Assessing Indonesia’s sustainable development: long-run trend, impact of the crisis, and adjustment during the recovery period.

Alisjahbana, Armida and Yusuf, Arief Anshory

Department of Economics, Padjadjaran University

4 October 2003

Online at https://mpra.ub.uni-muenchen.de/1736/
MPRA Paper No. 1736, posted 10 Feb 2007 UTC
Indonesia’s Sustainable Development: 
Long-run Trend, Crisis, and Its Adjustment Period*

Armida S. Alisjahbana  
Arief Anshory Yusuf

Department of Economics and Development Studies  
Faculty of Economics, Padjadjaran University  
Bandung, Indonesia

Address for Correspondence:  
Armida Alisjahbana  
Jalan Cilaki no. 15, Bandung 40114, INDONESIA  
Fax no: +62(22)7202865  
Email address: alisjahbana@bdg.centrin.net.id

This paper is based on a research funded under East Asia Development Network’s (EADN) Individual Research Grant 2001-2002 titled “Measuring Sustainable Development in Indonesia: Genuine Savings and Changes in Wealth per Capita”. The authors would like to thank Wawan Hermawan and Victor Firmana for excellent research assistance, Dr. Wisarn Pupphavesa of NIDA, Thailand, Professor Premachandra Athukorala of ANU, Australia and an anonymous discussant for valuable comment and suggestion. The usual disclaimer applies.
Abstract

We adopt the definition of sustainability as “non-declining welfare per capita”, and measure genuine savings and change in wealth per capita as indicator of weak sustainability. The results suggest that the overall trend in sustainability as measured by changes in wealth per capita had shown that the Indonesian economy during the last twenty years had not been on a sustainable path. Despite this, sustainability had been on an improving long-run trend due to the restructuring of the economy away from oil and gas sector, towards more reliant on secondary and tertiary economic activities. However, the need for more appropriate approach in managing mineral, forest resources depletion, as well as environmental degradation caused by industrial sector’s pollution is called for as they had rapidly becoming a growing problem. Measures of sustainability during the economic crisis and its adjustment period clearly show that the crisis had adversely affected the positive trend in sustainability through a combination of reduction in savings rate and increases in natural resources depletion. This has rephrased the importance of economic growth in the context of sustainable development, and provided empirical evidence that economic crisis had created incentives for more rapid natural resources extraction that could endanger sustainable development. Relevant policies to help address both problems are discussed.

JEL Classification: E21, O40, Q01

Keywords: Genuine Savings, Changes in Wealth per Capita, Sustainable Development, Indonesia.
1. Introduction

Untill the 1997-1998’s financial and economic crisis, the “miracle” of rapid economic growth had been widely acknowledged as a norm in many East Asian economies including Indonesia. Some argues, however, that this successful performance was only partially measured and many also believe that this high economic growth has been accompanied by high rate of resource depletion and environmental degradation. Therefore, whether these economies grow on a sustainable path has always been questioned. In addition to that, when the economic turmoil started, this has rised another new question. Did the crisis have any impact on sustainability? How and how far was the consequences and what kind of policy needed to overcome such problems?

More scrutiny and explanation on these questions will be of great importance to the issue of sustainable development in Indonesia. Finding out whether Indonesian long-run trend of development is on sustainable path will be relevant as a lesson learned for future-oriented policy. Additionally, as economic and social cost of the crisis have already been considered enormous, studying its consequence on broader issues of sustainable development in general, or its environmental cost in particular, will provide better understanding on its impact not only to the present but also to the future generation. This paper is an attempt to answer those two questions i.e. whether Indonesian long-run economic development has been on sustainable path, and whether economic crisis that started in 1997 has any consequences on sustainable development.

The most widely quoted definition of sustainable development is that stated in 1987 by the World Commission on Environment and Development (WCED) later known as the Brundtland Commission:
"Economic and social development that meets the needs of the current generation without undermining the ability of future generations to meet their own needs".

Following the publication of the Brundtland report, there was a rapid escalation of alternative definitions of sustainable development and lists are given by several authors (e.g. Pezzey, 1989, Pearce et. al., 1989, and Rees, 1989). Mitlin (1992) notes that, in general, definition involves two components: the meaning of development (i.e. what are the main goals of development: economic growth, basic needs, rights, etc.); and the conditions necessary for sustainability.

Economics defines sustainable development rather compactly as “non-declining welfare per capita” and any measurable and applicable sustainable development indicator has to be able to say whether future generation will be at least as well off as the current generation. To avoid measuring welfare directly, it is argued that “non-declining welfare per capita” could be approached by the concept of “constant capital rule”. As capital stock indicates the ability of an economy to produce output and generate well being, if we can sustain stock of capital, then we can sustain our welfare. Thus, in order to determine whether an economy is on sustainable development path, we only need to know the path of its capital stock over time.

Conventionally, economic notion of capital stock include only man-made or produced capital stock e.g. building, machinery, or infrastructures, but in order to arrive at meaningful notion of sustainable development this concept has to be extended. What constitute capital stock is not only man-made capital but also natural capital, human capital, or even social capital. The sustainable indicator would be better the more complete the inclusion of capital stock by its components.

In its development, two different version of sustainability rules raises from the concept of capital basis for sustainable development: weak sustainability and strong
sustainability rule. Weak sustainability rule states that as long as “total” stock of capital is non-declining i.e. it does not matter, for example, whether stock of natural capital is declining as long as increasing man-made capital can offset its decline, then sustainability is assured. On the other hand, strong sustainability rule insists that in addition to setting total capital stock non-declining, some other form of capital such as natural capital should also be kept intact. Our option of adapting either rule then lies on how we believe in substitutability among forms of capital.

In this study, we adopt the definition of sustainability as non-declining welfare per capita, using capital basis approach for sustainable development, and assuming some degree of substitutability among forms of capital (weak sustainability rule). Those constitute the important framework of this paper to measure a meaningful, applicable, and policy-relevant indicator of sustainable development. Those indicator has to be able to tell us straightforwardly whether or not a development path constitutes a rising or declining well-being per person.

From the three common indicators of weak sustainability i.e. green Net National Product, genuine saving, and changes in wealth per capita, we choose to work on the latter two indicators. As green NNP emphasizes the flow of income rather than stock of capital (income based, rather than capital based), it could not tell us directly and straightforwardly (especially to policy maker) whether or not a country is on a sustainable path (Hamilton, 1994). Genuine saving, on the other hand is defined as the level of saving in the economy over and above the sum of all the capital depreciations in the economy. Intuitively, genuine saving is therefore investment in produced assets and human capital, less the value of depletion of natural resources and the value of accumulated pollutant. If a nation’s genuine saving is positive, then there is an addition to its capital base, and likewise if it is negative there is reduction
in its capital stock. Persistent negative genuine saving means development is not on a sustainable path, i.e. well-being could be declining. However, since our concern is “per capita” well-being, genuine saving could only tell us whether or not total well-being, and not per capita well-being is declining. Hamilton (2000), then proposed change in wealth per capita from which to account for population growth.

2. Earlier Studies on Sustainability Indicators for Indonesia

There are actually some empirical exercises that try to measure indicator of sustainable development specifically for Indonesia, or at least include Indonesia in their cross-country studies. Those are among others Repetto et al (1989), Pearce and Atkinson (1993), Vincent and Castaneda (1997), Hamilton (1999, 2000a, 2000b), Hamilton and Clemens (1996), BPS (1996), and Alisjahbana and Yusuf (2000a, 2000b) of which the classical study done by Repeto et al has been considered have been always cited in almost every literature of green accounting and was not the first application of green accounting for Indonesia, but also a pioneering work in the literature of this area in general. For the period of 1970 to 1984, Repetto, et. al. (1989) estimated “net domestic product” (defined as GDP minus estimates of net natural resources depreciation which covers timber, petroleum, and soil). The result suggested, among others, that while GDP over the period of 1970 to 1984 had increased by 7.4 percent per year, “net” domestic product had increased by only 4.0 percent per year. In 1984 for example, the whole resources depletion from the three natural resource sectors comprised of about 17.9 percent of GDP.

Pearce and Atkinson (1993) devised and estimated an index which was later known as “genuine saving” which cover environmental damage and resource depreciation for 18 countries including Indonesia. This study estimated Indonesia’s
sustainability index of minus 2, and categorized as an unsustainable economy, together with other countries such as Ethiopia and Papua New Guinea.

Vincent and Castaneda (1997) tried to predict the impact of natural resources depletion on a country’s long-run consumption possibilities by either (i) checking whether comprehensive measure of net savings – genuine saving – is positive or negative; or (ii) checking whether the trend in a comprehensive measure of net product (“green” NNP) is upward or downward. The context of this paper is developing countries in Asia that includes Indonesia. Its period of coverage is 1970 to 1992 and minerals (coal and petroleum), metals (copper, iron ore, lead, manganese, and tin), forest (industrial roundwood and fuelwood), and agricultural soils. Results of the study showed that the ratio of total resource rent to GDP in 1992 for example, 0.10 , while ratio of total resource rent to gross domestic saving was 0.31.

The work by Hamilton (1999) has gained widespread recognition considering the estimation of genuine saving now always been included in annual world bank’s World Development Indicators. The measurement of genuine saving was started with the formal treatment of green accounting. Natural resource sector was broadly covered in this work and genuine saving of more than 100 countries was estimated of which its results for Indonesia suggest that genuine saving rate ranges from – 6.4 % in 1979 to 15.51% in 1994. There had been no evidence of persistent negative genuine saving from the results and hence no sign of (weak) unsustainability throughout the period.

Indonesian Central bureau of Statistics (1996) had also started to step forward by conducting case study constructing natural resources account and estimating the Indonesian Eco-Domestic Product. Resources covered were timber, oil, gas, and coal, and by using the net-price method to calculate depletion of resources. The results
suggested that in 1993 total depletion of Rp 36,782 billion had to be subtracted from NDP to arrive at adjusted NDP of Rp 278,038 billion.

Alisjahbana and Yusuf (2000a) constructed the 1990 and 1995 System of Integrated Environmental and Economic Accounting (SEEA) for Indonesia, and derived the imputed environmental costs due to resources depletion, environmental degradation and destruction to the ecosystem. The method applied is based on the UN/UNSTAT SEEA. The study’s coverage included non-financial assets of produced assets: man-made assets and cultivated forests, and non-produced natural assets: land use oil, gas, coal, bauxite and tin. Subtracting imputed environmental costs from Net Domestic Product yielded Eco-Domestic Product (EDP) of Rp 411,763,049 million in 1995 and Rp 189,263,648 million in 1990. Imputed environmental costs of Rp 23,561,351 million constituted about 5.41% of 1995 NDP, i.e. slightly lower than the 5.88% figure for 1990.

In addition to constructing Indonesian SEEA and estimating Green GDP, Alisjahbana and Yusuf (2000b) estimated Indonesia’s genuine saving rates by extending the previous World Bank study by Hamilton and Clemens with regard to: (i) wider coverage, i.e. to include degradation costs due to air and water pollution, (ii) more recent period of coverage that extends from 1980 to 1998, and (iii) identification of relevant policy implications for sustainable development. Despite its slight short run fluctuation, all measure of genuine savings rates reflects the same increasing trend from 1980 to 1995. Extended genuine savings rate (with current education expenditure) started very low at -4 percent in 1980, and ended up at 17 percent in 1995 before started to decline afterwards.

All of the studies discussed above suggest differing estimates of natural resource and environmental degradation. The highest figure (17.9%) produced by
Repetto’s study and the lowest figure reported by Vincent and Castaneda (1997). This variation is mainly due to different coverage of natural resources as well as different methodology applied. Repetto’s relatively higher figure, for example, was mainly due to how deforestation enter the natural resources account. Other studies did not calculate deforestation but mostly estimate timber depletion above its natural growth. The lowest (2.5%) figure produced by Vincent and Castaneda’s study, on the other hand was mainly because the use of “hotelling rent” rent rather than total rent. Alisjahbana and Yusuf (2000a) also reported somewhat low value of adjustment to GDP even though some broad coverage of pollution damage was imputed. The main reason is the use of user cost method rather than net price to calculate depreciation from mineral resources. It is still possible, however, to find a range of consensus of those estimates, if similar methodology had been applied.

3. Methodology and Data

3.1. Measuring Genuine Saving

The following equations summarize the methodology used for estimating Indonesian genuine saving for the period of 1980 – 2000\textsuperscript{3}.

\[ GS = S - D^K - D^{NR} - D^R - ED \]  \[1\]
\[ S = Y - C \]  \[2\]
\[ C = C^P + C^G - \left( C_{ED}^G + C_H^G + C_{RD}^G \right) \]  \[3\]
\[ ED = ED^L + ED^G \]  \[4\]
\[ D^{NR} = \sum_i r_i q_i \]  \[5\]
\[ D^R = \sum_j s_j (h_j - g_j) \]  \[6\]
\[ ED^L = \sum_m \sum_n \text{ac}_{mn} \cdot p_{mn} \cdot Q_n \]  

\[ ED^G = mc \cdot CO_2 \]

Where:

- \( GS \) = Genuine Saving
- \( Y \) = Gross National Product (GNP)
- \( S \) = Gross (conventional) saving
- \( C \) = (Adjusted) consumption expenditure
- \( C^P \) = Private/household consumption expenditure
- \( C^G \) = Government consumption (current government spending)
- \( C^G_{ED} \) = Current government spending on education
- \( C^G_H \) = Current government spending on health
- \( C^G_{RD} \) = Current government spending on research and development
- \( D^K \) = Depreciation of man-made (produced) capital stock
- \( D^{NR} \) = Depreciation of non-renewable natural resources
- \( D^R \) = Depreciation of renewable natural resources
- \( ED \) = Environmental degradation
- \( ED^L \) = Environmental degradation from local pollution
- \( ED^G \) = Environmental degradation from global pollution
- \( i = 1, 2, 3, \ldots \) (type of non-renewable natural resource)
- \( r_i \) = Unit rent of non-renewable resource \( i \)
- \( q_i \) = Quantity of non-renewable resource \( i \) extracted
- \( j = 1, 2, 3, \ldots \) (type of renewable natural resource)
- \( s_j \) = Unit rent of renewable resource \( j \)
- \( h_j \) = Quantity of renewable resource \( j \) harvested
- \( g_j \) = Natural growth of renewable resource \( j \)
- \( m = 1, 2, 3, \ldots \) (type of pollutant i.e. \( NO_2, SO_2, \ldots \) etc.)
- \( n = 1, 2, 3, \ldots \) (sub-sector of manufacturing sector)
- \( \text{ac}_{mn} \) = Unit cost of abating emission of pollutant \( m \) in manufacturing sector \( n \) (abatement cost)
- \( p_{mn} \) = Volume of pollutant \( m \) emitted per unit of output produced by manufacturing sector \( n \) (pollution intensity)
- \( Q_n \) = Output of manufacturing sector \( n \)
- \( mc \) = marginal social cost of \( CO_2 \) emission
- \( CO_2 \) = Volume of \( CO_2 \) emitted

**Gross Saving and Adjusted Consumption**

Equation [1] states that genuine saving (GS) is the “true” rate of saving calculated by subtracting depreciation of produced or man-made stock of capital (\( D^K \)), depreciation of non-renewable natural resource (\( D^{NR} \)), depreciation of renewable natural resource (\( D^R \)) and environmental degradation (ED) from gross saving (S).
Depreciation of non-renewable and renewable natural resources is sometimes called “resource depletion” or “resource rent”.

Gross saving \( S \) is calculated by subtracting from Gross National Product \( Y \), adjusted consumption expenditure \( C \). Data for GNP and un-adjusted (conventional) consumption expenditure i.e. private/household consumption expenditure \( C^P \) and current total government spending \( C^G \) was obtained from Asian Development Bank (ADB) macroeconomic database.

In order to measure the “true” saving, we have to re-identify what constitute the “true” consumption and the “true” investment. In conventional national account, type of expenditure spent either by private or by public sector, which is better classified as investment such as spending on education by household sectors, current government spending on education such as subsidy to schools, spending for improving health status, or simply current government spending to support research and development activities are simply counted as current expenditure or consumption.

Assigning those kinds of expenditure as “consumption type” not as “investment type” will simply underestimate the true saving or investment, because those type of spending obviously increase future productive capacity of an economy and each of them has its future return. Type of consumption spending that we reclassify in this study are current expenditure on education \( C^G_{ED} \), health \( C^G_H \), and R&D \( C^G_{RD} \) spent by government sector. Household consumption of those types was not re-classified because we do not have adequate time-series data on those type of expenditure spent by household/private sectors. Equation [3] formally states how to re-classify standard consumption into better-classified (adjusted) consumption.
Depreciation of Non-renewable Natural Resources

Equation [5] shows how to calculate the value of depreciation or depletion of non-renewable natural resources. We include 10 categories of non-renewable natural resources, i.e. crude oil, natural gas, coal, bauxite, nickel ore, gold, silver, iron sand, copper, and tin. The data of extracted quantity of each sub-soil resource \(q_i\) was obtained from “Oil and Gas Mining Statistics” and “Non Oil and Gas Mining Statistics” published annually by the Indonesian Central Board of Statistics (BPS).

We use “net price method” to measure the depletion of sub-soil resources, i.e. by multiplying the quantity of extraction \(q_i\), or the change in stock of sub-soil resources, with its unit rent \(r_i\). The application of net price method was based on the Hotelling rent assumption\(^6\). Unit rent for each resource \(r_i\) is calculated by subtracting unit cost\(^7\) of extraction from its price. Because resource extracted is sold to different market, i.e. domestic and international market with different prices, we have to calculate weighted average price for each of resource. The data from “BPS Mining Statistics” made this calculation possible. This is the advantage of single country estimation of genuine saving compared to the same estimation for across countries such as done by the World Bank. The World Bank estimation simply uses international price and ignores specific condition of a single country.

Annual data of unit cost is hardly found. Hence, for the year in which the unit cost could not be measured (or the data is unavailable), we applied the assumption of real constant cost of production by adjusting for change in price index (wholesale price index). Thus, the variation in the unit cost for the year where data is unavailable (prior to 1990) follows the variation in the price index. The actual data of unit cost of some of the resource are only available for the year 1990 to 2000 from BPS publication "Integrated Environmental and Economic Accounting, 1990-2000". The
cost structure covers primary cost, intermediate cost, and exploration cost. Unit rent for each of the sub-soil resources was obtained by subtracting unit cost from each price. Multiplying this unit rent \( r_i \) with the volume of depletion of each of the sub-soil resources \( q_i \) produces the series of the depletion cost or rent of its respective resources (equation \([5]\)). Since the extraction cost of iron sands and copper are not covered in BPS publication, we follow Hamilton (1998), by assigning a proportion of unit rent from our own calculated price (0.58 for iron sands, and 0.49 for copper).

**Depreciation of Renewable Natural Resources**

Equation \([6]\) shows that instead of multiplying unit rent with quantity of resource harvested, we multiply it with its net depletion or quantity harvested \( h_j \) minus natural growth \( g_j \). Because we only include one type of resource i.e. forest resource, this net depletion is called “excess felling”. Excess felling is defined as the volume of round wood production in excess of its natural growth.

Several strong assumption and simplification had to be made in order to arrive at the estimation of natural or sustainable growth of round wood. We assume that natural growth is proportional to the stock of the standing timber. Data for stock of standing timber is available for the year 1990 to 2000 from BPS Publication\(^8\). The data for the year before 1990 was estimated using trend regression\(^9\). Data for natural growth is also available for the same year (1990 to 2000), with the average proportion from the standing stock of 0.0036. We use this proportion to estimate the natural growth for the year 1980 to 1989.

The annual data on volume of round wood production was available from BPS and Ministry of Forestry. However, it is widely believed that this official data underestimates the true rate of production due to several reasons, such as illegal
logging and shifting cultivation practice. The round wood production data then, was taken from FAOSTAT database on industrial round wood production. It was found that the rate of round wood depletion from this data was greater than from the official source.

The average world export price (calculated from FAOSTAT database.) was used to estimate round wood unit rent. Based on study by ITFMP (ITFMP, 1999), round wood unit rent is estimated to be 72.41 percent of its price. Unit rent of round wood for each respective year was calculated as unit rent percentage of price times price of the respective year. Equation [6] could then be applied.

**Environmental Degradation**

Equation [7] shows how to calculate the value of environmental degradation due to emission of several “local-type” pollutants. Air and water pollution originates from fixed sources, i.e. industrial sources which are mainly factories, from household sources as well as from mobile sources, i.e. transportation sector (such as motor vehicles, aircraft). In this study only pollution from industrial sources was estimated.

For specific type of pollutant, the volume of emission depends on the pollution intensity (volume of pollution load per unit of output), and sectoral composition of the whole industry. Therefore, in order to estimate volume of emission we need to have information on pollution intensity and the structure of the industry.

The pollutants produced by manufacturing sectors, as residuals to air included in this study (subscript m) are Nitrogen dioxide (NO$_2$), Sulfur dioxide (SO$_2$), Carbon monoxide (CO), Volatile Organic Compound (VOC), Particulate, Fine particulate (PM10), Toxic air. Pollutant emitted to water includes Biochemical Oxygen Demand (BOD), Total Suspended Solid (TSS), Toxic water. The above type of pollutant
except toxic sometimes referred to as "conventional air pollutants" and "conventional water pollutants".

Pollution intensity for each type of pollutants used in this study was based on World Bank "Indonesia, Environment and Development" (World Bank, 1994). It is an estimate of pollution intensity by World Bank IPPS (Industrial Pollution Projection System) adjusted for Indonesian condition.\textsuperscript{11} The adjustments made were in separating out manufacturing sector into processing and assembly type of activities (subscript n). Table A1 (in the appendix) shows the pollution intensity by type of pollutant (m) and production activities (n):

Output data was obtained from Input-Output table and annual survey of large and medium manufacturing sectors for the year 1980 - 2000. Using 2-digit industrial classification, we then separated manufacturing sector into assembly and processing categories, and multiplying their output with their pollution intensity to obtain volume of emission for each pollutant type. Assuming constant pollution intensity throughout the 1980 – 2000 period, annual pollution intensity was estimated by adjusting it with each respective year's wholesale price index.

To arrive at the value of environmental degradation (ED\textsuperscript{1}) we applied maintenance cost approach i.e. total cost needed to maintain certain emission of pollution. For each type of pollutant, maintenance cost approach was applied by multiplying pollution load from separated industrial sub-sector (2-digit ISIC) with its abatement cost coefficient (varied by pollutant types and industrial sub-sectors). Abatement cost coefficient was obtained from World Bank IPPS (Industrial Pollution Projection System). Assuming real constant abatement cost, annual abatement cost coefficient was adjusted using each year wholesale price index.
Finally, equation [8] shows how to calculate the value of environmental degradation from emission of “global type” pollutant i.e. CO$_2$. Methodology used in World Bank estimate of genuine savings was adopted to measure the cost of global damage from CO$_2$ emission (Hamilton and Clemens, 1999). It is assumed that global damages are charged to emitting countries on the assumption that the property right to a clean environment lies with the pollutee. The annual data of Indonesian CO$_2$ emission was obtained from World Bank World Development Indicator (WDI). The marginal social cost of a metric ton of CO$_2$ is assumed to be $20 US in 1990 (which was also applied in World Bank genuine saving estimation). The annual marginal social cost was estimated using relevant exchange rate and annual wholesale price index for the year 1980 - 2000.

3.2. Measuring Changes in Wealth Per Capita

Previous discussion suggest that when constant population growth assumption does not hold, then genuine saving is no longer a proper measure of sustainability. Changes in wealth per capita could correct this weakness. We will attempt to estimate changes in wealth per capita every year over the period of 1980 to 2000. Following Hamilton (2000a), we calculate change in welfare per capita as,

$$k = \frac{d}{dt} \left( \frac{K}{N} \right) = \frac{K_t}{N_t} \left( \frac{\Delta K_t}{K_t} - n_t \right)$$

[9]

where

- $k_t$ = Changes in wealth per capita at year $t$
- $K_t$ = Total wealth at year $t$
- $N_t$ = Number of population at year $t$
- $K_t / N_t$ = Wealth per capita at year $t$
\[ \Delta K_t = \text{Changes in wealth at year } t \text{ (later it will be simply genuine saving)} \]
\[ n_t = \text{Population growth at year } t \]

The most difficult part in applying equation [9], is obtaining the total value of wealth (\(K_t\)). Currently, there are several methods and studies in estimating wealth such as individually estimating every components of a nation’s wealth such as done by Kunte, et. al. (1997), or by estimating it indirectly by calculating the present value of per capita consumption such as in Hamilton (2000).

In this study we will use our own estimates of wealth based on our own previous study of green accounting. In Alisjahbana and Yusuf (2000a), we constructed an SEEA\(^{12}\) for the year 1990 and 1995 that required us to calculate the value of non-financial assets (not only produced-assets but also natural assets). However, this wealth estimate is only limited to two years and only covers selected components of wealth. Table A1 (in the appendix) shows the basis of our own estimation of wealth (\(K_t\)). In order to obtain the time series estimate of \(K_t\) we applied the adjusted Perpetual Inventory Method (PIM), i.e. perpetual inventory method adjusted to account for revaluation of the change in the stock price.

4. Result and Discussion

Result of our calculated genuine saving rate is shown in the following Figure 1\(^{13}\), while our calculated change in wealth per capita can be seen from Figure 2. Figures 3 and 4 show detail component of genuine saving rate, i.e. resources depletion and environmental degradation.

[ insert figure 1 ]

From the previous discussion, the advantage of genuine saving and changes in wealth per capita over the other indicators of sustainable development is how those indicators can answer straightforwardly the question of whether an economy is sustainable or in sustainable path? The conceptual framework and the methodology discussed in the previous section suggests that positive genuine saving and/or changes in wealth per capita (for certain period of time) could inform us whether the economy is on a sustainable path.14

Interestingly, the general pattern of the two indicators (genuine saving rates and changes in wealth per capita) suggest different conclusions. Over the period of 1980 to 2000, Indonesia only experienced two year of negative genuine saving rates: one in a “normal year” (1980), and the other during the crisis (1999)15. Based on genuine saving indicator, the Indonesian economy during the 1980-2000 period is sustainable. However, the over-time pattern of changes in wealth per capita suggests differently. As positive changes in wealth per capita only occurred in six years over the same period, the conclusion would be that the Indonesian economy in general (over the 1980-2000 period) is not sustainable. Since genuine saving will be equal to change in wealth per capita only if population growth rate is zero, this means that population growth is still one of the constraint’s to Indonesia’s sustainable development. Increasing aggregate total wealth of an economy does not guarantee sustainable development unless its rate of increase exceeds the growth of population.

From our earlier conception, better indicator of sustainable development have to be in per capita terms since sustainable development is meant to be “non-declining welfare per capita”. Using this definition of sustainability, one could argue that the Indonesian economy over the last twenty years had not been on a sustainable path.
How conclusive is our result depends on several aspects. First, we have not yet able to include some other important component of assets into our calculation. For example, non-timber benefit of forest which many people thinks has been depleted significantly or pollution from non-industrial sources such as from transportation and households, and many others component that could not be calculated because of data and methodological limitation. The inclusion of these omissions would certainly strengthened our conclusion on Indonesia’s “unsustainable economic development”. Second, our conceptual framework suggests that our result is “weak” because it is based on the belief of weak sustainability which was based mainly on strong neo-classical assumption of perfect substitutability between man-made and natural capital. Thus, if the Indonesian economy does not pass the weak sustainability test, it would certainly not pass the strong sustainability test either.

However, some cautions should also be in order. We do not, for example incorporate the value of human capital in calculating the changes in wealth per capita (due to methodological limitation) and we also did not include discovery of natural resources (because of data limitation) as positive changes in wealth. These could drive up our sustainable indicator results and will possibly weaken our conclusion of the unsustainability of the Indonesian economy.


The general trend of both indicators could also be interestingly noted. Both genuine saving rate and change in wealth per capita generally improves over time
with the exception during the crisis period. If this trend continues, then it is a sign of optimism in the context of sustainable development. If we also divide the last two decades into two period i.e. 80s and 90s, we could also says that based on the indicator of changes in wealth per capita, Indonesian development was not sustainable during 1980s but experienced sustainable development during the 1990s (especially when we counterfactually assume of no crisis at the end of the 90s).

[insert figure 3]

The general trend of improving sustainability indicators over time could be explained further by looking at the trend of genuine saving or changes in wealth per capita components (Figures 5.3 and 5.4). First, conventional saving rate had been relatively stable. This “traditional measure” of economic sustainability, i.e. gross national savings had been relatively constant over the period of 1980-1997 ranging from 26.24 per cent of gross national product to the highest level of 33.12 per cent. Second, depreciation of man-made capital had been invariant over time at the rate of 5 percent of GNP. Third, total environmental degradation (local and global environmental degradation) slightly increased over time despite its insignificant magnitude (of around 1.5 to 3 percent of GNP). And finally, total resource depletion exhibit obvious decreasing trend over the period, i.e. from almost 20% of GNP in 1980 to only slightly less than 6% in 1997. Therefore, the only logical explanation of improving trend in the genuine saving rate from 1980 to the year just prior to the economic crisis is the significant decreasing trend in natural resources depletion rate.

[insert figure 4]
Looking at the trend of natural resource depletion into more detail (see Figure 1), it is very obvious that constant decline of resource depletion had been due mostly to declining oil and gas depletion as a percentage of GNP. As we were restructuring our economy away from dependence on oil and gas, the economy moved towards more sustainable development. Figure 5 can help explain the significance of this structural change toward sustainable development. This figure clearly shows that up to the year 1997, declining share of the value added of primary sector (agriculture and mining) had been accompanied by increasing share of manufacturing sector’s value added. Thus not only that economic policy during 1980s and 1990s to promote non-oil and gas sector/export help the economy to achieve higher growth, but at the same time also put the economy on a sustainable development path.

Structural shift, however, is not the only explanation. General tendency of the economy moving into more sustainable development as indicated by improving trend of sustainability indicator during the period of 1980-1997 might have been affected by various events and policies over the same period. First, a shift in Indonesia’s industrialization policy from import-substitution in 1970s into export-oriented industrialization strategy since the second-half of 1980s. This shift might have important effect on the characteristic of its industry and the path of its economic growth. Second, different attitude towards foreign direct investment, from very restrictive in the late 1970s into one that is more open since 1986, and even more liberal during 1990s. Third, financial deregulation, particularly in October 1988, that had significantly increased savings.

[insert figure 5]
Lastly, it should be noted that minerals (non-oil and gas) depletion, forest resource depletion (as shown in Figure 3) and environmental degradation (as shown in Figure 4) have shown increasing long-run trend. If this continues, then we have to anticipate its future implication. As Indonesia is a country with abundant resources, once these resources are depleted, it will have adverse consequences on sustainable development. The same is true on the effect of more dominant industrial sector within the economy with its ensuing pollution problems.


If we highlighted the period during the crisis and its ensuing adjustment, we could clearly observe that economic crisis do have significant impact on sustainability. Not only because from the year at the start of the crisis (1997) general trend (that had occurred for the preceding 16 years) of improving sustainability indicator seems to be halted, but more because both indicators had dropped considerably further. Although genuine saving rate was only negative once in 1999, changes in wealth per capita had been consistently negative during the crisis (1998, 1999 and 2000). The latter is an indication of unsustainability.

How has the economic crisis transmitted to unsustainable development? The answer would be found in disentangling the sustainable development indicators by its components. The fall in the sustainable development indicators is a result of two forces at work. First, sharp drop in the conventional saving rate, and secondly significant increase in natural resources depletion, mostly in the form of oil and gas depletion. Both factors had adversely affected sustainable development.
The impact of savings variation on sustainability is substantial, in which case man-made capital is the largest share of total wealth, its up and down over-time would have big impact on sustainability. Compared to the condition during 1980s, in the late 1990s, accumulation of man-made capital (physical investment) had become much more important in the accumulation of total wealth. Saving, then, is very important in the context of sustainable development because this is the source of investment or addition to total man-made capital. When saving decreases, this will substantially reduce our capacity to maintain total wealth, and hence sustainability.

Sharp decline in saving rate was recorded when it dropped from around 30% of GNP in 1997 to only 15% in 1999. Figure A1 (in the appendix) reveal that this decline occurred in every components of savings: private saving (other domestic saving), government saving, and foreign saving (in the form of capital outflow). This clearly had destroyed the capacity to accumulate man-made capital, the important component of total wealth. Lowest points of saving rates in 1998, 1999, and 2000 are thought to be the causes of negative changes in wealth per capita over the same period.

There is common agreement in the literature that economic growth is an important determinant of saving rate (for example Gulati and Thimann, 1997). The scatter plot of saving rate and economic growth of Indonesia reveals that saving rate is strongly associated with economic growth (see Figure A2 in the appendix). When economic crisis caused sharp drop in the economic growth, sharp drop in saving rate became inevitable.

Economic growth is certainly not the only factor that affects savings rate. Other factors such as: fiscal policy, demographics, external factor, and financial market development are among the most important saving determinants (Gulati and
Thimann, 1997). For example, Gross National Savings increased sharply after 1988, when the government of Indonesia started financial deregulation, known as Pakto 88 (1988 October Package). Through this package, the government deregulated the financial sector to mobilize domestic savings to finance economic development. Through this deregulation, the government intended to increase domestic savings by easing the establishment of banks and by lowering the reserve requirement. At the same time through increased competition among banks to attract money held by household, the interest rates increased. As a result, the banking sector was glutted by private savings and deposits. The deregulation had proved to be effective in raising domestic saving, until financial crisis hit Indonesia in 1997.

The second force that drove down the sustainability indicator during the crisis is the jump in resources depletion, mainly for oil and gas. Non-oil and gas resources rent also experienced substantial increases during the crisis although at a lesser degree (Figure 3). Because the depletion is in percentage of GNP, this raises an interesting question. How the economic crisis of the late 1990s had affected change in economic structure by affecting the behavior of certain sector, e.g. mining sector in the economy? Figure 3 suggests that the crisis that started in 1997 had raised rent from oil and gas from 2.6% of GNP in 1996 to almost 8% in 1999 (an almost four times increase within 3 years). This, in turn, contribute significantly to the rise of total resources rent from around 4% of GNP in 1996 to almost 10% in 1999, very inconsistent with its long-run trend. Consequently, this sharp rise had been responsible for the negative genuine saving in 1999, and negative changes in wealth per capita in 1998, 1999, and 2000. In short, rapid increase in the resource rent per GNP due to economic crisis had reduced the sustainability of Indonesian economy.
This interesting phenomenon had raised a theoretical question of whether economic crisis changes the behavior of natural-resources or primary sector in the economy. Empirically, this was what actually happened with the Indonesian economy during the crisis as shown in Figure 5. As the figure suggests, share of the mining and agriculture sector value added rose during the crisis, and these together constituted quite an increase in total share of primary sector’s value added from 25% in 1997 to almost 31% in 1998. On the other hand, share of manufacturing sector’s value added dropped from 27% in 1997 to 25% in 1998. The economic crisis had clearly affected structure of the economy.

There are several links that could relate economic crisis to resource depletion or environmental degradation. The literature on the link between poverty and the environment argues that in the situation of open access resources, poor people tend to deplete resource more rapidly because poor people usually have lower personal discount rate. Unemployment and poverty that increased during the crisis had raised the number of poor people and accordingly, rate of natural resource depletion (for example forest depletion) will increase. Environmental degradation could also be driven by increasing poverty incidence, because in a period of economic hardship, assets (including natural assets) liquidation could be seen as an inevitable answer.

Other explanations of the indication that Indonesia economy behave more resource/environment-intensively during economic crisis is related to the relationship between natural resources depletion for export and currency depreciation (Dauvergne, 1999). Indonesian economic crisis was accompanied (and also triggered) by sharp depreciation of the Rupiah and this has increased the exploitation and export of natural resources sector because production costs were mainly in local currency but profit from exporting the commodities are in foreign currencies. Price of resource
commodities relative to non-resource commodities had attracted more exploitation of natural resources, and this is what apparently happened during the crisis, as Dauvergne (1999) for example stated:

… Mining exploitation has apparently increased during the crisis, including by small miners who are exceptionally difficult to supervise. The Indonesian government awarded 50 contracts in February 1998 to mine gold, coal, diamonds, and nickel, bringing the total number of mining contracts in Indonesia to 269 (Sunderlin, 1998:7). The government is now encouraging foreign investment in the mining sector to try and maximize its foreign currency earnings.…

Calculation of resource rents reveals that most of the increase in resources rent during the crisis is due to sharp increases in the value of unit rent. Rapid depreciation of the rupiahs is responsible for the rise. Thus, this strengthened our argument that economic crisis had substantially and negatively affected Indonesia’s sustainable development which was mostly channeled through significant currency depreciation and its effects on resources rent.

As the economic crisis has reached its peak, we would expect that savings rate would improve and resources depletion would slow down, and hence contribute to an improvement in the overall economic sustainability. Lower saving rate was mainly due to lower economic growth that now seems on the recovery, and currency value had been stabilized. The positive recent macroeconomic development of the Indonesian economy would likely to imply the end of high resources depletion as had happened during the height of the crisis. On the optimistic side, we would expect that when the economy had returned to its normal situation, Indonesia’s sustainable development would again be on its improving long-run trend.
5. Concluding Remarks and Policy Implication

The overall trend in sustainability indicator as measured by both genuine savings and changes in wealth per capita had shown that the Indonesian economy during the last twenty years had not been on a sustainable path. Despite this, sustainability had been on an improving trend during the 1980s and 1990s until just prior to the economic crisis. The improvement in long-run trend of sustainability is due to the restructuring of the economy away from oil and gas sector, towards more reliant on secondary and tertiary economic activities. Economic policies in the 1980s and 1990s that had accelerated structural change in the end had the beneficial effect on sustainable development.

Although the share of oil and gas sector in the Indonesian economy had been on a decline with its positive effect on sustainability, the other development is on the increasing trend in the other minerals extraction, with concurrent unsustainable practice of forest depletion, and rapid share of environmental degradation from industrial pollution. Policies related to natural resources management specifically could be used to maintain optimal resource extraction path, to create proper regulation of property rights, royalties, concessions, command and control regulation and zoning of natural resources management.

In addition, the fact that resources rent was significantly influenced by unit rent in term of its magnitude and fluctuation requires this type of policy to create regulatory and institutional conditions, and the proper allocation of user charges, fees and rents. Certain policies in relation to control environmental degradation would be in the form of commitment and protection of critical environmental expenditures. The challenge is for the government to find an appropriate balance among these instruments and to enforce any environmental regulation in an effective manner.
It has been shown that economic growth per se has a profound positive effect on an economy’s path to sustainable development.\textsuperscript{17} Economic growth translates into higher savings, and consequently increases our capacity to add to our total wealth. An overall macroeconomic stability has to be achieved in order to attain higher growth rate in a more sustainable manner. Policies that would facilitate conventional savings rate are to be prioritized aside measures to improve the economic performance, or growth in itself. Policies such as: fiscal and monetary policies that encourage the better performance of the economy would fall into this category. Policies to maintain exchange rate stability would dampen the behaviour to extract more earnings from the extractive export oriented sector. On a broader policy context, certain aggregate savings-investment behaviour in the more micro context of private (household) savings would need to be encouraged.
References


Figure 1. Gross Saving, Adjusted Gross Saving, Total Capital Depreciation, and Genuine Saving, 1980-2000 (percent of GNP)
Figure 2. Genuine Saving and Change in Wealth Per Capita
Figure 3. Depreciation of man-made and natural capital (Percent of GNP)

Figure 4. Environmental degradation (Percent of GNP)
Figure 5. Share of Sectoral Value Added to GDP (Percent)
Table A1
Pollution intensities: processing versus assembly
(in lbs. per Rp million of output value - 1989)

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>Assembly</th>
<th>Processing</th>
<th>Ratio Processing/Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;New&quot; Pollutants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile Organic Compounds (Air)</td>
<td>9.609</td>
<td>9.495</td>
<td>1.0</td>
</tr>
<tr>
<td>Lead (Air)</td>
<td>0.00048</td>
<td>0.00289</td>
<td>6.0</td>
</tr>
<tr>
<td>Toxic Release (All Media)</td>
<td>4.806</td>
<td>13.085</td>
<td>2.7</td>
</tr>
<tr>
<td>Bio-accumulative Metal (All Media)</td>
<td>0.254</td>
<td>0.987</td>
<td>3.9</td>
</tr>
<tr>
<td>&quot;Traditional&quot; Air Pollutants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine Particulate (Air)</td>
<td>0.679</td>
<td>3.037</td>
<td>4.5</td>
</tr>
<tr>
<td>Sulfur Dioxide (Air)</td>
<td>7.394</td>
<td>24.03</td>
<td>3.3</td>
</tr>
<tr>
<td>Total Particulate (Air)</td>
<td>2.518</td>
<td>15.39</td>
<td>6.1</td>
</tr>
<tr>
<td>Nitrogen Dioxide (Air)</td>
<td>4.138</td>
<td>17.50</td>
<td>4.2</td>
</tr>
<tr>
<td>Carbon Monoxide (Air)</td>
<td>7.193</td>
<td>17.39</td>
<td>2.4</td>
</tr>
<tr>
<td>&quot;Traditional&quot; Water Pollutants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemical Oxygen Demand (Water)</td>
<td>7.006</td>
<td>5.458</td>
<td>0.8</td>
</tr>
<tr>
<td>Suspended Solids (Water)</td>
<td>2.632</td>
<td>36.27</td>
<td>13.8</td>
</tr>
</tbody>
</table>

Table A2

The stocks and accumulation of man-made and non-produced natural assets 1995 (million rupiahs)

<table>
<thead>
<tr>
<th>Type of assets</th>
<th>Opening stocks</th>
<th>Use of products</th>
<th>Consumption of fixed assets</th>
<th>Imputed environmental costs</th>
<th>Adjustments relating to accumulation</th>
<th>Other adjustments</th>
<th>Closing stocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produced assets</td>
<td>2,466,700,968</td>
<td>151,608,118</td>
<td>(43,484,328)</td>
<td>(6,623,532)</td>
<td>797,470</td>
<td>137,311,624</td>
<td>2,706,310,320</td>
</tr>
<tr>
<td>Man-made assets</td>
<td>1,008,920,000</td>
<td>151,608,118</td>
<td>(43,484,328)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultivated Forests</td>
<td>1,457,780,968</td>
<td></td>
<td>(6,623,532)</td>
<td>797,470</td>
<td></td>
<td>13,723,800</td>
<td>1,465,678,706</td>
</tr>
<tr>
<td>Teak</td>
<td>9,318,732</td>
<td></td>
<td></td>
<td>529,100</td>
<td></td>
<td>462,700</td>
<td>10,310,532</td>
</tr>
<tr>
<td>Deep-forest</td>
<td>1,448,462,236</td>
<td></td>
<td>(6,623,532)</td>
<td>268,369</td>
<td></td>
<td>13,261,100</td>
<td>1,455,368,174</td>
</tr>
<tr>
<td>Non-produced natural assets</td>
<td>1,618,688,849</td>
<td></td>
<td>(16,937,819)</td>
<td>36,980,577</td>
<td></td>
<td>202,474,056</td>
<td>1,841,205,663</td>
</tr>
<tr>
<td>Air</td>
<td>(6,825,420)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed</td>
<td>(6,189,076)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>(636,343)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>(1,596,906)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land use</td>
<td>921,459,949</td>
<td></td>
<td>7,617,392</td>
<td>103,663,156</td>
<td></td>
<td>1,032,740,497</td>
<td></td>
</tr>
<tr>
<td>Developed land</td>
<td>298,930,375</td>
<td></td>
<td>7,883,056</td>
<td>35,418,882</td>
<td></td>
<td>342,232,313</td>
<td></td>
</tr>
<tr>
<td>Agricultural land</td>
<td>366,554,787</td>
<td></td>
<td>2,953,297</td>
<td>39,065,861</td>
<td></td>
<td>408,573,945</td>
<td></td>
</tr>
<tr>
<td>Conservation</td>
<td>35,479,300</td>
<td></td>
<td>(3,028,041)</td>
<td>3,746,209</td>
<td></td>
<td>36,197,468</td>
<td></td>
</tr>
<tr>
<td>Forest and other land</td>
<td>220,495,488</td>
<td></td>
<td>(190,920)</td>
<td>25,432,203</td>
<td></td>
<td>245,736,771</td>
<td></td>
</tr>
<tr>
<td>Subsoil resources</td>
<td>697,228,900</td>
<td>(8,515,494)</td>
<td>20,940,859</td>
<td>98,810,900</td>
<td></td>
<td>808,465,166</td>
<td></td>
</tr>
<tr>
<td>Oil</td>
<td>198,524,000</td>
<td>(6,639,879)</td>
<td>274,439</td>
<td>33,833,300</td>
<td></td>
<td>225,991,860</td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td>430,133,300</td>
<td>(1,862,200)</td>
<td>21,021,166</td>
<td>50,125,600</td>
<td></td>
<td>499,417,866</td>
<td></td>
</tr>
<tr>
<td>Coal</td>
<td>63,330,900</td>
<td>(92)</td>
<td>(608,867)</td>
<td>10,761,200</td>
<td></td>
<td>73,483,141</td>
<td></td>
</tr>
<tr>
<td>Bauxite</td>
<td>671,300</td>
<td>(0)</td>
<td>(4,990)</td>
<td>(21,900)</td>
<td></td>
<td>644,410</td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>4,569,400</td>
<td>(13,321)</td>
<td>259,111</td>
<td>4,112,700</td>
<td></td>
<td>8,927,889</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>4,085,389,818</td>
<td>151,608,118</td>
<td>(43,484,328)</td>
<td>(23,561,351)</td>
<td>37,778,046</td>
<td>339,785,680</td>
<td>4,547,515,983</td>
</tr>
</tbody>
</table>

Source: Alisjahbana and Yusuf (2000a)
Figure A1. Development of Savings by Component during the Crisis

Figure A2. Economic Growth and Saving Rate, Indonesia (1980-2000)

Source: BPS
End Notes

1 Weak sustainability rule was formally presented by Hartwick (xxxx) which states that if we invest all rent from natural resource depletion into produced capital stock, then sustainability is assured. This later also known as Hartwick rule.

2 The concept of genuine saving was first introduced by Pearce, et.al., 1993, and extended by Hamilton, 1997.

3 We applied the similar approach as used in our earlier study (Alisjahbana and Yusuf, 2000b).

4 Available from ADB website: http://www.adb.org/Documents/Books/Key_Indicators/2001/INO.pdf

5 We collected these data from annual publication of Ministry of Finance i.e. Financial Notes and Draft State Budget (Nota Keuangan dan Rancangan Anggaran Pendapatan Belanja Negara) from 1980 to 2000. Data for the budget year 1989/1990 was not available. We then use the estimated trend value for this year.

6 This has been widely applied in the most studies on green accounting.

7 Ideally, we have to use marginal cost instead of unit cost. However, data of marginal cost of extraction hardly exists. The use of average cost or unit cost tend to over estimate the resource rent if we still have long time of exhaustion (for e.g. see Vincent and Castaneda 1997).


9 We estimated the trend equation: Stock = a + bYEAR, with R-squared of 0.97.

10 FAOSTAT database could be accessed from http://apps.fao.org

11 IPPS documentation can be downloaded from http://www.worldbank.org/nipr/work_paper/

12 SEEA stands for System of Environmental and Economic Accounting, as system proposed by UN Statistical Division.

13 In Figure 1 we also show adjusted genuine saving which in this case is genuine saving that is comparable to changes in wealth per capita, because not every component of genuine saving could be incorporated when calculating changes in wealth per capita.

14 This issue has been formally discussed by Hamilton which stated that observed current negative genuine saving indicate declining welfare some time in the future (Hamilton, 1999).

15 If changes in wealth per capita have to be comparable with genuine saving, we have to compare it to adjusted genuine saving rate which had always been positive over time.

16 The former (saving) is our ability to accumulate man-made capital, and the latter is the rate of how we deplete our exhaustible natural resources.

17 As opposed to those proponent of limits to growth that only regards sustainability from the strong sustainability rule point of view.