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toregressive (SAR(1)) process are affected by the weights matrix and the autocorrelation

parameter. An interpretation of the covariance structure of the process is provided, based

on the walks connecting the spatial units. The interpretation serves to explain a number

of correlation properties of SAR(1) processes, and clarifies why in practical applications it

is difficult, or even impossible, to use SAR(1) processes to impose some desired correlation

properties on a given data set.
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1 Introduction

First-order simultaneous autoregressive (SAR(1)) processes are widely used to analyze vari-

ables that interact over some geographic, social, or economic space (e.g., Cliff and Ord, 1981;

Anselin, 1988).1 Such processes postulate a simple relationship between each of its two main

components—the weights matrix W and the correlation parameter ρ—and the inverse of

their variance matrix. Due to the matrix inversion, however, the way in which W and ρ

affect the correlations implied by the model may be difficult to understand. Wall (2004)

discusses some unexpected correlation properties of SAR(1) models defined on irregularly

spaced lattices, and concludes that the models exhibit nonintuitive behavior. On the other

hand, the correlation structure of SAR(1) models is well-understood when the observational

units form a regular lattice (e.g., Whittle, 1954; Besag, 1972), but this is rarely the case in

economics.

The main objective of this paper is to shed some light on how the correlation structure

of SAR(1) processes depends on W and on ρ. We provide a simple interpretation of the

covariances between two variables observed at two spatial units in terms of a particular

type of walks connecting the two units. Such an interpretation clarifies why, in the case of

irregularly spaced lattices, it is difficult to relate properties of W to the correlation properties

of SAR(1) models. The problem is that the way different walks contribute to the covariances

depends on ρ. Indeed, when |ρ| is small the correlation structure is largely determined by

short walks, but, as |ρ| increases, the importance of longer walks increases. Because of this

reason, there are a number of correlation properties that hold for sufficiently small |ρ|, but

are not guaranteed to hold for all values of ρ in the parameter space of the models. Since ρ

is unknown, and can be estimated only after W has been chosen, it follows that the user of

a SAR(1) model cannot control the correlation properties by specifying W .

The rest of the paper is organized as follows. SAR(1) models are presented in Section

2. Section 3 introduces some graph theoretic terminology, which is used in Section 4 to

formulate the interpretation of the covariance structure of SAR(1) models. Section 5 analyzes

the correlation properties of SAR(1) models. Besides focusing on properties that hold for

small |ρ|, we discuss what happens when |ρ| is large, and we study explicitly the behavior

of the correlations at the extremes of the parameter space. Throughout the analysis several

consequences of the common practice of row-standardizing W are pointed out. Section 6

concludes. Proofs are collected in the Appendix.

2 Specification of the SAR(1) Model

Consider a fixed and finite set of n observational units. The units are labelled by the first n

integers in some arbitrary way, and the i-th unit has a random variable yi associated with it.

1For empirical applications in economics, see, e.g., Case (1991), Bell and Bockstael (2000), Millimet and

Collier (2008), and Calvó-Armengol et al. (2009).
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Letting y = (y1, ..., yn)′, a SAR(1) model is specified through the equation

y = ρWy + ε, (1)

where ρ is a real unknown parameter, W is an n×n weights matrix, ε is a vector of error terms

such that E(ε) = 0 and var(ε) = σ2V , with σ2 > 0 and V a known n × n diagonal matrix

with positive diagonal entries. We do not make any other assumptions on the distribution

of ε, but it should be kept in mind that if such a distribution is far from being Gaussian,

then correlations may be poor indicators of dependence. Also, because in this paper we are

interested only in correlations, we do not consider extensions of (1) to models with E(y) 6= 0.2

The matrix W is non-stochastic and known. It is chosen to reflect a priori information on

relations among the observational units (see, e.g., Anselin, 1988). For example, the entries

(W )ij may be taken to be a certain function of some physical or economic distance between

the i-th and the j-th observational units. Throughout the paper we assume that, as it is

virtually always the case in applications, W has zero diagonal entries and nonnegative off-

diagonal entries.

Provided that ρ is different from the reciprocal of the nonzero real eigenvalues of W , so

that I − ρW is invertible, model (1) implies the positive definite variance matrix

var(y) = σ2(I − ρW )−1V (I − ρW ′)−1. (2)

For the purpose of studying the correlation structure of SAR(1) models, there is no loss of

generality in setting σ2 = 1 and V = I.3 Accordingly, from now on and unless otherwise

specified, we take4

var(y) =
[(

I − ρW ′
)

(I − ρW )
]−1

. (3)

Let λmax denote the spectral radius (i.e., the largest modulus of the eigenvalues) of W .

Since W is nonnegative, λmax is an eigenvalue of W (Horn and Johnson, 1985, Theorem

8.3.1). Also, if W has at least one (real) negative eigenvalue, let λmin denote the smallest

negative eigenvalue. Then, the largest connected interval of values of ρ around the origin

where var(y) exists is (ρmin, ρmax), with5

ρmin :=







λ−1
min if W has at least one negative eigenvalue

−∞ otherwise,

2Model (1) can be extended to accomodate a nonzero mean in two different ways, leading to the so-called

spatial lag and spatial error models (e.g., Anselin, 1988). Both models have variance matrix (2).
3We can take V = I because the correlation matrix of a random vector y is invariant to transformations

y → T y, for any diagonal matrix T with positive diagonal entries (if V 6= I , just take T = V −1/2).
4The matrix W in (3) is related to that in (2) through the transformation W → V −1/2W V 1/2. Hence, the

results to be given in this paper continue to hold for SAR(1) models with V 6= I , provided that W is replaced

with V −1/2W V 1/2. Note that the eigenvalues of W are invariant to the above (similarity) transformation.
5The case ρmin = −∞ is relevant when W is nilpotent (Horn and Johnson, 1985, p. 139), or when all

eigenvalues of W are either positive or complex. On the other hand, λmax = 0 (and hence ρmax = ∞) occurs

if and only if W is nilpotent.

2



and

ρmax :=







λ−1
max if λmax > 0

∞ if λmax = 0.

One could take (ρmin, ρmax) or its subset (−ρmax, ρmax) as the set of admissible values for ρ.

In Section 4 we shall see that the correlation structure of SAR(1) models admits a simple

interpretation when ρ ∈ (−ρmax, ρmax).

3 Some Graph Theoretic Notions

For our analysis, it is useful to consider the graph underlying W , that is, the graph having as

vertices the n observational units, and as arcs the ordered pairs (i, j) such that (W )ij > 0.

For a general introduction to graph theory see, e.g., Harary (1969).

In graph theory, a (directed) walk from a vertex i0 to a vertex ir is an alternating sequence

(i0, a1, i1, ..., ar, ir), r ≥ 0, of vertices and arcs in which each arc at is (it−1, it). For the

purposes of this paper, we need to modify the definition of a walk.

Definition 3.1 A SAR-walk from i0 to ir is an alternating sequence (i0, a1, i1, ..., ar, ir) of

vertices and arcs in which, for some k = 0, ..., r, the first k arcs at are (it−1, it) and the

remaining r − k arcs are at = (it, it−1).

Note that a SAR-walk is a walk only for k = r. For k < r, the first k steps of a SAR-walk

are in the direction of the sequence (i0, a1, i1, ..., ar, ir) and the remaining ones are in the

opposite direction. In Section 4 we shall see that Definition 3.1 is the appropriate one to

analyze SAR(1) models, because all SAR-walks (not only those that are walks) from one unit

to another unit affect the correlation implied by a SAR(1) model between those units.

Next, we adapt a number of standard graph theoretic notions to our definition of a

SAR-walk. We say that a graph is connected if there is a SAR-walk from i to j, for all

i, j = 1, ..., n. The length of a SAR-walk is the number of arcs in it (r in the case of the

SAR-walk in Definition 3.1). The trivial sequence (i0) is considered a SAR-walk of length 0

from i0 to i0.

The definition of a SAR-walk imposes the following distance on the set of observational

units.

Definition 3.2 The distance d(i, j) between any two units i and j is the length of the shortest

SAR-walk from i to j, if any; otherwise, d(i, j) =∞.

It is immediately clear that: d(i, j) = 0 if and only if i = j; d(i, j) = d(j, i) (which is why

we speak of the distance between i and j, rather than from i to j); d(i, j) = 1 if and only if

(W )ij + (W )ji > 0.6

6It is also easily checked that, if the graph is connected, d(·, ·) satisfies the triangle inequality, and hence is

a metric.
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SAR-walks and the induced distance d(·, ·) are determined by which entries of W are zero

and which are nonzero. It is also convenient to have a measure of the importance of different

SAR-walks, based on the magnitude of the nonzero entries of W . To each arc (i, j) we assign

the weight (W )ij . Then, based on a standard graph theoretic notion (e.g., Godsil, 1993, p.

56), we define the weight of a SAR-walk as follows.

Definition 3.3 The weight of a SAR-walk is the product of the weights of its arcs.

The weight of a SAR-walk of length 0, which does not have any arcs in it, is taken to be

1.

We shall also use the following terminology. If (W )ij > 0, j is said to be a neighbor of

i, which we indicate in symbols by i → j. When j is a neighbor of i, and i of j, we say

that i and j are neighbors. A graph such that (W )ij = 0 if and only if (W )ji = 0, for all

i, j = 1, ..., n, is said to be undirected ; otherwise, it is said to be directed.

The following example illustrates the above graph theoretic notions.

Example 3.4 Consider a spatial configuration consisting of a central unit (e.g., a big city)

surrounded by 8 units on a circle (e.g., neighboring smaller cities). For such a configuration,

we consider the two graphs Gu and Gd displayed in Figure 1. The indexes u and d on G

stand for undirected and directed, respectively. A line with an arrow represents an arc, and

a line joining two vertices i and j without arrows indicates that there is both an arc from i

to j and an arc from j to i. The weight matrix corresponding to Gu is

W u =





































· 1 1 1 1 1 1 1 1

1 · 1 · · · · · 1

1 1 · 1 · · · · ·

1 · 1 · 1 · · · ·

1 · · 1 · 1 · · ·

1 · · · 1 · 1 · ·

1 · · · · 1 · 1 ·

1 · · · · · 1 · 1

1 1 · · · · · 1 ·





































, (4)

where the dots stand for zeros. The weights matrix W d corresponding to Gd is obtained

from W u by replacing all the ones in the first column with zeros. Both W u and W d specify

that the central unit directly influences the surrounding units. The choice between W u and

W d should be based on whether the surrounding units are believed to directly influence the

central unit; a lack of influence from the surrounding units to the central unit could be due,

for instance, to the absence of knowledge spillover in that direction, or to transportation costs

being too high in that direction. To illustrate the concepts of SAR-walks and distance, let

us focus on the pairs of units (1, 2) and (2, 6). On both Gu and Gd, d(1, 2) = 1. However,

while on Gu there are two SAR-walks of length 1 from 1 to 2 (1 → 2 and 2 ← 1), on Gd

there is only one (1→ 2). As for the units 2 and 6, they are at different distance in the two
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graphs. Namely, d(2, 6) = 2 on Gu (2→ 1→ 6 is a shortest SAR-walk from 2 to 6), whereas

d(2, 6) = 4 on Gd (2→ 3→ 4→ 5→ 6 is a shortest SAR-walk from 2 to 6).

Figure 1: The graphs Gu (left) and Gd (right)

The next example serves to clarify the difference between walks and SAR-walks.

Example 3.5 Figure 2 displays the graph underlying the weights matrix

W =

















· 1 · · ·

1 · 1 · ·

· · · · ·

· · 1 · 1

· · · 1 ·

















. (5)

Observe that there are no walks from unit 2 to unit 4. However, there are SAR-walks joining

2 and 4: for instance 2 → 3 ← 4 is a SAR-walk of length 2 from 2 to 4. For a plot of

corr(y2, y4) implied by a SAR(1) model with weights matrix (5) see Figure 6. It will become

clear in the next section that in order for two variables yi and yj to be correlated it is not

necessary that i and j are joined by a walk, but that they are joined by a SAR-walk.

Figure 2: The graph underlying the weights matrix (5).

4 Interpretation of the Covariance Structure of a SAR(1)

Model

The graph theoretic notions introduced in the previous section allow us to formulate an

interpretation of SAR(1) models. Let len(ω) and wei(ω) denote, respectively, the length and

the weight of a SAR-walk ω, and let Kij be the set of all SAR-walks from i to j. Our

interpretation rests on the following result.
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Theorem 4.1 In a SAR(1) model, when |ρ|λmax < 1, and for any i, j = 1, ..., n,

cov(yi, yj) =
∑

ω∈Kij

wei(ω)ρlen(ω). (6)

Theorem 4.1 relates the covariance structure of a SAR(1) model to the walk structure of

the graph underlying W . More specifically, it asserts that cov(yi, yj) can be interpreted as

the sum of the contributions of all SAR-walks from i to j, the contribution of a SAR-walk

ω being wei(ω)ρlen(ω). Such an interpretation holds for |ρ|λmax < 1, or, equivalently, for

ρ ∈ (−ρmax, ρmax).

Example 4.2 Consider the very simple weights matrix

W =

[

0 1

0 0

]

. (7)

The underlying graph consists of the vertices 1 and 2, with an arc from 1 to 2. There is

only one SAR-walk from 1 to 2, with length and weight both equal to 1. Hence, by Theorem

4.1, cov(y1, y2) = ρ, for any ρ (λmax = 0 for matrix (7)). Similarly, Theorem 4.1 yields

var(y1) = 1 + ρ2 and var(y2) = 1, where the two terms equal to 1 are due to the two walks

of length 0, and the term ρ2 is due to the walk 1 → 2 ← 1. An alternative to the weights

matrix (7) is

W =

[

0 1

1 0

]

, (8)

which indicates symmetric interaction between units 1 and 2, and has λmax = 1. The extra

arc from 2 to 1 implies that there are SAR-walks of any odd length contributing to cov(y1, y2).

More specifically, for any odd r, there are r + 1 SAR-walks of length r and weight 1 from

1 to 2 (for r = 1, they are: 1 → 2 and 1 ← 2; for r = itive3, they are: 1 → 2 → 1 → 2,

1 → 2 → 1 ← 2, 1 → 2 ← 1 ← 2, and 1 ← 2 ← 1 ← 2; and so on). By Theorem 4.1, for

|ρ| < 1, we can then write cov(y1, y2) =
∑

∞

r=0;r odd(r + 1)ρr, which is easily seen to converge

to 2ρ(1− ρ2)−2.

We now briefly discuss some implications of Theorem 4.1. According to representation

(6), all SAR-walks between two units i and j contribute to cov(yi, yj). Thus, a SAR(1) model

implicitly assumes that one unit can influence simultaneously many other units, and that,

unless the graph is directed, one unit can at the same time influence and be influenced by

another unit. In particular, SAR-walks that contain repetitions of arcs also contribute to

the covariances. This may generate a complicated influence process. In economic applica-

tions, the influence between units may be due, for example, to neighborhood spillover effects,

strategic interaction, spatial externalities, or social interaction. Equation (6) represents the

equilibrium of the influence process.

Theorem 4.1 clarifies the role of ρ in shaping the correlation structure of a SAR(1) model.

Since the contribution of a SAR-walk ω depends on ρ through ρlen(ω), it follows that: (i)
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when |ρ| is small, the covariance structure of a SAR(1) model is mostly determined by short

SAR-walks; (ii) as |ρ| increases, longer walks yield increasingly more important contributions,

relative to shorter walks. As we shall see below, the fact that ρ controls the relative impor-

tance of SAR-walks of different lengths implies that some properties of SAR(1) models that

hold for sufficiently small |ρ| do not necessarily hold for larger |ρ|.

According to representation (6), the contribution of a SAR-walk to the covariance struc-

ture of a SAR(1) model depends not only on its length but also on its weight. More specifi-

cally, the form wei(ω)ρlen(ω) of the contributions implies that: (i) for a fixed length, SAR-walks

with bigger weight give a larger contribution to cov(yi, yj); (ii) for a fixed weight, and for

|ρ| < 1, the contribution of a SAR-walk is decreasing with its length.7

Another implication of Theorem 4.1 regards the sign of the correlations. When ρ ∈

(0, ρmax), corr(yi, yj) > 0 provided that there is at least one SAR-walk from i to j, and

corr(yi, yj) = 0 otherwise. Conversely, when ρ ∈ (−ρmax, 0) the sign of corr(yi, yj), i 6= j,

may depend on ρ. To see why this is the case, first observe that, since the lowest power of ρ in

(6) must be d(i, j) (by the definition of d(·, ·)), it follows that, as ρ ↑ 0, corr(yi, yj) > 0 if d(i, j)

is even, corr(yi, yj) < 0 if d(i, j) is odd. For any fixed ρ ∈ (−ρmax, 0), however, SAR-walks of

even length yield a positive contributions whereas SAR-walks of odd length yield a negative

contributions. Hence, whether corr(yi, yj) is positive or negative depends on whether the

total contribution of the SAR-walks of even length is larger or smaller than (minus) the total

contribution of the SAR-walks of odd length. Which of the two total contributions is larger

may depend on ρ, because, as we have seen above, the relative importance of SAR-walks of

different lengths depends on ρ.

Representation (6) provides an explanation of how correlations are formed in SAR(1)

processes. Such an explanation contrasts, at least to some extent, with the conclusion in

Wall (2004) that the correlations implied by a SAR(1) model do not follow an intuitive

scheme. Indeed, all properties that are deemed to be counterintuitive in Wall (2004) can

be explained using representation (6). Nevertheless, we do agree with Wall (2004) that it is

impossible to understand the correlation structure of a SAR(1) model just by looking at W .

This point will be discussed in detail in the next section.

5 The Correlations

In this section we investigate how the correlation properties of SAR(1) models depend on W

and on ρ. Section 5.1 gives an expansion of the correlations, which is used in Section 5.2 to

analyze the effect of row-standardizing W , and in Section 5.3 to study the dependence of the

correlations on distance. Section 5.4 is concerned with the behavior of the correlations at the

extremes of the parameter space.

7As long as λmax > 0, the inequality |ρ|λmax < 1 (required by Theorem 4.1) can be rewritten as |ρ| < 1

without any loss of generality, because λmax can be taken to be 1 (by reparametrizing the model so that the

weights matrix is λ−1
maxW ). On the other hand, if λmax = 0 (see footnote 5), then the inequality |ρ| < 1

identifies a subset of the set of values where Theorem 4.1 holds.
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5.1 An Expansion of the Correlations

For r = 0, ...,∞, let Zr :=
∑r

k=0 W k(W ′)r−k, where, as usual, W 0 = I. The entries of the

matrices Zr admit the following interpretation.

Lemma 5.1 (Zr)ij equals the total weight of the SAR-walks of length r from i to j.

The matrices Zr appear in an expansion of corr(yi, yj) in powers of ρ. The next result gives

the two terms that lead the expansion as ρ → 0. For two functions f(x) and g(x), we write

f(x) = O(g(x)) to indicate that |f(x)/g(x)| is bounded from above in some neighborhood of

x = 0.

Theorem 5.2 In a SAR(1) model,

corr(yi, yj) = (Zd(i,j))ijρ
d(i,j) + (Zd(i,j)+1)ijρ

d(i,j)+1 + O(ρd(i,j)+2), (9)

for any i, j = 1, ..., n.

Theorem 5.2 is not aimed at approximating corr(yi, yj). Indeed, the correlations can be

either computed exactly (if n is not too large) or they can be approximated efficiently by,

e.g., numerical simulation. We shall see in the rest of the paper that Theorem 5.2 is helpful

to study some correlation properties of SAR(1) models.

Expression (9) specifies the low-order derivatives with respect to ρ of the correlations at

ρ = 0.8 Namely, it says that dr

dρr corr(yi, yj)|ρ=0 = r!(Zr)ij , for any r = 1, ..., d(i, j) + 1. In

particular, it is worth emphasizing that

d

dρ
corr(yi, yj)|ρ=0 = (Z1)ij = (W )ij + (W )ji, (10)

that is, the first derivative of corr(yi, yj) at ρ = 0 is completely determined by the entries

(W )ij and (W )ji. Eq. (10) shows that corr(yi, yj) starts from the origin with zero derivative

if and only if i is not a neighbor of j and j is not a neighbor of i.

Example 5.3 Consider the graphs Gu and Gd of Figure 1, and suppose that the correspond-

ing weights matrices have been row-standardized (hence λmax = 1). Figure 3(b) compares

corr(y1, y2) on Gu and Gd, for ρ ∈ (0, 1). Here, as in the other figures of this paper, cor-

relations have been obtained by symbolic inversion of (I − ρW ′) (I − ρW ). The quantity

(W )ij +(W )ji equals 1/8 for the pair (1, 2) (as the only SAR-walk of length 1 from 1 to 2 is

1→ 2, with weight 1/8). Due to the extra arc 2→ 1, (W )ij + (W )ji is larger on Gu, equal

to 1/8 + 1/3 = 11/24 (besides the SAR-walk 1 → 2, which has weight 1/8, on Gu there is

also 1← 2, which has weight 1/3). Accordingly, the first derivative of corr(y1, y2) at ρ = 0 is

larger on Gu than on Gd.

8This is because (9) corresponds to a full power series expansion, uniformly convergent in a neighborhood

of ρ = 0. The full expansion is not needed explicitly and is confined to the proof of Theorem 5.2.
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Figure 3: corr(y1, y2) implied by a SAR(1) model on Gd (dark line) and on Gu (light line), when the

weights matrices are row-standardized, and for ρ ∈ (0, 1).

Example 5.3 is concerned with the application of expression (10) to two different weights

matrices. Let us now consider a fixed W . Expression (10) says that the magnitude of

(W )ij + (W )ji provides a ranking of all pairs (i, j) such that (W )ij + (W )ji > 0 (i.e., i is

a neighbor of j or j is a neighbor of i) in terms of their degree of correlation as ρ → 0. It

is important to stress that, for an arbitrary W , the ranking of the correlations established

by (W )ij + (W )ji is guaranteed to hold only as ρ → 0. Indeed, setting (W )ij + (W )ji >

(W )lm + (W )ml for some two pairs of units (i, j) and (l,m) does not necessarily imply that

|corr(yi, yj)| > |corr(yl, ym)| for some fixed value of ρ (for example, see Figure 4 below, where

it is clear that neighbor correlations can intersect, or Figure 5). What is more, the width

of the interval of values of ρ around 0 where (W )ij + (W )ji > (W )lm + (W )ml does imply

|corr(yi, yj)| > |corr(yl, ym)| depends in a complicated way on i, j, l,m, and W . The practical

implication of such observations is that the user of a SAR(1) model is unable to control the

ranking of pairs of variables according to their correlations by specifying W , because such a

ranking may depend on the unknown parameter ρ.

5.2 The Effect of Row-Standardization

In economic applications of SAR(1) models, it is common practice to standardize W so

that all its row sums are 1. As recently pointed out by Kelejian and Prucha (2009), some

consequences of this practice are not completely clear. In this section we study the effect of

row-standardization on the correlation structure of SAR(1) models.9 For simplicity, we focus

on the correlations between units at distance 1, and on the case when the original weights

matrix is a (0, 1) matrix (that is, a matrix containing only zeros and ones) and is symmetric.

Extensions of the results in this section can be obtained easily for other specifications of W .

The following corollary of Theorem 5.2 requires some new notation. We define Ni :=

{j : (W )ij > 0}, ni := |Ni|, nij := |Ni ∩Nj |, and sij :=
∑

l∈Ni∩Nj
n−1

l . In words, Ni is

the set of neighbors of i, ni is the number of neighbors of i, nij is the number of common

neighbors of i and j, and sij is the sum of n−1
l over the common neighbors l of i and j.

9Note that row-standardization is achievable only if W does not have any zero rows, that is, every unit

has at least one neighbor. In the case of an undirected graph, this condition simply rules out isolated units.
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Corollary 5.4 Consider a SAR(1) model with weights matrix W , and let i and j be any

two units such that d(i, j) = 1.

(a) If W is a symmetric (0, 1) matrix, then

corr(yi, yj) = 2ρ + 3nijρ
2 + O(ρ3); (11)

(b) if W is a row-standardized version of a symmetric (0, 1) matrix, then

corr(yi, yj) =

(

1

ni
+

1

nj

)

ρ +

[

nij

ninj
+

(

1

ni
+

1

nj

)

sij

]

ρ2 + O(ρ3). (12)

Despite their approximate nature, expressions (11) and (12) are helpful to understand

some consequences of row-standardizing (0, 1) matrices. Two such consequences are described

next, and are then illustrated by means of a representative example.

Firstly, observe that the leading term in (11) is the same for each pair of neighbors,

whereas that in (12) can be very different for different pairs of neighbors. Thus, when ρ is

small (more precisely, up to order O(ρ2)), different pairs of neighbors tend to be much more

similarly correlated when W is a symmetric (0, 1) matrix than when it is row-standardized.

A second consequence of row-standardization regards the approximate ranking of neigh-

bors correlations implied by (11) and (12). In typical applications, the number ni of neighbors

is large for vertices i in the central part of a graph, and small for vertices close to the borders

of the graph. Accordingly, the number nij of common neighbors is generally large for pairs

of neighbors (i, j) in the central part of a graph, and small for pairs of neighbors close to

the borders of the graph, whereas the reverse holds for the quantity n−1
i + n−1

j . Thus, by

expression (11), when W is a symmetric (0, 1) matrix and up to order O(ρ3), neighbors cor-

relations are larger in the central part of the graph than at the borders of the graph. After

row-standardization, the situation is reversed: according to expression (12), neighbors corre-

lations are larger at the borders of the graph than in the central part, up to order O(ρ2). The

intervals of values of ρ around 0 where such implications hold depend on W in a complicated

manner, but it is clear that the inequality |corr(yi, yj)| ≥ |corr(yl, ym)| is satisfied over a large

interval if nij−nlm is large (for a (0, 1) weights matrix) or if n−1
i +n−1

j − (n−1
l +n−1

m ) is large

(for a row-standardized weights matrix).

Example 5.5 Consider a random vector y observed over the map of the 48 continental US

states. Suppose that two states are taken to be neighbors if and only if they share a com-

mon boundary or a common corner. Figure 4 displays all correlations implied by a SAR(1)

model between pairs of variables yi and yj such that the states i and j are neighbors. The

correlations are plotted for ρ ∈ [0, λ−1
max), λ−1

max being about 0.185 for a (0, 1) W (panel (b)),

1 for a row-standardized W (panel (c)). Out of the 107 correlations, we have emphasized

those between Missouri and Tennessee (crosses) and Maine and New Hampshire (dark solid

line). The number nij of common neighbors is 2 for Missouri and Tennessee, 0 for Maine and

New Hampshire. Thus, by Corollary 5.4(a), Missouri and Tennessee are more correlated than

10



Maine and New Hampshire, when W is a (0, 1) matrix and for sufficiently small ρ. Indeed,

panel (b) shows that this remains true for all ρ ∈ (0, λ−1
max). A similar observation applies

to the case of a row-standardized W . Observe that n−1
i + n−1

j is larger for Maine and New

Hampshire (n−1
i + n−1

j = 4/3) than for Missouri and Tennessee (n−1
i + n−1

j = 1/4). Corol-

lary 5.4(b) then implies that, for sufficiently small ρ, Maine and New Hampshire are more

correlated than Missouri and Tennessee; in fact, this remains true unless ρ is very close to 1.

Following the usual rules for division of power series, from Corollary 5.4 it is possible

to derive expansions for ratios of neighbors correlations. This may be useful to quickly

compare the degrees of correlation of different pairs of neighbors. For instance, in the case

of a symmetric (0, 1) weights matrix, expression (11) yields

corr(yi, yj)

corr(yl, ym)
= 1 +

3

2
(nij − nlm) ρ + O(ρ2). (13)

In the case of Example 5.5, application of (13) yields that Missouri and Tennessee (nij = 2)

are, up to order O(ρ2), 1+3ρ times more correlated than Maine and New Hampshire (nlm =

0).

US States
Missouri and Tennessee
Maine and New Hampshire

(a)

0

0.2

0.4

0.6

0.8

1

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18ρ

(b)
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0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1ρ

(c)

Figure 4: The correlations, as a function of ρ, implied by a SAR(1) model with (0, 1) weights matrix

(panel (b)) and row-standardized weights matrix (panel (c)), for the 107 pairs of contiguous US states,

with emphasis on Missouri and Tennessee (crosses) and Maine and New Hampshire (dark solid line).

5.3 Correlations as the Distance Changes

We now turn to analyze the dependence of the correlations implied by a SAR(1) model on

the graph distance d(·, ·). The following corollary of Theorem 5.2 establishes that, when |ρ|

is sufficiently small, the absolute value of corr(yi, yj) is inversely related to d(i, j) for any W .

11



Corollary 5.6 As ρ→ 0 in a SAR(1) model, |corr(yi, yj)| > |corr(yl, ym)| if d(i, j) < d(l,m),

for any i, j, l,m = 1, ..., n.

Similarly to other correlation properties studied above, the ordering established by Corol-

lary 5.6 does not need to hold over the whole parameter space of a SAR(1) model, and the

interval where it holds depends in a complicated way on W and on i, j, l,m. An example is

given next.

Example 5.7 Figure 5 displays corr(yi, yj) when W is a (0, 1) matrix and i and j are Maine

and New Hampshire (darker line; d(i, j) = 1) and Oklahoma and Nebraska (lighter line;

d(i, j) = 2), for 0 < ρ < λ−1
max. For large values of ρ the correlation between the units at

distance 2 is much larger than the correlation between the units at distance 1.

US States
Oklahoma and Nebraska
Maine and New Hampshire

(a)

0

0.2

0.4

0.6

0.8

1

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18ρ

(b)

Figure 5: The correlations, as a function of ρ, implied by a SAR(1) model with (0, 1) weights matrix,

for a pair of neighbors (darker line) and for a pair of non-neighbors (lighter line).

Example 5.7 shows that, for large enough ρ, the correlations implied by a SAR(1) model

are not guaranteed to be inversely related to the distance d(·, ·). This is a consequence of

the fact, pointed out in Section 4, that the importance of the contributions to the covariance

structure of long SAR-walks increases with ρ. In some applications, one may wish to impose

that units that are close together according to d(·, ·) cannot be much less correlated than

units that are further away from each other. Recall that the contribution of a SAR-walk

depends not only on its length, but also on its weight. It follows that to counterbalance the

effect of an increasing ρ (longer walks become more important), one can adopt a specification

of W such that the weights of SAR-walks decay quickly with the length. This is precisely

what happens with a row-standardized W , since in that case the weight of a SAR-walk ω is

inversely related to ni, for each i ∈ ω. Thus, row-standardization of W helps to attenuate

the possible nonmonotonicity of corr(yi, yj) in d(i, j). Indeed, when the weights matrix of

Example 5.7 is row-standardized, it is never the case that a correlation between non-neighbors

is much larger than a correlation between neighbors (contrary to the case of Figure 5).
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5.4 Correlations at the Extremes of the Parameter Space

So far, we have studied properties of SAR(1) models that are guaranteed to hold for small

|ρ|, but not necessarily for larger |ρ|. This section analyzes the behavior of the correlations as

ρ approaches the extremes of the largest connected interval around the origin where var(y)

exists (see Section 2). For this purpose, we assume that λmax > 0 and that W has at least one

negative eigenvalue, so that such extremes are λ−1
min and λ−1

max.
10 Some numerical investigation

of the behavior of the correlations close to the extremes of the parameter space can be found

in Kelejian and Robinson (1995).

It is natural to wonder whether two variables yi and yj achieve perfect correlation as ρ

approaches λ−1
min and λ−1

max. To answer this question, let us denote by gmin (resp. gmax) the

geometric multiplicity of λmin (resp. λmax),
11 and by qmin (resp. qmax) an eigenvector of W

associated to λmin (resp. λmax).

Theorem 5.8 In a SAR(1) model, for any W and for any i, j = 1, ..., n,

(a) as ρ→ λ−1
min,

corr(yi, yj)→

{

+1 if gmin = 1 and (qmin)i(qmin)j > 0

−1 if gmin = 1 and (qmin)i(qmin)j < 0;

(b) as ρ→ λ−1
max, corr(yi, yj)→ +1 if gmax = 1 and (qmax)i(qmax)j 6= 0.

Theorem 5.8 specifies the cases when the behavior of the correlations at the extremes of

the parameter space does not depend on W . In all other cases, the limiting behavior depends

on W .12

In the rest of this section we focus on the right extreme λ−1
max, because positive autocor-

relation is much more common in applications than negative autocorrelation. In addition,

a SAR(1) model with ρ close to λ−1
max has an intrinsic interest due to the analogy with the

near unit root case in an AR(1) model; see, e.g., Fingleton (1999); Lee and Yu (2008). The

following corollary gives a sufficient condition for all pairs of variables to achieve perfect

correlation as ρ→ λ−1
max. The condition is given in terms of walks (not SAR-walks).

Corollary 5.9 If there is a walk from each unit to every other unit, then all correlations

implied by a SAR(1) model tend to 1 as ρ→ λ−1
max.

10When λmax = 0, the right extreme of the parameter space is ∞ (see Section 2). Similarly, when W

does not have any negative eigenvalues, the left extreme is −∞. Clearly, the behavior of the correlations as

ρ → ±∞ is not very interesting from a practical point of view.
11In most applications to irregular lattices, gmin and gmax are 1, since values of gmin and gmax larger than

1 generally require W to satisfy some symmetries (e.g., Biggs, 1993, Ch. 15). One example of a weights

matrix that statisfies several symmetries and is sometimes used in social network analysis is a block diagonal

matrix having r blocks equal to the matrix En defined in Example 5.11. For such a matrix, gmin = n− r and

gmax = r.
12Namely, when (qmin)i(qmin)j = 0 or gmin > 1, corr(yi, yj) can approach any value in [−1, 1] as ρ → λ−1

min,

depending on W . Similarly, when (qmax)i(qmax)j = 0 or gmax > 1, corr(yi, yj) can approach any value in

[0, 1] as ρ → λ−1
max, depending on W .
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Clearly, the condition in Corollary 5.9 is satisfied as long as there is no ordering of the

units such that W is block-triangular. An example of a SAR(1) model with block-triangular

W is given next.

Example 5.10 Figure 6 displays corr(y2, y4) implied by a SAR(1) model with the (block-

triangular) weights matrix of Example 3.5. The condition in Corollary 5.9 is not satisfied,

because, for instance, there are no walks from 2 to 4 (although there are SAR-walks from 2

to 4). Observe that corr(y2, y4) does not approach 1 as ρ→ λ−1
max = 1.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1ρ

Figure 6: corr(y2, y4) implied by a SAR(1) model with weights matrix (5).

Note that on an undirected graph (i.e., when the neighborhood relation is symmetric), a

block-triangular W must be block-diagonal. Thus, by Corollary 5.9, all correlations implied

by a SAR(1) model on an undirected graph tend to 1 as ρ → λ−1
max provided that there is

no ordering of the units such that W is block-diagonal. Block-diagonal weights matrices are

important in several spatial econometric applications; see, e.g., Case (1991), Kelejian et al.

(2006), Baltagi (2006) and Lee (2007).

Example 5.11 Let En be the n×n “equal weights” matrix Jn− In, where Jn denotes the

n× n matrix of all ones. Consider a SAR(1) model with block-diagonal weights matrix

W = diag(E3, E5). (14)

For this matrix, gmax = 1 and qmax = (0, 0, 0, 1, 1, 1, 1, 1)′. Figure 7(a) displays corr(y1, y2)

and corr(y4, y5). Observe that while y4 and y5 tend to be perfectly correlated as ρ→ λ−1
max =

0.25, the same is not true of y1 and y2. This is because the SAR(1) model with weights matrix

(14) can be decomposed into the product of two independent models, one for (y1, y2, y3)
′ and

one for (y1, ..., y5)
′. The correlations implied by the first submodel tend to 1 as ρ approaches

the spectral radius of E3 (i.e., 1/2), whereas those implied by the second submodel tend to

1 as ρ approaches the spectral radius of E5 (i.e., 1/4). Next, consider the row-standardized

version of (14), W = diag(1
2E3,

1
4E5). In this case, the two diagonal blocks have both spectral

radius 1. Figure 7(b) shows that both corr(y1, y2) and corr(y4, y5) tend to 1 as ρ→ 1.

The fact that both correlations in Figure 7(b) approach 1 as ρ→ 1 can be generalized as

follows.
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Figure 7: corr(y1, y2) (darker line) and corr(y4, y5) (lighter line) for the weights matrix (14) (panel

(a)) and its row-standardized version (panel (b)).

Corollary 5.12 Let W be a block-diagonal weights matrix such that there is a walk from each

unit to every other unit in the same block. If W is row-standardized, then all correlations

implied by a SAR(1) model tend to 1 as ρ→ 1.

We conclude this section by pointing out an interesting connection between Theorem 5.8

and a particular concept of centrality in a network. Theorem 5.8 establishes that, as long as

gmax = 1 and the i-th and j-th entries of qmax are nonzero, corr(yi, yj) → 1 as ρ → λ−1
max.

However, if the i-th and j-th entries of qmax are nonzero but very close to zero (compared to

all other entries of qmax), then Theorem 5.8 may not be very informative on the behavior of

corr(yi, yj) in a neighborhood of λ−1
max, because in that case corr(yi, yj) may approach 1 very

slowly. For example, the correlation between Maine and New Hampshire in Figure 4(b) does

approach 1 as ρ→ λ−1
max, but it remains less than 0.4 unless ρ is very close to λ−1

max.
13 Now, it

is well-known that (qmax)i is a measure of the “centrality” of unit i, i.e., of the involvement

of unit i in the the walk structure of the graph underlying W ; see, e.g., Bonacich (1972),

Cvetković et al. (1980), p. 104, and Straffin (1980). A small (qmax)i indicates low centrality.

Hence, corr(yi, yj) approaches 1 very slowly as ρ→ λ−1
max for pairs of units that are far from

the centre of the graph underlying W . Note that such a nonsmooth behavior of corr(yi, yj)

close to λ−1
max does not occur when W is row-standardized, because in that case qmax is a

vector of identical entries.

6 Discussion

This paper has analyzed how the correlation structure of SAR(1) processes depends on the

weights matrix W and on the autoregressive parameter ρ. We have shown that the corre-

lations implied by a SAR(1) model can be fully understood in terms of a particular type of

walks connecting the spatial units. Each walk between two units i and j gives a contribution

to the covariance between the random variables yi and yj , and the parameter ρ controls the

relative importance of the contributions coming from walks of different lengths. This role

13When qmax is normalized to have length 1, the entry of qmax corresponding to Maine is 1.39 · 10−7 and

that corresponding to New Hampshire is 4.08 · 10−6.
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of ρ implies that the correlation properties of a SAR(1) model cannot be predicted from W

alone. Indeed, we have studied a number of correlation properties of SAR(1) model that, for

a fixed W , hold in some interval of values of ρ around the origin, but are not guaranteed to

hold for larger values of ρ. A researcher wishing to impose certain correlation properties on

a set of spatial data should consider using other models, such as geostatistical models (see,

e.g., Cressie, 1993, Chapter 2).

A class of spatial processes that share several similarities with SAR(1) models is that of

first-order conditional autoregressive (CAR(1)) processes (e.g., Besag, 1974; Cressie, 1993).

CAR(1) processes are very popular in many fields, for instance disease mapping and image

analysis, but not in economics. All the results given in this paper for SAR(1) processes can

be easily extended to CAR(1) processes. Indeed, the analysis of the correlation structure of

CAR(1) processes is simpler. This is because the weights matrix of a CAR(1) model can be

taken to be symmetric without loss of generality,14 so that walks and their weights can be

defined without regards to the direction of their steps.

Appendix A Proofs

We first give two auxiliary lemmata, and then prove all results stated in the main text.

Lemma A.1 In a SAR(1) model, when |ρ|λmax < 1, and for any i, j = 1, ..., n,

cov(yi, yj) =

∞
∑

r=d(i,j)

(Zr)ijρ
r. (15)

Proof. When |ρ|λmax < 1, (I − ρW )−1 =
∑

∞

r=0 (ρW )r, where, as usual, W 0 = I

(e.g., Horn and Johnson, 1985, p. 301), and hence var(y) = (I − ρW )−1 (I − ρW ′)
−1

=
∑

∞

r,s=0 ρr+sW r(W ′)s. Transforming the double summation into a single summation yields

var(y) =
∑

∞

r=0 ρrZr. The proof is completed on observing that (Zr)ij = 0 if r < d(i, j), by

Lemma 5.1 and the definition of d(·, ·).

Lemma A.2 Let λ be an eigenvalue of an n × n matrix M , with geometric multiplicity g.

Then, rk((I − λ−1M
′

)(I − λ−1M)) = n− g.

Proof. For any matrix B, rk(B′B) = rk(B) and rk(B) + dim(N (B)) = n, where N (B)

denotes the nullspace of B (e.g., Horn and Johnson, 1985). The result follows, because, by

definition, g = dim(N (M − λI)).

14Let L be a known n × n diagonal matrix with positive diagonal entries. Provided that (I − ρW )−1L is

symmetric and positive definite, the joint distribution implied by a CAR(1) model is N
(

0, σ2(I − ρW )−1L
)

.

By the same argument as in footnote 3, in order to study correlations, there is no loss of generality in setting

L = I , which implies that W can be assumed to be symmetric.
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Proof of Theorem 4.1. Let K
(r)
ij denote the set of all SAR-walks of length r from i to

j, so that, according to Lemma 5.1, (Zr)ij =
∑

ω∈K
(r)
ij

wei(ω). Then, by Lemma A.1, when

|ρ|λmax < 1, cov(yi, yj) =
∑

∞

r=d(i,j)

∑

ω∈K
(r)
ij

wei(ω)ρr =
∑

ω∈Kij
wei(ω)ρlen(ω).

Proof of Lemma 5.1. On expanding the products of k matrices W and r − k matrices

W ′ that appears in the definition Zr :=
∑r

k=0 W k(W ′)r−k, we obtain

(Zr)ij =

r
∑

k=0

n
∑

l1,...,lr−1=1

(W )il1(W )l1l2 ...(W )lk−1lk(W ′)lklk+1
...(W ′)lr−2lr−1(W

′)lr−1j

=
r
∑

k=0

n
∑

l1,...,lr−1=1

(W )il1(W )l1l2 ...(W )lk−1lk(W )lk+1lk ...(W )lr−1lr−2(W )jlr−1 .

(16)

It is now clear that if, for a fixed k, i→l1 → ...→ lk ← ...← lr−1 ←j is a SAR-walk, then

the product of entries of W in (16) is the weight of that SAR-walk. Note that, because of the

summations over k = 0, ..., r and over l1, ..., lr−1 = 1, ..., n, expression (16) takes into account

all possible SAR-walks of length r from i to j, which completes the proof.

Proof of Theorem 5.2. Let σij(ρ) and σ∗
ij(ρ) denote, respectively, cov(yi, yj) and corr(yi, yj)

in a SAR(1) model. Let Drf(x) denote the r-th derivative of a function f : R → R, and

let Drf(0) denote Drf(x) evaluated at x = 0. In any neighborhood of ρ = 0 such that

|ρ|λmax < 1, σ∗
ij(ρ) is an infinitely differentiable function of ρ, and hence it admits the

MacLaurin expansion
∑

∞

r=0(r!)
−1Drσ∗

ij(0)ρr. The bulk of the proof consists of express-

ing the coefficients (r!)−1Drσ∗
ij(0) in terms of entries of the matrices Z0, ...,Zr. Write

σ∗
ij(ρ) = σij(ρ)η(v(ρ)), with η(z) := z−1/2 and v(ρ) := σii(ρ)σjj(ρ). By Leibniz’s formula,

1

r!
Drσ∗

ij(0) =
r
∑

s=0

1

s!(r − s)!
Dr−sσij(0)Dsη(v(0)), (17)

where, applying Faá di Bruno’s formula (e.g., Albramowitz and Stegun, 1979),

Dsη(v(0)) =
∑

k1>0,...,ks>0:
k1+2k2+...+sks=s

s!

k1!...ks!
(Dkη)(v(0))

s
∏

t=1

(

Dtv(0)

t!

)kt

, (18)

with k :=
∑s

t=1 kt. Explicit expressions for the terms (Dkη)(v(0)) (the k-th derivative of η(z)

evaluated at v(0)) and Dtv(0)/t! appearing in (18) can be derived as follows. Since v(0) = 1

and Dkη(z) = αkz
−1/2−k, with αk :=

∏k−1
l=0 (1/2 − l), we obtain (Dkη)(v(0)) = αk. In addi-

tion, from expression (15), we have that, for |ρ|λmax < 1, v(ρ) =
∑

∞

r,s=0 ρr+s(Zr)ii(Zs)jj .

The last expression can be rewritten as v(ρ) =
∑

∞

r=0 ρr
∑r

u=0(Zr−u)ii(Zu)jj , showing that

Dtv(0)/t! =
∑t

u=0(Zt−u)ii(Zu)jj . Thus, since D1v(0) = 0, (18) yields Dsη(v(0)) = 0 if

s = 1, and

Dsη(v(0)) =
∑

k2>0,...,ks>0:
2k2+...+sks=s

s!αK

k2!...ks!

s
∏

t=2

(

t
∑

u=0

(Zt−u)ii(Zu)jj

)kt

(19)
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if s > 1, with K :=
∑s

t=2 kt. Substituting expressions (19) and Dr−sσij(0) = (r−s)!(Zr−s)ij

into (17), we obtain (r!)−1Drσ∗
ij(0) = (Zr)ij − br(i, j), with

br(i, j) :=

r
∑

s=2

(Zr−s)ij

∑

k2>0,...,ks>0:
tk2+...+tks=s

αK

k2!...ks!

s
∏

t=2

(

t
∑

u=0

(Zt−u)ii(Zu)jj

)kt

. (20)

Observe that br(i, j) is a sum of terms each of which contains one entry (Zr−s)ij , s = 2, ...r,

as a factor. Since, by Lemma 5.1, (Zr)ij = 0 if r < d(i, j), it follows that br(i, j) = 0 if

(Zr−2)ij = 0, or, equivalently, if r ≤ d(i, j) + 1. Thus, the first two terms in the MacLaurin

expansion of σ∗
ij(ρ) are (Zd(i,j))ijρ

d(i,j) and (Zd(i,j)+1)ijρ
d(i,j)+1, completing the proof.

Proof of Corollary 5.4. Both parts (a) and (b) are obtained by substituting the relevant

expression for (Z1)ij and (Z2)ij into Theorem 5.2. If W is a symmetric (0, 1) matrix, then, for

any pair of neighbors (i, j), (Z1)ij = 2(W )ij = 2 and (Z2)ij = 3(W 2)ij = 3
∑n

l=1 W ilW lj =

3nij . Consider now a row-standardized weights matrix W = D−1A, where A is a symmetric

(0, 1) matrix, and D is the diagonal matrix with (D)ii =
∑n

j=1(A)ij , i = 1, ..., n. For any

pair of neighbors (i, j), (Z1)ij = n−1
i (A)ij + n−1

j (A)ji = n−1
i + n−1

j and (Z2)ij = (W 2)ji +

(WW ′)ij + (W 2)ij , where (W 2)ij = (D−1AD−1A)ij = n−1
i

∑n
l=1 n−1

l (A)il(A)lj = n−1
i sij ,

(WW ′)ij = (D−1AAD−1)ij = (ninj)
−1∑n

l=1 AilAlj = (ninj)
−1 nij , and (W 2)ji = n−1

j sij .

Proof of Corollary 5.6. By Lemma 5.1 and the definition of d(·, ·), (Zd(i,j))ij > 0. Hence,

Theorem 5.2 implies that the larger d(i, j) is, the faster corr(yi, yj) goes to zero as ρ→ 0.

Proof of Theorem 5.8. Let Σ(ρ) denote the variance matrix (I − ρW )−1(I − ρW ′)−1

of a SAR(1) model. For any fixed ρ ∈ (λ−1
min, λ

−1
max), let η1(ρ) ≤ η2(ρ) ≤ ... ≤ ηn(ρ) denote

the eigenvalues of Σ(ρ), and let v1(ρ), ...,vn(ρ) denote n orthonormal eigenvectors of Σ(ρ),

with vl(ρ) associated to ηl(ρ), l = 1, ..., n. By Lemma A.2, rk(Σ−1(λ−1
min)) = n− gmin. Since,

in addition, all eigenvalues ηl(ρ), l = 1, ..., n, are continuous in ρ, it follows that, if gmin = 1,

then ηn(ρ) is the only eigenvalue of Σ(ρ) that does not have a finite limit as ρ→ λ−1
min. Next,

observe that Σ−1(λ−1
min)qmin = (I−λ−1

minW
′)(I−λ−1

minW )qmin = 0, that is, Σ−1(λ−1
min) has an

eigenvector qmin associated to its smallest eigenvalue 0. Thus, if gmin = 1, v1(ρ) → qmin as

ρ → λ−1
min. Consider now the spectral decomposition Σ(ρ) =

∑n
l=1 ηl(ρ)vl(ρ)v′

l(ρ). Dividing

by ηn(ρ) and taking the (i, j)th entry, we obtain

1

ηn(ρ)
cov(yi, yj) = (v1(ρ)v′

1(ρ))ij +

n
∑

l=2

ηl(ρ)

ηn(ρ)

(

vl(ρ)v′
l(ρ)
)

ij

= (v1(ρ))i

(

v′
1(ρ)

)

j
+

n
∑

l=2

ηl(ρ)

ηn(ρ)
(vl(ρ))i

(

v′
l(ρ)
)

j
.

Since, as ρ→ λ−1
min, v1(ρ)→ qmin and ηl(ρ)/ηn(ρ)→ 0 for any l = 2, ..., n, it follows that

1

ηn(ρ)
cov(yi, yj)→ (qmin)i(qmin)j .
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Thus, provided that (qmin)i(qmin)j 6= 0, corr(yi, yj) → (qmin)i(qmin)j/ |(qmin)i(qmin)j | =

sgn((qmin)i(qmin)j), which completes the proof of part (a) of the theorem. The proof of part

(b) is essentially identical, with v1(ρ) replaced by vn(ρ) and all the indices min replaced by

max. The only substantial difference is that, by Theorem 8.3.1 of Horn and Johnson (1985),

if gmax = 1, then qmax is nonnegative or nonpositive, and hence (qmax)i(qmax)j cannot be

negative.

Proof of Corollary 5.9. If there is a walk from each unit to every other unit, then W is

irreducible. By the Perron-Frobenius Theorem (e.g., Horn and Johnson, 1985), a nonnegative

irreducible matrix has gmax = 1 and an entrywise positive qmax, so the result follows from

Theorem 5.8(b).

Proof of Corollary 5.12. A SAR(1) model with block-diagonal weights matrix can be

decomposed into the product of a number of submodels equal to the number of diagonal

blocks. Since there is a walk from each unit to every other unit in the same block, W

does not have any zero rows, and can therefore be row-standardized. By Corollary 5.9,

all correlations implied by each submodel tend to 1 as ρ → λ−1
max, with λmax = 1 for any

row-standardized W .
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