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Abstract

An important aspect of portfolio risk management is the analysis of the overall risk with
respect to the allocations to the underlying assets. Marginal risk is the traditional tool
used by portfolio managers to accomplish this. However, this metric is only meaningful
when a position is levered or when the proceeds of the sale of a position are put in the cash
account of the portfolio. This paper proposes an extension of the traditional marginal risk
approach as a means of overcoming this deficiency. The new concept, named generalized
marginal risk, addresses situations where the change in a position results in changes to
other positions as well. For instance, this is the case when there are in- or outflows of
capital in the portfolio as well as reallocations within the portfolio. A detailed illustration
of the new metric is provided for a synthetic portfolio within the elliptical framework and
its financial relevance is demonstrated using a portfolio of equities.

Keywords: Marginal risk, component risk, generalized marginal risk, Value-at-Risk, expected
shortfall, elliptical distribution.

1. Introduction

Portfolio risk management requires assessing the aggregated risk of a portfolio. Nowadays,
the industry standards for such risk measures are the Value-at-Risk (VaR) and the expected
shortfall (ES). A large stream of research has been devoted to their unbiased and efficient
estimation; see e.g. Duffie and Pan (1997), Jorion (2001) and Gourieroux and Jasiak (2009).
However, as mentioned by Litterman (1996a), aggregated risk measures are useful for moni-
toring risk but they do not provide much guidance for practical risk management.

In order to manage the risks of a portfolio effectively, the risk impact of new trades and/or
reallocations within the portfolio must be assessed. Moreover, the sources of risk in the current
portfolio need to be identified. Generally speaking, the aim of the portfolio risk analysis is
to gain insight through the sensitivity of the aggregated risk with respect to the portfolio
holdings as well as the attribution of the portfolio risk to the underlying components through
decomposition. In the financial literature, these concepts are referred to as marginal risk and
component risk, respectively. For an introduction, the reader is referred to Litterman (1996a,
1997a,b) and Jorion (2001).

The marginal risk aims at measuring how investment decisions affect the risk profile of the
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portfolio. Mathematically, this is simply the gradient of the portfolio risk measure with respect
to the allocation weights. It is therefore defined as the linear approximation of the change in
the portfolio risk when a position is altered while all other positions remain the same. This
sensitivity measure is precise for infinitesimal changes, however these are rarely the case in
practice. A portfolio manager would typically relate this marginal change with the expected
return on the various assets in the portfolio in order to increase its risk-adjusted performance.

The risks of portfolio holdings are generally not additive with respect to the overall portfo-
lio risk. While this is desirable from a diversification viewpoint, this does not allow for a
straightforward decomposition of risk in the portfolio. The component risk is an attempt at
measuring the proportion of the portfolio risk that can be attributed to each of the individual
positions. With this metric, a portfolio manager is able to target the most significant sources
of risk; the so-called hot spots (see Litterman 1996a). The mathematical construction of com-
ponent risk is based on the Euler decomposition of positive homogeneous functions and was
first used by Litterman (1996a) for decomposing the standard deviation of a portfolio. Gar-
man (1996, 1997) used this approach for decomposing the portfolio VaR. This mathematical
decomposition expresses the portfolio risk as a sum of each position weight times the marginal
risk of the position. The marginal risk is therefore a building block of the component risk.
While the component risk provides a way to decompose the portfolio risk, we stress that it
needs to be interpreted carefully. Indeed, a pure mathematical decomposition of the portfolio
risk measure does not guarantee that the results are meaningful in the financial sense. See
Sharpe (2002) for further details.

While appealing by nature, the traditional definition of marginal risk (and by construction
the component risk) faces a main drawback. The concept relies on the gradient, so that it
measures the risk impact in the portfolio when altering a position while keeping the others
constant. Therefore, it is applicable when a position is levered or when a position is reduced
and the proceeds are put in the cash account of the portfolio. However, it leads to flawed
results when the adjustments are carried out through capital in- or outflows in the portfolio
as well as reallocations within the portfolio, for instance. This is obviously caused by the
change in all of the relative positions in the portfolio when there are capital adjustments.

This paper proposes a novel approach to tackle this issue, which we name generalized marginal
risk. As for the traditional marginal risk, the new concept allows a portfolio manager to mea-
sure the sensitivity of the portfolio to new marginal allocations. However, it ensures that
potential effects on the other positions are correctly taken into account. This therefore helps
analyzing the risk impact under more general and realistic scenarios. Moreover, we show that
the generalized marginal risk and its traditional counterpart are directly related. Therefore,
once the marginal risks have been estimated, a portfolio manager can run a generalized sen-
sitivity analysis in a straightforward manner. We illustrate the usefulness of the new metric
with a synthetic and a real-world portfolio within the elliptical framework. This class of dis-
tributions encompasses models able to reproduce many features observed in financial markets
(e.g. correlated assets and fat tails) while being tractable, especially in high dimensions; see
e.g. McNeil, Frey, and Embrechts (2005).

The paper proceeds as follows. Section 2 briefly reviews the marginal and component risk.
Section 3 introduces the new concept of generalized marginal risk. Section 4 illustrates the
usefulness of the new metric within the elliptical framework for synthetic and real-world
portfolios. Section 5 concludes.
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2. Marginal Risk

First, let us introduce some notation. We assume that the portfolio is composed of n assets
whose arithmetic returns are given by the (nx 1) random vector X = (X7, ..., X,,)" and whose
allocation weights are collected into the (n x 1) vector w = (w1, ...,w,)". Additionally, the
portfolio consists of a cash account with weight wo =1 — """ ; w; which we assume as risk-
free. The portfolio is levered when wy < 0. We denote the portfolio return by P(w) to
emphasize the fact that it is a function of w. For underlying arithmetic returns, this function
is linear, i.e. P(w) = w'X. Finally, we denote the risk measure of the portfolio return by
p(w) = p{P(w)} where the notation again emphasizes the fact that it is a function of w. We
assume that p(w) is at least once differentiable.

Definition 2.1 (Marginal risk). For the risk measure p, the marginal risk of the ith asset
in the portfolio, denoted by pi*, is defined as the change in the portfolio risk measure for an
infinitesimal change in the allocation to the ith asset. Formally, this is the derivative of p(w)
with respect to w;:

() = o plw). o

For convenience, the n marginal risks of the portfolio are collected into the (n x 1) vector
r.

P = (p, ..., P p™ is the gradient of p(w).

In some cases, the marginal risks p" can be computed explicitly (see Section 4.1). If a
parametric model is available for the distribution of P(w), the derivatives with respect to
the holdings are either obtained in closed-form or can be computed efficiently by numerical
methods. For Monte Carlo approaches (i.e. when the portfolio return distribution is obtained
by simulation), the so called brute force or before and after approach described in Dowd (1998)
can be used. In this case, a marginal Aw is added to each w; iteratively, the risk of the new
portfolio (i.e. with the new allocation) is computed, and the derivative is approximated by
first difference. However, this approach is time demanding in high-dimensions. Jorion (2001)
and Hallerbach (2003) provide guidelines for the estimation of marginal VaR using analytical
and simulation methods; see also Tasche (1999) and Gourieroux, Laurent, and Scaillet (2000).

The component risk is based on the Euler decomposition of positive homogeneous risk mea-
sures p, i.e. when p(Aw) = Ap(w) for A > 0. This is the case for common risk measures, such
as the VaR and ES; see e.g. McNeil et al. (2005). Under this condition, the risk measure can
be decomposed as

p(w) = > wizo—pfan)
i=1 !

= wipl(w) =3 _pi(w).
i=1 i=1

where the term pf = w;p;"(w) is defined as the component risk of the ith asset in the portfolio.

(2)

As we can see in (2), the marginal risk is a building block of the component risk. We can
therefore interpret p§ as the linear approximation of the risk impact of the ith allocation if we
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remove the corresponding asset in the portfolio and put the proceeds in the cash account. On
the other hand, if a new asset is included in the portfolio, the component risk approximates the
risk impact of the new position in the augmented portfolio; this is known as the incremental
risk of the new asset. We emphasize that in both cases, the larger the position size the worse
the linear approximation.

It is important to emphasize two important limitations of the marginal and component risk.
First, both concepts are based on a marginal argument, and this must be kept in mind when
interpreting the measures. Indeed, consider the case where a particular position accounts for
half the risk according to the component risk. This implies that a small percentage increase in
that position will increase the portfolio risk as much as a combined similar percentage increase
in all other positions. However, it does not imply that eliminating that position entirely will
reduce risk by half. Indeed, as the size of the position of a contributor to risk is reduced, the
marginal contribution of that position to risk will be reduced as well (Litterman 1996b, p.29).

Second, the marginal risk is the linear approximation of the risk impact of leveraging the
corresponding position in the portfolio. Indeed, the gradient is the linear approximation of
the change in the portfolio risk when a position is altered while all others remain constant. In
order to illustrate this point, let us assume that wg =0 (i.e. >, w; = 1), which is the case
for a fully funded portfolio with an empty cash account. The marginal risk does introduce
leverage for this case since altering a position and leaving all others constant implies wqy # 0.
In the case where we are interested in the portfolio risk impact for an increase in size of a
certain position we obviously have wy < 0, even for an infinitesimal increase of any portfolio
weight.

3. Generalized Marginal Risk

In practice, it is also important to consider scenarios where the change in a position results
in the change of other positions as well. This is typically the case when there are capital in-
and outflows in the portfolio since all percentage allocations change in this situation. Another
example is when the increase in a position is funded by the reduction of other positions. In
this case, the weights of other components must be rescaled accordingly when computing the
sensitivity of the portfolio risk. The concept of generalized marginal risk aims at dealing with
these scenarios.

Definition 3.1 (Generalized marginal risk). Let us denote by w;(0) = w + ¢ fi(w) the new
allocation vector of the portfolio after allocating an additional § percent of the investor’s total
wealth to the ith asset. The function f; : R® — R"™ describes how an additional § percent
investment in the ¢th position effects the positions. The generalized marginal risk of the ith
asset in the portfolio, denoted by pf™, is defined as the derivative of p(w;(8)) with respect to
4, evaluated at 6 = 0:
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The n generalized marginal risks of the portfolio are collected into the (n x 1) vector p&™ =
(p3", ..., pa") for convenience. Expression (3) shows the direct relationship between the
marginal and the generalized marginal risk. Note that we use the chain rule in (3) but the
directional derivative of p in direction of f;(w) leads to the same result.

In order to gain insight on this new concept, we assume that an investor has an additional
0 to invest in the portfolio, expressed as a percentage of the total wealth (i.e. the current
wealth plus the additional wealth). If the investor adds this capacity to the ith asset, the new
allocation vector reads

w;(0) = w(l —9) + de;
=w+d(e; —w)
where e; denotes the ith (n x 1) basis vector. The term w(1 — §) represents the effect of

adding 0 amount of new capital to the portfolio while the term de; reflects the fact that the
ith position is increased by d. In this case f;(w) = (e; — w) and using (3) yields

PP (w) = p™(w) (e — w).

By stacking n times the weight vectors in a (n X n) matrix W = [w - - - w], we can express
the (n x 1) vector of generalized marginal risks as

P (w) = p™(w) (I, — W), (4)

where I,, denotes the (n x n) identity matrix.

Another example arises when a portfolio manager is interested in changes of the portfolio risk
when reallocating capital within the portfolio. For instance, consider the case where the ¢
increase in the ith position is financed through an equal reduction of all other positions. After
this adjustment, the allocation vector reads

’LEZ((S) =w + 5)\1 s

where A; denotes a (n x 1) vector whose components are all equal to —n% except the ith

I
position which equals one. In this case fj(w) = A; and using (3) yields

P (w) = p™ (w)' A,

In vector form we obtain
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where J,, denotes the (n x n) matrix of ones. Obviously we do not necessarily need to finance
the reallocation by reducing all other positions proportionally. By modifying the vector \;,
a portfolio manager has full control on how assets are to be shifted within the portfolio. For
instance, the investor could look for the direction A which reduces risk the most in order to
find the most suitable portfolio adjustments to increase the kth position.

As a last example, consider the increase in the ith position financed through leverage. The
allocation vector reads

In this case fi(w) = e; and using (3) we obtain pf" (w) = p(w). Therefore, the generalized
marginal risk for a scenario of leverage equals the traditional marginal risk.

Finally, note that if we multiply the generalized marginal risk with the corresponding asset
weight we obtain a linear approximation of the change in the portfolio risk if a position is
closed and the proceeds are treated as defined through the function f;(w). Contrary to the
marginal risk, the decomposition of the portfolio risk in terms of generalized marginal risks
is not possible since Y i, w;p?" # p in general.

4. Illustrations

We now illustrate the differences between the marginal and the generalized marginal risk
within the elliptical framework. First, we consider a synthetic portfolio of two assets whose
returns are modeled by a multivariate Gaussian distribution. We consider different weights in
order to see the extent of the discrepancy between the marginal and generalized marginal VaR
at the 95% confidence level in different correlation-volatility scenarios. For the generalized
marginal risk, we investigate the case of reallocating capital equally within the portfolio.
Second, we extend the illustration to a real-world equity portfolio, whose asset returns are
modeled by a multivariate Student-t distribution. In this case, we compare the marginal and
generalized marginal ES at the 95% confidence level. We investigate the cases of capital in-
and outflows as well as reallocating capital within the portfolio.

4.1. Elliptical Framework

The class of elliptical distributions is commonly used to model asset returns; the multivari-
ate Gaussian, the Student-t, the Laplace and the logistic distributions belong to this class.
An appealing property of elliptical distributions is that they are closed under affine trans-
formations. Moreover, elliptical distributions are numerically tractable, even for very high
dimensions. Finally, there is numerous empirical evidence that multivariate return data of
similar types look roughly elliptical. Popular examples are portfolios of equities. The reader
is referred to McNeil et al. (2005) for an excellent introduction on elliptical distributions.

A (nx 1) random vector X of asset returns which follows an elliptical distribution is denoted
by X ~ E,(p,%,1), where p is a (n x 1) location vector, ¥ is a (n x n) dispersion matrix
and 1(+) is the characteristic generator. Since the class is closed under affine transformations,
the distribution of the linear portfolio P(w) = w’X is obtained in closed-form as P(w) ~
Ey(w' p, w'Sw, ).



Simon Keel, David Ardia

In the sequel, we will focus on the VaR and ES as the risk measures of interest. Both risk
measures are obtained in a straightforward manner within the elliptical framework. Indeed,

since P(w) ~ E1(w'p, w'Xw, ) we have P(w) = w'p+ (w’Ew)% Z, where Z ~ E1(0,1,).
Using the latter expression, we obtain closed-form expressions for the VaR and ES as

p(w) =p {w’u + (w’Ew)% Z}

=wp+p{Z} (w'Sw)?,

(6)

-

where, e.g. p{Z} = —1.645 for the VaR at the 95% confidence level within the Gaussian
framework; see Landsman and Valdez (2003) for other elliptical distributions.

Using expression (6), it is straightforward to calculate the derivative in (1). This yields the
following expression for the vector of marginal risks:

P (w) = i+ p{Z} (w'Sw) " Sw. (7)

The vector of component risks are easily obtained from (2) using (7). Finally, the vector of
generalized marginal risk can be calculated in a straightforward manner for in- or outflows
and reallocation scenarios trough the application of (7) in (4) and (5).

4.2. Synthetic Portfolio

We consider a synthetic portfolio of two uncorrelated assets with zero mean returns and ten
percent annual volatility each. Figure 1 displays the results of the sensitivity analysis. The
upper part of the figure reports the VaR at the 95% confidence level (VaR95) as a function of
the first asset’s weight (in percent) when assuming no leverage in the portfolio (i.e. wy = 0).
This function is known as the trade risk profile in the literature. This is the portfolio risk when
the portfolio is fully funded. Notice that the VaR values are negative percentages since we
work with the portfolio return distribution and not with a loss distribution. The portfolio VaR
is minimized (in the absolute sense) for an equally weighted allocation (VaR95 = -11.63%).

The lower part of the figure displays the relative marginal VaR95 (in solid line) and the
relative generalized marginal VaR95 (in dashed line) for the first asset (in bold red) and the
second asset (in blue). Relative measures are obtained by dividing the sensitivity measures
by the portfolio VaR95 at the corresponding allocation. Therefore, a positive (negative) value
of = percent indicates an increase (decrease) of = percent of the current portfolio risk after
an additional one-percent allocation in the corresponding asset. For the equally weighted
portfolio, the gradient of the portfolio VaR95 is zero, as shown in the upper plot. This is
reflected in the value of the generalized marginal VaR95. Hence, for this allocation, the
portfolio risk is approximately unchanged if we reallocate a small amount of wealth from the
first asset to the second asset (and vice versa). On the other hand, the marginal risk is one
percent for both assets, suggesting that leveraging any position will increase (in the absolute
sense) the portfolio VaR95.

Now, let us assume that the investor has a full allocation in the first asset which corresponds
to the very right-hand side of the two plots. In this situation, a moderate levered position in
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Portfolio VaR 95 [%)]
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Figure 1: Synthetic portfolio of two assets with equal volatilities and zero correlation. Upper plot: portfolio VaR95
with respect to the first asset’s weight. Lower plot: relative marginal and relative generalized marginal VaR95. Red
bold lines: first asset; blue lines: second asset; solid lines: relative marginal VaR95; dashed lines: relative generalized
marginal VaR95.
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the second asset will have minor impact on the portfolio risk since the marginal VaR95 of the
second asset (p5') is zero at this point. On the contrary, the generalized marginal VaR95 (p3™)
clearly indicates that shifting allocation from the first asset to the second asset decreases the
risk in the portfolio.

Figure 2 displays the results for the case of a negative correlation of -50% between the two
assets. Moreover, we assume now that the volatilities of the asset returns are ten and twelve
percent, respectively. In this case, the minimum VaR95 portfolio is no longer the equally
weighted portfolio but has a larger weight in the first asset which is less volatile. The right-
hand side of the plots now indicates different implications for the portfolio manager. Indeed, it
is no longer obvious whether to build up a levered position in the second asset or to reallocate
from the first asset to the second asset, since in both scenarios the risk of the portfolio
decreases. However, the reallocation scenario reduces the overall risk more than leveraging
the new position. Also notice that contrary to the previous example for the correlation, the
generalized marginal risk of asset one is sometimes higher than the marginal risk. This shows
that under certain circumstances reallocation increases (in the absolute sense) the portfolio
VaR95 more than leveraging. Also, note that for around 70% allocation in asset one, both
sensitivity measures are equal. Reallocation or leverage scenarios lead to the same marginal
risk impact in this case.
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Figure 2: Synthetic portfolio of two assets with unequal volatilities and a negative correlation of -50%. Upper plot:
portfolio VaR95 with respect to the first asset’s weight. Lower plot: relative marginal and relative generalized marginal
VaR95. red bold lines: first asset; blue lines: second asset; solid lines: relative marginal VaR95; dashed lines: relative
generalized marginal VaR95.
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4.3. Real-World Portfolio

The generalized marginal risk concept is now examined in a real-world example. We consider
a portfolio of equities whose allocations are chosen to replicate the Swiss Market Index (SMI)
as of August 27th, 2009. We use monthly closing prices for the SMI constituents ranging
from January 2000 to August 2009. Both closing prices and SMI allocation weights are ob-
tained from Bloomberg. The monthly arithmetic asset returns are modeled by a multivariate
Student-t distribution, where the mean and covariance matrix are estimated via robust meth-
ods. The degrees of freedom of the Student-t distribution is set to four to account for heavy
tails in the asset returns.

Figure 3 displays the SMI portfolio weights (left) together with the individual monthly ES
at the 95% confidence level (ES95) risk figures. The portfolio is concentrated in half a dozen
positions. Individual monthly ES95 range from -15% for Holcim to more than -60% for ABB.
The overall portfolio ES95 is -14.7%.

ZURICH q ZURICH [
SWATCH
uBs

SYNTHES

b SWATCH[
q UBS |-
q SYNTHES -
SYNGENTA
SWISS LIFE

B SYNGENTAR
q SWISS LIFE -
SWISSCOM

SWISS RE

b SWISSCOM |-
q SWISS RE -

ROCHE
NOVARTIS

B ROCHE |-
q NOVARTIS -
NOBEL BIOCARE

NESTLE

-| NOBEL BIOCARE |-
B NESTLE |-

HOLCIM
CREDIT SUISSE

b HOLCIM |-
- CREDIT SUISSE |-
RIECHEMONT

BALOISE

b RIECHEMONT -
q BALOISE |-
BAER q BAER -
ACTELION q ACTELION
ADECCO q ADECCO [

ABB B ABB -

0 5 10 15 20 25 -80 -60 -40 -20 0
Portfolio Weights [%] ES 95 [%]

Figure 3: Left: SMI portfolio weights (in percent). Right: individual monthly ES95.

Figure 4 reports the (relative) marginal and component ES95 for the assets in the portfolio.
From the marginal ES95 numbers, the portfolio manager can infer that the portfolio risk will
increase if any position is levered. Conversely, if the portfolio manager divests from a position
and puts the proceeds in the cash account, the portfolio risk is reduced. If the investor wants
to decrease the portfolio ES95, the marginal risk suggests to reduce the allocations in ABB,
Credit Suisse, and Roche. For instance, reducing the position in ABB by one percent (i.e.
from 6.42% to 5.42%) would reduce the portfolio ES95 by 2.86% (i.e. from 14.7% to 14.3%).
The component risk analysis indicates that the portfolio risk is concentrated in around half a
dozen positions. The hot spots in the portfolio happen to be the holdings with large weights.

Let us now consider the generalized marginal risk as an additional decision tool for the port-
folio manager. We consider two scenarios: (1) there are capital inflows in the portfolio; (2)
a position is increased by an equal decrease in all other positions. Both situations are rele-
vant for mutual fund managers and institutional investors which cannot allocate more than
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Figure 4: Left: (relative) marginal ES95 for the assets in the SMI portfolio. Right: (relative) component ES95.

5% of the portfolio value on the portfolio cash account. Figure 5 displays the results of the
sensitivity analysis. The left-hand side reports the generalized marginal ES95 in the case of
capital inflows in the portfolio. In this case, additional capital invested in Nestlé, Novartis or
Roche will have the most effect on decreasing the risk in the new portfolio. For instance, an
additional one-percent allocation in Nestlé (e.g. from 21% to 22%) would reduce the portfolio
risk by 4.66%. On the right-hand side, the case where assets are shifted within the portfolio
is displayed. Under this scenario, reallocating capital to Swisscom, Nestlé and Novartis will
decrease the overall risk the most. Note that under the reallocation scenario, the generalized
marginal ES95 should be reflective of the return expectations of the portfolio manager. For
instance, if the portfolio manager does not have a strong performance expectation on ABB,
the position in ABB should be reduced and the proceeds invested equally in the other assets.
This sensitivity analysis is especially helpful for an investor who aims at implementing views
if a benchmark is to be beaten on a risk-adjusted basis.

5. Conclusion

Assessing the sensitivity of the aggregated portfolio risk with respect to the underlying hold-
ings is important for a portfolio manager to support the sizing of the portfolio positions. The
traditional concept to measure the portfolio risk sensitivity is the marginal risk. Mathemat-
ically, this is simply the gradient of the portfolio risk measure with respect to the allocation
weights. However, since this metric relies on the gradient, it is only meaningful when a posi-
tion is levered or when the proceeds of the sale of a position are put in the cash account of
the portfolio. This is certainly not always the case in practice. Counter examples are in- and
outflows of capital in the portfolio as well as reallocations within the portfolio. This paper
proposes a novel approach for measuring the risk sensitivity of a portfolio when the traditional
marginal risk fails. The new sensitivity measure, referred to as generalized marginal risk, is

11
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Scenario 1 Scenario 2
Capital Inflows Reallocation

T T T T T T
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NOVARTIS - B NOVARTIS| g
NOBEL BIOCARE - NOBEL BIOCARE g
NESTLE [ B NESTLE | g
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marginal ES 95 [%] marginal ES 95 [%)]

Figure 5: Left: (relative) generalized marginal ES95 for the assets in the SMI portfolio when additional capital is
brought in the portfolio and invested in one position (scenario 1). Right: Case where the increase in one position is
financed by an equal reduction in all other positions (scenario 2).

based on the directional derivative of the portfolio risk measure. The new metric can deal
with cases where the changes in the portfolio results in changes of other position as well. This
allows a portfolio manager to measure the portfolio risk sensitivity under a broader range
of scenarios. We show the direct relationship between the traditional and the new concept.
Therefore, once the marginal risks of the positions have been computed, a portfolio manager
can run a generalized sensitivity analysis in a straightforward manner. We illustrate the use-
fulness of the new approach with a synthetic and real-world portfolio of equities within the
elliptical framework. Overall, we show that depending on the portfolio’s adjustment scheme
pursued by the portfolio manager, the traditional and the new sensitivity measures can vary
substantially. This underlines the importance of accurately modeling the way the portfolio is
adjusted and choosing adequately the sensitivity measure.
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