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1 Introduction

In this paper we study Bertrand competition (i.e. price competition with

firms supplying all demand)1 under free entry, when firm size vis-a-vis market

size is exogenously given. The literature on Bertrand competition generally

does not allow for free entry, and even when it does, equilibrium properties

when firm size can be large relative to market size remain unexplored (more

detailed discussion follows). The present paper makes a beginning in this

direction. Further, we examine equilibrium prices both when firms behave

non-cooperatively, as well as when there is limited collusion among them.

We consider a model of Bertrand competition with free entry, where,

following Novshek and Roy Chowdhury (2003), free entry is formalized as the

presence of inactive firms in equilibrium. To begin with we examine the case

where the firms behave non-cooperatively, i.e. solve for Nash equilibria. We

demonstrate that whether a free entry Bertrand Nash equilibrium (henceforth

FEBE) exists or not, depends on the size of the market. A FEBE exists if

1The assumption that firms supply all demand dates back to Chamberlin (1933)

and is appropriate when the costs of turning away customers are very high (see,

for example, Vives (1999)). Such costs are routinely assumed in the operations

research literature (see, Taha (1982)). Such costs may arise because of either

reputational reasons, or governmental regulations. Vives (1999) argues that such

regulations are operative in U.S. industries like electricity and telephone. Spulber

(1989) argues that the common carrier regulation can lead to a scenario where

firms supply all demand. Similarly, under certain sealed bid auctions, winning

firms have to supply all demand that comes to them.
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and only if the market size is sufficiently large. Further, the set of FEBE

prices constitutes an interval.

We next allow for limited collusion among the firms, formalized through

the notion of coalition-proof Nash equilibrium developed in Bernheim et al.

(1987). We find that a coalition-proof Nash equilibrium exists whenever a

FEBE exists. In that case there is a ‘unique’ coalition-proof Nash price that

corresponds to the minimum FEBE price. Further, this equilibrium involves

average cost pricing by active firms, leading to zero profits. We also find that

for a sufficiently large increase in market size, the equilibrium price in fact

decreases.

We then relate our paper to the literature. The early literature focuses

on Bertrand competition without free entry, e.g. Vives (1999), Dastidar

(1995), Baye and Kovenock (2006), Hoernig (2002, 2007), and Roy Chowd-

hury and Sengupta (2004). While Vives (1999) and Dastidar (1995) examine

the existence of pure strategy Nash equilibria, Hoernig (2002) examines Nash

equilibria in mixed strategies, while Baye and Kovenock (2006) and Hoernig

(2007) demonstrate that in the presence of fixed costs Nash equilibria may

fail to exist. Roy Chowdhury and Sengupta (2004) solves for the coalition-

proof Nash equilibrium under Bertrand competition, but does not allow for

free entry.

While Novshek and Roy Chowdhury (2004) does allow for free entry,

they focus on the limiting case when firm size is vanishingly small. Further,

they do not examine the coalition-proof equilibrium. The present paper thus

extends the literature by allowing for (a) free entry, (b) relatively large firm

size, and (c) both non-cooperative behaviour, as well as limited collusion
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among the firms.

The rest of the paper is organized as follows. Section 2 sets up the basic

model. Non-cooperative Nash equilibria are analyzed in Section 3, while

coalition-proof equilibrium is analyzed in Section 4.

2 The Model

The market demand is rf(p), where r is a parameter for market size. There

are n firms, where n is large, all producing a single homogeneous good, and

having the same cost function, c(q), and the average cost function, AC(q).

The case of interest is when r is sufficiently large so that there exists p such

that p > AC(rf(p)).

The demand and the cost functions satisfy the following two assumptions.

Assumption 1. f : [0,∞) → [0,∞) is continuous and strictly decreasing

on [0, p̂) where p̂ (> 0) is a cutoff price such that, f(p) > 0 if and only if

p < p̂.

Assumption 2. (a) c : [0,∞) → [0,∞) is continuous, except possibly at

the origin. Moreover, c(0) = 0 and c(q) > 0, ∀q > 0.

(b) The average cost function AC : (0,∞) → (0,∞), where b = limq→0 AC(q)

is well defined (with infinity as a possible limit). There exists q∗ > 0 such

that AC(q) is decreasing (respectively increasing) for q < q∗ (respectively

q > q∗). Further, p̂ > c∗ = AC(q∗).

We examine a game of free entry Bertrand competition where the firms si-
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multaneously announce their prices, the Chamberlin (1933) assumption holds

(so that firms supply all demand) and there is free entry.

Let Di(p1, · · · , pi, · · · , pn) denote the demand facing firm i when the an-

nounced price vector is (p1, · · · , pi, · · · , pn). Then

Di(p1, · · · , pi, · · · , pn) =











0, if pi > pj, for some j,

rf(pi)
m

, if pi ≤ pj, ∀j, and #(l : pl = pi) = m.

(1)

The profit of the i-th firm

πi(p1, · · · , pn) = (pi − AC(Di(p1, · · · , pn)))Di(p1, · · · , pn). (2)

We next consider a situation where m (≤ n) firms all charge the price p,

and all other firms charge higher prices. Then the profit of all active firms is

given by

π(p, m) =
rpf(p)

m
− c(

rf(p)

m
). (3)

Assumption 3. π(p, m) is strictly quasi-concave for all m.

Observe that if π(p′, m) ≥ 0 for some p′ < p̂, then for all p′′ such

that p′ < p′′ < p̂, from strict quasi-concavity it follows that π(p′′, m) >

min{π(p′, m), π(p̂, m)} = min{π(p′, m), 0} ≥ 0.

Following Novshek and Roy Chowdhury (2003), free entry is formalized

as there being inactive firms in equilibrium. Thus we focus on equilibria

where m (< n) (active) firms set the lowest price, and n−m (inactive) firms

charge higher prices and have no demand.
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Given a price vector p, and a coalition T ⊂ N , we let pT denote the price

vector corresponding to the coalition T .

Given p′

T
and pS, T ⊂ S, (p′

T
,pS/T) denotes the s-vector where the

prices correspond to p′

T
for firms in T , and to pS for firms in S/T .

For a coalition T ⊂ N, the price vector p′

T
constitutes a profitable devia-

tion from pN if

πi(p
′

T
,pN/T) > πi(pN), ∀i ∈ T.

Definition. A Bertrand-Nash equilibrium consists of a price vector p

such that no firm has a profitable deviation.

Definition. A Bertrand-Nash equilibrium price vector, p, is said to be a

free entry Bertrand equilibrium (FEBE) if some of the firms are not active,

i.e. have zero demand.

3 Bertrand Nash Equilibria

In this section we solve for the set of FEBE prices. We begin by introducing

some notations.

In case b ≥ p̂, let r be the minimum r such that there exists p satisfying

AC(rf(p)/2) = p. Otherwise, r = 0.

d(r) is the minimum p such that AC(rf(p)) = p.2 We assume that at

p = d(r), the average cost curve intersects the demand curve from below in

2d(r) is well defined given that (a) there exists p such that p > AC(rf(p)), and

(b) that p̂ > c∗ = AC(q∗).
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the p − q plane.3

d(r, 2) is the minimum p such that AC(rf(p)/2) = p.4

Note that for r large, AC(q) is negatively sloped at both rf(d(r)) and

rf(d(r, 2))/2. Hence if d(r, 2) ≥ d(r) (so that d(r, 2) is well defined for r ≥ r),

then an r satisfying d(r) = d(r, 2) exists from the intermediate value theorem.

Thus let

r̃ =











r, if d(r, 2) < d(r),

satisfies d(r) = d(r, 2), otherwise.
(4)

The following lemmas will be useful later on.

Lemma 1 If r̃ satisfies d(r) = d(r, 2), then d(r) ≥ d(r, 2) if and only if

r ≥ r̃.

Proof. For r greater than, but close to r̃, AC(q) is positively sloped

at rf(d(r)) and negatively sloped at rf(d(r, 2))/2. Hence d(r) > d(r, 2).

Similarly for r smaller than, but close to r̃, d(r) < d(r, 2). Whereas for r

sufficiently large (respectively small) AC(q) is positively (respectively nega-

tively) sloped at both rf(d(r)) and rf(d(r, 2))/2.

Lemma 2 There exists some minimal price p′ (≤ d(r)) and some maximal

m′ (> 1) corresponding to p′, such that AC( rf(p′)
m′

) ≤ p′.

Proof. For b < p̂, r̃ solves d(r) = d(r, 2) (since in this case r = 0). Thus

for any r ≥ r̃, there exists m′ ≥ 2 and p′ < b such that AC(rf(p′)/m′) = p′

3The set of r for which this assumption is violated has measure zero, and hence

is without loss of generality (in the measure theoretic sense).

4d(r, 2) is well defined for r ≥ r.
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and AC(q) is negatively sloped at rf(p′)/m′. This follows since for m large

enough, rf(c∗)/m < q∗. Hence AC(rf(p′)/m′) = p′ > AC(rf(p′)/(m′ + 1)

(the inequality holds as AC(q) is negatively sloped at rf(p′)/m′).

So let b > p̂. To begin with note that for any p < p̂ < b, AC(rf(p)/m) > p

for m large. It remains to show that there exists p ≤ d(r) and m ≥ 2 such that

AC(rf(p)/m) ≤ p. Let r̂ solve d(r, 2) = c∗. For r̃ ≤ r ≤ r̂, AC(rf(p)/2) = p,

for p = d(r, 2) ≤ d(r). Next consider r > r̂, and p = d(r). In case d(r) ≥

AC(rf(d(r))/2), π(d(r), 2) ≥ 0. So let d(r) < AC(rf(d(r))/2). Next let p′

be the maximum p < d(r) such that AC(rf(p′)/2) = p′ (such a p′ exists since

r ≥ r̃). Then, for ǫ (> 0) small, d(r) > p′ − ǫ > AC(rf(p′ − ǫ)/2).

We next define the set of FEBE prices

Q(r) = {p| there exists a FEBE where all active firms charge p}.

We begin by showing that whether an FEBE exists or not depends on the

size of the market. In particular, an FEBE exists if and only if the market

size exceeds r̃.

Proposition 1 (i) An FEBE exists if and only if r ≥ r̃.

(ii) For any p ∈ Q(r), p ≤ min{p̂, d(r), b}.

Proof. (i) Step 1. r < r̃: Suppose to the contrary there exists some

p ∈ Q(r). In case the equilibrium p involves m > 1 active firms (so that

r̃ solves d(r) = d(r, 2)), it follows that p > d(r). Otherwise, since r < r̃,

from Lemma 1, d(r, 2) > d(r) ≥ p, so that AC(rf(p)/2) > p. Further, since

AC(q) is negatively sloped at rf(d(r, 2))/2, AC(rf(p)/m) ≥ AC(rf(p)/2) >

p ∀m ≥ 2, so that the active firms make losses. But then, with p > d(r), an
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inactive firm can charge p′, where d(r) < p′ < p, and make a positive profit.

Hence next suppose that p involves a single active firm (for r̃ = r, this is

the only possibility). Then p = d(r) (otherwise for p > d(r) there will be

undercutting by some inactive firm, whereas for p < d(r) the single active

firm makes losses). But then this firm has zero profits, whereas it can charge

a slightly higher price and get a strictly positive profit.

Step 2. r ≥ r̃: Given Lemma 2, in the outcome where m′ firms each set

the price p′, and the other firms set higher prices, the active firms all earn

a non-negative profit and matching p′ by an inactive firm is not profitable.

Since AC( rf(p′)
2

) ≤ p′, p′ ≤ d(r), so that undercutting is not profitable either.

Consequently, p′ can be sustained as an equilibrium.

(ii) Let p ∈ Q(r). In case p > d(r), then in the equilibrium sustaining

p, an inactive firm can charge p′, where d(r) < p′ < p, and make a profit.

Whereas if p > b, then whenever π(p, m) ≥ 0, π(p, m + 1) > 0 (from the

observation following Assumption 3), so that matching this p is profitable

for an inactive firm.

It is well known that if firms are free to supply less than demand, then

with convex costs an equilibrium in pure strategies may not exist - the Edge-

worth paradox. This problem is resolved under Bertrand competition without

free entry (see, among others, Vives (1999))5. Proposition 1(i) shows that

depending on market size, the existence result under Bertrand competition

without free entry may, or may not extend when entry is free.

5As Baye and Kovenock (2006) and Hoernig (2007) demonstrate however, in

the presence of fixed costs a Nash equilibrium may not exist.
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Remark 1 The non-existence result for r < r however depends on the as-

sumption that prices can vary continuously. Suppose to the contrary that

prices can only vary along a grid of size ǫ (> 0), and let d(r, ǫ) be the small-

est price p in the grid such that p ≥ d(r). A straightforward modification

of the argument in Ray Chaudhuri (1996) shows that for r < r (and ǫ suf-

ficiently small), there is a unique equilibrium where there is a single active

firm charging the price d(r, ǫ).6

Remark 2 It can be shown that Q(r) is empty in case AC(q) is either strictly

increasing, or strictly decreasing in q. First consider the case where AC(q)

is strictly decreasing in q. Clearly, the only possible FEBE price is d(r). But

then there must be at most one active firm charging this price (otherwise

the active firms make losses). Hence this firm can increase its price slightly

and make a positive profit. Next let AC(q) be strictly increasing. But in any

candidate equilibrium involving m active firms, if m firms make non-negative

profits in this equilibrium, then matching this price leads to a positive profit

for any inactive firm. In case AC(q) = c, it is easy to see that Q(r) = {c}.

Next turning to the properties of the set of FEBE prices, we show that

Q(r) is an interval, bounded and closed from below. While the set of pure

strategy Nash equilibrium prices constitutes an interval under Bertrand com-

petition without free entry as well (see, e.g. Vives (1999)), it is interesting

that this property goes through with free entry even though in this case dif-

ferent equilibrium prices can correspond to different number of active firms.

6The proof is available on request.
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Proposition 2 Let r ≥ r̃. The set of FEBE prices, Q(r), is bounded, closed

from below and is an interval.

Proof. Interval. Suppose to the contrary there exists p, p′, p′′ such that

p < p′ < p′′, p, p′′ ∈ Q(r), but p′ /∈ Q(r). Further, let the FEBE price p

involve at most m active firms. Since p ∈ Q(r), π(p, m) ≥ 0. Hence from the

observation following Assumption 3, π(p′, m) ≥ 0 (since p < p′ < p′′ ≤ p̂).

Further, since p′ < p′′ ≤ b, for m̃ sufficiently large, π(p′, m̃) < 0. Thus

there exists some m′ such that π(p′, m′) ≥ 0 > π(p′, m′ + 1). Moreover since

p′′ ∈ Q(r), p′ < p′′ ≤ d(r). Consequently, the outcome where m′ firms charge

p′ and all other firms charge higher prices, can be sustained as an equilibrium.

Closed from below. Let p(r) denote the infimum of Q(r). If Q(r) is a

singleton set, then p(r) ∈ Q(r). So suppose that Q(r) is not a singleton,

but p(r) /∈ Q(r). Since p(r) is a boundary point of Q(r), and p ≤ d(r)

for any p ∈ Q(r), p(r) < d(r) (strict inequality holds since Q(r) is not

a singleton). Since p(r) < b, there exists m′ such that AC(rf(p(r))/m′) ≤

p(r) < AC(rf(p(r))/m′+1). Otherwise there exists p′′ ∈ Q(r) and arbitrarily

close to p(r) such that AC(rf(p′′)/m) > p′′ ∀m ≥ 2, which is a contradiction.

We can then sustain an equilibrium where m′ of the firms charge p(r) and

all other firms charge higher prices. Thus p(r) ∈ Q(r).7

Remark 3 It is easy to show that Q(r) is compact in case b > p̂. Given that

b > p̂, any boundary point of Q(r) must be strictly less than b. We can thus

mimic the preceding argument to show that such a boundary point must be in

Q(r).

7Given Proposition 1(ii), boundedness is trivial.
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Given that Q(r) is closed from below, we can further define

p(r) = min{p : p ∈ Q(r)}.

4 Coalition-proof Nash Equilibrium

In this section we allow for the possibility of limited collusion among the

agents. We thus look for equilibria that are immune to ‘credible’ group devi-

ations. Formally, we solve for coalition-proof free entry Bertrand equilibria

(henceforth CPFEBE).

As usual the notion of a CPFEBE is defined recursively.

We first define a ‘self-enforcing’ profitable deviation by a coalition. This

will be done inductively, using the size of the coalition as the basis for our

induction.

We say that a coalition T , with |T | = 1, has a self-enforcing profitable

deviation from p if T has a profitable deviation from p.

Suppose now we have defined self-enforcing profitable deviations ∀S ⊂ N,

with |S| ≤ m ≤ n− 1, and for all price vectors p. Now consider T ⊆ N such

that |T | = m + 1. We say that T has a self-enforcing profitable deviation

from p if,

i) p′

T
constitutes a profitable deviation for coalition T from p, and

ii) For any S ⊂ T, S 6= T , the coalition S has no self-enforcing profitable

deviation from (p′

T
,pN/T).

We have thus defined self-enforcing profitable deviations from any given

price vector p.
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Let the FEBE sustaining p(r) involve at most m(p(r)) active firms. We

next turn to the task of defining a CPFEBE.

Definition. A vector of prices p∗ is said to be a Coalition-proof Free

Entry Bertrand Equilibrium (CPFEBE) if no coalition T, T ⊆ N , has a self-

enforcing profitable deviation from p∗, and there are at least m(p(r)) inactive

firms in equilibrium.

Note that the proviso that ‘there are at least m(p(r)) inactive firms in

equilibrium’ captures the fact that we are focusing on free entry equilibria. In

order to simplify the exposition we further make the tie-breaking assumption

that a group of inactive firms all prefer to undercut and get zero profits, rather

than remain inactive.8

Interestingly, a CPFEBE exists whenever a FEBE exists. Further, it is

‘unique’ and involves all active firms charging p(r) (prices charged by the

inactive firms only has to satisfy the condition that they are greater than

p(r), hence the qualification on uniqueness).

Proposition 3 (i) There is a ‘unique’ CPFEBE that involves m(p(r)) active

firms charging p(r).

8Otherwise, given that conceptually free entry allows for an infinite number

of inactive firms, defining self-enforcing deviations from some vector p0 becomes

notationally cumbersome. In that case one would need to allow for an infinite

sequence of deviating price vectors < p1, p2, · · · >, pi > pi+1, where pi+1 is a

deviation from pi by a group of inactive firms and all deviating firms make positive

profits.
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(ii) At this CPFEBE all active firms make zero profits.

Proof. (i) Step 1. To show that p(r) can be sustained as a CPFEBE.

(1a). To show that there is no ‘self-enforcing profitable’ deviation by un-

dercutting from p(r), it is sufficient to show that no group of m inactive firms

have a ‘profitable’ undercutting deviation from p(r). Suppose to the contrary

such a profitable undercutting price p′ exists. Let m′ be the maximum m

such that AC(rf(p′)/m′) < p′ (such an m′ exists since p′ < p(r) ≤ b). Thus

AC( rf(p′)
m′+1

) ≥ p′. Further, p′ < p(r) ≤ d(r). But then p′ can be sustained

as a FEBE (with m′ firms charging p′ and all other firms charging a higher

price), which is a contradiction (since p′ < p(r)).

(1b). Next suppose that all the firms charging p(r), possibly along with

some of the other firms, can deviate to some higher price p̃ and make a

gain (any deviation to a price less than p(r) is not self-enforcing). But then

m(p(r)) inactive firms can undercut by charging p(r). Further, by mimicing

the argument in (1a), it can be shown that this deviation is self-enforcing.

(1c) Finally, since AC(q) must be negatively sloped at
rf(p(r))

m(p(r))+1
, matching

p(r) by any group of inactive firms is not profitable.

Step 2. Turning to ‘uniqueness’, suppose to the contrary there is some

other CPFEBE, where the active firms charge p′ 6= p(r). So let p′ < p(r).

But then from 1(a), p′ must be a FEBE, a contradiction. If p′ > p(r), then

we can use the argument in step 1(b) to arrive at a contradiction.

(ii) Suppose to the contrary π(p(r), m(p(r))) > 0. Since m(p(r)) is the

maximal number of active firms sustaining this price as a FEBE, π(p(r), m(p(r))+

1) < 0. Thus from continuity there exists p′ < p(r) such that π(p′, m(p(r))) >
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0 > π(p′, m(p(r)) + 1). Further, p′ < d(r). Thus p′ can be sustained as a

FEBE, which contradicts the definition of p(r).

The existence result is interesting given that under coalition-proofness,

existence is generally known to be an issue (Bernheim et al. (1987))9. While

Roy Chowdhury and Sengupta (2004) do prove existence for coalition-proof

Bertrand equilibrium, their framework is without free entry. Further, some-

what surprisingly, it turns out that limited collusion in fact leads to the

smallest FEBE price. In addition, this characterization provides an algo-

rithm for identifying the CPFEBE price that only involves solving for the

FEBE set, without explicitly checking for coalition proofness.

The fact that all active firms make zero profits is also of interest since

zero profits is not ensured either when there is free entry but no collusion

(see Novshek and Roy Chowdhury (2003)), or when there is limited collusion,

but no free entry (see Roy Chowdhury and Sengupta (2004)).

Further, the contestability theory developed by Baumol et al. (1977,

1982) (among others) argues that with increasing returns and free entry,

the outcome involves a single firm with average cost pricing, i.e. zero prof-

its. Ray Chaudhuri (1996) interprets the contestable outcome as a Bertrand

equilibrium when there is increasing returns and pricing is discrete. The

present paper extends this literature by showing that even in the absence

of increasing returns, free entry, coupled with limited collusion and quasi-

convex average costs, can lead to average cost pricing (though, in contrast

9Bernheim and Whinston (1987) however show existence for certain games,

including Cournot competition
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to the contestability literature, in equilibrium there is more than one firm).

We finally examine the impact of an increase in market size on the

CPFEBE price, p(r). We find that for any sufficiently large increase in

demand, i.e. r, the minimal equilibrium price falls. The intuition is that

with an increase in demand, the maximal number of active firms that can

be sustained in any equilibrium increases. This leads to greater competition,

pushing down prices.

Proposition 4 Given any r′, and any p′ such that c∗ < p′ < p(r′), there

exists r > r′ such that ∀r ≥ r, p(r) ≤ p′.

Proof. For any p, let q(p) denote the minimal q such that AC(q) = p. Fix

p′. Let N(r) be the largest integer such that N(r) < rf(p′)
q(p′)

. For r sufficiently

large, AC( rf(p′)
N(r)

) < p′ ≤ AC( rf(p′)
N(r)+1

). Then in the outcome where N(r) firms

each set the price p, and the other firms set a higher price, the active firms

all earn a non-negative profit and matching p′ by an inactive firm is not

profitable. In case any firm undercuts the price, then that firm must supply

at least rf(p′). But for r large, AC(rf(p′)) > p′. Thus p′ ∈ Q(r′)

Remark 4 In case AC(q) is negatively sloped at rf(p(r))/m(p(r)), it can be

shown that p(r) decreases for any small increase in r. Note that in that case

AC(rf(p(r))/m(p(r))) = p(r) < AC(rf(p(r))/m(p(r)) + 1). For a small

increase in r to r′, AC(r′f(p(r))/m(p(r))) < p(r) since AC(q) is negatively

sloped at rf(p(r))/m(p(r)). Thus from continuity, AC(r′f(p(r))/m(p(r))) <

p(r) < AC(r′f(p(r))/m(p(r)) + 1), so that p(r) ∈ Q(r′). Thus from Propo-

sition 3(ii), p(r′) < p(r).
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