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Dynamics of intrahousehold bargaining

Joaquín Andaluz, Miriam Marcén and José Alberto Molina

Abstract

This paper studies the dynamics of bargaining in an intrahousehold
context. To explore long-term partner relationships, we analyse bilateral
bargaining by considering that spouses take decisions sequentially. We
conclude that, for the spouse who takes the second decision, a greater
discount factor increases the set of possible sustainable agreements, as
well as the proportion of time that this agent devotes to a family good.
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Introduction

The theoretical study of family decision-making, and its relationship with

consumption and labor supply, has produced a signi�cant body of literature.

Some of this work takes as reference the theory of bilateral bargaining, in

which it is recognized that families are composed of individuals with sepa-

rate preferences and objectives. This literature has focused on the household

allocation problem in a static setting, in which the results of the bargaining

depend on the threat point that is �xed, that is to say, the status quo.

Family bargaining models have mainly identi�ed this threat point with di-

vorce (Manser and Brown, 1980; McElroy and Horney, 1981). In this case, it

is assumed that the agents can communicate freely and that the ful�llment of

agreements is guaranteed by an external contract or institution. Nevertheless,

divorce does not necessarily constitute the only possible threat point in a bar-

gaining process. Lundberg and Pollak (1993) and Chen and Woolley (2001)

consider a non-cooperative equilibrium, the Cournot-Nash equilibrium. In

this situation, the repeated interaction between agents over time can tacitly

lead to cooperative results. More speci�cally, and in accordance with the folk

theorem, a cooperative solution and, therefore, a Pareto-e¢cient solution, can

be derived as a Nash equilibrium in a repeated game, always provided that

there is some strategy which penalizes all deviations from the cooperative

solution.

However, two questions arise in the intrahousehold bargaining framework.

How do individuals arrive at an agreement about independent actions, and

how are these agreements monitored and enforced? Households endure for

more than a single period, and the multi-period aspect of the game can poten-

tially substantially a¤ect the solution. Thus, it is necessary to view bargaining

in a multi-period setting, and to assume that the household decision-making

process is a repeated game.
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The multi-period analysis only makes sense when we assume that house-

holds are formed by individuals with separate preferences and objectives, who

are involved in long-term relationships. Recent work on bargaining models of

family decision-making has extended the one-period approach to a dynamic

setting, focusing on the study of the implications of a couple�s inability to

make binding, legally-enforceable commitments about future behaviour.1 A

consumption-smoothing problem arises in that setting, which produces the

inability of spouses to engage in intertemporal agreements, and that can lead

to an ine¢cient allocation of household resources. The problem here is that

a credible promise to compensate public good production with consumption

in the future cannot be made, and this reduces incentives to specialize in

such production. Even when the analysis focuses on the e¤ect the bargaining

power, de�ned as the amount of money a person earns relative to the part-

ner�s income, has on the possibility of implementing e¢cient outcomes at the

household level, the question of making punishment credible has also been

limited to the consumption-smoothing problem (see Rainer, 2008).

An alternative dynamic approach, focused on accommodating forward-

looking agents in a dynamic environment, has been developed by Andaluz

and Molina (2007). They use a repeated non-cooperative game in which

both members of a family can contribute voluntarily to the provision of a

family public good, and in which the maintenance of cooperative behavior

in repeated games requires the threat of punishment through the return to

the non-cooperative solution, thus guaranteeing the sustainability of solutions

that are more e¢cient than the Cournot-Nash equilibrium. In this setting,

their main �nding is that the spouse with the greater bargaining power has a

greater incentive to reach an agreement, and that neither of the agents have

incentives to deviate from the bargaining solution.

Both the one-period approach and the multi-period non-unitary analysis
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predict that women�s share of home time decreases. In the �rst case, this is

due to an increase in female human capital, whereas in the second case it is

due to the impossibility of making agreements in a dynamic setting. However,

empirical evidence seems to contradict this implication. At the longitudinal

level, Aguiar and Hurst (2007) show that, despite the increase in female labor

force participation, specialization within the household has remained rela-

tively unchanged. At the cross-sectional level, Akerlof and Kranton (2000)

use PSID data to show certain evidence pointing to the fact that, when a wife

works more hours than her husband outside the home, she still undertakes a

larger share of housework. Thus, it appears that women�s share of home time

does not decrease, despite increases in women�s relative earnings.

Our paper contributes to the dynamic aspects of partner relationship lit-

erature, by analysing the in�uence of the valuation of the current situation

on both the time that each individual devotes to the provision of a family

good, and the gains of well-being derived from cooperation. We extend the

analysis of the dynamic aspects of the family bargaining process, developing

a supergame in which the status quo is not only de�ned as non-cooperative,

but also as sequential. The timing of the game is such that, at every period,

the spouses take their decisions sequentially (the Stackelberg equilibrium).

The developed model explains situations in which one of the spouses takes a

decision, knowing the choice already taken by the other. Then, we address

the question of how a household may succeed in using its resources e¢ciently

through informal agreements, enforced through repeated interaction to deter-

mine the contribution to the provision of a family good whose consumption

is non-rival. To the best of our knowledge, this approach has not previously

been considered in the literature of family bargaining.2

As regards the main results, a greater discount factor implies an increase

in the set of sustainable agreements derived from the bargaining, as well as an
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increase in the proportion of time devoted to the family good, for the spouse

who decides second. These �ndings, which seem to contradict the one-period

non-unitary household approach, con�rm previous empirical analysis, in the

sense that, if the woman decides second, then her contribution to housework

may increase, despite the absence of di¤erences in the opportunity cost of

work for both spouses.

I Framework

Our approach captures an environment in which marital partners have sepa-

rate preferences and objectives, and are involved in a long-term relationship.

We develop an in�nitely repeated game, in which the two members of a family,

spouse 1 and spouse 2, may contribute voluntarily to the provision of a fam-

ily good whose consumption is non-rival. We suppose that the agents do not

know the moment of the dissolution of the marriage, and that the objective

of each is to maximize the discounted value of their current utilities:

1X

t=1

�t�1uj(xj ; Q); (j = 1; 2)

where � 2 [0; 1] denotes the discount factor, common to both agents, xj

indicates the private consumption of agent j; j = 1; 2; Q represents the family

good, Q = q1+ q2; with qj being the proportion of hours that agent j devotes

to the provision of this good.

The family good, Q, can include any situation which requires the joint

performance of the spouses, e.g., the quality of the children or the maintenance

of the home. We assume that the provision of the family good cannot be

obtained in the market, that is to say, there are no private substitutes for the

family good. Therefore, our model is not applicable to situations where family

goods are purchased in the market and shared at home. This assumption is

reasonable if we assume that, in certain cases, the private provision of family
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goods can produce losses of utility to couples, with the study of the trade-o¤

between the time devoted to family goods, and the time devoted to the labour

market, being necessary.

We suppose that the utility of each agent takes the following functional

form (see Konrad and Lommerud, 2000):

u1 = x1 +Q� q
�
1
;u2 = x2 +Q� q

�
2

(1)

where x1 = w1(1�q1) and x2 = w2(1�q2), wj 2 [0; 1] represents the wage

rate for agent j and the maximum time available for each spouse is normalized

to one.

We assume that the contribution to the family good not only reduces the

time available to the labor market, but also has a psychological cost, rep-

resented by an increasing and convex function in each of these arguments
�
q�
1
; q�
2

�
, being �; � > 1. In line with Konrad and Lommerud (2000), we

suppose that individuals increasingly dislike spending more time on the pro-

duction of the family good.

To address the issue of how the bargaining process works over a number

of periods, we �rst solve the one-shot game, a Stackelberg game, and we then

use this as the state game of an in�nitely repeated game, using reversion to

this non-cooperative Stackelberg equilibrium as the punishment for deviators.

We then determine the optimum levels of consumption and contribution to

the family good among the multiple stationary paths, using the symmetric

Nash bargaining solution.

II The one-shot game

As we have mentioned above, in each period t, the non-cooperative equilib-

rium is the outcome of a Stackelberg game, in which the leader (spouse 1)

commits to a certain quantity of provision of family good, while anticipating
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the optimal contribution of the follower (spouse 2).

As an example of a Stackelberg game, we can consider a situation in

which the household division of labor may be a¤ected by social norms, which

are to a large extent enforced through non-market interactions.3 In a less

egalitarian social norms framework, the prescription that women should do

the work at home may produce an alteration in the decision-making process.4

As the consumption of the family good is non-rival, following Buchholz et al.

(1997), its voluntary provision may be the result of a Stackelberg game, given

that one agent can make a credible commitment that she/he will be able to

contribute no more than a possibly very small amount of household good.

Thus, one spouse becomes a Stackelberg leader, and will take the reactions of

the follower into account when deciding the contribution to the family good.

Applying the backward induction procedure, we begin by obtaining the

equilibrium corresponding to spouse 2 (the follower). Formally:

Max
x2;q2

u2 = x2 +Q� q
�
2

s:to x2 = w2(1� q2)

q1 = �q1

(2)

From here, we deduce the levels of consumption and the provision of the

family good:

q�
2
=

�
1� w2
�

�
1=��1

;x�
2
= w2

"
1�

�
1� w2
�

�
1=��1

#
(3)

and the utility level:

ud
2
= w2 + �q1 + (�� 1)

�
1� w2
�

� �

��1

(4)

For spouse 1 (the leader) we formulate the following maximization prob-
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lem:

Max
x1;q1

u1 = x1 +Q� q
�
1

s:to x1 = w1(1� q1)

q2 = q
�

2

(5)

and we obtain the level of private consumption, and the provision of the

household good made by spouse 1:

q�
1
=

�
1� w1
�

�
1=��1

; x�
1
= w1

"
1�

�
1� w1
�

�
1=��1

#
(6)

Therefore, the levels of utility in the non-cooperative solution for both

spouses are:

u�
1
(q�
1
; q�
2
) = w1 + (� � 1)

�
1� w1
�

��=��1
+

�
1� w2
�

�
1=��1

(7)

u�
2
(q�
1
; q�
2
) = w2 + (�� 1)

�
1� w2
�

��=��1
+

�
1� w1
�

�
1=��1

(8)

In addition to the solution obtained in (3) and (6), which is an interior

solution, it is possible to analyse the situations in which one of the spouses

is the contributor to the family good (see Bucholz et al., 1997).5 We can

distinguish the following types of Stackelberg equilibria:

Case 1 The leader is the only contributor.

In this case, �Q, the family good, is only supplied by spouse 1, from (5) and

with q2 = 0; we can obtain the total family good:

�Q=
�
1�w1
�

� 1

��1
:

and the levels of utility of both spouses:

u1( �Q;0) =w1 + (� � 1)
�
1�w1
�

��=��1
;u2( �Q; 0) =w2+

�
1�w1
�

�
1=��1
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Case 2 The follower is the only contributor.

From the maximization problem of spouse 2, (2), and with q1 = 0; we may

determine the levels of provision of family good which are only provided by

spouse 2:

eQ=
�
1�w2
�

� 1

��1 :

with the levels of utility for both spouses in this case being:

eu1(0; eQ) =w1+
�
1�w2
�

� 1

��1 ;eu2(0; eQ) =w2 + (�� 1)
�
1�w2
�

��=��1

It is straightforward to deduce that u�i (q
�

1
; q�
2
) > ui( �Q; 0), and that

u�i (q
�

1
; q�
2
) > eui(0; eQ); 8 0 < wi < 1; (�; �) > 1; (i = 1; 2): Thus, under

the structure of preferences de�ned above, for all values of the parameters,

the interior solution constitutes a dominant strategy for both agents in the

the Stackelberg equilibrium.6 This is a reasonable result, since we do not

consider the possibility that one spouse compensates the other.

In Figure 1, we represent the curves of indi¤erence of the spouses in the

non-cooperative solution. For spouse 1, the slope of the curve of indi¤erence

in the non-cooperative equilibrium is zero in (q�
1
; q�
2
); and is increasing and

convex if q1 > q
�

1
and q2 > q

�

2
; dq2dq1

���
u�
1

> 0, d
2q2
dq2
1

���
u�
1

> 0.

Analogously, for spouse 2, the slope of the curve of indi¤erence that con-

tains the solution of the one shot game is equal to minus in�nity in the com-

bination (q�
1
; q�
2
), and is increasing and concave when q1 > q�

1
and q2 > q�

2
;

dq2
dq1

���
u�
2

> 0; d
2q2
dq2
1

���
u�
2

< 0:

This situation is clearly ine¢cient. As Kapteyn and Kooreman (1990)

show, all the points located inside the area formed by both curves of indif-

ference are Pareto superior to the equilibrium of the one shot game. They

graphically represent several allocations that have been used in the literature.

For our purpose, we focus on those points located in the contract curve CC�

which are e¢cient solutions, since, when the decisions are taken in a multi-

period framework, the loss from non-cooperation accumulates, and there ap-
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pear strong incentives to reach a Pareto Superior agreement.

However, repetition alone is not enough to eliminate the non-cooperative

static equilibria. The one-shot Stackelberg equilibrium is another possible

outcome of the repeated game. Therefore, it is necessary that both spouses

can implicitly create a strategy that deters deviations from a cooperative

solution, and reaches a combination that is Pareto superior to the one-shot

non-cooperative equilibrium.

We adopt the so-called trigger strategy (Friedman, 1971), so that, when

there is a deviation from the cooperative solution, the levels of private con-

sumption and the provision of the family good revert to those of non-cooperative

equilibrium. The threat of retaliation, through reversion to this punishment

path, is credible, since it is not in the best interest of either agent to devi-

ate unilaterally from this non-cooperative equilibrium, and it sustains Pareto

Superior outcomes.

For the sake of simplicity, we only consider the case of stationary paths for

all t. Obviously, we have not included all the factors that a¤ect cooperation

in a family framework, but we have included certain relevant factors, which

have not previously been used in the family bargaining literature.

A stationary path is sustainable in a subgame perfect equilibrium, if it

satis�es the following conditions:

ui(xi; Q)� u
�

i � 0; i = 1; 2 (9)

u2(x2; Q)

1� �
� ud

2
(q1) +

�u�
2

1� �
(10)

Condition (9) establishes that both spouses have incentives to cooperate,

since the well-being these agents obtain in the cooperative solution is greater

than or equal to the well-being obtained in the non-cooperative solution. Con-
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dition (10) determines that the spouse who decides second has no incentive

to deviate from the e¢cient solution. However, the follower, given q1; could

react by deviation to maximize his/her own utility. In order to tackle this

problem, it is necessary to introduce inequality (10), which states that the

discounted value of the well-being of the follower, conforming to the speci-

�ed path, the left-hand side of the inequality, is greater than the well-being

from the optimal one-shot deviation and then reversion from the following

period onwards to the punishment path, the right-hand side of the inequality.

In this setting, since the one-shot game is sequential, the leader�s discount

rate plays no role. If spouse 1 deviates from a cooperative agreement, this is

immediately observed by spouse 2, thus eliminating any possible short-term

well-being gains for spouse 1. Therefore, the maintenance of the cooperative

equilibrium depends on the agent who decides second.7

Unless � is very high, constraint (10) is always binding in equilibrium,

whereas (9) is not. Denote e� the minimum value of discount factor for which

(10) is not binding, and let the function g = g(q1; q2; �)represent the long-term

gain from the follower�s cooperation. Formally:

g(q1; q2; �) = (1�w2)q2 � q
�
2
+ �q1 � (�� 1)

�
1� w2
�

� �
��1

� �

�
1� w1
�

� 1

��1

(11)

From (11), we deduce that the set of Pareto-superior solutions to the

equilibrium of the one-shot game, sustainable by way of the repeated inter-

action, is greater when the discount factor is higher. We observe that when

q1 > q
�

1
and q2 > q

�

2
, the function g is increasing and concave, with the value

of its slope being minus in�nity in the non-cooperative solution (q�
1
; q�
2
) and

increasing in �.

As shown in Figure 1, among the Pareto-superior combinations (q1; q2),
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we can identify a subset of sustainable solutions which can be achieved by way

of repeated interaction. In particular, all the combinations of (q1; q2) located

to the right of the broken line.

Figure 1. Set of Pareto-Superior Solutions.

(Figure 1 here)

III Bargaining solution

We address the question of how a household may succeed in using its re-

sources e¢ciently in a self-enforcing manner, that is to say, through informal

agreements, enforced through repeated interaction. In order to determine an

equilibrium among the multiple stationary paths, it is necessary to specify

how the levels of consumption and contribution to the family good are chosen

among all possible solutions. Focusing on the study of sustainable solutions,

we suppose that there exists a bargaining process, not modeled explicitly here

and, as a result, both spouses take their decisions by way of the symmetric

Nash bargaining solution.8 That is to say, they choose the stationary paths of

private consumption and family good provision that maximize the product of

the utilities, after being normalized by the utility levels of the non-cooperative

solution, and within the set of sustainable equilibria. Formally, the problem

becomes, for � < e� :

Max
x1;x2;q1;q2

J(x1; x2; q1; q2) = (u1 � u
�

1
)(u2 � u

�

2
)

s:to g(q1; q2; �) = 0

(12)

When � takes value zero, the non-cooperative solution satis�es restrictions

(9) and (10). Alternatively, if this factor takes value one, all the Pareto-

superior solutions are indeed sustainable and, consequently, the bargaining
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agreement constitutes an e¢cient solution. Between these two extremes, the

solution of the previous problem depends on the discount factor through con-

straint g(q1; q2; �) = 0; in the above maximization problem.9 In fact, the

bargaining solution is determined by way of the tangency between an Iso-J

line and an Iso-g line, as shown in Figure 2.

Figure 2. Set of possible sustainable bargaining solutions

(Figure 2 here)

Under some regularity assumptions (see Appendix) we obtain the following

proposition:

Proposition 1

For � < e� :

The contribution to the family good of the spouse who decides second (fol-

lower) is increasing with respect to the discount factor: dq2
d� > 0:

The in�uence of the discount factor on the contribution to the family good

of the spouse who decides �rst (leader) is ambiguous: dq1
d� 7 0:

Proof.(See appendix).

From this result, it is possible to deduce that the agent who decides sec-

ond, will devote more time to the provision of the family good when the

discount factor is greater. However, the path of the contribution to the fam-

ily good made by the spouse who decides �rst can be increased or decreased,

depending on the discount factor. An increasing evolution implies that the

di¤erence between the hours that this agent devotes to the family good in

the cooperative solution, and the hours determined in the non-cooperative

equilibrium, is not very signi�cant.

When the discount factor is greater, cooperation is more easily sustained,

leading to a higher provision of the family good by the follower. Note that we

have found that the discount factor can increase the provision of the family
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good without imposing any restriction on the follower�s relative earnings, or

on the psychological cost produced by devoting time to the family good. Thus,

if the woman is the follower, the higher the discount factor, the higher the

provision of the family good, even when the opportunity cost of work is the

same for both spouses.

For the leader, spouse 1, there exists a level of provision of the household

good, q̂1; with q̂1 > q�
1
; which represents the minimum value from which

the relationship between the discount factor and the level of provision of the

family good made by this agent becomes negative. By contrast, for q�
1
< q1 �

bq1; when the discount factor increases, the provision of the family good by the

leader increases. There exists a set of sustainable solutions where the spouse

who decides �rst increases or decreases his/her provision of the family good,

depending on the discount factor. Thus, situations in which the husband

devotes much less time to the family good than does the wife can be possible

sustainable agreements, even without di¤erences in the salaries of the spouses,

as a result of a high discount factor.

The discount factor also re�ects the subjective probability that the game

will end. The higher the discount factor, the lower the probability that the

game will end in the near future. Even when there is a possibility that the

game will end sometime in the future, as in the case of intertemporal agree-

ments within the family, subject to renegotiation resulting from increases in

potential earnings, our optimum provision of the family good can support a

near-e¢cient outcome, as long as each spouse believes, with a high enough

probability, that the game will continue. Thus, it is possible to make agree-

ments in a dynamic setting with a �nite horizon (see Espinosa and Rhee,

1989).

Knowing the evolution of the paths of the provision of the family good, we

can deduce the in�uence of the discount factor on the level of utility derived
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from the cooperation.

Corollary:

For � < e� :

In the bargaining solution, a variation of the discount factor can increase

or reduce the levels of utility for both spouses: dU1
d� 7 0;

dU2
d� 7 0:

Proof.(See appendix).

Speci�cally, we observe that, for q1 > bq1;when the discount factor in-

creases, the provision of the family good by the leader decreases, gener-

ating opposite e¤ects on the level of utility of the spouses. The level of

utility increases for the leader and decreases for the follower. By contrast,

for q�
1
< q1 � bq1;when the discount factor increases, the provision of the

family good by the leader increases, and the levels of utility can increase or

decrease for both spouses.

IV Conclusions

Family bargaining models have usually presented the household allocation

problem in a static setting. However, households endure for more than a

single period, and it is necessary to view bargaining in a multi-period context

which can potentially substantially a¤ect the solution.

In this context, we have set up a supergame in an intrahousehold frame-

work, in which both spouses may contribute voluntarily to the provision of

a family good. Assuming that the status quo is not only de�ned as non-

cooperative, but also as sequential (equilibrium of Stackelberg), and that the

e¢cient allocation is given by way of the symmetric Nash bargaining solution,

we deduce the in�uence of the valuation of the present on the time that each

individual devotes to the provision of the household good, and its e¤ects on

the gains of well-being derived from bargaining.

The following conclusions are obtained. Firstly, the set of possible sustain-
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able agreements derived from bargaining is greater when the discount factor

of the spouse who decides second is higher.

Secondly, the contribution of the follower to the family good is increasing

with respect to the discount factor, whereas the relationship between the

discount factor and the contribution made by the leader is ambiguous.

Thirdly, the gains of well-being derived from the bargaining show an am-

biguous relationship to the discount factor. The e¤ect of the discount factor

will be positive or negative for both spouses, depending on the increase in

the time devoted by the leader to the production of the family good in the

bargaining solution.

These �ndings seem to contradict the one-period non-unitary household

approach, but they do con�rm previous empirical analyses, in the sense that

the woman�s contributions to housework may increase, if she decides second,

despite the absence of di¤erences in the opportunity cost of work for both

spouses.

Notes

1Some examples are Aura (2002), Basu (2006), Browning (2000), Lundberg and Pollak

(2003), Lundberg et al. (2003), Mazzocco (2007), Wells and Maher (1998).

2Using methodologies very similar to ours, some studies have examined the relationship

between a union and a �rm by developing a supergame with a threat to return to a non-

cooperative Stackelberg equilibrium (Espinosa and Rhee, 1989; De la Rica and Espinosa,

1997).

3Following Vagstad (2001), an average woman about to be married is much better skilled

to keep and maintain a house than her coming husband, and this di¤erence is found for a

broad range of housekeeping activities. There are skills that rarely are acquired through

formal educational, but rather passed on from parents to children or acquired by self studies.

Often, skill acquisition, choice of education and many other decisions in life do not re�ect

rational decision-making but can be seen as responses to some social norms.

4This argument is similar to the doing gender hypothesis proposed by the sociological

literature to explain the same empirical regularity in a variety of countries (see, among
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others, Bittman et al. (2001) for the Australian case and Brines (1994) for the U.S).

5 It is interesting to note that, under the preferences speci�ed above, the reaction func-

tions for both spouses have null slope, and thus, the provision of the family good by both

agents is strategically independent. As a consequence, the levels of consumption and the

provision of the family good obtained in the Stackelberg equilibrium coincide with those

obtained in a Nash equilibrium.

6This result di¤ers from that obtained by Bucholz et al. (1997). However, it is important

to note that, in our model, the type of Stackelberg equilibrium does not depend on the

aggregate income of the spouses nor on the redistribution of income between spouses. This

is due to the fact that the incomes of the agents are endogenously determined, and that one

spouse cannot compensate the other spouse.

7This is not applicable to the situation of the standard case of Nash reversion, since,

in this situation, decisions are taken simultaneously, and to obtain stationary paths it is

necessary to include an additional inequality similar to that introduced for spouse 2, (10),

but in this case it must also be established for spouse 1 .

8This solution implicitly assumes a bargaining process which results in the generalised

bargaining solution (see Binmore et al. 1986; Harsanyi, 1977).

9 It is straightforward deduce that under the structure of preferences used in this analysis,

the provision of the family good is independent of the discount factor when we use the

Cournot-Nash equilibrium as the threat point in the analysis.
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Appendix

Proof of Proposition
To be able to characterize the solution of the maximization problem pro-

pose in (12), we introduce the following assumptions:
We suppose that J(x1; x2; q1; q2) is strictly concave.
The level curves of J(x1; x2; q1; q2) are monotone, in that way:

@ (J1=J2)

@q1
< 0 (13)

For q1 > 0; q2 > 0; the �rst order conditions are:
J1 + �g1 = 0
J2 + �g2 = 0
g(q1; q2; �) = 0
Being � > 0 the multiplier of the problem of maximization. From that it

is possible to deduce the following equation:

J1
J2
=
g1
g2

(14)

Di¤erentiating with respect to �, we obtain that:
(J11 + �g11)

dq1
d� + (J12 + �g12)

dq2
d� + g1

d�
d� = ��g1�

(J21 + �g21)
dq1
d� + (J22 + �g22)

dq2
d� + g2

d�
d� = ��g2�

g1
dq1
d� + g2

dq2
d� = �g�

These equations can be written in matrix form as:

0
@
(J11 + �g11) (J12 + �g12) g1
(J21 + �g21) (J22 + �g22) g2
g1 g2 0

1
A
0
@
dq1
d�
dq2
d�
d�
d�

1
A =

0
@
��g1�
��g2�
�g�

1
A

The matrix on the left hand side is the bordered Hessian. Applying the
Cramer�s rule it is possible to obtain the changes in q2 when � change:

dq2
d�

=
1

jDj

������

(J11 + �g11)��g1� g1
(J21 + �g21)��g2� g2
g1 �g� 0

������
(15)

Where jDj is the determinant of the bordered Hessian. The second order
conditions of the maximization problem require that jDj be positive.

Therefore, the sigh of dq2d� is determined by the sign of (15):

sign

�
dq2
d�

�
= sign

�
���(1� w2 � �q

��1
2

) + (q1 � q
�

1
)(J11

�
1� w2 � �q

��1
2

�
� �J12)

�

(16)
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Given that (1� w2 � �q
��1
2

) < 0 ^ q2 > q
�

2
; and under (13) and (14), we

deduce that (16) is positive: dq2d� > 0:
Di¤erentiating the restriction with respect to �, we have:

dq1
d�

= �
1

�

�
(q1 � q

�

1
) + (1� w2 � �q

��1
2

)
dq2
d�

�
(17)

Thus, the sign of dq1d� is the sign of the numerator:

sign

�
dq1
d�

�
= sign

�
�(q1 � q

�

1
)� (1� w2 � �q

��1
2

)
dq2
d�

�

Given that (q1 � q
�

1
) > 0; (1� w2 � �q

��1
2

) < 0 ^ dq2
d� > 0;we deduce that

dq1
d� 7 0:
From (15) and (17), we can determine a value q̂1 , with q̂1 > q�

1
; which

represents the minimum value from which the relationship between the dis-
count factor and the level of provision of the family good made by this agent
becomes negative. So, when q1 > q̂1, we obtain that

dq1
d� < 0 and when

q̂1 � q1 > q
�

1
what we obtain is that dq1d� > 0:�

Proof of Corollary
Applying the envelope theorem, we derive the utility function of both

spouses (1) with respect to � :
For the spouse 1, we obtain:

dU1
d�

=
@U1
@q1

dq1
d�

+
@U1
@q2

dq2
d�

(18)

Taking into account (17), this expression takes the following form:

dU1
d�

=
�(1� w1 � �q

��1
1

) (q1 � q
�

1
)

�
+

"
1�

(1� w1 � �q
��1
1

)(1� w2 � �q
��1
2

)

�

#
dq2
d�

(19)

Given that (1�w1��q
��1
1

) < 0, (1�w2��q
��1
2

) < 0; dq2d� > 0; (q1 � q
�

1
) >

0; 0 < � < 1; 0 < qi < 1 (i = 1; 2);we deduce that:

dU1
d� 7 0:
Analogously, we have that:
dU1
d� = (1� w1 � �q

��1
1

)dq1d� +
dq2
d� 7 0:

Given that dq2d� > 0 and with
dq1
d� < 0, we obtain that

dU1
d� > 0 with q1 > q̂1.

When dq1
d� > 0, we obtain that

dU1
d� < 0 with q̂1 � q1 > q

�

1
.

For the spouse 2,

dU2
d� =

@U2
@q1

dq1
d� +

@U2
@q2

dq2
d�

Introducing (17), we deduce that:
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dU2
d� =

�
1� 1

�

�
(1� w2 � �q

��1
2

)dq2d� �
(q1�q�1)

� 7 0:
Analogously, we obtain that
dU2
d� = (1� w2 � �q

��1
2

)dq2d� +
dq1
d� 7 0:

Given that dq2d� > 0 and with
dq1
d� < 0, we obtain that

dU2
d� < 0: Remember

that it is necessary that q1 > q̂1 to obtain a negative relationship between
the discount factor and the level of provision of the family good made by the
spouse 1. When dq1

d� > 0, we obtain that
dU2
d� > 0; with q̂1 � q1 > q

�

1
.�
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                               Figure 1. Set of Pareto-Superior Solutions 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Set of possible sustainable bargaining solutions 
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