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Abstract

The noncentral chi-square approximation of the distribution of the likelihood ratio (LR)

test statistic is a critical part of the methodology in structural equations modeling (SEM).

Recently, it was argued by some authors that in certain situations normal distributions

may give a better approximation of the distribution of the LR test statistic. The main

goal of this paper is to evaluate the validity of employing these distributions in practice.

Monte Carlo simulation results indicate that the noncentral chi-square distribution

describes behavior of the LR test statistic well under small, moderate and even severe

misspecifications regardless of the sample size (as long as it is sufficiently large), while the

normal distribution, with a bias correction, gives a slightly better approximation for

extremely severe misspecifications. However, neither the noncentral chi-square

distribution nor the theoretical normal distributions give a reasonable approximation of

the LR test statistics under extremely severe misspecifications. Of course, extremely

misspecified models are not of much practical interest.
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Normal versus Noncentral Chi-square Asymptotics of

Misspecified Models

Introduction

It is well recognized that no model can represent real data exactly (e.g., see Browne

& Cudeck, 1993). Therefore, even reasonably good models are often rejected for larger

sample sizes by standard test statistics. This motivated investigations of the statistical

properties of test statistics under alternative hypotheses. A classical result states that

under a sequence of local alternatives, i.e., the so-called population drift, and certain

regularity conditions, likelihood ratio (LR) test statistics asymptotically have a noncentral

chi-square distribution. Thus, the noncentral chi-square distribution is widely used for

model evaluation and power analysis of testing in structural equations modeling (SEM).

In practice this means that rather than assuming an exact fit of the data to a considered

model, one can estimate the population discrepancy with the model by employing an

estimate of the corresponding noncentrality parameter. Usage of noncentral chi-square

asymptotics has a long history in the statistics literature (e.g., see McManus, 1991, for a

historical overview). In the analysis of covariance (moment) structures it goes back to

Shapiro (1983) and J. H. Steiger et al. (1985).

One of the criticisms of this approach is that the assumption of the population drift,

where the population covariance matrix is assumed to depend on the sample size, is

unrealistic. Recently this issue was discussed in a number of publications with a

suggestion that the normal distribution could sometimes be a better alternative for

approximating the true distribution of the LR test statistics (e.g., Golden, 2003 ; Olsson,

Foss, & Breivik, 2004 ; Yuan, Hayashi, & Bentler, 2007 ; Yuan, 2008).

In this paper, we empirically compare the noncentral chi-square distribution with
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the normal distribution in describing the behavior of the LR test statistics TML under a

variety of sample sizes and model misspecifications. Our simulation results may be of

some practical assistance to researchers facing model evaluation so that they can derive

reasonable inferences.

This paper is organized as follows. Theoretical background regarding noncentral

chi-square and normal approximations is given in the next section. Then the results of

Monte Carlo experiments aimed at evaluation of the appropriateness of using the

noncentral chi-square and normal distributions for LR test statistics are given. In

particular, the Kolmogorov-Smirnov distance and quantile-quantile (QQ) plots are

provided as measures of the distributions’ fit. We also use the Thurstone data (Thurstone

& Thurstone, 1941) from a classic study of mental ability for our illustration. Discussion

section gives some remarks and suggestions for future directions of research.

Theoretical background

Let us start with a critical look at the noncentral chi-square distribution. Let

Y1, ..., Yk be a sequence of independent random variables having normal distributions with

standard deviation 1 and respective means µ1, ..., µk, i.e., Yi ∼ N(µi, 1), i = 1, ..., k. Then

the random variable V = Y 2
1 + ...+ Y 2

k has noncentral chi-square distribution with k

degrees of freedom and noncentrality parameter δ = µ2
1 + ...+ µ2

k, denoted V ∼ χ2
k(δ).

Note that the distribution of V depends only on the sum µ2
1 + ...+ µ2

k, and not on the

individual means µi. Therefore we can assume that µ1 = µ and µ2 = ... = µk = 0. In that

case δ = µ2 and

V = (Z1 + µ)2 + Z2
2 + ...+ Z2

k = Z2
1 + Z2

2 + ...+ Z2
k

︸ ︷︷ ︸

W

+2µZ1 + µ2, (1)

where Zi ∼ N(0, 1) are independent standard normal random variables.

The right hand side of (1) can be considered as the sum of two components, namely,

the sum W = Z2
1 + ...+ Z2

k which has a (central) chi-square distribution with k degrees of
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freedom, and the term 2µZ1 + µ2 which has normal distribution N(µ2, 4µ2). Moreover,

variables Z2
1 and Z1 are uncorrelated, and hence these two terms are uncorrelated. Recall

that the expected value of W is k and its variance is 2k. For large values of the

noncentrality parameter δ, the term 2µZ1 + µ2 becomes dominant and hence the

corresponding noncentral chi-square distribution could be well approximated by the

normal distribution N(k + δ, 2k + 4δ). It also could be noted that the random variable W

is given by the sum of k independent identically distributed random variables, and hence

by the Central Limit Theorem its distribution approaches normal with increase of the

number of degrees of freedom k. In other words a noncentral chi-square distribution can

be well approximated by the respective normal distribution if the number of degrees of

freedom k is large even if the noncentrality parameter δ is small or even zero. That is, a

noncentral chi-square distribution can be approximately normal if either the noncentrality

parameter is large or the number of degrees of freedom is large or both.

Consider a covariance structure model Σ = Σ(θ) relating parameter vector θ ∈ R
q

to p× p population covariance matrix. Let X1, ...,Xn be a random sample from the

considered population, and S = (n− 1)−1
∑n

i=1(Xi − X̄)(Xi − X̄)′ be the corresponding

sample covariance matrix. Recall that S is an unbiased estimate of the population

covariance matrix Σ0. The popular test statistic for testing the model is TML = nF̂ML,

where

F̂ML = min
θ

FML(S,Σ(θ)) (2)

and

FML(S,Σ) = log |Σ| + tr(SΣ−1) − log |S| − p. (3)

We say that the normality assumption holds if the population, from which the

random sample is drawn, has normal distribution, i.e., Xi ∼ N(µ,Σ0), i = 1, ..., n. In

that case n−1
n S becomes the Maximum Likelihood estimator1 of the population covariance

matrix and TML becomes the corresponding likelihood ratio test statistic. This is why
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TML is referred to as the ML test statistic. Of course, this test statistic can be computed

whether the population distribution is normal or not. We will discuss this point later.

The classical result, going back to Wilks (1938), is that if the model is correct, i.e.,

Σ0 = Σ(θ0) for some value θ0 of the parameter vector, then under the normality

assumption and mild regularity conditions the asymptotic distribution of the test statistic

TML is central chi-square with df = p(p+ 1)/2 − q degrees of freedom. Let us briefly

outline arguments behind this theoretical result. Consider the function

f(Z) = min
θ

FML(Z,Σ(θ)) (4)

of a p× p positive definite symmetric matrix variable Z. Note that here Z is a general

(matrix valued) variable while S denotes the sample covariance matrix, so that for Z = S

we have that F̂ML = f(S).

In the subsequent analysis we use notation s,σ, z, for the p2 × 1 dimensional

vectors2 obtained by stacking columns of the respective matrices S,Σ,Z, i.e., s = vec(S),

etc. Observe that the ML discrepancy function FML has the following properties. For any

positive definite symmetric matrices Z and Σ, it holds that FML(Z,Σ) ≥ 0 and

FML(Z,Σ) = 0 if and only if Z = Σ. This implies that f(z) ≥ 0 for any z, and f(z) = 0

for z = σ0. That is, if the model is correct, then the function f(z) attains its minimum

(equal zero) at z = σ0, and hence vector ∂f(σ0)/∂z, of partial derivatives at z = σ0, is

zero. By using the second order Taylor expansion of f(z) at the point z = σ0, we can

approximate

f(s) ≈ f(σ0) + (s − σ0)
′[∂f(σ0)/∂z] + (s − σ0)

′Q(s − σ0), (5)

where Q = 1

2
∂2f(σ0)/∂z∂z′ is half the Hessian matrix of second order partial derivatives

of f(z) at z = σ0. Since TML = nf(s) and by the above the first two terms f(σ0) and

(s − σ0)
′[∂f(σ0)/∂z] in the above expansion vanish, it follows that

TML ≈ [n1/2(s − σ0)]
′Q[n1/2(s − σ0)]. (6)
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Now by the Central Limit Theorem (CLT) we have that n1/2(s − σ0) converges in

distribution to a (multivariate) normal3 with zero mean vector and a covariance matrix Γ,

given by

Γ = E
{
vec[(Xi − µ)(Xi − µ)′]vec′[(Xi − µ)(Xi − µ)′]

}
− σ0σ

′
0. (7)

This implies that TML converges in distribution to the distribution of the quadratic form

Y ′QY , where Y is a random vector having normal N(0,Γ) distribution. If the population

has normal distribution, then the matrix Γ has a specific structure, which is a function of

the covariance matrix Σ0 alone, i.e., does not involve calculation of forth order moments

of the population distribution. We denote this matrix by ΓN in order to emphasize that it

is computed under the assumption of normality. The point is that under the normality

assumption and standard regularity conditions, we have here that QΓNQ = Q and matrix

Q has rank p(p+ 1)/2 − q. Then invoking some algebraic manipulations it is possible to

show that the distribution of the quadratic form Y ′QY is (central) chi-square with

df = p(p+ 1)/2 − q degrees of freedom (cf., Shapiro, 1983, Theorem 5.5).

It is worthwhile to point the following. In this derivation the only place where the

assumption about normality of the population distribution was used is verification of the

equation QΓNQ = Q, which is based on a particular structure of the covariance matrix

ΓN . In some cases this equation can be verified, and hence asymptotic chi-squaredness of

the distribution of TML can be established, even without the normality assumption. This

is a basis of the so-called asymptotic robustness theory of the ML discrepancy test

statistic (cf., Browne & Shapiro, 1988).

Suppose now that the model is misspecified, i.e., the population covariance matrix

Σ0 is different from Σ(θ) for any value of the parameter vector θ. We still have that

TML = nf(s) with function f(·) defined in (4) and, by the CLT, n1/2(s − σ0) converges in
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distribution to (multivariate) normal N(0,Γ). However, now the term

F ∗
ML = min

θ

F (Σ0,Σ(θ)), (8)

representing the discrepancy between the population value Σ0 of the covariance matrix

and the model, is strictly positive. Consequently, the first term f(σ0) = F ∗
ML in the

second order Taylor expansion, given in the right hand side of (5), does not vanish and is

strictly positive. It follows that for large n the statistic TML can be approximated by

nF ∗
ML and will grow to infinity as n→ ∞. A more precise statement is that

n−1TML = F̂ML converges with probability one (w.p.1) to F ∗
ML. Also by employing the

first order Taylor expansion at the point z = σ0, i.e., by using first two terms in the right

hand side of (5), we can write

n1/2[f(s) − f(σ0)] ≈ [n1/2(s − σ0)]
′[∂f(σ0)/∂z]. (9)

It is possible to show that

∂f(σ0)

∂z
=
∂FML(z,σ∗)

∂z

∣
∣
∣
z=σ0

, (10)

where σ∗ = σ(θ∗) and θ∗ is the minimizer of the function FML(Σ0,Σ(θ)), provided that

this minimizer is unique (equation (10) follows by the so-called Danskin Theorem).

Recalling that f(s) = F̂ML and f(σ0) = F ∗
ML and that n1/2(s − σ0) converges in

distribution to Y ∼ N(0,Γ), we obtain that n1/2
(
F̂ML − F ∗

ML

)
converges in distribution

to γ ′Y ∼ N(0,γ ′Γγ), where

γ =
∂FML(z,σ∗)

∂z

∣
∣
∣
z=σ0

= vec
[
(Σ∗)−1 − Σ−1

0

]
. (11)

This implies the following result (see Shapiro, 1983, section 5 for technical details):

• Let θ∗ be the unique minimizer of FML(Σ0,Σ(θ)). Then n1/2
(
F̂ML − F ∗

ML

)

converges in distribution to normal N(0,γ ′Γγ), where γ is given in (11) and σ∗ = σ(θ∗).
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In other words we can approximate the distribution of TML = nF̂ML by the normal

distribution with mean nF ∗
ML and variance nγ ′Γγ.

The (asymptotic) covariance matrix Γ depends on the population distribution. In

particular, if the population distribution is normal, then (cf., Shapiro, 2009)

γ ′ΓNγ = 2 tr
[(

Σ∗−1 − Σ−1
0

)

Σ0

(

Σ∗−1 − Σ−1
0

)

Σ0

]

= 2 tr

[(

Σ∗−1
Σ0 − Ip

)2
]

. (12)

If the population distribution is normal, and hence TML becomes the likelihood ratio test

statistic, then the above result can be also derived from Vuong (1989). Note, however,

that the above asymptotic normality of TML holds even without the normality

assumption, although in that case the right hand side of (12) may be not a correct formula

for the asymptotic variance γ ′Γγ. We will discuss this issue further later.

Theoretically this is a correct result. However, in any real application the question

is: “how good is this normal approximation for a finite sample?” Let us point to the

obvious deficiencies of the normal approximation. Any normal distribution is symmetric

around its mean. On the other hand, as it was mentioned earlier, the test statistic TML is

always nonnegative and its distribution is typically skewed especially when Σ0 is not “too

far” from the model and hence the (population) discrepancy F ∗
ML is close to zero. In the

extreme case when the model is correct, we have that F ∗
ML = 0 and γ = 0, and hence the

normal approximation, of n1/2F̂ML, degenerates into the identically zero distribution.

This should be not surprising since in that case TML converges (in distribution) to a finite

limit and hence n1/2F̂ML = n−1/2TML tends (in probability) to zero. Of course, our

primary interest in situations when the fit is not “too bad”, and this is exactly where the

normal approximation may not work well. Another deficiency of the above construction of

normal approximation is that it is based on the first order Taylor expansion and does not

take into account the third (quadratic) term in the right hand side of (5). It is possible to

make a bias correction based on this quadratic term (cf., Shapiro, 1983, and see below),
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but yet the skewness problem may still persist.

In order to resolve these problems we can use the following idea. Instead of a second

order Taylor expansion at the population point (covariance matrix) Σ0, let us consider the

respective expansion at the point Σ∗ = Σ(θ∗) satisfying the model. (Recall that Σ∗ is the

closest to Σ0, in terms of the FML discrepancy function, covariance matrix satisfying the

considered model.) That is,

f(s) ≈ f(σ∗) + (s − σ∗)′[∂f(σ∗)/∂z] + (s − σ∗)′Q∗(s − σ∗), (13)

where Q∗ = 1

2
∂2f(σ∗)/∂z∂z′. The above approximation (13) could be reasonable if σ∗ is

close to σ0, i.e., if the discrepancy between Σ0 and the model is not too bad. Again we

have that first two terms in the right hand side of (13) vanish and hence

TML = nf(s) ≈ [n1/2(s − σ∗)]′Q∗[n1/2(s − σ∗)]. (14)

Since S is an unbiased estimate of Σ0, i.e., E[S] = Σ0, we have that

E[s − σ∗] = σ0 − σ∗. Therefore we can approximate the distribution of TML by the

distribution of the quadratic form Y ′Q∗Y , where Y ∼ (µ,Γ) with µ = n1/2(σ0 − σ∗).

This suggests approximating the distribution of TML by a noncentral chi-square

distribution with df = p(p+ 1)/2 − q degrees of freedom and noncentrality parameter

δ = n(σ0 − σ∗)′Q∗(σ0 − σ∗). Again by (13) we have that

(σ0 − σ∗)′Q∗(σ0 − σ∗) ≈ f(σ0) = F ∗
ML, (15)

and hence we can use δ = nF ∗
ML as the noncentrality parameter as well. Since F ∗

ML > 0

we have here that the noncentrality parameter δ tends to infinity as n→ ∞. In order to

reconcile this problem we may assume that the population value σ0,n depends on the

sample size n in such a way that n1/2(σ0,n − σ∗) converges to a fixed limit. This

assumption implies that σ0,n converges to σ∗ at a rate of O(n−1/2), and referred to as a

sequence of local alternatives or the population drift. Note also that the approximation
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(15) makes sense only if σ0 is close to σ∗, i.e., if the misspecification is not “too serious”,

and can be poor otherwise (e.g., see Sugawara & MacCallum, 1993).

The concept of the population drift is just a mathematical fabrication allowing to

make an exact mathematical statement. It could be pointed, however, that the

assumption about existence of an abstract population from which we can sample

indefinitely, and hence to arrive at a limiting distribution as the sample size tends to

infinity, is also a mathematical abstraction. In practice the sample is always finite, and the

real question is how good a considered approximation is for a given sample. This, of

course, depends on a particular application. One could be also tempted to use the second

order Taylor approximation of the discrepancy function at the population point Σ0.

However, for misspecified models the corresponding quadratic form does not have a

(noncentral) chi-square distribution, even under the normality assumption (cf., Shapiro,

1983, Theorem 5.4(c)). Consequently asymptotics based on such approximation could be

difficult to use in practice.

The noncentrality parameter δ = nF ∗
ML can be large for two somewhat different

reasons. Namely, it can happen that F ∗
ML is large, i.e., the fit is bad, or that the sample

size n is large amplifying a reasonably small discrepancy F ∗
ML, and of course it could be

both. If the noncentrality parameter is large because of the large sample size, while F ∗
ML

is reasonably small, then the noncentral chi-square approximation can be still reasonable.

As it was discussed at the beginning of this section, for large δ the distribution χ2
k(δ) by

itself can be approximately normal.

Let us finally mention that by taking into account the last (quadratic) term in the

right hand side of (5) we can make the following correction for the normal distribution

approximation. The expected value of this quadratic term can be approximated by

n−1tr(ΓQ). In order to apply bias correction based on that term one would need to

estimate matrices Γ and Q, which may be not easy and will involve an error in any such
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estimation. Alternatively the term tr(ΓNQ) can be approximated by the number of

degrees of freedom df = p(p+ 1)/2 − q. The variance of this quadratic term can be

approximated by n−2(2df + 4δ). Therefore, assuming that the population distribution is

normal, we can use the corrected normal distribution approximation of the distribution of

TML with mean nF ∗
ML + df = δ + df and variance

2n tr

[(

Σ∗−1
Σ0 − Ip

)2
]

+ 2df + 4δ. (16)

Similar analysis can be performed for the Generalized Least Squares (GLS)

discrepancy function

FGLS(S,Σ) = 1

2
tr

{
[(S − Σ)S−1]2

}
. (17)

In that respect it is worthwhile to point the following. The second order Taylor expansion

of the GLS discrepancy function, at a point satisfying the model, coincides with the

corresponding second order Taylor expansion of the ML discrepancy function. Therefore,

if the model is correct, then the test statistics TML and TGLS are asymptotically

equivalent (cf., Browne, 1974). In that case the numerical values of TML and TGLS , for a

given sample covariance matrix S, should be close to each other. On the other hand for

misspecified models, as the population covariance matrix moves away from the model, the

test statistics TML and TGLS diverge and the corresponding estimates of the noncentrality

parameter based on these statistics could be quite different from each other. As far as the

asymptotic normality is concerned the following result, similar to the ML case, holds:

• Let θ∗ be the unique minimizer of FGLS(Σ0,Σ(θ)) and γ = ∂FGLS(z,σ∗)
∂z

∣
∣
∣
z=σ0

,

where σ∗ = σ(θ∗). Then n1/2
(
F̂GLS − F ∗

GLS

)
converges in distribution to normal

N(0,γ ′Γγ).

In particular, if the population distribution is normal, then the asymptotic variance

associated with the GLS test statistic is given by the following formula (cf., Shapiro, 2009)

γ ′ΓNγ = 2 tr
[(

Σ−1
0 Σ∗Σ−1

0 Σ∗ − Σ−1
0 Σ∗

)2
]

. (18)
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Note that here Σ∗ corresponds to the minimizer θ∗ of the GLS discrepancy function and

vector γ is given by derivatives of the GLS discrepancy function, and formula (18) for the

asymptotic variance is different from the corresponding formula (12) for the ML

discrepancy function.

Non-normal Distributions

The asymptotic normality of F̂ML, i.e., convergence in distribution of

n1/2
(
F̂ML − F ∗

ML

)
to N(0,γ ′Γγ), holds without the assumption that the population has

normal distribution as well. The asymptotic variance γ ′Γγ can be estimated directly from

the data by using formulas (7) and (11). That is, components of the matrix Γ and vector

γ can be estimated by replacing the respective forth and second order moments with their

sample estimates. Note, however, that estimation of matrix Γ involves estimation of

p(p+ 1)(p+ 2)(p+ 3)/4 distinct forth order moments which can result in a significant

estimation error. Therefore it could be desirable to consider specific situations where

estimation of forth order moments can be avoided. One such case, other than normal, is

the case of elliptical distributions.

Suppose now that the population distribution is elliptical. The elliptical class of

distributions incorporates a single additional kurtosis parameter, κ, and is convenient for

investigating the sensitivity of normal theory methods to the kurtosis of the population

distribution. Note that kurtosis parameter κ = 1
3γ, where γ is the (marginal) kurtosis of

the multivariate distribution (e.g., Muirhead & Waternaux, 1980). The basic asymptotic

result that we need here is that the corresponding matrix Γ has the following structure

(e.g., Muirhead & Waternaux, 1980)

Γ = (1 + κ)ΓN + κσ0σ
′
0. (19)

Here, as it was defined before, ΓN is the asymptotic covariance matrix of n1/2(s − σ0)
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obtained under the assumption that the population has normal distribution. Consequently

γ ′Γγ = (1 + κ)γ ′ΓNγ + κ(γ ′σ0)
2, (20)

where γ ′ΓNγ is given by the right hand side of (12) and represents the asymptotic

variance of n1/2
(
F̂ML − F ∗

ML

)
under the normality assumption. Also by (11) we have

κ(γ ′σ0)
2 = κ

[

tr
(

Σ∗−1
Σ0 − Ip

)]2
. (21)

Let us also note that assuming that the model is invariant under a constant scaling

factor, we have here that under a sequence of local alternatives the test statistic

(1 + κ)−1TML asymptotically has a noncentral chi-square distribution with

df = p(p+ 1)/2 − q degrees of freedom and noncentrality parameter (1 + κ)−1δ, where

δ = nF ∗
ML (cf., Shapiro & Browne, 1987). Therefore, similar to (16), we can use the

corrected normal distribution approximation of the distribution of TML with mean

nF ∗
ML + (1 + κ)df and variance

(1 + κ)γ ′ΓNγ + κ
[

tr
(

Σ∗−1
Σ0 − Ip

)]2
+ (1 + κ)2(2df + 4δ). (22)

Numerical Illustrations

In this section we discuss Monte Carlo experiments aimed at an empirical evaluation

of the suitability of the noncentral chi-square and normal distributions for the LR test

statistic. We consider factor analysis models Σ = ΛΛ′ + Ψ under varying conditions of

model misspecification and sample size. Our study also includes different number of

variables and factors. Furthermore, we use both normal and non-normal (elliptically

distributed) data to investigate the robustness of test statistics to non-normality of the

population distribution.
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Normally distributed data

Our experiments included six sample sizes n = 50, 100, 200, 400, 800, 1000 with

various degrees of model misspecification ranging from small to severe.

The population covariance matrices employed in Monte Carlo simulations, were

constructed as follows. First, a p× p covariance matrix Σ∗ = Λ∗Λ∗′ + Ψ∗, satisfying the

Factor Analysis model, was constructed with specific values of elements of matrix Λ∗ and

diagonal elements of matrix Ψ∗, as shown in Table 1 for Model 1, and Table 2 for Model

2. Model 1 has seven variables and one factor. Model 2 has twelve variables and three

factors. Next, misspecified covariance matrices were generated of the form Σ0 = Σ∗ + tE,

where E is a p× p symmetric matrix and t > 0 is a scaling factor controlling the level of

misspecification. The matrix E was chosen in such a way that the corresponding matrix

Σ0 is positive definite and Σ∗ = Σ(θ∗), where θ∗ is the minimizer of the right hand side of

(8). That is, for S = Σ0 the estimated covariance matrix obtained by applying the

maximum likelihood(ML) procedure is the specified matrix Σ∗, and hence

F ∗
ML = FML(Σ0,Σ

∗).

In order to construct matrix E, producing a largest possible range of the

discrepancy values, we used procedures developed in Cudeck & Browne, 1992 and Chun &

Shapiro, 2008. Given the population covariance matrix Σ0, we randomly generated

M = 50000 sample covariance matrices, corresponding to the specified population

covariance matrix Σ0 and the sample size n, from a Wishart distribution

Wp

(
1

n−1Σ0, n− 1
)

. We used the Matlab function ‘wishrnd’ to generate random matrices

having Wishart distribution. For each covariance matrix, sample values Ti, i = 1, . . . ,M ,

for the LR test statistics were calculated by maximum likelihood estimation. Estimation

of factor loading matrix Λ was done by Matlab function ‘factoran’.

For Model 1, the maximum discrepancy F ∗
ML (corresponding to the largest value of

the scaling parameter t) was computed to be 1.360. By using different values of the
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scaling parameter t we generated population covariance matrices, of the form

Σ0 = Σ∗ + tE, with discrepancy values in the ranges of 0.025 to 1.360. Similarly,

population covariance matrices for Model 2 were generated with discrepancy values from

0.01 to 0.5. Discrepancy misspecification and corresponding population values of RMSEA

are shown in Table 3 and Table 4. The RMSEA stands for Root Mean Square Error of

Approximation, and its (population) value is defined as

RMSEA =

√

F ∗
ML

df

(cf., J. Steiger & Lind, 1980 ; Browne & Cudeck, 1992). In the present case df = 14 for

Model 1 and df = 33 for Model 2.

We compare the noncentral chi-square distribution with the normal distribution for

describing the behavior of the ML test statistic TML = nF̂ML. In the text and tables

below the noncentral chi-square distribution is referred to as ncx. For the comparison we

specify normal distributions with four different mean and variance values. Namely, mean

δ = nF ∗
ML and variance nγ ′Γγ, with γ ′Γγ given in (12) (referred to as nm); corrected

mean nF ∗
ML + df and variance given in (16) (referred to as nm2); mean and variance

estimated directly from the simulated values T1, ..., TM by computing their average and

sample variance (referred to as nm3); and mean nF ∗
ML + df and variance 2df + 4δ

(referred to as nm4). That is, nm corresponds to the direct normal approximation, nm2

corresponds to the normal approximation with the bias correction, nm3 corresponds to

the normal approximation with mean and variance estimated directly from the sample,

and nm4 corresponds to the normal approximation of the respective noncentral chi-square

distribution. We refer to nm, nm2 and nm4 as theoretical normal approximations since

their parameters (mean and variance) can be estimated from the data. On the other hand,

sample mean and variance used in nm3 can be computed only in a simulation study.

We used several discrepancy measures to compare the fit of each distribution. One
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is the Kolmogorov-Smirnov (KS) distance defined as

K = sup
t∈R

∣
∣F̂M (t) − F (t)

∣
∣, (23)

where F̂M (t) = #{Ti≤t}
M is the empirical cumulative distribution function (cdf) based on

Monte Carlo sample T1, ..., TM of M computed values of the test statistic, and F (t) is the

theoretical cdf of the respective approximations ncx, nm, nm2, nm3 and nm4 of the test

statistic. We also consider the average Kolmogorov-Smirnov distance (AK), defined as

AK =
1

M

M∑

i=1

Ki, (24)

where

Ki = max

{∣
∣
∣
i− 1

M
− F (T(i))

∣
∣
∣,

∣
∣
∣
i

M
− F (T(i))

∣
∣
∣

}

,

with T(1) ≤ . . . T(M) being the respective order statistics. The computed values of the KS

distances are denoted as ncxK, nmK, nm2K, nm3K and nm4K, respectively, and the

computed values of the AK distances are denoted as ncxAK, nmAK, nm2AK, nm3AK

and nm4AK, respectively. These measures were used in Yuan et al. (2007).

Table 5 contains Kolmogorov-Smirnov distances (K) for Model 1 with sample sizes

n = 400 and n = 1000, and nine degrees of misspecification F ∗
ML ranging from 0.025 to

1.360. Corresponding δ = nF ∗
ML values are from 9.8 to 544 for n = 400, and from 24.50 to

1360 for n = 1000. From this table we can compare the performance of each distribution

for different degrees of discrepancy F ∗
ML for Model 1. We can see that, for small to severe

misspecification F ∗
ML (with respective RMSEA values ranging from 0.042 to 0.116), ncxK

is smaller than nmK and nm2K, but the status of those measures is reverse for extremely

severe misspecifications (with RMSEA values greater than 0.151).

This shows that for small, moderate and even severe misspecifications, the

noncentral distribution gives a better approximation. On the other hand, for extremely

severe misspecifications the normal distribution with bias correction (nm2) gives a slightly
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better approximation. However, models with extremely severe misspecifications are

rejected anyway, say by the RMSEA criterion, and are not of much practical interest.

Moreover, these results indicate that neither noncentral chi-square or theoretical normal is

a reasonable approximation for severely misspecified models. For all values of F ∗
ML, we

observe that ncxK ≤ nm4K, and these values are getting close to each other as F ∗
ML

increases implying that for large δ the noncentral chi-square distribution by itself can be

approximated by a normal distribution, as it was discussed at the beginning of the section

“Theoretical background”. Note that the noncentrality parameter δ = nF ∗
ML gets larger

because the discrepancy F ∗
ML gets bigger with fixed n here. It also could be noted that for

large discrepancies the normal distribution with sample mean and variance (column

nm3K) gives a good approximation. This, however, is of a little practical interest since

these mean and variance could be computed only in simulation experiments.

Table 6 contains Average Kolmogorov-Smirnov distance(AK) for Model 1 with

sample sizes n = 400 and n = 1000, and F ∗
ML values ranging from 0.025 to 1.36. The

patterns of changes in AK are very similar to those of K in Table 5, except that the

respective values are smaller here. This is the result of the different calculation in (23) and

(24). Thus, we could get a similar conclusion, namely, the noncentral chi-square and the

normal distributions are becoming similar in describing TML as F ∗
ML increases, but the

noncentral chi-square is better than the normal distribution (nm) or normal with bias

correction (nm2) for small, moderate, and severe misspecifications. Again, normal

distribution with bias correction is a little better description for the distribution of TML

under extremely severe misspecifications. Note that neither ncx nor nm2 is a reasonable

approximation under extremely severe misspecifications.

The results in both Tables 5 and 6 do not tell us much about the effect of the

sample size for a fixed discrepancy F ∗
ML. Table 7 is designed to show the effect of sample

size on AK for each distribution for Model 1. We present three values of F ∗
ML for the
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comparison. The value of the noncentrality parameter δ = nF ∗
ML varies from 4.52 to

1097.20. As we can see, ncxAK is smaller than nmAK, nm2AK, and nm4K for all

sample sizes n except n = 50 when F ∗
ML = 0.090, confirming our analysis. For

F ∗
ML = 0.474, normal approximation with bias correction (nm2) is slightly better than the

noncentral chi-square for the sample size n ≥ 400. The normal (nm) provides a better

description on the behavior of TML when discrepancy is extremely large, that is

F ∗
ML = 1.097, but none of the distributions gives a reasonable description for TML under

extremely severe misspecifications. Our simulation results also show that sample size

effect was not as important as the degree of misspecification of the model.

Validity of confidence intervals for fit indices and methods of power estimation, that

rely upon the test statistic TML, depend on the quality of employed theoretical

approximations. In that respect, we generated 50000 sample test statistics for Model 1

and calculated the empirical quantile (denoted Q− TML) and percent of samples from the

simulation that covered theoretical distribution quantile (denoted P − TML) under four

underlying distribution assumptions with two noncentrality parameter values, δ = 36.12

(Table 8) and δ = 189.56 (Table 9) for n = 400. Here Q− ncx are the quantiles from

χ2
df (δ) and P − ncx is the percent of samples that is less than computed quantile Q− ncx.

Other measures are defined for the four normal distributions in a similar way. Values in

parentheses are the differences between empirical values and respective theoretical values

from each distribution. For δ = 36.12, measures from χ2
df (δ) are very similar to empirical

values. On the other hand, theoretical values from the three normal distributions (nm,

nm2, nm4) are quiet different from empirical ones. Moreover, we can observed that

normal quantile values show skewness problem which was pointed out in section

“Theoretical background”. For the large value of δ = 189.56, measures from nm2 are more

similar than that from ncx, but none of them are close to empirical one. Also, skewness

problem still exists.
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Figures 1–2 and 3–4 provide the quantile-quantile (QQ) plots for TML against ncx

and nm2 for n = 400 with δ = 36.1229 and δ = 189.555 from Model 1 . When

δ = 36.1229, χ2
df (δ) describes the behavior of TML pretty well (Figure 1), while normal

distribution with bias correction (nm2) works poorly (Figure 2). These plots confirm the

skewness problem again. When δ = 189.555, Figure 3 and Figure 4 show very similar

pattern since χ2
df (δ) and normal distribution gets similar in terms of performance of

describing TML. We could not see a difference between them from the plots.

We present similar results for Model 2 in Table 10 and Table 11. As we can see,

ncxK is smaller than nmK and nm2K for small, moderate, and severe misspecification.

Similarly, ncxAK is smaller than nmAK and nm2AK for most cases. That is, χ2
df (δ) is a

better approximation for TML under small to severe misspecification. Normal with bias

correction(nm2) is slightly better for extremely severe misspecification, but none of

distributions gives a reasonable approximation in that case.

Quantile-quantile (QQ) plots for TML against χ2
df (δ) and normal distributions for

n = 400 with δ = 39.95 and δ = 80.05 from Model 2 are provided (Figure 5-6 and Figure

7-8). As we can see, χ2
df (δ) describes the behavior of TML pretty well (Figure 5, Figure 7)

while normal distribution with bias correction (nm2) shows poor performance (Figure 6,

Figure 8). Skewness problem of normal approximation is very clear.

Non-normally distributed data

We also use non-normally (elliptically) distributed data to empirically illustrate the

robustness of LR test statistics as we explained in section “Non-normal distributions”. In

order to generate data with an elliptical distribution we proceed as follows. Let

X ∼ N(0,Σ) be a random vector having (multivariate) normal distribution and W be a

random variable independent of X. Then the random vector Y = WX has an elliptical

distribution with zero mean vector, covariance matrix αΣ, where α = E[W 2], and the
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kurtosis parameter κ = E[W 4]
(E[W 2])2

− 1 (see the Appendix).

We consider the same structure as in Model 1 discussed in section “Normally

distributed data”, but with elliptically distributed data. That is, we directly calculate

sample covariance matrices from the generated elliptically distributed data instead of

using Wishart distribution. See Table 1 for generated parameters and Table 3 for

discrepancy misspecification values. We generated two sets of elliptical distributions with

different kurtosis parameter κ. Model 3 involves elliptically distributed data with random

variable W taking two values, 1.2 with probability 0.45 and 0.8 with probability 0.55.

Model 4 involves W taking two values, 2 with probability 0.2 and 0.5 with probability 0.8.

The kurtosis parameter of these elliptical distributions is κ = 0.1584 (Model 3) and

κ = 2.25 (Model 4). Note that in both cases E[W 2] = 1, so that the covariance matrices of

X and Y are equal to each other.

Table 12 and Table 13 contain Kolmogorov-Smirnov distance (K) and Average

Kolmogorov-Smirnov distance (AK) for Model 3 with sample sizes n = 400 and n = 1000,

and nine degrees of misspecification, F ∗
ML = 0.025, . . . , 1.360. We can see that for small to

severe misspecification F ∗
ML (with RMSEA values ranging from 0.042 to 0.116), ncxK is

smaller than nm2K and ncxAK is smaller than nm2AK, but the status of those measures

reverse for extremely severe misspecifications (with RMSEA values greater than 0.151).

This implies that for small, moderate and severe misspecifications, χ2
df (δ) is a better

approximation. On the other hand, for extremely severe misspecifications the normal

distribution with bias correction (nm2) gives a slightly better approximation, but none of

distributions gives reasonable description for TML under extremely misspecified model.

These results are consistent with the corresponding results of section “Normally

distributed data”.

Quantile comparisons are done to investigate the quality of each theoretical

approximation with respect to the validity of confidence intervals or fit indices and
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methods of power estimation. We calculated the empirical quantile (denoted Q− TML and

(1 + κ)−1TML) and percent of samples from the simulation that covered theoretical

distribution quantile (denoted P − TML) with M = 50000 sample test statistics of Model 3

under four underlying distribution assumptions with two noncentrality parameter values,

δ = 36.12 (Table 14) and δ = 189.56 (Table 15) for n = 400. Here Q− ncx are the

quantiles from χ2
df ((1 + κ)−1δ) and P − ncx is the percent of samples that is less than

computed quantile Q− ncx. Other measures are defined for the normal distributions in a

similar way. Values in parentheses are the differences between empirical values and

respective theoretical values from each distribution. For both δ = 36.12 and δ = 189.56,

measures from χ2
df (δ) are very similar to empirical values. On the other hand, theoretical

values from the normal distributions (nm, nm2) are very different from empirical ones.

Again, we can observe that normal quantile values show skewness problem which was

pointed out in section “Theoretical background”.

Figures 9-10 and 11-12 provide the quantile-quantile (QQ) plots for TML against

χ2
df (δ) and normal distributions for n = 400 with δ = 36.1229 and δ = 189.555 from Model

3 . For both δ = 36.1229 and δ = 189.555, χ2
df (δ) describes the behavior of TML pretty

well (Figure 9, Figure 11) while normal distribution with bias correction (nm2) works

poorly (Figure 10, Figure 12 ). We can confirm strong skewness problem of normal

approximation.

Similar results are shown for Model 4 (Table 16, Table 17, and Figure 13-16). It is

interesting to see that χ2
df (δ) describes the behavior of TML better than normal

distribution under small, moderate, severe, and even extremely severe misspecification for

Model 4. Quantile-Quantile(QQ) plots confirm same conclusion, especially clear skewness

of normal approximation.
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Empirical data

We consider the Thurstone data (Thurstone & Thurstone, 1941). The data matrix

is generated by 60 test scores from a classic study of mental ability. We use nine variable

Thurstone problem which is discussed in detail by McDonald (1999). The nine variables

are: “Sentences”, “Vocabulary”, “Sentence completion”, “First Letters”, “Four letter

words”, “Suffixes”, “Letter series”, “Pedigrees” and “Letter Grouping”, which measure

verbal ability, word fluency, and reasoning ability.

We apply one factor model (denoted Thurstone− 1) and three factor model

(denoted Thurstone− 3) to these data with 213 observations. Estimated parameters and

RMSEA values for each model are in Table 18 and Table 19. Note that one factor model

indicates an extremely poor fit (with RMEA value 0.2036) while three factor model shows

a good fit (with RMSEA value 0.0408). In order to evaluate statistical properties of the

corresponding LR test statistics we employ the parametric bootstrap approach (see Efron

& Tibshirami, 1993, section 6.5). That is, in the Monte Carlo sampling the (unknown)

population covariance matrix is replaced by the sample covariance matrix. Consequently,

we randomly generate 50000 sample covariance matrices from the respective Wishart

distribution and calculate the LR test statistics TML. Quantile-quantile (QQ) plots for

TML against noncentral chi-square and normal distribution for Thurstone− 1 and

Thurstone− 3 models are provided (Figure 17–18 and Figure 19–20). Noncentral

chi-square distribution describes the distribution of test statistics pretty well for both

models while normal distribution with bias correction shows a poor performance especially

for the three factor model. For both models the skewness problem of normal

approximation is present and is especially bad for the three factor model (Figure 20).



24

Discussion

The noncentral chi-square distribution is widely used to describe the behavior of LR

test statistics TML in structural equation modeling (SEM) for the computation of fit

indices and evaluation of statistical power. Recently, it was suggested by several authors

that TML could be better described by the normal than the noncentral chi-square

distribution. In this paper, we discuss the underlying theory of both approximations,

normal and noncentral chi-square, and present some numerical experiments aimed at

empirical comparison of the performance of two distributions in describing the

distribution of the test statistic TML.

Monte Carlo experiments are conducted for several factor analysis models.

Furthermore, we use both normal and non-normal data to investigate the robustness of

test statistics to nonnormality. For each model, we considered different sample sizes

ranging from 50 to 1000, and varying conditions of model misspecification ranging from

small to extremely severe. Several discrepancy measures based on the

Kolmogorov-Smirnov distance were used to compare the noncentral chi-square distribution

with normal distributions. Respective quantiles are compared in order to investigate the

behavior of tails in each distribution as well. Empirical results indicate that the

distribution of TML is described well by the noncentral chi-square distribution under

small, moderate, and even severe misspecifications irrespective of the sample size. For the

extremely misspecified model, the normal distribution with a bias correction is slightly

better than the noncentral chi-square distribution.

It could be noted that normal distribution with estimated sample mean and variance

gives a better approximation for larger discrepancy values (see columns nm3K and

nm3AK in the tables). This, however, is of a little practical significance since the

corresponding mean and variance could be computed only in simulation experiments and

will be unavailable for a given data set.
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In summary, the noncentral chi-square approximation of the ML test statistic is

valid under reasonable misspecifications and models. The normal distribution with a bias

correction may perform slightly better under extreme misspecifications. However, neither

the noncentral chi-square distribution nor the theoretical normal distributions give

reasonable approximations of LR test statistics under extremely severe misspecifications.

Of course, extremely misspecified models are unacceptable anyway for a reasonable

statistical inference. These findings may differ with variations in model complexity, model

parameterization and underlying data structure.
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Appendix

Let X ∼ N(0,Σ) be a random vector having normal distribution and W be a

random variable independent of X. Then Y = WX has elliptical distribution with

E[Y ] = 0 and characteristic function

φ(t) = E
[
exp(iW t′X)

]
= E

[
E

{
exp(iW t′X)

∣
∣W

}]
= E

[
exp

{
− 1

2
W 2t′Σt

}]
.

That is, φ(t) = ψ(t′Σt), where ψ(z) = E
[
exp

{
− 1

2
W 2z

}]
. Then it follows that the

covariance matrix of Y is αΣ, where α = −2ψ′(0) = E[W 2]. It also follows that the

kurtosis parameter is

κ =
ψ′′(0) − ψ′(0)2

ψ′(0)2
=

E[W 4]

(E[W 2])2
− 1

(cf., Muirhead & Waternaux, 1980). For example, if W can take two values, a with

probability p and b with probability 1 − p, then α = a2p+ b2(1 − p) and

1 + κ =
a4p+ b4(1 − p)

(a2p+ b2(1 − p))2
.
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Footnotes

1Of course, for large n the factor n−1
n is close to one, and for asymptotic results this

correction does not matter.

2Note that since matrices S,Σ,Z are symmetric, the corresponding p2 × 1

dimensional vectors have no more than p(p+ 1)/2 nonduplicated elements. We use here

the respective p2 × 1, rather than p(p+ 1)/2 × 1, dimensional vectors for the sake of an

algebraic convenience. Note also the corresponding gradient vectors ∂f(σ)/∂z have the

same structure of duplicated components.

3For this to hold we only need to verify that the population distribution has finite

forth order moments.
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Table 1

Generated Parameters for Model 1

Λ∗ 0.6916 Ψ∗ 0.8727

1.2404 0.6480

0.7971 1.0672

0.9011 1.0614

0.5761 3.0594

1.5620 1.8551

0.8117 1.3567
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Table 2

Generated Parameters for Model 2

Λ∗ 0.9644 0 0 Ψ∗ 0.0699

0.9644 0 0 0.0699

0.9644 0 0 0.0699

0.9644 0 0 0.0699

0.9644 0 0 0.0699

0 0.7182 0 0.4842

0 0.7182 0 0.4842

0 0.7182 0 0.4842

0 0.7182 0 0.4842

0 0 0.5052 0.7448

0 0 0.5052 0.7448

0 0 0.5052 0.7448
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Table 3

Degree of discrepancy misspecification for Model 1

F ∗
ML 0.025 0.090 0.185 0.318 0.474 0.655 0.863 1.097 1.360

RMSEA 0.042 0.080 0.116 0.151 0.184 0.216 0.248 0.280 0.312
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Table 4

Degree of discrepancy misspecification for Model 2

F ∗
ML 0.010 0.050 0.100 0.200 0.300 0.400 0.500

RMSEA 0.017 0.039 0.055 0.078 0.095 0.110 0.123
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Table 5

Kolmogorov-Smirnov distance(K) for Model 1, df = 14

n F ∗
ML δ RMSEA ncxK nmK nm2K nm3K nm4K

400 0.025 9.80 0.042 0.009 0.686 0.063 0.045 0.042

0.090 36.12 0.080 0.022 0.421 0.051 0.031 0.037

0.190 75.88 0.116 0.034 0.313 0.041 0.024 0.042

0.318 127.32 0.151 0.044 0.252 0.037 0.019 0.048

0.474 189.56 0.184 0.053 0.211 0.038 0.016 0.057

0.655 262.16 0.216 0.065 0.174 0.047 0.013 0.068

0.863 345.16 0.248 0.090 0.117 0.080 0.008 0.094

1.097 438.88 0.280 0.174 0.084 0.170 0.004 0.181

1.360 544.00 0.312 0.360 0.266 0.327 0.006 0.365

1000 0.025 24.50 0.042 0.012 0.487 0.065 0.038 0.040

0.090 90.30 0.080 0.025 0.283 0.049 0.024 0.033

0.190 189.70 0.116 0.035 0.217 0.036 0.018 0.039

0.318 318.30 0.151 0.044 0.188 0.030 0.015 0.044

0.474 473.90 0.184 0.051 0.166 0.028 0.012 0.052

0.655 655.40 0.216 0.061 0.143 0.031 0.010 0.061

0.863 862.90 0.248 0.082 0.101 0.059 0.007 0.083

1.097 1097.20 0.280 0.196 0.145 0.179 0.004 0.200

1.360 1360.00 0.312 0.490 0.442 0.435 0.005 0.493

a Kolmogorov-Smironov distance (K) for different sample sizes n with

discrepancy F ∗
ML and noncentral parameter δ = nF ∗

ML.

b ncx stands for χ2
df (δ), nm stands for N

(
δ, 2n tr[(Σ∗−1Σ0−Ip)

2]
)
, nm2 stands

forN
(
δ+df, 2n tr[(Σ∗−1Σ0−Ip)

2]
)
, nm3 stands for Normal with sample mean

and variance, and nm4 stands for N(δ + df, 2df + 4δ).
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Table 6

Average Kolmogorov-Smirnov distance(AK) for Model 1, df = 14

n F ∗
ML δ RMSEA ncxAK nmAK nm2AK nm3AK nm4AK

400 0.025 9.80 0.042 0.005 0.427 0.035 0.024 0.023

0.090 36.12 0.080 0.013 0.284 0.031 0.017 0.021

0.190 75.88 0.116 0.019 0.203 0.025 0.013 0.023

0.318 127.32 0.151 0.024 0.154 0.021 0.010 0.027

0.474 189.56 0.184 0.028 0.120 0.021 0.008 0.031

0.655 262.16 0.216 0.034 0.093 0.025 0.006 0.037

0.863 345.16 0.248 0.050 0.060 0.046 0.004 0.054

1.097 438.88 0.280 0.120 0.045 0.105 0.002 0.123

1.360 544.00 0.312 0.246 0.181 0.211 0.002 0.248

1000 0.025 24.50 0.042 0.008 0.329 0.038 0.019 0.020

0.090 90.30 0.080 0.015 0.190 0.030 0.012 0.019

0.190 189.70 0.116 0.021 0.131 0.023 0.009 0.023

0.318 318.30 0.151 0.025 0.101 0.018 0.007 0.027

0.474 473.90 0.184 0.029 0.085 0.016 0.006 0.031

0.655 655.40 0.216 0.033 0.072 0.018 0.005 0.035

0.863 862.90 0.248 0.042 0.054 0.034 0.003 0.044

1.097 1097.20 0.280 0.133 0.085 0.116 0.002 0.135

1.360 1360.00 0.312 0.326 0.295 0.284 0.002 0.326

a Average Kolmogorov-Smironov distance (AK) for different sample sizes n with

discrepancy F ∗
ML and noncentral parameter δ = nF ∗

ML.

b ncx stands for χ2
df (δ), nm stands for N

(
δ, 2n tr[(Σ∗−1Σ0 − Ip)

2]
)
, nm2 stands for

N
(
δ + df, 2n tr[(Σ∗−1Σ0 − Ip)

2] + 2[df + 2δ]
)
, nm3 stands for Normal with sample

mean and variance, nm4 stands for N(δ + df, 2df + 4δ).
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Table 7

Average Kolmogorov-Smirnov distance(AK) for Model 1 with different sample sizes, df = 14

F ∗
ML RMSEA n δ ncxAK nmAK nm2AK nm3AK nm4AK

0.090 0.080 50 4.52 0.036 0.483 0.021 0.026 0.020

100 9.03 0.011 0.439 0.026 0.025 0.019

200 18.06 0.010 0.369 0.030 0.022 0.020

400 36.12 0.022 0.421 0.051 0.031 0.037

800 72.24 0.014 0.213 0.030 0.013 0.018

1000 90.30 0.025 0.283 0.049 0.024 0.033

0.474 0.184 50 23.70 0.019 0.326 0.028 0.018 0.028

100 47.39 0.028 0.234 0.030 0.015 0.036

200 94.78 0.028 0.170 0.024 0.011 0.032

400 189.56 0.053 0.211 0.038 0.016 0.057

800 379.12 0.029 0.092 0.017 0.007 0.030

1000 473.90 0.051 0.166 0.028 0.012 0.052

1.097 0.280 50 54.86 0.097 0.148 0.091 0.008 0.104

100 109.72 0.110 0.064 0.099 0.005 0.115

200 219.44 0.111 0.031 0.099 0.003 0.115

400 438.88 0.174 0.084 0.170 0.004 0.181

800 877.76 0.128 0.074 0.111 0.002 0.130

1000 1097.20 0.196 0.145 0.179 0.004 0.200

a Average Kolmogorov-Smironov distance (AK) for different sample sizes n with

discrepancy F ∗
ML and noncentral parameter δ = nF ∗

ML.
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Table 8

Quantile comparison for Model 1 (n = 400, δ = 36.12)

Q− TML 22.0196 28.7702 32.7764 68.9375 75.4350 87.9215

P − TML 1% 5% 10% 90% 95% 99%

Q− ncx 23.8941 30.2580 34.0014 67.4783 73.2377 84.7275

Qdiff − ncx (-1.8745) (-1.4878) (-1.2250) (1.4592) (2.1973) (3.1940)

P − ncx 1.65% 6.63% 11.96% 88.39% 93.60% 98.45%

Pdiff − ncx (-0.65) (-1.63) (-1.96) (1.61) (1.40) (0.55)

Q− nm 12.1095 19.1462 22.8974 49.3624 53.1137 60.1503

Qdiff − nm (9.9101) (9.6240) (9.8790) (19.5751) (22.3213) (27.7712)

P − nm 0.01% 0.44% 1.24% 50.95% 61.24% 77.19%

Pdiff − nm (0.99) (4.56) (8.76) (39.05) (33.76) (21.81)

Q− nm2 11.2630 22.6489 28.7187 71.5412 77.6109 88.9969

Qdiff − nm2 (10.7566) (6.1213) (4.0577) (-2.6037) (-2.1759) (-1.0754)

P − nm2 0.00% 1.16% 4.95% 92.39% 96.10% 99.17%

Pdiff − nm2 (1.00) (3.84) (5.05) (-2.39) (-1.10) (-0.17)

Q− nm3 17.0173 26.7196 31.8918 68.3821 73.5543 83.2566

Qdiff − nm3 (5.0023) (2.0506) (0.8846) (0.5554) (1.8807) (4.6649)

P − nm3 0.18% 3.29% 8.77% 89.41% 93.80% 98.10%

Pdiff − nm3 (0.82) (1.71) (1.23) (0.59) (1.20) (0.90)

Q− nm4 19.5741 28.5253 33.2972 66.9627 71.7345 80.6857

Qdiff − nm4 (2.4455) (0.2449) (-0.5208) (1.9748) (3.7005) (7.2358)

P − nm4 0.51% 4.78% 10.85% 87.80% 92.54% 97.32%

Pdiff − nm4 (0.49) (0.22) (-0.85) (2.20) (2.46) (1.68)

a Empirical quantile (Q − TML) and percent of samples from the simulation that

covered theoretical distribution quantile for δ = 36.12 with n = 400.

b Q−distribution are the quantiles from χ2
df (δ) and P−ncx is the percent of samples

that is less than computed quantile Q− distribution

c Values in parentheses (Qdiff , Pdiff ) are the differences between empirical values

and respective theoretical values from each distribution.
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Table 9

Quantile comparison for Model 1(n = 400, δ = 189.56)

Q− TML 130.7591 149.9324 161.0327 245.6207 259.2872 284.4579

P − TML 1% 5% 10% 90% 95% 99%

Q− ncx 142.7670 159.1783 168.3016 240.0793 251.3053 273.0689

Qdiff − ncx (-12.0079) (-9.2459) (-7.2689) (5.5414) (7.9819) (11.3890)

P − ncx 2.87% 9.01% 14.89% 87.00% 92.38% 97.84%

Pdiff − ncx (-1.87) (-4.01) (-4.89) (3.00) (2.62) (1.16)

Q− nm 136.6503 152.1485 160.4106 218.6997 226.9618 242.4601

Qdiff − nm (-5.8912) (-2.2161) (0.6221) (26.9210) (32.3254) (41.9978)

P − nm 1.73% 5.83% 9.65% 69.89% 77.62% 88.30%

Pdiff − nm (-0.73) (-0.83) (0.35) (20.11) (17.38) (10.70)

Q− nm2 119.5678 144.1716 157.2878 249.8226 262.9388 287.5425

Qdiff − nm2 (11.1913) (5.7608) (3.7449) (-4.2019) (-3.6516) (-3.0846)

P − nm2 0.30% 3.24% 8.08% 91.82% 95.90% 99.20%

Pdiff − nm2 (0.70) (1.76) (1.92) (-1.82) (-0.90) (-0.20)

Q− nm3 125.3587 147.9460 159.9872 244.9381 256.9793 279.5666

Qdiff − nm3 (5.4004) (1.9864) (1.0455) (0.6826) (2.3079) (4.8913)

P − nm3 0.56% 4.23% 9.40% 89.64% 94.35% 98.56%

Pdiff − nm3 (0.44) (0.77) (0.60) (0.36) (0.65) (0.44)

Q− nm4 138.3253 157.4341 167.6210 239.4894 249.6763 268.7851

Qdiff − nm4 (-7.5662) (-7.5017) (-6.5883) (6.1313) (9.6109) (15.6728)

P − nm4 1.99% 8.17% 14.37% 86.69% 91.77% 97.12%

Pdiff − nm4 (-0.99) (-3.17) (-4.37) (3.31) (3.23) (1.88)

a Empirical quantile (Q − TML) and percent of samples from the simulation that

covered theoretical distribution quantile for δ = 189.56 with n = 400.

b Q−distribution are the quantiles from χ2
df (δ) and P −ncx is the percent of samples

that is less than computed quantile Q− distribution

c Values in parentheses (Qdiff , Pdiff ) are the differences between empirical values

and respective theoretical values from each distribution.
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Table 10

Kolmogorov-Smirnov distance(K) for Model 2, df = 33

n F ∗
ML δ RMSEA ncxK nmK nm2K nm3K nm4K

400 0.010 4.00 0.017 0.012 0.997 0.038 0.034 0.027

0.050 20.00 0.039 0.019 0.895 0.071 0.029 0.046

0.100 40.00 0.055 0.051 0.747 0.105 0.026 0.075

0.200 80.00 0.078 0.115 0.533 0.158 0.020 0.134

0.300 120.00 0.095 0.168 0.387 0.198 0.017 0.184

0.400 160.00 0.110 0.201 0.294 0.226 0.013 0.215

0.500 200.00 0.123 0.231 0.231 0.252 0.011 0.243

1000 0.010 10.00 0.017 0.004 0.970 0.050 0.032 0.032

0.050 50.00 0.039 0.011 0.717 0.074 0.023 0.033

0.100 100.00 0.055 0.023 0.547 0.090 0.017 0.040

0.200 200.00 0.078 0.075 0.355 0.134 0.014 0.088

0.300 300.00 0.095 0.124 0.236 0.172 0.011 0.135

0.400 400.00 0.110 0.160 0.173 0.202 0.009 0.169

0.500 500.00 0.123 0.210 0.123 0.240 0.008 0.218

a Kolmogorov-Smironov distance (K) for different sample sizes n with

discrepancy F ∗
ML and noncentral parameter δ = nF ∗

ML.
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Table 11

Average Kolmogorov-Smirnov distance(AK) for Model 2, df = 33

n F ∗
ML δ RMSEA ncxAK nmAK nm2AK nm3AK nm4AK

400 0.010 4.00 0.017 0.006 0.500 0.020 0.017 0.013

0.050 20.00 0.039 0.012 0.490 0.044 0.014 0.025

0.100 40.00 0.055 0.034 0.450 0.059 0.012 0.043

0.200 80.00 0.078 0.079 0.351 0.087 0.010 0.086

0.300 120.00 0.095 0.116 0.263 0.108 0.008 0.121

0.400 160.00 0.110 0.139 0.198 0.123 0.006 0.144

0.500 200.00 0.123 0.160 0.147 0.136 0.005 0.163

1000 0.010 10.00 RMSEA 0.002 0.499 0.030 0.016 0.016

0.050 50.00 0.039 0.007 0.438 0.047 0.012 0.017

0.100 100.00 0.055 0.016 0.359 0.055 0.009 0.023

0.200 200.00 0.078 0.053 0.245 0.072 0.007 0.057

0.300 300.00 0.095 0.088 0.164 0.090 0.006 0.091

0.400 400.00 0.110 0.111 0.110 0.106 0.005 0.115

0.500 500.00 0.123 0.146 0.063 0.127 0.004 0.149

a Average Kolmogorov-Smironov distance (AK) for different sample sizes n with

discrepancy F ∗
ML and noncentral parameter δ = nF ∗

ML.
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Table 12

Kolmogorov-Smirnov distance (K) for Model 3, df = 14, κ = 0.1584

n F ∗
ML δ RMSEA ncxK nmK nm2K nm3K

400 0.025 9.80 0.042 0.008 0.716 0.069 0.046

0.090 36.12 0.080 0.025 0.443 0.061 0.033

0.190 75.88 0.116 0.037 0.322 0.050 0.026

0.318 127.32 0.151 0.048 0.256 0.047 0.023

0.474 189.56 0.184 0.059 0.212 0.049 0.018

0.655 262.16 0.216 0.071 0.172 0.059 0.014

0.863 345.16 0.248 0.096 0.111 0.093 0.008

1.097 438.88 0.280 0.174 0.064 0.173 0.005

1.360 544.00 0.312 0.345 0.230 0.311 0.005

1000 0.025 24.50 0.042 0.011 0.525 0.076 0.038

0.090 90.30 0.080 0.021 0.306 0.062 0.024

0.190 189.70 0.116 0.032 0.230 0.050 0.019

0.318 318.30 0.151 0.041 0.193 0.041 0.015

0.474 473.90 0.184 0.049 0.167 0.038 0.012

0.655 655.40 0.216 0.059 0.140 0.043 0.010

0.863 862.90 0.248 0.079 0.092 0.070 0.006

1.097 1097.20 0.280 0.193 0.099 0.219 0.004

1.360 1360.00 0.312 0.456 0.362 0.401 0.004

a Kolmogorov-Smironov distance (K) for different sample size n with

discrepancy F ∗
ML and noncentral parameter δ = nF ∗

ML.

b ncx stands for χ2
df ((1 + κ)−1δ), nm stands for N(δ, ω), where ω =

n
{
2(1 + κ) tr[(Σ∗−1Σ0 − Ip)

2] + κ[tr(Σ∗−1Σ0 − Ip)]
2
}
, nm2 stands

for N
(
δ + (1 + κ)df, ω + (1 + κ)2[2df + 4δ]

)
, and nm3 stands for

Normal with sample mean and variance.
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Table 13

Average Kolmogorov-Smirnov distance(AK) for Model 3, df = 14, κ = 0.1584

n F ∗
ML δ RMSEA ncxAK nmAK nm2AK nm3AK

400 0.025 9.80 0.042 0.005 0.440 0.039 0.025

0.090 36.12 0.080 0.014 0.299 0.037 0.018

0.190 75.88 0.116 0.020 0.213 0.032 0.013

0.318 127.32 0.151 0.026 0.161 0.029 0.011

0.474 189.56 0.184 0.031 0.124 0.028 0.009

0.655 262.16 0.216 0.036 0.093 0.033 0.006

0.863 345.16 0.248 0.053 0.056 0.051 0.004

1.097 438.88 0.280 0.120 0.034 0.102 0.002

1.360 544.00 0.312 0.237 0.159 0.194 0.002

1000 0.025 24.50 0.042 0.005 0.349 0.043 0.020

0.090 90.30 0.080 0.013 0.207 0.037 0.012

0.190 189.70 0.116 0.019 0.144 0.030 0.009

0.318 318.30 0.151 0.024 0.109 0.026 0.007

0.474 473.90 0.184 0.028 0.089 0.024 0.006

0.655 655.40 0.216 0.032 0.072 0.025 0.004

0.863 862.90 0.248 0.041 0.047 0.038 0.002

1.097 1097.20 0.280 0.135 0.066 0.115 0.001

1.360 1360.00 0.312 0.306 0.241 0.233 0.002

a Average Kolmogorov-Smironov distance (AK) for different sample size n

with discrepancy F ∗
ML and noncentral parameter δ = nF ∗

ML, and with ncx

etc as in Table 12.
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Table 14

Quantile comparison for Model 3 (n = 400, δ = 36.12, κ = 0.1584)

Q− TML 22.149 29.2531 33.364 72.7484 79.7355 93.7186

(1 + κ)−1TML 19.12034 25.25302 28.8018 62.80076 68.83244 80.90349

P − TML 1% 5% 10% 90% 95% 99%

Q− nxc 20.7295 26.5867 30.0555 61.5349 67.005 77.9491

Qdiff − ncx (-1.60916) (-1.33368) (-1.2537) (1.26586) (1.827441) (2.954388)

P − nxc 1.62 6.65 12.208 88.518 93.786 98.43

Pdiff − nxc (-0.62) (-1.65) (-2.208) (1.482) (1.214) (0.57)

Q− nm 12.1095 19.1462 22.8974 49.3624 53.1137 60.1503

Qdiff − nm (10.0395) (10.1069) (10.4666) (23.386) (26.6218) (33.5683)

P − nm 0.012 0.448 1.23 45.752 55.43 71.456

Pdiff − nm (0.988) (4.552) (8.77) (44.248) (39.57) (27.544)

Q− nm2 8.4067 21.279 28.1412 76.5539 83.416 96.2883

Qdiff − nm2 (13.7423) (7.9741) (5.2228) (-3.8055) (-3.6805) (-2.5697)

P − nm2 0.002 0.78 4.034 93.052 96.616 99.25

Pdiff − nm2 (0.998) (4.22) (5.966) (-3.052) (-1.616) (-0.25)

Q− nm3 16.2584 26.8093 32.434 72.116 77.7406 88.2915

Qdiff − nm3 (5.8906) (2.4438) (0.93) (0.6324) (1.9949) (5.4271)

P − nm3 0.13 3.116 8.666 89.376 93.852 98.044

Pdiff − nm3 (0.87) (1.884) (1.334) (0.624) (1.148) (0.956)

a Compare empirical quantile (Q−TML) and percent of samples from the simulation that

covered theoretical distribution quantile for δ = 36.12 with n = 400, κ = 0.1584.

b (1 + κ)−1TML is calculated for the comparison to noncentral chi-square distribution.

c Q − distribution are the quantiles from χ2
df (δ) and P − ncx is the percent of samples

that is less than computed quantile Q− distribution

d Values in parentheses (Qdiff , Pdiff ) are the differences between empirical values and

respective theoretical values from each distribution.
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Table 15

Quantile comparison for Model 3 (n = 400, δ = 189.56, κ = 0.1584)

Q− TML 128.2762 148.0063 159.1807 250.8239 265.2447 293.5672

(1 + κ)−1TML 110.7357 127.7679 137.4143 216.5262 228.9751 253.4247

P − TML 1% 5% 10% 90% 95% 99%

Q− nxc 121.2977 136.4081 144.8371 211.702 222.2301 242.6834

Qdiff − ncx (-10.562) (-8.64023) (-7.42282) (4.824157) (6.744952) (10.74132)

P − nxc 2.86 9.338 15.498 87.172 92.666 97.848

Pdiff − nxc (-1.86) (-4.338) (-5.498) (2.828) (2.334) (1.152)

Q− nm 136.6503 152.1485 160.4106 218.6997 226.9618 242.4601

Qdiff − nm (-8.3741) (-4.1422) (-1.2299) (32.1242) (38.2829) (51.1071)

P − nm 2.1 6.534 10.652 66.722 74.496 85.546

Pdiff − nm (-1.1) (-1.534) (-0.652) (23.278) (20.504) (13.454)

Q− nm2 109.88 137.9714 152.9468 258.5988 273.5742 301.6656

Qdiff − nm2 (18.3962) (10.0349) (6.2339) (-7.7749) (-8.3295) (-8.0984)

P − nm2 0.154 2.332 6.878 93.046 96.704 99.382

Pdiff − nm2 (0.846) (2.668) (3.122) (-3.046) (-1.704) (-0.382)

Q− nm3 120.9626 145.3586 158.3641 250.1175 263.123 287.519

Qdiff − nm3 (7.3136) (2.6477) (0.8166) (0.7064) (2.1217) (6.0482)

P − nm3 0.564 4.192 9.53 89.686 94.422 98.514

Pdiff − nm3 (0.436) (0.808) (0.47) (0.314) (0.578) (0.486)

a Compare empirical quantile (Q− TML) and percent of samples from the simulation that

covered theoretical distribution quantile for δ = 189.56 with n = 400, κ = 0.1584.

b (1 + κ)−1TML is calculated for the comparison to noncentral chi-square distribution.

c Q−distribution are the quantiles from χ2
df (δ) and P −ncx is the percent of samples that

is less than computed quantile Q− distribution

d Values in parentheses (Qdiff , Pdiff ) are the differences between empirical values and

respective theoretical values from each distribution.
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Table 16

Kolmogorov-Smirnov distance(K) for Model 4, df = 14, κ = 2.25

n F ∗
ML δ RMSEA ncxK nmK nm2K nm3K

400 0.025 9.80 0.042 0.012 0.896 0.106 0.048

0.090 36.12 0.080 0.013 0.659 0.138 0.046

0.190 75.88 0.116 0.030 0.484 0.138 0.041

0.318 127.32 0.151 0.046 0.368 0.134 0.035

0.474 189.56 0.184 0.060 0.284 0.134 0.029

0.655 262.16 0.216 0.077 0.211 0.150 0.022

0.863 345.16 0.248 0.106 0.135 0.181 0.017

1.097 438.88 0.280 0.166 0.063 0.229 0.012

1.360 544.00 0.312 0.267 0.099 0.290 0.011

1000 0.025 24.50 0.042 0.010 0.744 0.136 0.048

0.090 90.30 0.080 0.019 0.463 0.149 0.038

0.190 189.70 0.116 0.031 0.328 0.143 0.030

0.318 318.30 0.151 0.042 0.250 0.137 0.026

0.474 473.90 0.184 0.053 0.194 0.131 0.021

0.655 655.40 0.216 0.066 0.143 0.139 0.017

0.863 862.90 0.248 0.092 0.076 0.168 0.012

1.097 1097.20 0.280 0.170 0.040 0.227 0.008

1.360 1360.00 0.312 0.331 0.205 0.318 0.007

a Kolmogorov-Smironov distance (K) for different sample sizes n with

discrepancy F ∗
ML and noncentral parameter δ = nF ∗

ML, and ncx etc

as in Table 12.
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Table 17

Average Kolmogorov-Smirnov distance(AK) for Model 4, df = 14, κ = 2.25

n F ∗
ML δ RMSEA ncxAK nmAK nm2AK nm3AK

400 0.025 9.80 0.042 0.007 0.490 0.056 0.027

0.090 36.12 0.080 0.008 0.416 0.078 0.025

0.190 75.88 0.116 0.017 0.326 0.082 0.021

0.318 127.32 0.151 0.024 0.254 0.083 0.018

0.474 189.56 0.184 0.031 0.198 0.085 0.015

0.655 262.16 0.216 0.042 0.150 0.090 0.012

0.863 345.16 0.248 0.067 0.099 0.100 0.008

1.097 438.88 0.280 0.115 0.036 0.119 0.006

1.360 544.00 0.312 0.187 0.053 0.147 0.005

1000 0.025 24.50 0.042 0.004 0.449 0.075 0.026

0.090 90.30 0.080 0.012 0.314 0.085 0.020

0.190 189.70 0.116 0.019 0.225 0.084 0.016

0.318 318.30 0.151 0.024 0.170 0.083 0.013

0.474 473.90 0.184 0.029 0.130 0.083 0.011

0.655 655.40 0.216 0.034 0.096 0.085 0.008

0.863 862.90 0.248 0.052 0.054 0.094 0.006

1.097 1097.20 0.280 0.116 0.021 0.117 0.004

1.360 1360.00 0.312 0.228 0.127 0.162 0.003

a Average Kolmogorov-Smironov distance (AK) for different sample size n

with discrepancy F ∗
ML and noncentral parameter δ = nF ∗

ML, and ncx etc

as in Table 12.



48

Table 18

Model Thurstone− 1 with n = 213, df = 27, δ = 234.6408 and RMSEA=0.2036

Λ∗ 0.8828 Ψ∗ 0.2207

0.8957 0.1978

0.848 0.281

0.5899 0.652

0.5701 0.675

0.5652 0.6806

0.5429 0.7053

0.6324 0.6001

0.4869 0.7629
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Table 19

Model Thurstone− 3 with n = 213, df = 9, δ = 2.9181 and RMSEA=0.0408

Λ∗ 0.8674 -0.2686 0.0208 Ψ∗ 0.1749

0.8808 -0.237 -0.0572 0.1647

0.8258 -0.2223 -0.0311 0.2677

0.657 0.4448 -0.3202 0.268

0.6297 0.4288 -0.2187 0.3718

0.5965 0.2371 -0.2897 0.504

0.6027 0.32 0.5026 0.2817

0.6456 0.0526 0.2909 0.4959

0.5402 0.3806 0.3008 0.4728
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Figure Captions

Figure 1. QQ plot of TML against ncx with δ = 36.12 for Model 1

Figure 2. QQ plot of TML against nm2 with δ = 36.12 for Model 1

Figure 3. QQ plot of TML against ncx with δ = 189.56 for Model 1

Figure 4. QQ plot of TML against nm2 with δ = 189.56 for Model 1

Figure 5. QQ plot of TML against ncx with δ = 39.95 for Model 2

Figure 6. QQ plot of TML against nm2 with δ = 39.95 for Model 2

Figure 7. QQ plot of TML against ncx with δ = 80.05 for Model 2

Figure 8. QQ plot of TML against nm2 with δ = 80.05 for Model 2

Figure 9. QQ plot of TML against ncx with (1 + κ)−1nF ∗
ML = 31.19 for Model 3

Figure 10. QQ plot of TML against nm2 with δ = 36.12 for Model 3

Figure 11. QQ plot of TML against ncx with (1 + κ)−1nF ∗
ML = 163.64 for Model 3

Figure 12. QQ plot of TML against nm2 with δ = 189.56 for Model 3

Figure 13. QQ plot of TML against ncx with (1 + κ)−1nF ∗
ML = 11.12 for Model 4

Figure 14. QQ plot of TML against nm2 with δ = 36.12 for Model 4

Figure 15. QQ plot of TML against ncx with (1 + κ)−1nF ∗
ML = 58.325 for Model 4

Figure 16. QQ plot of TML against nm2 with δ = 189.56 for Model 4

Figure 17. QQ plot of TML against ncx for Model Thurstone− 1
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Figure 18. QQ plot of TML against nm2 for Model Thurstone− 1

Figure 19. QQ plot of TML against ncx for Model Thurstone− 3

Figure 20. QQ plot of TML against nm2 for Model Thurstone− 3
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