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Abstract

This paper presents the R package bayesGARCH which provides functions for the
Bayesian estimation of the parsimonious but effective GARCH(1,1) model with Student-t
innovations. The estimation procedure is fully automatic and thus avoids the time-
consuming and difficult task of tuning a sampling algorithm. The usage of the package is
shown in an empirical application to exchange rate log-returns.
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1. Introduction

Research on changing volatility using time series models has been active since the pioneer
paper by Engle (1982). From there, ARCH and GARCH type models grew rapidly into
a rich family of empirical models for volatility forecasting during the 80’s. These models
are widespread and essential tools in financial econometrics and have, until recently, mainly
been estimated using the classical Maximum Likelihood technique. The Bayesian approach
offers an attractive alternative which enables small sample results, robust estimation, model
discrimination and probabilistic statements on nonlinear functions of the model parameters.

The choice of the algorithm is the first issue when dealing with MCMC methods and it
depends on the nature of the problem under study. The package bayesGARCH use the
simulation procedure of Ardia (2008, Chapter 5), which relies on the M-H algorithm where
some model parameters are updated by blocks. The densities are constructed from an auxiliary
ARMA process for the squared observations. This methodology avoids the time-consuming
and difficult task, especially for non-experts, of choosing and tuning a sampling algorithm.

The outline of the paper is as follows: The model specification and MCMC scheme are
presented in Section 2. An empirical application is proposed in Section 3. Section 4 concludes.

2. Model, priors and MCMC scheme

A GARCH(1,1) model with Student-t innovations may be written via data augmentation
(Ardia 2008, Chapter 5) as follows:

yt = εt(
ν−2

ν ̟t ht)
1/2 t = 1, . . . , T

εt
iid
∼ N (0, 1) ̟t

iid
∼ IG

(ν

2
,
ν

2

)

ht
.
= α0 + α1y

2

t−1 + βht−1 ,

(1)

where α0 > 0, α1, β > 0 and ν > 2; yt is a scalar dependent variable; N (·, ·) denotes the
standard Normal distribution; IG(·, ·) denotes the Inverted Gamma distribution.

In order to write the likelihood function, we define the vectors y
.
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.
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We propose the following proper priors on the parameters α, β of the preceding model:

p(α) ∝ φN2
(α |µα,Σα) I{α > 0}

p(β) ∝ φN1
(β |µβ ,Σβ) I{β > 0} ,
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where µ· and Σ· are the hyperparameters, I{·} is the indicator function and φNd
is the d-

dimensional Normal density.

The prior distribution of vector ̟ conditional on ν is found by noting that the components ̟t

are independent and identically distributed from the Inverted Gamma density, which yields:
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We follow Deschamps (2006) in the choice of the prior distribution on the degrees of freedom
parameter. The distribution is a translated Exponential with parameters λ > 0 and δ > 2:

p(ν) = λ exp
[

− λ(ν − δ)
]

I{ν > δ} . (3)

Finally, we assume prior independence between the priors.

The recursive nature of the variance equation does not allow for conjugacy between the
likelihood function and the prior density. Therefore, we rely on the M-H algorithm to draw
samples from the joint posterior distribution. The algorithm is fully described in Ardia (2008,
Chapter 5).

3. Illustration

We apply our Bayesian estimation methods to daily observations of the Deutschmark vs
British Pound (DEM/GBP) foreign exchange log-returns. The sample period is from January
3, 1985, to December 31, 1991, for a total of 1 974 observations. This data set can be loaded
using data(dem2gbp). From this time series, the first 750 observations are used to illustrate
the Bayesian approach.

We fit the parsimonious GARCH(1,1) model to the data for this observation window. To that
aim, we use the bayesGARCH function.

R> args(bayesGARCH)

function (y, mu.alpha = c(0, 0), Sigma.alpha = 1000 * diag(1,2),

mu.beta = 0, Sigma.beta = 1000, lambda = 0.01, delta = 2,

control = list())

As a prior distribution for the Bayesian estimation we choose a truncated tri-dimensional
Normal distribution with a zero mean vector and a diagonal covariance matrix. The variances
are set to 1 000 so we do not introduce tight prior information into our estimation. We run
two chains for 1 000 passes each. We emphasize the fact that only positivity constraints are
implemented in the MH algorithm; no stationarity conditions are imposed in the simulation
procedure.

R> set.seed(1)

R> MCMC <- bayesGARCH(y, control = list(n.chain = 2))
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chain: 1 iteration: 10 parameters: 0.0315 0.2446 0.6619 83.25

chain: 1 iteration: 20 parameters: 0.033 0.1851 0.7234 58.96

...

chain: 2 iteration: 9990 parameters: 0.0464 0.2684 0.6581 4.905

chain: 2 iteration: 10000 parameters: 0.0371 0.2626 0.6602 4.809

The sampling algorithm allows to reach very high acceptance rates ranging from 89% for vector
α to 95% for β suggesting that the proposal distributions are close to the full conditionals.
We discard the first 5’000 draws from the overall MCMC output as a burn in period and
merge the two chains to get a final sample’s length of 10’000.

R> smpl <- formSmpl(MCMC, l.bi = 5000)

n.chain: 2

l.chain: 10000

l.bi: 5000

batch.size: 1

smpl size: 10000

The posterior statistics are obtained using the summary method of the coda package.

R> summary(smpl)

Iterations = 1:10000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

alpha0 0.0352 0.0145 0.000145 0.00146

alpha1 0.2450 0.0737 0.000737 0.00716

beta 0.6852 0.0821 0.000821 0.00883

nu 5.7292 1.3740 0.013740 0.14394

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

alpha0 0.0124 0.0247 0.0334 0.0436 0.0686

alpha1 0.1235 0.1941 0.2375 0.2876 0.4125

beta 0.5251 0.6292 0.6881 0.7432 0.8377

nu 3.6407 4.7270 5.5285 6.5641 8.9994

Marginal distributions are plotted using the hist function:
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> par(mfrow = c(2,2), las = 1)

> smpl <- as.matrix(smpl)

> hist(smpl[,"alpha0"], nclass = 30, col = "grey",

+ border = "white", main = expression(alpha[0]), xlab = "")

> box()

> hist(smpl[,"alpha1"], nclass = 30, col = "grey",

+ border = "white", main = expression(alpha[1]), xlab = "")

> box()

> hist(smpl[,"alpha0"], nclass = 30, col = "grey",

+ border = "white", main = expression(beta), xlab = "")

> box()

> hist(smpl[,"nu"], nclass = 30, col = "grey",

+ border = "white", main = expression(nu), xlab = "")

> box()
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Figure 1: Marginal posterior distributions

3.1. Normal innovations and prior restrictions

The function addPriorConditions can be used to impose any type of constraint on the
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model parameters ψ. If, e.g., we want to ensure covariance-stationarity, i.e., α1 + β < 1.
Note that it is important to overwrite the previous function addPriorConditions using
assignInNamespace. Also, we can impose Normality of the innovations in a straightforward
manner by setting the hyperparameter δ = 500.

R> "addPriorConditions" <- function(psi)

+ psi[2] + psi[3] < 1

R> assignInNamespace("addPriorConditions", addPriorConditions, "bayesGARCH")

R> set.seed(1)

R> MCMC <- bayesGARCH(y, lambda = 100, delta = 500,

+ control = list(n.chain = 2))

chain: 1 iteration: 10 parameters: 0.0451 0.1854 0.694 500

chain: 1 iteration: 20 parameters: 0.0492 0.2412 0.6191 500

...

chain: 2 iteration: 9990 parameters: 0.0428 0.1581 0.6917 500

chain: 2 iteration: 10000 parameters: 0.0446 0.2928 0.6017 500

4. Conclusion

This paper has proposed the Bayesian estimation of GARCH(1,1) model with Student-t inno-
vations using the R package bayesGARCH. The methodology based on Ardia (2008, Chapter
5) leads to a fast, fully automatic and efficient estimation procedure compared to alternative
approaches such as the Griddy-Gibbs sampler. Practitioners who need to run the estimation
frequently and/or for a large number of time series should find the procedure helpful. The
GARCH(1,1) model has been applied to foreign exchange log-returns time series.

Finally, if you use bayesGARCH, please cite the package in publications. Use:

> citation("bayesGARCH")

Computational details

The results in this paper were obtained using R 2.8.1 (R Development Core Team 2008) with
the packages bayesGARCH 1.00-01 (Ardia 2007) and coda 0.13-2 (Plummer, Best, Cowles,
and Vines 2008). R itself and all packages used are available from CRAN at http://CRAN.
R-project.org/. Computations were performed on a Genuine Intel➤ dual core CPU T2400
1.83Ghz processor. Code outputs were obtained using options(digits=4, max.print=40).
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