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1 Introduction

Over the past three decades or so quantitative dynamic general equilibrium theory has

become a dominant tool of analysis in the study of the business cycle. As stressed by

Prescott (2005), a crucial element behind the theory’s success is its emphasis on consistency

with micro observations. At the micro level, economic decisions are often discrete and lumpy.

Workers, for example, work either a fixed number of hours per week or do not work at all,

plants are either operated or shut down, and investment of production units is characterized

by investment spikes followed by long periods of investment inactivity.

Despite such micro-level nonconvexities, the aggregate economy can be convex when

individual economic agents are infinitesimal. Incorporating discrete decisions at the micro

level into models of the macroeconomy can nevertheless have important aggregate implica-

tions. Hansen (1985), for instance, introduces a worker’s choice between either working a

fixed number of hours or not working into a prototypical business cycle model. The conse-

quence is that the aggregate intertemporal elasticity of labor supply is much higher than in

a model in which individual choice sets are convex. As a result the aggregate economy is

more volatile. Hansen and Prescott (2005) study the aggregate implications of plant-level

decisions to operate or temporarily shut down. They find that in expansionary times the

economy’s capacity constraint binds and, as in the data, above-trend movements in aggre-

gate output and hours are smoother than fluctuations below trend. In contrast to these two

nonconvexities, Thomas (2002), Khan and Thomas (2003), and Khan and Thomas (2008)

find that, in general equilibrium, lumpy investment observed at the plant-level has essen-

tially no effect on the cyclical properties of aggregate quantities.

Nonconvexities and lumpiness at the micro level also characterize output adjustments

by production plants. In many manufacturing industries plants adjust output by varying

capital utilization along three main margins: intermittent production (i.e., temporarily

closing down), changing the number of shifts, and adding an extra day to the regular

workweek (i.e., running existing shifts on Saturdays).1 These decisions are discrete and

1The next section provides an overview of the empirical literature on output adjustment in manufacturing.



lead to large changes in production volumes at the plant level.

We incorporate such decisions into an equilibrium business cycle model and investigate

two issues.2 First, we study if such micro-level nonconvexities magnify the volatility of

the aggregate economy. In light of the aforementioned results on the effects of micro-level

nonconvexities on the macroeconomy it is not clear if the nonconvexities studied here can

be ignored in the study of the business cycle. As they affect production directly, they can

be of first-order importance. Manufacturing industries, such as the automobile industry,

utilizing the margins of output adjustment described above are some of the most volatile

in the economy and contribute significantly to fluctuations in real GDP over the business

cycle. Is it due to the specific technology used in such industries, which constraints firms to

make lumpy output adjustments and thus magnifies the economy-wide effects of a given set

of aggregate shocks? Or is it because these industries face larger shocks than other sectors

of the economy?

Second, we use the model to investigate the relationship between capacity utilization

and the aggregate effects of monetary policy.3 A large empirical literature documents

that monetary policy shocks have larger effects on aggregate output in recessions than in

expansions.4 One hypothesis to explain such asymmetries put forward in this literature

is based on cyclical fluctuations in economy-wide capacity utilization – monetary policy

easing, the argument goes, should have a larger positive effect on aggregate output in times

when most firms operate below capacity than in times when the majority of them are at

or near capacity constraints. By explicitly modeling the margins of capacity utilization at

2Previously Kydland and Prescott (1988) and Burnside and Eichenbaum (1996) have studied the
cyclical implications of the variation in capital utilization in an equilibrium business cycle model.
Hansen and Sargent (1988) introduce straight time and overtime into such a model, while Hornstein (2002)
introduces shiftwork. These studies, however, incorporate such margins directly into an aggregate production
function operated by a representative plant. Cooley, Hansen and Prescott (1995) and Hansen and Prescott
(2005) focus on the aggregate implications of one discrete output adjustment margin at the plant level – a
decision to operate or shut down. Hall (2000) constructs a detailed model of output adjustment at the plant
level in the automobile industry. In contrast to the above studies, his analysis is carried out in a partial
equilibrium.

3Capacity utilization is a broader concept than capital utilization, although the two are closely related;
see Corrado and Mattey (1997) and Hornstein (2002) for a discussion. We adopt capital utilization as an
operational definition of capacity utilization and use the two terms interchangeably.

4See, for instance, Weise (1999), Lo and Piger (2005), Garcia and Schaller (2002), and
Peersman and Smets (2002).
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the micro level observed in many U.S. industries we provide a model of capacity utilization

at the aggregate level consistent with micro observations. As such it offers a valuable

laboratory to quantitatively evaluate such an argument.

In our model there is a continuum of plants that differ in terms of their individual

productivity. Each plant draws its productivity level from a normal distribution and, given

the costs of running a shift during the regular workweek and overtime (which, in line with

the practices in manufacturing, takes the form of running the shift on Saturdays), decides

whether to operate, how many shifts to run, and whether to schedule overtime work. The

mean of the distribution is stochastic, depending on aggregate technology shocks. The

cost of running a particular shift during a regular workweek and overtime is determined in

general equilibrium by households’ preferences for work at different times of the day and

week. In addition, the cost depends on costs of financing working capital, which in the

short-run are affected by monetary policy shocks, as in Christiano and Eichenbaum (1992)

and Christiano, Eichenbaum and Evans (2005).5

The model is calibrated to standard long-run features of aggregate data, as well as to

cross-sectional observations on capital utilization reported by Mattey and Strongin (1997).

Information from U.S. labor market regulations is also used. Given such calibration, we find

that the quantitative implications of the model are consistent with the empirical findings of

Mayshar and Solon (1993) and Shapiro (1996), discussed in the next section. Specifically,

a large fraction of the cyclical movements in employment in our model (about two thirds)

is accounted for by shiftwork. In addition, the model implies average workweeks of capital

and labor in line with the data. Furthermore, the volatility of capacity utilization at the

aggregate level in the model is of the same order of magnitude as in the data, although

somewhat smaller.

In terms of our first question we find that output in our economy is about 25% less

volatile, for a given set of aggregate technology shocks, than in a model without micro-level

5Empirical evidence documenting the quantitative importance of this transmission channel of monetary
policy is provided, for instance, by Barth and Ramey (2002). According to their estimates, it is particularly
important in durable-goods manufacturing industries – industries characterized by the use of the output
adjustment margins studied here.
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production nonconvexities, which we take as a benchmark. Although output adjustments

at the plant level are lumpy, in general equilibrium the number of plants making such

adjustments varies less in response to technology shocks than would be needed to replicate

the volatility of an otherwise identical economy, but without such micro-level nonconvexities.

For similar reasons, for our second question, we find that although monetary policy shocks do

have larger effects on output in recessions than in expansions, quantitatively the differences

are small.

The rest of the paper is organized as follows. Section 2 reviews empirical evidence on

output adjustment in U.S. manufacturing industries. Section 3 introduces the model econ-

omy with nonconvexities and the benchmark economy. Section 4 describes their calibration.

Section 5 discusses the computational method used to solve the model. The method em-

ployed preserves nonlinearities in the model economy and thus any potential dependence

of the aggregate effects of monetary policy shocks on the state of the economy. Section 6

presents the findings and Section 7 concludes. Details of the computational procedure are

provided in an appendix.

2 Output Adjustment in Manufacturing

A number of studies characterize production processes in manufacturing at the plant level.6

Mattey and Strongin (1997) and Beaulieu and Mattey (1998) classify industries according

to the way plants adjust output. They distinguish between ‘continuous process industries’,

which primarily vary production flows per unit of time, and ‘variable-workweek industries’,

which primarily vary the workweek of capital.

Industries in the latter category usually operate assembly-line production, for which it is

difficult to change the speed of the line (i.e., to change the production flow per unit of time),

but for which the costs of shutting down and re-opening the line are small. Because of these

technological constraints, plants in these industries vary output by adjusting the workweek

of capital, rather than instantaneous production flows. This is carried out along three main

6To the best of my knowledge, similar studies for other sectors of the economy are not available.
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margins: intermittent production, changing the number of shifts, and scheduling Saturday

work on existing shifts.7 Durable-goods industries, such as the automobile, transportation,

and machinery industries, are the prime examples belonging in this category.8 The share

of assembly-line production in the economy is quantitatively important. Clark (1996), for

example, estimates that it accounts for about 20% of U.S. private sector output.

Various empirical studies document the quantitative importance of these margins of

output adjustment, and of shiftwork in particular, at both micro and macro level. At

the macro level, Beaulieu and Mattey (1998) and Shapiro (1996) provide estimates of the

contribution of the movements in the economy-wide capital workweek to fluctuations in

Federal Reserve’s measure of capacity utilization.9 According to Beaulieu and Mattey the

growth rate of capital workweek explains about 55% of the variation in capacity utilization,

while Shapiro’s estimate based on levels is 70%. There is also a large degree of variation in

the use of shiftwork, both in the cross-section and over time. Mattey and Strongin (1997)

document that 27.3% of plants in variable-workweek industries operate on average one shift,

40.4% operate two shifts, and 32.3% operate three shifts. And Mayshar and Solon (1993)

estimate that one half of a decline in employment of manufacturing production workers,

and one third of economy-wide employment, occurs due to declines in the use of afternoon

and night shifts. Employment per shift within a plant changes only little over the business

cycle. These findings are broadly supported by Shapiro (1996).

At the micro level, using panel data from the Survey of Plant Capacity (SPC)10,

Mattey and Strongin (1997) estimate that in variable-workweek industries the workweek of

capital explains about 41% of individual plants’ variation in capacity utilization. Bresnahan and Ramey

(1994), using weekly data for 50 U.S. automobile plants for the period 1972-1983, find that

the most frequent output adjustments are made by weekly shutdowns and Saturday work.

7Intermittent production involves closing a plant down for at least a week. Variation in the number of
days per week, other than adding a Saturday to a five-day workweek, is highly unusual.

8Petroleum or paper industries are examples belonging in continuous process industries.
9Their measure of aggregate capital workweek is obtained by aggregating plant-level workweek from

Survey of Plant Capacity data described below.
10The survey, conducted since 1974, is based on 8,000-9,000 manufacturing establishments. These estab-

lishments constitute a subset of the establishments surveyed by the Bureau of Census in its Annual Survey
of Manufacturing.
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Plants only infrequently change the number of shifts they operate. However, changing the

number of shifts is quantitatively the most important margin of output adjustment at quar-

terly frequency, accounting for about 40% of plant-level output volatility. This is twice

as much as weekly shutdowns aimed at inventory adjustment – quantitatively the second

most important margin. Together, intermittent production, Saturday work, and shiftwork

account for about 80% of output volatility at the plant level. Mattey and Strongin (1997)

obtain broadly similar estimates of the contribution of shiftwork to plant-level output move-

ments from SPC data. They find that 32% of the variation in capacity utilization in variable-

workweek industries is due to shiftwork. For comparison, the second most important margin

in their estimates is weekend work, accounting for only 5% of output variation.

In the following section we incorporate the margins of output adjustment discussed here

into an equilibrium business cycle model.

3 The Model Economies

This section first describes the economic environment common to both models, the economy

with nonconvexities and the benchmark economy. It then introduces into the common

framework the production side of each economy and the labor-leisure choice associated

with it.

3.1 The General Economic Environment

The economies are populated by a stand-in, perfectly competitive household, firm, and

financial intermediary. In addition, there is a monetary authority that issues fiat money. In

the ‘benchmark’ economy the firm operates a standard aggregate production function. In

the ‘economy with nonconvexities’ it instead operates a continuum of heterogeneous plants.

In both economies business cycles are set off by aggregate productivity shocks, which

follow an AR(1) process

(1) log(zt+1) = (1 − ρz) log (z) + ρz log (zt) + ξt+1,
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where ρz ∈ (0, 1), z is the nonstochastic steady-state productivity level, and ξt ∼ N(0, σξ).

As in Christiano and Eichenbaum (1992) and Christiano et al. (2005), in both economies

the firm finances its wage bill through loans from the financial intermediary. Such a financing

requirement comes from the assumption that workers have to be paid before the firm sells its

output.11 In addition, in line with these papers, due to limited participation of the household

in the market for fiat money at the time of open market operations, the monetary authority

can (at least in the short run) affect the firm’s real borrowing costs and thus aggregate

output. Because this aspect of our model is borrowed from the two aforementioned papers,

in what follows we describe it only briefly and refer the reader to those papers for details.

It needs to be stressed that our analysis of the effects of monetary policy shocks on the

economy is purely positive. We do not attempt to justify it on normative grounds.

3.1.1 The Household’s Problem

The stand-in household enters period t with capital stock kt and balances of fiat money mt.

After observing the current state of aggregate productivity zt, but before knowing a (gross)

nominal interest rate Rt, it decides how much of its money balances to keep as cash qt. The

remaining part of the balances, mt − qt, is deposited with the financial intermediary. At

the end of the period the household receives gross interest Rt(mt − qt). All other decisions

of the household are made after observing both zt and Rt.

The preferences of the stand-in household are characterized by the utility function

(2) Et

∞∑

t=0

θt [log(ct) − vt] ,

where θ ∈ (0, 1) is a discount factor, ct is consumption, and vt is disutility from work.

The expectation operator Et reflects the information structure described above. In both

economies, disutility from work depends on the amount of labor supplied to the firm. In

the economy with nonconvexities, in addition, it also depends on the time of the day and

week it is supplied. We therefore describe vt for each economy separately.

11This timing is intended to capture in a simple way companies’ needs to finance working capital observed
in actual economies.
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The household maximizes the utility function (2) subject to two constraints. First, it

must obey a cash-in-advance constraint

(3) ptct ≤ qt + et,

where pt is the price of goods in terms of money and et is nominal labor income received

from firms in cash after Rt has been realized. (As firms finance the wage bill through bank

loans, et is equal to firms’ nominal borrowing). Second, it must obey the budget constraint

ptct + ptkt+1 + mt+1 = qt + et + Rt (mt − qt)

+pt (1 + rt − δ) kt + πIt + πFt,(4)

where rt is the real rental rate at which the household rents out capital to the firm, πIt is

profit of the intermediary, πFt is profit of the firm, and δ ∈ (0, 1) is a depreciation rate.

Ignoring for the moment the household’s labor-leisure choice (we can do so as the utility

function is additively separable in consumption and labor), the household’s problem is to

choose plans for ct, kt+1, qt, and mt+1 in order to maximize (2) subject to (3) and (4).12

The solution to this problem is characterized by the two constraints and a pair of first-order

conditions

Et

[
1

ptct

| zt, Rt−1

]
= θEt

[
1

pt+1ct+1

Rt | zt, Rt−1

]
,(5)

ptEt

[
1

pt+1ct+1

| zt, Rt

]
= θEt

[
1

pt+2ct+2

pt+1 (1 + rt+1 − δ) | zt, Rt

]
.(6)

3.1.2 Firms’ Borrowing and Monetary Policy

The nominal interest rate is controlled by the central monetary authority. The way changes

in the nominal interest rate translate into changes in firms’ real borrowing costs is through

nonparticipation of households’ in the money market at the time of open market operations –

injections of fiat money to financial intermediaries. Due to this market segmentation money

12Below we make assumptions on the stochastic process for (Rt − 1) that guarantee that inflation between
periods t and t + 1 is always positive. Constraint (3) thus holds with equality.
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injections by the central monetary authority need to be absorbed by firms’ borrowing. And,

other things being equal, firms are only willing to do so if their real borrowing costs decline.

As a result, money injections translate into changes in firms’ real borrowing costs, rather

than proportional increases in the aggregate price level as in standard cash-in-advance

models.13

Total loanable funds at the intermediaries’ disposal are therefore given by the sum of

deposits from households, mt − qt, and money injections from the monetary authority, Xt.

The authority uses Xt to adjust the money stock in the economy such that the money

market clears at the interest rate it wants to implement. That is, Xt is chosen so that

(7) mt + Xt = et + qt

holds for any given Rt (notice that mt and qt are predetrmined at the time of the injection).

The net nominal interest rate is assumed to follow an AR(1) process

(8) log(Rt+1 − 1) = (1 − ρR) log
(
R − 1

)
+ ρR log (Rt − 1) + ζt+1,

where ρR ∈ (0, 1), R is the nonstochastic steady-state gross nominal interest rate, and

ζt ∼ N(0, σζ).
14

Intermediation is costless. Perfect competition then ensures that the interest rate

charged for loans is equal to the interest rate paid on deposits. At the end of the pe-

riod, after paying households interest on their deposits, intermediaries are left with net

cash position in the amount of RtXt. This amount is distributed to households in a lump

sum way in the form of profits πIt.

13See Christiano and Eichenbaum (1992) for details.
14By assuming that the nominal interest rate follows an exogenous stochastic process, we are abstracting

from any effects of systematic responses of the Federal Reserve to the economy. This makes the nature of
our experiments, and their results, easier to interpret.
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3.2 Production in the Economy with Nonconvexities

3.2.1 Production Nonconvexities

The firm operates a continuum (of measure one) of production plants. By a ‘plant’ we

mean the smallest production unit in our model at which decisions are made. The plants are

indexed by a pair of idiosyncratic productivity shocks (s, ε). These shocks are independently

and identically distributed across plants and time. They are drawn, independently of each

other, from normal distributions with density functions f(s; zt, σs) and g(ε;κzt, σǫ). We

consider normal distributions a natural choice in the absence of available information on

the distribution of plant-level productivity in the U.S. economy. Notice that the mean

values of the two distributions are stochastic, depending on the realization of aggregate

productivity.

Each period individual plants can adjust output along three margins: closing temporar-

ily down, changing the number of shifts, and scheduling overtime work on existing shifts.

More precisely, each plant can remain idle or operate one, two, or three shifts. The shifts

can be interpreted as a morning, afternoon, and night shift. Provided a plant operates a

shift during a regular workweek, it can also run that shift overtime. In line with practices

in U.S. manufacturing discussed in Section 2 overtime work in our model takes the form of

Saturday work; i.e., adding an extra day to the regular workweek.

The volume of output generated by shift j = {1, 2, 3} during a regular workweek in

period t is

(9) yR
jt(s) =





(
5

7
hR

j

)
skα

t nβ if ηjt ≥ n

0 otherwise.

Here, hR
j ∈ (0, 1) is the length of the shift during the regular workweek, ηjt is the number

of workers employed on that shift, and α, β ∈ (0, 1) and α +β ∈ (0, 1). As the length of the

period is normalized to one, the fraction 5/7 represents the number of days in the regular

workweek. If Saturday work is also scheduled on shift j, the additional output of that shift
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is

(10) yo
jt(ε) =





(
1

7
ho

j

)
εkα

t nβ if ηjt ≥ n

0 otherwise,

where ho
j ∈ (0, 1) is the length of the shift on Saturdays, and the fraction 1/7 represents the

extra day that is added to the regular workweek. The shift lengths hR
j and ho

j are taken as

given.15 Total output of plant (s, ε) in period t is then

(11) yt(s, ε) =
3∑

i=1

[
yR

jt(s) + yo
jt(ε)

]
.

The requirement that the number of workers on each shift must be greater or equal

to n if the shift is to generate positive output introduces a nonconvexity in the plant’s

choice set. This nonconvexity makes output adjustment at the plant level lumpy. Without

such a minimum-staffing requirement, each plant would operate all three shifts and would

adjust output smoothly by varying the number of workers on each shift. Here instead

each plant decides how many shifts to run, and whether to use Saturday work. Minimum-

staffing requirements are characteristic for assembly-type technology: a minimum number

of workers around an assembly line is needed to operate the line and the marginal product

of an additional worker beyond the critical number is small (Mattey and Strongin, 1997).

3.2.2 Realization of Plant-level Uncertainty

In each period, after observing zt and Rt but before observing (st, εt) of the individual

plants, the firm rents capital from the household and allocates it across plants. Once

capital is assigned to a plant, it cannot be changed within the period. Since prior to the

realization of their productivity shocks the plants are identical, and α ∈ (0, 1), the firm

distributes capital across them equally. After that each plant learns its productivity shock

s and decides whether to operate that period. And if it does, how many shifts to run. Once

15The terms sk
α
t n

β and εk
α
t n

β in the production functions (9) and (10) represent instantaneous production
flows. The distinction between production flows and volumes is in the spirit of Lucas (1970) and the
subsequent literature on the workweek of capital (e.g., Kydland and Prescott, 1988).
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the number of shifts is chosen, it cannot be changed within the period. Each plant then

learns its productivity shock ε and decides whether to schedule Saturday work on any of the

shifts it operates during the regular workweek. This timing captures in a tractable way the

behavior of establishments found in empirical studies summarized in Section 2: Saturday

work is used for small changes in production volumes of exiting shifts, while shiftwork is

used for medium-term and rather significant output adjustments.

3.2.3 Optimal Plant Utilization

As the marginal product of an additional worker beyond the threshold level n is zero,

whereas (in equilibrium) the marginal cost is positive, a plant will choose ηjt = n for every

shift it operates.

When a plant runs the jth shift during the regular workweek, it incurs a fixed cost

(12) Rt

(
5

7
hR

j

)
ωR

jtn,

where ωR
jt is the real hourly wage rate for work on that shift during regular hours. When

the plant runs the shift on Saturdays, the cost is

(13) Rt

(
1

7
ho

j

)
ωo

jtn,

where ωo
jt is the real hourly wage rate for Saturday work.

After learning ε, and conditional on operating shift j during the regular workweek, a

plant schedules Saturday work on that shift only if output produced during these overtime

hours is greater or equal to the costs given by (13). Therefore, among the plants operating

the jth shift, plants that run the shift on Saturdays are characterized by

(14) ε ≥ Rtω
o
jtk

−α
t n1−β ≡ φjt

12



and their conditional measure is

(15) µ̂o
jt =

∫
∞

φjt

g (ε;κzt, σε) dε.

These plants’ output and profits generated from Saturday work on the jth shift are therefore,

respectively,

ŷo
jt =

(
1

7
ho

j

)
kα

t nβ

∫
∞

φjt

εg (ε;κzt, σε) dε,(16)

π̂o
jt = ŷo

jt − µ̂o
jtRt

(
1

7
ho

j

)
ωo

jtn.(17)

After observing s, but before knowing ε, a plant operates the jth shift during the regular

workweek only if the shift makes nonnegative expected profit. Plants that operate shift j

are therefore characterized by s that satisfies the inequality

(
5

7
hR

j

)[
skα

t nβ − Rtω
R
jtn

]
+ π̂o

jt ≥ 0

or (after some manipulation)

(18) st ≥ k−α
t

(
Rtω

R
jtn

1−β − 7

5
(hR

j )−1 (n)−β π̂o
jt

)
≡ λjt.

The measure of these plants in the economy is therefore

(19) µR
jt =

∫
∞

λjt

f(s; zt, σs)ds

and their combined output and profits from operating the jth shift during the regular

workweek are, respectively,

yR
jt =

(
5

7
hR

j

)
kα

t nβ

∫
∞

λjt

sf (s; zt, σs) ds(20)

πR
jt = yR

jt − Rt

(
5

7
hR

j

)
ωR

jtnµR
jt.(21)
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As shown below household preferences imply that the first shift, run during the regular

workweek, is the least expensive one. Therefore, the measure of plants that are shut down

in period t is equal to
(
1 − µR

1t

)
.

Finally, notice that the measure of plants in the economy with Saturday work on the

jth shift is given by

(22) µo
jt = µR

jtµ̂
o
jt,

and ŷo
jt and π̂o

jt contribute to aggregate output and profits, respectively,

yo
jt = µR

jtŷ
o
jt(23)

πo
jt = µR

jtπ̂
o
jt.(24)

3.2.4 Aggregate Output, Employment, and Profits

Aggregate output yt is given by the sum of output generated across plants by each shift

during regular and overtime hours

(25) yt =

3∑

j=1

(
yR

jt + yo
jt

)
= Ãtk

α
t

where

(26) Ãt ≡ nβ

3∑

j=1

[(
5

7
hR

j

)∫
∞

λjt

sft(s)ds + µR
jt

(
1

7
ho

j

) ∫
∞

φjt

εgt(ε)dε

]
.

A worker that works overtime on shift j also works regular hours on that shift (although not

every worker who works regular hours also works overtime). In addition, each worker works

only on one shift. Aggregate employment nt is thus obtained as the sum of employment

across plants on each shift

(27) nt = n

3∑

j=1

µR
jt.
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Out of the workers who work on the jth shift, a measure

(28) nR
jt = n

(
µR

jt − µo
jt

)

of them work only regular hours, and a measure

(29) no
jt = nµo

jt

of them work overtime, in addition to regular hours. The aggregate wage bill et, which is

equal to firms’ demand for loanable funds, is given by

(30) et =

3∑

j=1

[(
5

7
hR

j

)
ωR

jt

(
nR

jt + no
jt

)
+

(
1

7
ho

j

)
ωo

jtn
o
jt

]
.

Through its effect on φjt and λjt (equations 14 and 18), a fall in Rt (other things being

equal) increases the measure of plants that operate any given shift or use overtime. This

increases aggregate employment and output. An increase in zt also increases µR
j and µo

j ,

but in a different way. Other things being equal, a shock to zt moves the means of the

distributions with the density functions f and g, and thus affects the areas under the curves

of the density functions between a given λjt, and φjt, and infinity. Instead, a shock to Rt

affects the areas under the curves between λjt(Rt) and λjt(R
∗

t ) [and between φjt(Rt) and

φjt(R
∗

t )], where R∗

t is the new interest rate, for f and g characterized by a given zt. In

addition to its effect on µR
j and µo

j , an increase in zt increases the productivity of all plants

and thus increases output from any shift that a plant decides to run during regular and

overtime hours.

Finally, the firm’s profits are obtained by summing its profits from regular and overtime

work on the three shifts less rental payments for capital services

(31) πFt =
3∑

j=1

(
πR

jt + πo
jt

)
− rkt.

At the start of period t the firm chooses kt in order to maximize (31). Substituting for πR
jt
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and πo
jt in (31) from (21) and (24), the first-order condition for this problem is

(32) rt = αÃtk
α−1
t ,

where Ãt is given by (26).

3.2.5 Aggregate Capacity Utilization

As mentioned in the Introduction, we measure capacity utilization in our model by the

workweek of capital – the number of hours per week the average plant is operated

(33) hkt =
3∑

j=1

[(
5

7
hR

j

)
µR

jt +

(
1

7
ho

j

)
µo

jt

]
.

We also define the workweek of labor – the number of hours per week the average household,

conditional on being employed, works

(34) hlt =
1

nt

3∑

j=1

[(
5

7
hR

j

)
nR

jt +

(
5

7
hR

j +
1

7
ho

j

)
no

jt

]
.

3.2.6 The Household’s Optimal Labor Supply

Households (of whom there is a measure one in the economy) face idiosyncratic shocks

that determine which households work on which shift (and if they also work overtime) and

which do not. A household that is employed on the jth shift receives instantaneous utility

log(cτ
jt) + aj log(lτj ), where

lτj =





1 − 5

7
hR

j if τ = R

1 − 5

7
hR

j − 1

7
ho

j if τ = o.

Here aj > 0 is the relative weight on utility from leisure. A household that does not work

gets log (c0t) + a0 log (l0), where a0 > 0 and l0 = 1. The probability of working only regular

hours on the jth shift is nR
jt; the probability of working overtime, in addition to regular

hours, is no
jt; the probability of not working is then 1 − ∑

3

j=1
(nR

jt + no
jt).
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Households can fully insure against this employment risk. An argument similar to that

in Hansen (1985) then implies that the stand-in household has instantaneous utility function

(35) log (ct) −
3∑

j=1

[
bR
j nR

jt + bo
jn

o
jt

]
,

where bR
j ≡ −aj log(1− hR

j ) and bo
j ≡ −aj log(1− hR

j − ho
j). As will be discussed in Section

4, U.S. data on shiftwork and labor market regulations imply that bR
1 < bR

2 < bR
3 and

bo
1 < bo

2 < bo
3. The stand-in household thus prefers morning work to afternoon and night

work. Notice that the instantaneous utility function is the same as the instantaneous utility

function in (2), with vt defined as

(36) vt ≡
3∑

j=1

[
bR
j nR

jt + bo
jn

o
jt

]
.

The stand-in household chooses {nR
j , no

j}3
j=1 in order to maximize the utility function

(2) subject to (3) and (4), where the nominal labor income et is given by (30). The optimal

labor-leisure choice is characterized by the first-order conditions

(37) ωR
jt =

7

5

(
bR
j

hR
j

)
ct and ωo

jt = 7

(
bo
j − bR

j

ho
j

)
ct

for j = {1, 2, 3}.

3.2.7 Equilibrium

The equilibrium is characterized by stochastic sequences of ct, kt+1, qt, Xt, {nR
jt, n

o
jt}3

j=1,

pt, rt, and {ωR
jt, ω

o
jt}3

j=1 that satisfy the household’s first-order conditions (5), (6), and (37)

and the constraints (3) and (4); the firm’s optimality conditions (32), (28), and (29); and

the money market equilibrium condition (7), where et is given by (30).
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3.3 Production and the Optimal Labor Supply in the Benchmark Econ-

omy

In the benchmark economy, the firm operates a standard aggregate production function

(38) yt = ztk
α
t n1−α

t ,

where yt is aggregate output, nt is aggregate employment, and α ∈ (0, 1). After observing zt

and Rt, the firm chooses kt and nt in order to maximize profits πFt = pt (yt − Rtωtnt − rtkt),

where ωt is the period t real wage rate. The first-order conditions for this problem imply this

economy’s corresponding conditions to (27) and (32) in the economy with nonconvexities

nt = (1 − α)
1

α (zt)
1

α (Rtωt)
−

1

α kt,(39)

rt = αAtk
α−1
t ,(40)

where

(41) At ≡ ztn
1−α
t = (1 − α)

1−α
α (zt)

1

α (Rtωt)
−

1−α
α k1−α

t .

Aggregate output is then given as

(42) yt = Atk
α
t .

Notice that with respect to the economy with nonconvexities, the expression for output

differs only in terms of the definition of At. The nominal wage bill, and thus the firm’s

demand for loans, is given by

(43) et = (ptωt)nt.

Households can work either a fixed number of hours, or not work at all. As before, a

lottery determines which households work and which do not and households can fully insure
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against this risk. The preferences of the stand-in household are thus the same as in Hansen

(1985)

(44) log(ct) − bnt,

where b > 0. The first-order condition characterizing the optimal choice of nt is

(45) ωt = bct.

4 Calibration

Each model economy is calibrated using empirical estimates of steady-state relations among

the model’s variables and parameters. We also use information from U.S. labor market

regulations to calibrate the economy with nonconvexities. The calibration targets are sum-

marized in Table 1 and the resulting parameter values in Table 2. Except for the definition

of A, the steady-state relations implied by equations (5), (6), (40), and (42) are the same

in the two models. So is the resource constraint kt+1 − (1 − δ)kt = yt − ct. The values

of the parameters obtained from these relations therefore apply to both economies. We

describe their calibration first and then explain separately calibration of parameters that

are economy-specific.

4.1 Common Parameters

We interpret the length of the period as one quarter. The parameter α in the expression

for output (42) equals the steady-state share of capital rental income (capital income less

dividends) in GDP and is set equal to 0.365. This is in line with estimates from the U.S.

National Income and Product Accounts. We use a quarterly depreciation rate equal to

0.026, which (from the resource constraint) is consistent with the postwar average capital

to output ratio of 8.519 and the average share of investment in aggregate output equal to

0.223. Without loss of generality, we choose units so that steady-state output is equal to

one. For the capital to output ratio of 8.519, equation (42) implies a steady-state value of
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A equal to 0.438. The discount factor θ is determined by the first-order condition (6) and

the rate of return to capital resulting from the pricing function (40). The resulting value of

θ is 0.981. The steady-state value of Rt is restricted by (5) and (6). The implied value is

large enough to guarantee that inflation is always positive. We choose the other parameters

of the stochastic process for Rt separately for each experiment.

4.2 Parameters Specific to the Benchmark Economy

The parameter b in the utility function (44) is specific to the benchmark economy. As in

Hansen (1985) we set the steady-state value of n equal to 0.31. The first-order condition

(45), once we substitute for ωt from (39), then restricts b to be 2.516. The autocorrelation

coefficient and the standard deviation of the innovation in the stochastic process for log(zt)

are set equal to 0.9 and 0.0067, respectively. These values come from a linearly detrended

Solow residual for the postwar period.

4.3 Parameters Specific to the Economy with Nonconvexities

There are 17 new parameters in the economy with nonconvexities: n, β, {hR
j , ho

j}3
j=1,

{bR
j , bo

j}3
j=1, σs, σε, and κ. Moreover, in this economy zt is not equivalent to the stan-

dard Solow residual. We therefore need to parameterize ρz and σξ in a different way than

we did for the benchmark economy.

As our plant-level production function is similar to one used by Hall (2000), we set β

equal to his estimate of 0.58. There is little evidence in the literature that shift lengths differ

across shifts and across regular workweek and weekend work. We therefore set hR
j = ho

j = h

for all j. In addition, we set h equal to 1/3, which implies that plants operate three

eight-hour shifts. This is consistent with observations for most manufacturing industries

documented by King and Williams (1985). The parameter κ is set equal to 0.38 on the

basis that plants using the overtime margin use it 38% of the time (Hall, 2000); i.e., they

use 38% of the available Saturdays for weekend work.

For the following discussion, it is convenient to express the wage rates {ωR
j , ωo

j}3
j=1 in

terms of ωR
1 – the base wage rate – and overtime and shift premia. We define overtime
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premia as ∆o
j ≡ (ωo

j/ωR
j ) − 1, j = {1, 2, 3}, and shift premia as ∆R

2 ≡ (ωR
2 /ωR

1 ) − 1 and

∆R
3 ≡ (ωR

3 /ωR
1 ) − 1, respectively. The U.S. Fair Labor Standards Act requires that a 50%

premium be paid for hours in excess of 40 hours per week. We therefore set ∆o
j equal to 0.5

for all j.

There are no legal requirements for shift premia. Using data from the Area Wage

Survey (AWS), Shapiro (1986) estimates that for the period 1973-75, the average pay dif-

ferential was 7.8% for work on the second shift and 10.3% for work on the third shift.

King and Williams (1985) obtain similar values for 1984 for the manufacturing sector and

Bresnahan and Ramey (1994) for the period 1972-83 for a panel of plants in the automobile

industry. But Shapiro (1986) argues that because most firms rotate shiftwork among their

workforce, a large part of the premium needed to get workers to undertake it is built into

base wage rates.16 Shapiro (1995) takes this practice into account and obtains a premium

of about 25%. Kostiuk (1990) finds that labor heterogeneity (such as union membership

or firm size) also causes shift premia from AWS to be seriously underestimated. Due to

this uncertainty about the true marginal cost of shiftwork to firms, we choose ∆R
2 and ∆R

3 ,

together with the standard deviations of the idiosyncratic shocks σs and σε so that the

steady state of the model replicates the observed average use of shiftwork and overtime

work across manufacturing establishments.

Mattey and Strongin (1997) provide detailed analysis of the use of the various margins

of output adjustment in manufacturing based on plant-level data from SPC. They report

that, out of the plants that use technology allowing variation in workweek, conditional on

being open, 27.3% of plants operate on average one shift, 40.4% operate two shifts, and

32.3% operate three shifts. In addition, 19% of plants use Saturday work at least on one

shift (information on the use of Saturday work across shifts is not available). Mattey and

Strongin’s estimates also imply that the average plant is shut down for about 0.067 weeks

per quarter.

Given the values for overtime premia, we choose ∆R
2 , ∆R

3 , σs, and σε such that in

steady state: (i) the measure of plants that operate one shift, given by (µR
1 − µR

2 ), is equal

16Labor market regulations do not permit similar practices for overtime premia (Shapiro, 1986).
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to (1 − 0.067) × 0.273 = 0.255; (ii) the measure of plants that operate two shifts, given

by (µR
2 − µR

3 ), is equal to (1 − 0.067) × 0.404 = 0.377; (iii) the measure of plants that

operate three shifts, given by µR
3 , is equal to (1 − 0.067) × 0.323 = 0.301; and (iv) the

measure of plants that use weekend work at least on one shift, given by µo
1, is equal to

(1 − 0.067) × 0.19 = 0.173. Given these targets we obtain ∆R
2 equal to 0.79, ∆R

3 equal to

1.56, σs equal to 0.851, and σε equal to 0.802. Our implied shift premia are thus larger

than those estimated by the aforementioned studies. They are, however, similar to those

obtained by Hornstein (2002) from a general equilibrium model with shiftwork, but without

nonconvexities.

We normalize the base wage rate ωR
1 and the minimum-staffing requirement n such that

the steady-state average wage rate and aggregate employment, given by

(46) ω =
1

n

3∑

j=1

[(
5

7
hR

j

)
ωR

j

(
nR

j + no
j

)
+

(
1

7
ho

j

)
ωo

jn
o
j

]

and equation (27), respectively, are the same as the steady-state wage rate and employment

in the benchmark economy. Using the values for ωR
1 and for shift and overtime premia,

we can back out the utility parameters {bR
j , bo

j}3
j=1 from the first-order conditions for the

labor-leisure choice (37). Their values are provided in Table 2. Finally, the steady-state

value of zt implied by the value of A is 2.35.

Notice that given our calibration, the steady-state values of c, k, y, n, r, and w in the two

economies are the same. We have thus intentionally made the two economies observationally

equivalent in the long run (in the dimensions along which they can be compared) so that

we can focus only on comparing their short-run dynamics.

4.4 Steady-state Workweek of Capital and Labor

Given the observed values for overtime premia and the calibrated values for shift premia

and σε, the model implies that in steady state only 0.004 measure of plants use weekend

work on the second shift, and 6.602 ∗ 10−6 measure of them use weekend work on the third

shift (as mentioned above there are no available observations on the use of these margins
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in the data).

Using µR
j , µo

j , n, and n̄, equations (33) and (34) imply steady-state workweek of capital

and labor equal to 0.464 and 0.243, respectively. These values correspond to 77.9 hours per

week for capital and 40.7 hours per week for labor.

The model implications are broadly in line with U.S. data. For example, using SPC data

for the period 1974-92, Beaulieu and Mattey (1998) estimate that the average workweek

of capital in the whole of manufacturing is about 97.0 hours. Based on the same data

set, Shapiro (1996) reports estimates of workweek of capital for 2-digit SIC industries. In

the transportation equipment industry (a prime example of an industry characterized by

the use of shiftwork and Saturday work), the workweek is 73.6 hours. Using Bureau of

Labor Statistics’ data on Employment and Earnings for the period 1951-90, Shapiro (1996)

estimates the workweek of labor for manufacturing production workers to be 40.4 hours.

These numbers are close to the steady-state values of capital and labor workweeks implied

by our model.

5 Solution Method

For each economy we need to compute aggregate decision rules and pricing functions that

generate stochastic sequences of allocations and prices that satisfy the economy’s equi-

librium conditions. As one of our goals is to investigate if in our model the equilibrium

effects of interest rate shocks are different in different states of the economy, in particular

for different realizations of zt, we need to compute the equilibrium using a method that

preserves any potential nonlinearities. And as in our experiments we allow zt to deviate up

to three times its standard deviation from steady state, local higher-order approximation

methods might not be suitable. We therefore use the projection method, sometimes also

known as the weighted residual method (described by Judd, 1992), which produces a global

approximation of our model.

The projection method enables us to compute decision rules and pricing functions that,

at face value, are linear in Rt, but in which the coefficients that load on to Rt are state
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dependent. The quantitative effects of Rt on the economy can thus vary with the state of

the economy. As an example, consider an equilibrium decision rule for aggregate output.

In the approximate decision rule the terms involving Rt have the form17

yt = ... + aiRt + ai+1ztRt + ai+2ztR
2
t + ai+3z

2
t Rt + ai+4z

2
t R2

t + .... .

Notice that we can re-write the right-hand side as yt = ... + ãRRt + ...., where ãR ≡

ai + ai+1zt + ai+2ztRt + ai+3z
2
t + ai+4z

2
t Rt is state-dependent.

5.1 A Dimension Reducing Approach

Before applying the method, we reduce the size of the equilibrium conditions in two respects.

First, we reduce the dimension of the state-space. Notice that there are five (continuous)

aggregate state variables in our two economies: zt, Rt, kt, mt, and Rt−1. By an appropriate

normalization of nominal variables we eliminate mt: we divide pt, mt, qt, and Xt in the

equilibrium conditions by mt; then we define new variables p̃t ≡ pt/mt, q̃t ≡ qt/mt, and

x̃t+1 ≡ mt+1/mt.

Second, we reduce the number of equilibrium conditions by substitutions. First, we

eliminate p̃t by a substitution from the cash-in-advance constraint, which after the normal-

ization has the form p̃tct = x̃t. This allows us to write the Euler equations (5) and (6),

respectively, as

Et

[
1

x̃t

| zt, Rt−1

]
= θEt

{
1

x̃t

RtEt+1

[
1

x̃t+1

| zt+1, Rt

]
| zt, Rt−1

}
(47)

1

ct

Et

[
1

x̃t+1

| zt, Rt

]
= θEt

{
1

ct+1

(1 + rt+1 − δ)(48)

× Et+1

[
1

x̃t+2

| zt+1, Rt+1

]
| zt, Rt

}
.

Further, we re-write the money market equilibrium condition (7), after we have substituted

17In the actual computation described below we use Chebyshev polynomials instead of ordinary polyno-
mials used in this example.
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for et, as x̃t = (1 − ẽt)
−1 q̃t. Here

ẽt =





b (1 − α)
1

α (zt)
1

α (Rtbct)
−

1

α kt for the benchmark economy

n
∑

3

j=1

[
bR
i µR

jt +
(
bo
i + bR

i

)
µo

jt

]
for the economy with nonconvexities,

where µR
jt and µo

jt are given by (19) and (22), and where the wage rates are eliminated

by substitutions from the household’s first-order conditions (37). Finally, we eliminate rt+1

from the Euler equation (48) by a substitution from the pricing function rt+1 = αAt+1k
α−1
t+1

.

Here At is given by equation (41) in the case of the benchmark economy and by equation

(26) in the case of the economy with nonconvexities. After these substitutions, we are left

with just two Euler equations, (47) and (48), in two unknowns, ct and q̃t.

In order to form expectations about future state of the economy, households use the

stochastic processes (1) and (8) to forecast future zt and Rt, respectively, and the law of

motion for capital kt+1 = Atk
α
t +(1 − δ) kt − ct to forecast future capital stock. Here again,

At is given by equations (41) or (26), depending on which economy we are computing.

The objects we need to compute are approximations to the decision rules ct = c (zt, Rt, kt)

and q̃t = q (zt, kt, Rt−1) that satisfy these Euler equations. The approximate decision rules

ĉ (zt, Rt, kt) and q̂ (zt, kt, Rt−1) are then used to compute the values of other variables.

5.2 Approximating the Distribution of Plants and Agents’ Expectations

Before we can compute ĉ (zt, Rt, kt) and q̂ (zt, kt, Rt−1) we have to approximate the ex-

pectation operators in the Euler equations (47) and (48). We do so using Gauss-Hermite

quadrature (see Judd, 1998, p. 261). In addition, in the economy with nonconvexities we

need to approximate the measures (15) and (19) and the truncated means

∫
∞

φjt

εg (ε; κzt, σε) dε and

∫
∞

λjt

sf (s; zt, σs) ds,

which appear in expressions for output (16) and (20), respectively. Neither the measures nor

the truncated means have closed-form solutions. For the measures we use an approximation
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proposed by Bagby (1995). Following Bagby’s approach, the measure µ̂o
jt is approximated

as

µ̂o
jt ≃





0.5 − Φ(φ̂jt) if φ̂jt < 0

0.5 + Φ(φ̂jt) if φ̂jt ≥ 0,

where

Φ(φ̂jt) ≡ 0.5

{
1 − 1

30

[
7 exp

(
−

φ̂2
jt

2

)
+ 16 exp

(
−φ̂2

jt

(
2 −

√
2
))

+
(
7 +

π

4
φ̂2

jt

)
exp

(
−φ̂2

jt

)]} 1

2

and φ̂jt ≡ [(φjt − κzt)/σε]. The truncated mean of ε is then obtained as

∫
∞

φjt

εg (ε; κzt, σε) dε ≃ κzt

[
1 − Φ(φ̂jt)

]
+

σε√
2π

exp

(
−1

2
φ̂2

jt

)
.

We approximate µR
jt and the truncated mean of s similarly.

5.3 The Approximate Decision Rules

Using Chebyshev polynomials, the approximate decision rules ĉ (zt, Rt, kt) and q̂ (zt, Rt−1, kt)

have the form

ĉ (zt, Rt, kt) =

J∑

i=1

J∑

j=1

J∑

k=1

aijkΨi (zt)Ψj (Rt)Ψk (kt)

q̂ (zt, kt, Rt−1) =
J∑

i=1

J∑

j=1

J∑

k=1

bijkΨi (zt)Ψj (Rt−1) Ψk (kt)

where Ψi (zt) ≡ Ti−1 (2 ((zt − zm) / (zM − zm)) − 1). Here Ti−1 is the ith-order Chebyshev

polynomial and zm and zM are the lower and upper bounds for zt. Ψj (Rt) and Ψk (kt)

are defined similarly. The lower and upper bounds for the state variables are chosen such

that with 99% confidence (verified by simulation) the variables stay within the bounds.

The details of the computational procedure, as well as the values of the coefficients of the

resulting decision rules, are contained in the Appendix.
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6 Findings

6.1 Responses to Aggregate Productivity Shocks

Figure 1 plots responses of some key variables to a 1% positive aggregate productivity

shock. We see that in the economy with nonconvexities all quantities respond by less

than in the benchmark economy. In particular, while in the benchmark economy output

increases on impact by 1.9%, in the economy with nonconvexities the increase is only by

1.45%. That is by 25% less. As a result, in order to generate the same volatility of output as

in the benchmark economy, for the same autocorrelation coefficient of zt, σξ in the economy

with nonconvexities needs to be 0.009. We also find that at this level of volatility, the

coefficient of variation of the aggregate capital workweek is 0.0145. Based on SPC data

Beaulieu and Mattey (1998) report the coefficient of variation to be 0.0293. Our model

thus generates variation in the aggregate capital workweek of the same order of magnitude

as in the data, but 50% smaller. This suggests that the model does not account for all of the

movements in the distribution of plants across the different margins of capital utilization.

Returning to Figure 1, we see that the smaller increase in output in the economy with

nonconvexities is largely due to a muted response of employment, which on impact increases

by about 50% less than in the benchmark economy. This is for two reasons. First, other

things being equal (in particular holding φjt and λjt constant), the shock to aggregate

productivity does not move the mean of the distribution of plants sufficiently enough to

increase employment as much as in the benchmark economy. And second, whatever increase

is further muted in equilibrium by an increase in the real wage rate. The reason why output

increases substantially more than employment (almost twice as much) is that productivity

of all plants that are operated increases, which boosts output further, above and beyond its

increase due to higher employment.

In terms of output composition, on impact consumption in the economy with noncon-

vexities increases by almost as much as in the benchmark economy. This is because although

output increases by substantially less in the former economy than in the latter on impact,

in the economy with nonconvexities it is somewhat more persistent (because employment
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is more persistent), as the figure shows. As a result, the lifetime income of the household

in the two economies is about the same and therefore the initial increase in consumption

in the two economies is similar. Because of this increase in consumption, investment in

the economy with nonconvexities thus increases by less on impact than in the benchmark

economy.

Finally, we also plot the response of inflation, given as a difference between the log of

the price level in period t − 1 and the log of the price level in period t which satisfies the

cash-in-advance constraint (3), holding with equality. As employment in the economy with

nonconvexities increases by less than in the benchmark economy, the real wage bill (and thus

also real loans et/pt), increases by less. This is despite the fact that, due to shiftwork, the

average real wage rate (not plotted) increases by more in the economy with nonconvexities

than in the benchmark economy. And as consumption in the two economies increases by

about the same amount, pt has to fall by more in the economy with nonconvexities than in

the benchmark economy in order to clear the goods market.

Figure 2 plots the responses of the measures of plants operating the different shifts. We

see that the measure of plants operating shift 2 responds the most (by 0.68%), followed by

the measure of plants operating shift 3 (by 0.53%) and shift 1 (by 0.3%). The measure of

plants operating shift 1 during overtime responds only little (by 0.15%) and the response

of the measure of plants operating shifts 2 and 3 during overtime is minuscule. Notice that,

given the steady-state values of these measures and the way employment is calculated (see

equation 27), these responses imply that about two thirds of the increase in employment

plotted in Figure 1 is due to increase in employment on late shifts (shifts 2 and 3). This

is broadly in line with the empirical evidence provided by Mayshar and Solon (1993) and

Shapiro (1996) discussed in Section 2.

6.2 Responses to Interest Rate Shocks from Steady State

Figure 3 plots the responses, from steady state, of output and inflation to a 100 basis point

decline in the nominal interest rate under the assumption that interest rate shocks are

serially uncorrelated (i.e., ρR is equal to zero). In the next subsection we carry out similar
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experiments, but shock the nominal interest rate not from the economy’s steady state, but

conditional on the realization of either ξt or zt. (We will also consider serially correlated

shocks). We show the responses of output and inflation from steady state in order to set a

benchmark with which we can compare the conditional impulse-responses.

The figure shows that both output and inflation in the economy with nonconvexities

increases by about 45% less than in the benchmark economy. The reasons behind this

result are similar to those discussed in the case of a technology shock – a given decline

in real borrowing costs in the economy with nonconvexities does not make a large enough

number of plants change their capital utilization as would be necessary to replicate the

responses to the same decline in the benchmark economy.

6.3 Responses to Interest Rate Shocks Conditional on Aggregate Pro-

ductivity Shocks

This subsection investigates if (and by how much) in our model the responses of aggregate

output and inflation to nominal interest rate shocks vary with aggregate productivity shocks

hitting the economy. Table 4 presents the results for the case of serially uncorrelated shocks,

while Table 5 contains the results for the case in which the nominal interest rate shocks are

highly autocorrelated (ρR equal to 0.97). In both cases the stochastic process for aggregate

productivity shocks has the parameter values displayed in Table 2.

In order to facilitate easy comparison of the various responses, we express each response

as a ratio with respect to the response from steady state. Each response is labeled by the

value of zt on which we condition the response. In Experiment A we hit the economy with

nonconvexities with a negative (i.e., a decline) 100 basis point nominal interest rate shock,

conditional on the economy being hit by an aggregate technology shock which moves zt by

one, two, and three σξ either above or below its steady state level z̄. In Experiment B we

study the interest rate shock responses conditional on a sequence of ξ shocks that move zt

one, two, and three σz either above or below its steady-state level z̄. Relative to Experiment

A, Experiment B thus considers more serious increases/declines in aggregate productivity,

and thus in output.
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In the middle row of each panel in Table 4 we report deviations of output and inflation

from steady state in the impact period plotted in Figure 3 (since the deviations after the

impact period are tiny, we only focus on the impact period here). We see that in both ex-

periments the responses of output are larger when the economy is hit by negative aggregate

productivity shocks then when it is hit by positive aggregate productivity shocks. Qualita-

tively, our model supports the hypothesis that monetary policy shocks should have a larger

impact on economic activity when aggregate capacity is sparse. Quantitatively though, the

differences are small. For example, the response of output is only 10% larger when zt is 3σz

below its steady-state level than when the economy is hit by a negative interest rate shocks

from a steady state. And when zt is 3σz above its steady-state level, the response of output

is only 3% smaller than from steady state. The asymmetries in the responses of inflation

are similarly small.

Table 5 contains the results for the case of highly serially correlated nominal interest

rate shocks. As these shocks are autocorrelated, they have a long-lasting effect, especially

on inflation. We therefore show the responses for more than the impact period. They

are presented in the same way as in Table 4. We see that in both experiments, as in the

case of serially uncorrelated shocks, the asymmetries in the responses of output are small.

There are, however, substantial asymmetries in the responses of inflation in the impact

period. For example, in Experiment B for zt being 3σz below its steady-state level, the

increase in inflation is about one third as large as when the economy is in steady state.

And when zt is 3σz above its steady-state level, a negative nominal interest rate shock

makes inflation increase by almost twice as much as when the economy is in steady state.

The aggregate effects of monetary policy shocks, although broadly symmetric across the

stages of the business cycle in terms of their effects on output, are highly asymmetric

in terms of the responses of inflation. This result is reminiscent of earlier results in the

literature (summarized by Taylor and Uhlig, 1990) that while linear approximations work

reasonably well for quantities, they might omit important nonlinearities in equilibrium

pricing functions.
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7 Concluding remarks

This study introduces nonconvex and lumpy margins of capacity utilization at the plant

level into an equilibrium business cycle model. As a result it provides a general equilibrium

model with cyclical movements in capacity utilization at the aggregate level consistent with

observed micro-level behavior of output adjustment in many manufacturing industries. We

use the model to answer two questions. First, in light of the debate on the effects of micro-

level nonconvexities on the behavior of the aggregate economy we ask if nonconvex margins

of capacity utilization, and thus of output adjustment, at the plant level affect the volatility

of aggregate output. We find that when our model is calibrated to be consistent with long-

run averages of standard aggregates, as well as with cross-sectional distribution of the use of

shiftwork and overtime work in U.S. manufacturing, aggregate output is 25% less volatile,

for a given set of aggregate technology shocks, than in a model without such features. This

is an interesting result. As Hansen (1985) shows, nonconvexities in households’ labor supply

decisions magnify the responses of the economy to aggregate productivity shocks. We have

shown that similar nonconvexities on the production side tend to mitigate such responses.

The second question we ask is if cyclical movements in aggregate capacity utilization make

monetary injections more effective, in terms of their impact on aggregate output, in re-

cessions than in expansions. We find that although such effects are greater in downturns,

when resources are less intensively utilized, than in periods of above-trend growth, quan-

titatively the differences are small. This suggests that other mechanism than variation in

aggregate capacity utilization (for instance borrowing constraints faced by households and

firms that bind in recessions) are more likely to be responsible for the asymmetric responses

of aggregate output to monetary policy shocks documented in the empirical literature.

As our model accounts for 50% of the cyclical variation in aggregate capital workweek,

it clearly omits some important dynamics in the distribution of plants across the margins of

capital utilization over the business cycle. This likely makes our estimate of the reduction

in aggregate output volatility due to production nonconvexities too large. It also likely

underestimates the asymmetries in the aggregate effects of monetary policy shocks. In
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the absence of data on plant-level productivity in U.S. manufacturing, we assumed that

productivity shocks of individual plants are normally distributed. And we allowed only

the mean of the distribution to depend on aggregate productivity shocks, and thus to vary

over the business cycle. In addition, we assumed that all plants are identical at the start

of each period, before idiosyncratic shocks are realized. As a result of these assumptions,

plant-level heterogeneity in our model is exogenous and given by the normal distribution of

idiosyncratic productivity shocks with stochastic mean. Although we think this is a natural

starting point, it might be desirable to endogenize the distribution of plants in some way. In

order to make plant heterogeneity endogenous, in the presence of exogenous idiosyncratic

productivity shocks, the plants need to be identified by a time-varying endogenous state

variable, in addition to the exogenous productivity level. For example, in the model of lumpy

plant-level investment studied by Khan and Thomas (2008) capital plays such a role. It is

not clear what variable, other than capital, should do the same in our model. One candidate

is the number of workers per shift. There is, however, little evidence that staff numbers

within a shift substantially vary over time at the plant level. Inventories or state-dependent

pricing are another candidates. We leave such extensions for future research.

Appendix: Details of the Computational Procedure

The solution is obtained in three steps. We start with J = 2 and make an initial guess

about the coefficients of the approximate decision rules. For J = 2 the approximate decision

rules have the form

ct = a111 + a112Ψ2(kt) + a121Ψ2(Rt) + a122Ψ2(Rt)Ψ2(kt) + a211Ψ2(zt)(49)

+a212Ψ2(zt)Ψ2(kt) + a221Ψ2(zt)Ψ2(Rt) + a222Ψ2(zt)Ψ2(Rt)Ψ2(kt),

q̂t = b111 + b112Ψ2(kt) + b121Ψ2(Rt−1) + b122Ψ2(Rt−1)Ψ2(kt) + b211Ψ2(zt)(50)

+b212Ψ2(zt)Ψ2(kt) + b221Ψ2(zt)Ψ2(Rt−1) + b222Ψ2(zt)Ψ2(Rt−1)Ψ2(kt).
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The objects we need to compute are the a and b coefficients that satisfy the Euler equations

(47) and (48), with the substitutions described in Subsection 5.1, at eight collocation nodes

in the state space (for higher J ’s the number of nodes needs to be adjusted accordingly).

The initial guess is made so that the decision rules are linear and pass through the

steady state. In addition, we impose that ct and q̃t are zero when either zt or kt is zero.

The coefficients of the initial guess are thus a111 = −0.7772, a112 = 0.0912, a211 = 0.7772,

b111 = −0.2190, b112 = 0.0257, b211 = 0.2190, and all other coefficients are set to equal to

zero.18

We then carry out a couple of initial iterations on the system of 16 equations (the two

Euler equations, each evaluated at eight nodes) using the Levenberg-Marquardt algorithm

(see Judd, 1998, p. 119) in order to get “near” the solution. The solution is finally obtained

using Powell’s method (see Judd, 1998, p. 173), which takes the output of the Levenberg-

Marquardt algorithm as its input. The solution for J = 2 is then used as an initial guess

for J = 3 and so on.

Chebyshev Approximation Theorem states that as J → ∞, ĉ (zt, Rt, kt) → c (zt, Rt, kt)

and q̂ (zt, kt, Rt−1) → q (zt, kt, Rt−1) uniformly. Furthermore, as J → ∞, the coefficients in

the decision rules that load on to the monomials with an increasingly higher order approach

zero. In our case, J = 2 turns out to be sufficient – the coefficients that load on to the

monomials of third order are of the order of magnitude of 1e−3 or 1e−4, and the values of

the coefficients that load on to the monomials of lower orders change at most in the third

decimal place. The approximations to the decision rules that we use in our experiments

thus have the form (49) and (50) with the values of the coefficients reported in Table 3.

18We set the steady-state value of zt equal to one and re-normalize A accordingly.
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Table 1: Long-run averages of U.S. data used in calibration

Symbol Value Description

Both models
k 8.519 Capital to output ratio
c 0.777 Consumption to output ratio
n 0.310 Fraction of time spent in market activities

Model with nonconvexities

{∆o

j}
3

j=1
0.500 Overtime premia(

1 − µR
1

)
0.067 Fraction of plants that are closed(

µR
1 − µR

2

)
0.255 Fraction of plants operating one shift(

µR
2 − µR

3

)
0.377 Fraction of plants operating two shifts

µR
3 0.301 Fraction of plants operating three shifts

µo
1 0.173 Fraction of plants using weekend work
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Table 2: Parameter values

Symbol Value Parameter

Both models
α 0.365 Rental income share of output
δ 0.026 Capital depreciation rate
θ 0.981 Discount factor

Benchmark model
b 2.516 Parameter for disutility from work
ρz 0.9 Persistence in the productivity shock
σξ 0.0067 Standard deviation of innovation

in the productivity process

Model with nonconvexities
h 1/3 Shift length
β 0.580 Share of labor in production flow
n 0.162 Minimum-staffing requirement
κ 0.38 Ratio of the mean of ε to the mean of s

Parameter for disutility from work on:
bR
1 1.618 first regular-time shift

bR
2 2.901 second regular-time shift

bR
3 4.140 third regular-time shift

bo
1 2.104 first shift on Saturdays

bo
2 3.771 second shift on Saturdays

bo
3 5.381 third shift on Saturdays

σs 0.851 Standard deviation of the idiosyncratic shock s
σε 0.802 Standard deviation of the idiosyncratic shock ε
ρz 0.9 Persistence in the productivity shock
σξ 0.009 Standard deviation of innovation

in the productivity process
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Table 3: Approximate equilibrium decision rules

Coefficients associated with the Chebyshev polynomials for a

1 kt Rt+i Rt+i, kt zt zt, kt zt, Rt+i zt, Rt+i, kt

Benchmark economy, ρR = 0
ct 0.1453 0.0179 0.0428 0.0125 0.1431 0.0699 0.0078 -0.0479
q̂t 1.3813 -0.0367 0.1417 0.0183 -1.4023 0.0596 -0.2453 0.0003

Benchmark economy, ρR = 0.96
ct 0.6689 -0.0347 -0.4728 0.0643 -0.0835 0.1375 0.2304 -0.1146
q̂t -0.4080 -0.0866 1.9084 0.0674 0.0787 0.1090 -1.7086 -0.0481

Economy with nonconvexities, ρR = 0
ct -1.5719 0.2282 1.5357 -0.1624 2.0298 -0.1532 -1.6214 0.1373
q̂t 1.0047 -0.0266 -0.4347 0.0810 -0.9075 0.0343 0.4045 -0.0678

Economy with nonconvexities, ρR = 0.96
ct -0.3607 0.1522 0.3804 -0.0903 1.1257 -0.0760 -0.7674 0.0642
q̂t -0.4629 0.0360 1.0968 0.0120 0.4615 -0.0613 -1.0243 0.0335

aIn the decision rule for ct the i in the time subscript for R is equal to 0, while in the decision
rule for q̂t it is equal to −1.
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Figure 1: Responses to a 1% increase in aggregate productivity.
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Figure 2: Responses of the measures of plants to a 1% increase in
aggregate productivity.
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Figure 3: Responses to a 100 basis point fall in the nominal interest
rate (the case of uncorrelated interest rate shocks).
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Table 4: Asymmetries in the responses of the economy with nonconvexities to 100 basis
point fall in the nominal interest rate (the case of uncorrelated interest rate shocks)

Output Inflation

Experiment A
yt(3σξ)/yt 0.96 πt(3σξ)/πt 1.06
yt(2σξ)/yt 0.97 πt(2σξ)/πt 1.04
yt(σξ)/yt 0.98 πt(σξ)/πt 1.02
yt 0.15 πt 3.00

yt(−σξ)/yt 1.01 πt(−σξ)/πt 0.98
yt(−2σξ)/yt 1.03 πt(−2σξ)/πt 0.97
yt(−3σξ)/yt 1.04 πt(−3σξ)/πt 0.95

Experiment B
yt(3σz)/yt 0.97 πt(3σz)/πt 1.04
yt(2σz)/yt 0.97 πt(2σz)/πt 1.03
yt(σz)/yt 0.98 πt(σz)/πt 1.02
yt 0.15 πt 3.00

yt(−σz)/yt 1.02 πt(−σz)/πt 0.98
yt(−2σz)/yt 1.06 πt(−2σz)/πt 0.97
yt(−3σz)/yt 1.10 πt(−3σz)/πt 0.95

aThe bold numbers are the actual responses from steady state. All other
responses are expressed as a ratio with respect to the response from
steady state, shown in Figure 3. Experiment A – responses conditional
on the innovation ξ in the stoch. process for aggregate productivity being
x standard deviations away from its mean; Experiment B – responses
conditional on z being x standard deviations away from its mean.
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Table 5: Asymmetries in the responses of the economy with nonconvexities to 100 basis
point fall in the nominal interest rate (the case of serially correlated interest rate shocks;
ρR = 0.97)

Period after the interest rate shock
1 2 3 4 5 6 7 8

Experiment A
Output
y(3σξ)/yt 0.97 0.97 0.98 0.98 0.99 0.99 1.00 1.01

yt(2σξ)/yt 0.98 0.98 0.98 0.99 0.99 0.99 1.00 1.01

yt(σξ)/yt 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00

yt 0.05 0.04 0.04 0.04 0.03 0.03 0.02 0.02

yt(−σξ)/yt 1.01 1.01 1.01 1.01 1.01 1.00 1.00 1.00

yt(−2σξ)/yt 1.02 1.02 1.02 1.01 1.01 1.01 1.00 0.99

yt(−3σξ)/yt 1.03 1.03 1.03 1.02 1.02 1.01 1.00 0.99

Inflation
πt(3σξ)/πt 1.29 0.97 0.97 0.98 0.98 0.99 0.99 0.99

πt(2σξ)/πt 1.19 0.98 0.98 0.99 0.99 0.99 0.99 0.99

πt(σξ)/πt 1.09 0.99 0.99 0.99 0.99 1.00 1.00 1.00

πt 0.34 -0.66 -0.64 -0.62 -0.59 -0.57 -0.55 -0.53

πt(−σξ)/πt 0.91 1.01 1.01 1.01 1.01 1.00 1.00 1.00

πt(−2σξ)/πt 0.83 1.02 1.02 1.01 1.01 1.01 1.01 1.01

πt(−3σξ)/πt 0.75 1.03 1.02 1.02 1.02 1.01 1.01 1.01

Experiment B
Output
y(3σz)/yt 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14
yt(2σz)/yt 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09
yt(σz)/yt 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04
yt 0.05 0.04 0.04 0.04 0.03 0.03 0.02 0.02

yt(−σz)/yt 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
yt(−2σz)/yt 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
yt(−3σz)/yt 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91

Inflation
πt(3σz)/πt 1.83 1.02 1.02 1.02 1.02 1.02 1.02 1.02
πt(2σz)/πt 1.54 1.02 1.02 1.02 1.02 1.02 1.02 1.02
πt(σz)/πt 1.26 1.01 1.01 1.01 1.01 1.01 1.01 1.01
πt 0.34 -0.66 -0.64 -0.62 -0.59 -0.57 -0.55 -0.53

πt(−σz)/πt 0.76 0.98 0.98 0.98 0.98 0.98 0.98 0.98
πt(−2σz)/πt 0.55 0.95 0.95 0.95 0.95 0.95 0.95 0.95
πt(−3σz)/πt 0.37 0.91 0.91 0.91 0.91 0.91 0.91 0.91

aThe bold numbers are the actual responses from steady state. All other responses are expressed
as a ratio with respect to the response from steady state. Experiment A – responses conditional
on the innovation ξ in the stoch. process for aggregate productivity being x standard deviations
away from its mean; Experiment B – responses conditional on z being x standard deviations away
from its mean.
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