\psi := (\psi_0, \psi_1, \ldots, \psi_{n-1}, \psi_n, \ldots, \psi_N) \) carries the preference chain \((\psi_1, \phi_1) \preceq \cdots \preceq (\psi_{n-1}, \phi_{n-1}) \preceq (\psi_n, \phi_n) \preceq \cdots \preceq (\psi_N, \phi_N) \), and suppose \(\psi := (\psi_0, \psi_1, \ldots, \psi_{n-1}, \psi_n, \ldots, \psi_N) \), for some \(\psi_n \in \mathcal{N}_{\psi_{n-1}} \) such that \(\psi_{n+1} \in \mathcal{N}_{\psi_n} \). Since \((\preceq) \) is indifference-connected, we can find some \(\phi_n \in \Phi \) such that \((\psi_{n-1}, \phi_{n-1}) \preceq (\psi_n, \phi_n) \). Thus, \((\psi_n, \phi_n) \preceq (\psi_{n+1}, \phi_{n+1}) \) because \((\preceq) \) is transitive. Thus, \((\psi_n, \phi_n) \preceq (\psi_{n+1}, \phi_{n+1}) \) because \(\psi_n, \psi_{n+1} \in \mathcal{N}_{\psi_{n-1}} \cap \mathcal{N}_{\psi_n} \), and \((\preceq) \) agrees with \((\preceq) \) on \((\mathcal{N}_{\psi_{n-1}} \cap \mathcal{N}_{\psi_n}) \times \Phi \) by (RO). Thus, we get a preference chain \((\psi_1, \phi_1) \preceq \cdots \preceq (\psi_{n-1}, \phi_{n-1}) \preceq (\psi_n, \phi_n) \preceq (\psi_{n+1}, \phi_{n+1}) \preceq \cdots \preceq (\psi_N, \phi_N) \) supported on \(\psi' \), as desired.

\[\text{Lemma 8.8} \quad \text{Suppose } \mathfrak{R} \text{ is a simply connected, and for all } \psi \in \Psi, \text{ suppose the relation } (\preceq) \text{ is indifference-connected. Then the system } \{\preceq\}_{\psi} \text{ admits no preference cycles.} \]

Proof. Suppose \((\psi_0, \phi_0) \preceq (\psi_1, \phi_1) \preceq \cdots \preceq (\psi_{N-1}, \phi_{N-1}) \preceq (\psi_N, \phi_N) \preceq (\psi_0, \phi_0) \) is a preference cycle. Let \(\psi_N := \psi_0 \) and \(\phi_N := \phi_0 \). Then \(\psi := (\psi_0, \ldots, \psi_N) \) is a closed \(\mathfrak{R} \)-chain carrying the preference chain \(\xi := [(\psi_0, \phi_0) \preceq (\psi_1, \phi_1) \preceq \cdots \preceq (\psi_N, \phi_N)] \). Since \(\Psi \) is simply connected, the chain \(\psi \) is homotopic to a trivial chain \((\psi_0, \psi_0, \ldots, \psi_0) \), and by Lemma 8.7, this homotopy transforms the preference chain \(\xi \) into a preference chain \((\psi_0, \phi_0) \preceq (\psi_0, \phi_0) \preceq \cdots \preceq (\psi_N, \phi_N) = (\psi_0, \phi_0) \). Thus, we have \((\psi_0, \phi_0) \preceq (\psi_0, \phi_0) \) because \((\preceq) \) is transitive. But this contradicts our hypothesis that \((\psi_0, \phi_0) \preceq (\psi_0, \phi_0) \).

By contradiction, no such preference cycle can exist.

Proof of Proposition 7.5. Let \((\preceq) \) be the join of \(\{\preceq\}_{\psi} \). Then \((\preceq) \) is a preorder on \(\Psi \times \Phi \).

(b) Lemma 8.8 implies that \((\preceq) \) satisfies axiom (W1). It remains only to show that \((\preceq) \) is a complete order (and hence, satisfies (W2)).

Let \((\psi, \phi), (\psi', \phi') \in \Psi \times \Phi \); we must show these two points are comparable. Since \(\mathfrak{R} \)-chain-connects \(\Psi \), there is an \(\mathfrak{R} \)-chain \(\psi = \psi_0, \psi_1, \psi_2, \ldots, \psi_N = \psi' \) connecting \(\psi \) to \(\psi' \).
Now, for all $n \in [0...N)$ the relation $\prec\preceq$ is indiffERENCE-connected, so we can construct an indiffERENCE chain $(\psi, \phi) = (\psi_0, \phi_0) \prec\preceq (\psi_1, \phi_1) \prec\preceq \cdots \prec\preceq (\psi_N, \phi_N) = (\psi', \phi_N)$, for some $\phi_N \in \Phi$. Thus, $(\psi, \phi) \sim\preceq_{\psi} (\psi', \phi_N)$. But (\preceq_{ψ}) is a complete ordering of Φ, so either $\phi_N \geq_{\psi} \phi'$ or $\phi_N \leq_{\psi} \phi'$; thus, either $(\psi', \phi_N) \preceq_{\psi} (\psi', \phi)$ or $(\psi', \phi_N) \preceq_{\psi} (\psi', \phi')$; thus, either $(\psi, \phi) \preceq_{\psi} (\psi', \phi')$ or $(\psi, \phi) \preceq_{\psi} (\psi', \phi)$, because $(\psi, \phi) \sim\preceq_{\psi} (\psi', \phi)$ and (\preceq_{ψ}) is transitive by construction.

(a) We must show that (\preceq_{ψ}) satisfies (W1) and (W2).

(W1) By hypothesis, we can extend each local relation (\preceq_{ψ}) to some indiffERENCE-connected relation (\preceq_{ψ}^\star), such that the system $\{\mathcal{N}_\psi, \preceq_{\psi}^\star\}_{\psi \in \Psi}$ still satisfies axiom (RO).

Now apply part (b) to $\{\preceq_{\psi}\}_{\psi \in \Psi}$ to obtain a global wipo (\preceq_{ψ}^\star). If (\preceq_{ψ}^\star) is the join of $\{\preceq_{\psi}\}_{\psi \in \Psi}$, then (\preceq_{ψ}^\star) extends (\preceq_{ψ}^\star). Thus, for each $\psi \in \Psi$, the relation (\preceq_{ψ}^\star) agrees with (\preceq_{ψ}) on $\{\psi\} \times \Phi$, because (\preceq_{ψ}^\star) agrees with (\preceq_{ψ}) on $\{\psi\} \times \Phi$, by part (b).

(W2) Let $\psi, \psi' \in \Psi$ and $\phi \in \Phi$; we must find some $\phi' \in \Phi$ such that $(\psi, \phi) \preceq_{\psi} (\psi', \phi')$. Let $\psi = \psi_0, \psi_1, \ldots, \psi_N = \psi'$ be an \mathcal{N}-chain (this exists because \mathcal{N} chain-connects Ψ). There exists $\phi_1 \in \Phi$ with $(\psi, \phi) \preceq_{\psi} (\psi_1, \phi_1)$, because (\preceq_{ψ}) is a wipo on $\mathcal{N}_{\psi_1} \times \Phi$. Next, there exists $\phi_2 \in \Phi$ with $(\psi_1, \phi_1) \preceq_{\psi_1} (\psi_2, \phi_2)$, because (\preceq_{ψ}) is a wipo on $\mathcal{N}_{\psi_1} \times \Phi$. Proceeding inductively, we obtain a preference chain $(\psi, \phi) \preceq_{v_0} (\psi_1, \phi_1) \preceq_{v_1} \cdots \preceq_{v_N-1} (\psi_N, \phi_N)$. Let $\phi' := \phi_N$; then $(\psi, \phi) \preceq_{v_0} (\psi', \phi')$. It follows that (\preceq_{ψ}^\star) is a wipo.

Proof of Proposition 7.6. For every $\psi \in \Psi$, find some $j \in J$ with $\psi \in O_j$. The open set O_j contains an open ball around ψ, and if this open ball is small enough, it is simply connected (because Ψ is a manifold). Thus, let $\mathcal{N}_\psi \subset O_j$ be some simply connected open neighbourhood of ψ, and let u_ψ be the restriction of u_j to $\mathcal{N}_\psi \times \Phi$. This yields a simply connected neighbourhood system $\mathcal{N} = \{\mathcal{N}_\psi\}_{\psi \in \Psi}$, as in Example 7.4(a).

For every $\psi \in \Psi$, define a ‘local’ wipo (\preceq_{ψ}^\star) on $\mathcal{N}_\psi \times \Phi$ as follows: for all $(\nu_0, \phi_0), (\nu_1, \phi_1) \in \mathcal{N}_\psi \times \Phi$,

$$\left(\nu_0, \phi_0\right) \preceq_{\psi}^\star (\nu_1, \phi_1) \iff \exists \text{ improvement path } \gamma : [0,1] \rightarrow \mathcal{N}_\psi \times \Phi \text{ with } \gamma(0) = (\nu_0, \phi_0) \text{ and } \gamma(1) = (\nu_1, \phi_1).$$

Thus, (\preceq_{ψ}^\star) is obtained by taking the join of all the local wipos $\{\preceq_{\psi}\}_{\psi \in \Psi}$, exactly as in the definition of (\preceq_{ψ}) in §7.3. Thus, it suffices to show that the system $\{\preceq_{\psi}\}_{\psi \in \Psi}$ is consistent, and then invoke Proposition 7.5(a).

Let $\psi \in \Psi$. Define (\preceq_{ψ}^\star) on $\mathcal{N}_\psi \times \Phi$ as follows: for all $(\nu_0, \phi_0), (\nu_1, \phi_1) \in \mathcal{N}_\psi \times \Phi$,

$$\left(\nu_0, \phi_0\right) \preceq_{\psi}^\star (\nu_1, \phi_1) \iff u_\psi(\nu_0, \phi_0) \leq u_\psi(\nu_1, \phi_1).$$

(36)
Clearly, \preceq^ψ is a complete order on $\mathcal{N}_\psi \times \Phi$. Axiom (Sm1) ensures that \preceq^ψ is indifference-connected.

Claim 1: The system $\{\mathcal{N}_\psi, \preceq^\psi\}_{\psi \in \Psi}$ satisfies property (RO) from §7.3.

Proof. Let $\psi_1, \psi_2 \in \Psi$. Suppose $\mathcal{N}_{\psi_1} \cap \mathcal{N}_{\psi_2} \neq \emptyset$, and the relations \preceq_{ψ_1} and \preceq_{ψ_2} are defined by (36). Suppose u_{ψ_1} is the restriction of u_j to \mathcal{N}_{ψ_1} and u_{ψ_2} is the restriction of u_k to \mathcal{N}_{ψ_2}, for some $j, k \in J$. Thus, $\mathcal{O}_j \cap \mathcal{O}_k \neq \emptyset$ (since it contains $\mathcal{N}_{\psi_1} \cap \mathcal{N}_{\psi_2}$), and then property (Sm3) ensures that \preceq_{ψ_1} and \preceq_{ψ_2} agree on $\mathcal{N}_{\psi_1} \cap \mathcal{N}_{\psi_2}$. \hfill \Box

Claim 2: For any $\psi \in \Psi$, the preorder \preceq^ψ extends $\preceq^{\hat{\psi}}$.

Proof. Let $(\nu_0, \phi_0), (\nu_1, \phi_1) \in \mathcal{N}_\psi \times \Phi$, with $(\nu_0, \phi_0)\preceq^\psi (\nu_1, \phi_1)$; we must show that $(\nu_0, \phi_0)\preceq^\psi (\nu_1, \phi_1)$. But if $(\nu_0, \phi_0)\preceq^\psi (\nu_1, \phi_1)$, then there is some improvement path $\gamma : [0, 1] \to \mathcal{N}_\psi \times \Phi$ with $\gamma(0) = (\nu_0, \phi_0)$ and $\gamma(1) = (\nu_1, \phi_1)$. Thus,

$$u_\psi(\nu_1, \phi_1) = u_\psi \circ \gamma(1) = u_\psi \circ \gamma(0) + \int_0^1 (u_\psi \circ \gamma)'(t) dt \geq \int_0^1 (u_\psi \circ \gamma)'(t) dt = u_\psi(\nu_0, \phi_0),$$

so $(\nu_0, \phi_0)\preceq^\psi (\nu_1, \phi_1)$, as desired.

Here, (\ast) is the Fundamental Theorem of Calculus. Inequality (\dagger) is because $(u_\psi \circ \gamma)'(t) = \nabla u_\psi(\gamma(t))[\gamma'(t)] \geq 0$ for all $t \in [0, 1]$. Here, (c) is by the Chain Rule, and (\circ) is by (Sm2) and the fact that $\gamma'(t) \preceq (\gamma'(t))$ for all $t \in [0, 1]$ (because γ is an improvement path). \hfill \Box

Thus, the system $\{\preceq^\psi\}_{\psi \in \Psi}$ is consistent, so Proposition 7.5(a) implies that \preceq^ψ is a wipo.

Remark. In the proof of Proposition 7.6, the inequality $u_\psi(\nu_0, \phi_0) \leq u_\psi(\nu_1, \phi_1)$ is necessary, but not sufficient to conclude that $(\nu_0, \phi_0)\preceq (\nu_1, \phi_1)$. Thus, assuming the existence of a function $u_\psi : \mathcal{N}_\psi \times \Phi \to \mathbb{R}$ is not tantamount to assuming some ‘local’ form of ‘ordinal, fully comparable’ utility functions — it is a much weaker assumption.

References

