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Abstract 
 

 

This paper discusses various ways to add correlated stochastic recovery to the Gaussian 

Copula base correlation framework for pricing CDOs. Several recent models are 

extended to more general framework. It is shown that, conditional on the Gaussian 

systematic factor, negative forward recovery rate may appear in these models. This 

suggests that current static copula models of correlated default and recovery processes are 

inherently inconsistent. 
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1 Introduction 
 

Recent credit market turmoil has seen the spreads on the senior tranches of the CDX 

investment grade index widening so much that the standard Gaussian Copula model can 

not calibrate to the market any more. Especially for the 15% - 30% senior tranche and the 

30% -100% super senior tranche, even 100% correlation would not be able to give the 

market spreads under the fixed 40% recovery rate assumption. Besides, market has also 

started to trade the super duper 60% - 100% tranche, which is in direct contradiction with 

the 40% fixed recovery rate assumption.  

 

A quick fix that is still consistent with index and single name CDS market would be to 

relax the deterministic recovery rate assumption by introducing stochastic recovery rate 

into the base correlation framework while keeping the expected recovery rate at the same 

40%. Historically, Andersen and Sidenius (2004) were the first to explore stochastic 

recovery in the Gaussian Copula framework. They modeled the recovery rate as a 

function of the systematic factors driving the default process and additional idiosyncratic 

factors that are independent from the ones driving the default. The rationale is that 

empirical evidence suggests a negative correlation between default probability and 

recovery rate. When default rate is high, recovery is usually low. There are some 

technical issues with the original specification of Andersen and Sidenius (2004). But the 

negative correlation between default rate and recovery is generally agreed to be an 

important feature of any stochastic recovery model. Recently, a number of specifications 

have been proposed along this line of thinking, see for example Krekel (2008), Amraoui 

and Hitier (2008) and Ech-Chatbi (2008). The Krekel model assumes that the stochastic 

recovery is driven by the same factors that trigger the default. The Amraoui-Hitier model 

assumes that recovery is a deterministic function of the systematic factor in the default 

triggering variable without reference to any idiosyncratic factor. The Ech-Chatbi model 

uses a multiple default process to model the recovery rate, but the correlation is still 

driven by the same default triggering variable. So it can also be viewed as a special case 

in the framework of the Krekel model. 

 

However, the stochastic recovery specifications may not be internally consistent. 

Specifically, negative forward recovery rate may appear conditional on the Gaussian 

systematic factor taking a sufficiently large negative value. The present paper will prove 

that this is generally true for models within the current framework. 

 

Correlated stochastic loss given default has also been considered in the Basel II 

framework to model the unexpected tail loss on a credit portfolio, see for example Frye 

(2000), Pykhtin (2003), Tasche (2004) and Witzany (2009). Although the purpose of the 

models is different, the specifications share some common features that are worth looking 

at. The Tasche model is essentially the same as the Krekel model with the same default 

triggering variable driving the recovery, but it is set up in a more general, continuous 

manner. The Frye model uses the same systematic factor but adds an independent 

idiosyncratic factor to drive the recovery rate. The Pykhtin model can be viewed as a 

generalization of the Frye model by adding back the idiosyncratic factor driving the 

default but with different correlation loadings. The Witzany paper summarizes all these 

models and makes some suggestions on improving the Basel regulatory formula to cover 

the tail risk due to the correlated loss given default. 
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The rest of the paper is organized as follows. In section 2, we setup a general framework 

to add correlation to any exogenous stochastic recovery specification following Tasche 

(2004). In section 3, we generalize the Krekel model to include both discrete and 

continuous recovery distribution, which has been discussed by Tasche in a different form. 

In section 4, we discuss a general form of stochastic recovery driven only by the 

systematic factor and reveal the relationship between the Amraoui-Hitier model and the 

Krekel model. In section 5, we discuss the general form of the Frye model and the 

Andersen-Sidenius model. In section 6, we discuss the general form of the Pykhtin model. 

In section 7, the negative forward recovery rate conditional on fixed systematic factor is 

discussed and a proof is given for the generalized Krekel model. Section 8 concludes the 

paper. 

 

 

2  General framework  
 

First we define the default indicator tI <= τ1  as a random variable taking values 0 if an 

obligor does not default before time t or 1 otherwise, τ  is the default time random 

variable. Then the cumulative distribution function for I  is  

 

)1(1)()( −⋅+−=≤= iHppiIPiFI    for ]1,0[∈i    (1) 

 

where H  is the Heaviside step function and p is the probability of default before time t. 

 

Let L  be the unconditional stochastic loss before time  as a percentage of the total 

exposure to an obligor. Then 

t

L  will be zero with probability p−1  when the obligor is 

not in default before time t . L  will take non-negative values with probability p  when 

the obligor defaults before time . Formally, the cumulative distribution function  of t LF

L  has the following general form (see Tasche, 2004) 

 

 )(1)()( lFpplLPlF DL ⋅+−=≤=   for ]1,0[∈l    (2) 

 

where )()( tlLPlFD <≤= τ is the cumulative distribution of loss given default. We will 

not make the assumption of hard default where obligor default is equivalent to loss 

greater than zero. So is possible in the current framework. The default 

indicator 

0)0( >DF

I  dominates the unconditional loss L  in the sense that 

 

   for )()( xFxF LI ≤ ]1,0[∈x       (3) 

 

This is the same as the statement that loss is conditional on default. The following chart 

shows sample cumulative distribution functions for default indicator, unconditional loss 

and loss given default (LGD) with default probability of 30%. 
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Sample cumulative distribution function
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Note that the marginal cumulative distribution function of recovery upon default is  

 

)1()1(1

)1(

)()(

trLPrF

trLP

trRPrF

D

R

<−=+−−=

<−≥=

<≤=

τ

τ

τ

     (4) 

 

It is obvious that the expected loss given default equals one minus the expected recovery. 

It is also easy to show that the variance of loss given default is the same as the variance 

of recovery. 

 

    (5) )())]1(1([))](([)( 22
RVarRERELELELVar =−−−=−=

 

Now we will try to add correlation between default probability and loss given default. 

Suppose obligor asset depends on a random variable V, which may have systematic 

factors and idiosyncratic factors in it. This kind of structural model is normally used in 

the Copula model for CDOs. Let )()( vVPv ≤=Φ be the cumulative distribution function 

of V. Assuming is strictly increasing and has an inverse, which is normally the case 

for the distributions used in copula models, such as normal and Student t distributions. 

However,  is not generally invertible as a function , 

since  and  is a step function for discrete distribution of loss. Since 

 is right continuous, one may still define, for 

)(vΦ

)(lFL ]1,0[]1,0[: →LF

01)0( >−≥ pFL LF

LF ],1,0[∈y  

 

})({inf)(
]1,0[

1
ylFyF L

l
L ≥=

∈

−        (6) 

 

It is easy to prove that the random variable )(VΦ has the uniform cumulative distribution 

function 

 

     (7) yyyVPyVP =ΦΦ=Φ≤=≤Φ −− ))(())(())(( 11
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Now we can introduce the dependence of unconditional loss L  on V  as 

 

         (8) ))((1
VFL L Φ= −

 

This was discussed by Tasche (2004) to add correlated loss given default effect to the 

Basel II risk weighted capital charge formula. Here V  can be interpreted as the negative 

change in obligor’s asset value for certain time period. So this model makes the economic 

sense that loss is negatively correlated with asset value and thus positively correlated 

with default rate. 

 

The marginal distribution of L  will not change  

 

     (9) )())()(()))((()( 1
lFlFVPlVFPlLP LLL =≤Φ=≤Φ=≤ −

 

This way we can introduce correlation between default probability and loss given default, 

and correlation of loss given default between different obligors through the systematic 

factors in V . The default indicator can be also dependent on V  as follows 

 

         (10) ))((1
VFI I Φ= −

 

In general, the random variable driving the loss may be different from the random 

variable that drives the credit default, but can be correlated through the same systematic 

factors or even through common idiosyncratic factors. 

 

The same scheme can be applied to the conditional distribution function  for the loss 

given default, instead of the unconditional loss distribution function . The loss given 

default  can be written as 

DF

LF

DL

 

         (11) ))((1
VFL DD Φ= −

 

to make it dependent on V . However, since default probability also depends on the 

systematic factors of V  in this correlation framework, the true marginal distribution 

function of loss given default will be different from the function . We will discuss this 

phenomenon in more details later. The choice of using  or  will be based on the 

requirement that loss is only meaningful upon default and potential loss without default is 

excluded from the model framework. 

DF

LF DF

 

 

3 The Tasche/Krekel Model 
 

The Krekel model provides a framework to add correlation to an arbitrary discrete 

marginal distribution of the random recovery. It can be easily generalized to any 

continuous marginal distribution as well. The idea is that the random variable driving loss 

given default is the same as the random variable driving the default event (Tasche, 2004). 

This will avoid certain technical issues with other models, but it is very restrictive. 
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Assume ii ZV ερρ −+= 1  drives the default of obligor i  of a credit portfolio, where 

Z  and iε  are independent normal random variables and )1,0(~ N Z  is the systematic 

factor. The default event t≤τ  can be characterized as , where  is 

the default probability of the obligor i  before time t  and is the standard cumulative 

normal distribution function.  

)(1

iii pNvV
−=≤ ip

)(xN

 

The dependence of loss  on  can be specified as , since here  is a 

proxy of the positive change in asset value. If 

iL iV ))((1

iLi VNFL −= −
iV

iV−  does not have the same distribution as 

 like the normal distribution, we should use the distribution function for . Given , 

the probability of default will be  

iV iV− z
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     (12) 

 

The cumulative loss distribution is 
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The last line in the above equation is just the definition of loss given default conditional 

on . So z
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The cumulative recovery distribution is 
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          (15) 

 

If the marginal loss distribution is continuous at r−1 , then 

 

 0),1( ==<−= zZtrLP i τ       (16) 

 

and, comparing with equation (4),  

 

         (17) )1(1)( rFrF DR −−=
 

and 
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This is the continuous generalization of Krekel’s stochastic recovery model. 

 

If the marginal recovery distribution is not continuous at r, it will be right continuous at r. 

So we should still have 
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which is exactly Krekel’s result. Therefore the continuous case formula (18) is also valid 

in the discrete case. 

 

A key feature of this model is that the marginal distribution is preserved by construction, 

see Equation (9). Therefore the calibration to single name CDS is done with the marginal 
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distribution. This is generally not true with other models, as will be shown in later 

sections. 

 

It should be noted that the Ech-Chatbi’s model (Ech-Chatbi, 2008) can be viewed as a 

special case of the Krekel model, except that the distribution is motivated by a multiple 

loss process model instead of an arbitrary specification. The Ech-Chatbi’s model also 

does not calibrate to single name CDS expected loss at all time points. It only calibrates 

to the five year expected loss to determine its parameter. Then the model expected 

recovery rate will be negatively correlated to the default rate and decreases with time. 

One problem with Ech-Chatbi’s model is that, if the recovery distribution when z is fixed 

is generated by a similar Poisson multiple loss process, it may not produce the original 

marginal distribution used in calibration to CDS. Instead, the distribution for fixed z 

should follow the same scheme as that of the Krekel model discussed above to make sure 

that marginal distribution is preserved.  

 

 

4 The Amraoui-Hitier model 
 

The Amraoui-Hitier model assumes the stochastic recovery rate depends only on the 

systematic factor Z . The general formulation is 

 

         (21) ))((1
ZNFL D −= −

 

This is conditional on default before time t . The unconditional loss function should not 

be used here since then the default function may not dominate the loss function, or loss 

could be positive even when default has not happened. 

 

The cumulative distribution of loss for a fixed  is  z

 

 )))((()()(1)( 1
zNFlHzPzPzZlLP Diii −−⋅+−==≤ −

   (22) 

 

where H  is the Heaviside function. Integrating over , we have the marginal 

distribution for the unconditional loss as 

z

 

 )));((),((1)( 11

2 ρlFNpNNpplLP Diiii

−− −−+−=≤    (23) 

 

where );,(2 ρyxN  is the bivariate normal distribution function. Then the marginal 

distribution of loss given default is 

 

 )));((),((1)( 11

2
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−−− −⋅−=<≤    (24) 

 

And the marginal distribution for recovery is 
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Note that the marginal distribution of recovery rate will be different from . RF

 

For a fixed , the recovery rate will also be fixed. One interpretation is to view this fixed 

recovery rate as the expected recovery rate under fixed  of a Krekel model. Then the 

Krekel model underlies the original Amraoui-Hitier model has the marginal distribution 

as follows 

z

z
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where  is the standard 40% recovery rate used in single name calibration and 0R R
~

is the 

recovery mark down in the Amraoui-Hitier model. This distribution has the expected 

recovery rate of %400 =R . It is easy to write down the loss distribution function 
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and  
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where H  is the Heaviside function. Loss only happens at R
~

1−  with probability 

R

R
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1
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or equivalently 
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which is the same as the recovery rate specified in the original Amraoui-Hitier model. 

 

For fixed , the distribution function of loss for the Amraoui-Hitier model is z
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The marginal distribution of loss is obtained by integrating out  dependence, which can 

only be done numerically. Note that the marginal loss distribution is no longer the same 

as the discrete distribution. However, as long as the underlying Krekel model is 

calibrated to , the Amraoui-Hitier model will also be calibrated to the same expected 

recovery. 

z

0R

 

When 0
~ =R , the marginal distribution of the underlying Krekel model has the highest 

variance if the expected recovery has to be fixed at . This will give the maximum 

calibration range for the Amraoui-Hitier model. It is known that the variance of the 

Amraoui-Hitier recovery model depends on the correlation parameter 

0R

ρ . Only when 

correlation is high will the variance be close to the Krekel model underlying it. That the 

variance of recovery rate increases with the correlation of corporate defaults needs further 

empirical evidence. The following chart shows the Amraoui-Hitier (A&H) model 

recovery volatility vs default correlation with 0
~ =R . The line on top is the underlying 

Krekel model with maximum recovery volatility, which is fixed at 49% for 40% expected 

recovery. When ρ  changes from 0% to 100%, the recovery distribution changes from the 

fixed rate of 40% to the Krekel model with maximum variance.  
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One way to explain the variance difference between the Amraoui-Hitier model and its 

underlying Krekel model is to view the variance of the underlying Krekel model as the 

sum of expected conditional variance and the variance of the conditional expectation 

conditional on Z : 

 

))(())(()( ZREVarZRVarERVar +=      (32) 

 

The second term is just the variance of the Amraoui-Hitier model, while the first term is 

varying from zero to maximum when the recovery dependence on Z  changes from 

prefect correlation to independence. 

 

 

5. The Frye and Andersen-Sidenius model 
 

Andersen and Sidenius (2004) proposed a stochastic recovery model which depends on 

systematic factors and idiosyncratic factors other than those driving the default. Frye 

(2000) has proposed this kind of model before for Basel capital calculation, but his 

specification of a random recovery following normal distribution makes recovery rate 

unbounded. 

 

Assume ii ZV ερρ 11 1−+=  drives the default of an obligor and 

ii ZW ξρρ 22 1−+=  drives the loss, where Z , iε , iξ  are independent normal random 

variables. The default probability still follows 
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where  is the default threshold. Dependence of loss is specified as 

, where we have used loss given default function instead of 

unconditional loss to avoid potential loss without default.  The cumulative loss 

distribution becomes 
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and 
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It is easy to show that the recovery upon default distribution is as follows 
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However, after integration over , the marginal loss given default distribution will not be 

, but is instead 

z

DF

 

 

));()),(((1

));()),(((

)(),()()(

21

11

2

1

21

11

2

1

1

ρρ

ρρ

τ

iDi

iDi

Nii

M

D

pNlFNNp

pNlFNNp

dzzfzZtlLPzPplF

−−−

−−−

+∞

∞−

−

−⋅−=

−⋅=

⋅=<≤⋅⋅= ∫
   (37) 

 

where );,(2 ρyxN  is the bivariate normal distribution function and  is the density 

function of the standard normal distribution. See the Appendix for the calculation of the 

Gaussian integral. The marginal recovery rate distribution is 

Nf
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where . Only when the correlation term )1(1)( rFrF DR −−= 21ρρ  is zero will   be 

the same as  and  be the same as . In general, we have  so that the 

marginal recovery distribution  is stochastically dominated by the distribution . 

This means the marginal expected recovery will be smaller than that implied by the 

distribution . Besides, if  is independent of , the marginal recovery distribution 

function  decreases when default probability  increases so that the marginal 

expected recovery increases with the default probability. To fix the marginal expected 

recovery,  has to increase with . 
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The marginal recovery rate distribution may depend on correlation 21ρρ  and default 

probability , which makes single name calibration and index tranche calibration more 

complicated. If we fix the marginal recovery distribution exogenously, we have to 

solve equation (38) for  to be used for recovery calculation conditional on fixed 

systematic factor, which may not be trivial. The added idiosyncratic factor makes the 

model more flexible, but it does not necessarily increase the correlation calibration range 

because the correlation between default and loss is less tight. In a sense, the original 

Amraoui and Hitier model does have the optimal calibration range if the marginal 

expected recovery is fixed for all time. 

ip

M

RF

RF

 

In the case 12 =ρ , the model  is reduced to that discussed in the previous section, with 

the systematic factor being the only driver for loss. 

 

 

6 The Pykhtin model 
 

The Pykhtin model extends the above models by assuming a more general correlation 

form. The loss driver now not only depends on the systematic factors, but also depends 

on the idiosyncratic factors that drive the default. The loss driver has the form 
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)1(1 3322 iii ZY ξρερρρ −+−+= , see Witzany (2009). Originally Pykhtin used a 

lognormal distribution for recovery, which may lead to recovery rate higher than 100%. 

Besides, the original model assumes potential loss without default, which is excluded 

here by assuming  drives only loss given default. iY

 

Default is still driven by ii ZV ερρ 11 1−+= , such that 
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The cumulative loss given default distribution is 
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where );,(2 ρyxN is the bivariate normal cumulative distribution function with 

correlation ρ . 

 

So 
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and  
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Then the marginal distribution of loss and recovery can be obtained by integration over  

using the formula in the Appendix 

z
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and  
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These have the same form as equations (37), (38) in the previous section except for 

different correlation. Note that again the marginal distribution functions  and  will 

be different from the distribution functions  and . The calibration to single name 

CDS and index tranches will be less straight forward since both may depend on 

correlations 

M

DF
M

RF

DF RF

1ρ , 2ρ  and 3ρ . Besides, with fixed , default and loss given default are 

correlated through 

z

iε . 

  

In the case 03 =ρ , the Pykhtin model reduces to the Frye model discussed in the 

previous section. When 13 =ρ , if 21 ρρ ≠ , then there will be potential loss without 

default and the model is not consistent with our requirement ; if 21 ρρ = , then the model 

reduces to the Tasche/Krekel model discussed in Section 3. 

 

 

7 Negative forward expected recovery for fixed  z

 

It is known that negative forward recovery rate conditional on zZ =  could appear in the 

Krekel model and the Amraoui-Hitier model when z is sufficiently negative
2
.  

 

As an example, we will have a look at the Krekel model. The expected loss for fixed  is z
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where equation (14) is used in the last step. The default probability is 
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The time dependence of the expected loss and the default probability is all through  for 

a static model. The instantaneous forward expected loss is defined as 

ip

                                                           
2 Thanks to Paul Bradshaw for pointing this out first. 
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           (47) 

 

where  is the density function of the standard normal distribution. It is obvious that, 

when 

Nf

−∞→z , the exponential part of the integration will go to ∞+ , which makes the 

instantaneous forward expected loss to be unlimited. Thus, the instantaneous forward 

expected recovery rate will also be unlimited negative number. Note that, without the 

exponential term, the formula reduces to the marginal expected loss given default, 
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The Amraoui-Hitier model has the same expected loss as the underlying Krekel model. 

So it has the same problem of negative forward recovery conditional on . z

 

For the Frye and Andersen-Sidenius model, the loss given default distribution conditional 

on  does not depend on , which seems to be able to avoid the negative forward 

recovery problem. However, if the marginal distribution were to be calibrated to the 

single name market with fixed recovery, there would be implicit  dependency in the 

distributions  and . Since the marginal distribution  has higher expected value 

with increasing default probability , the distribution  used for recovery correlation 

should increase with  to generate a lower expected value to compensate the marginally 

higher expected recovery. This way, the expected loss under fixed  will increase due 

both to increased default probability and increased expected loss given default. With a 

z ip
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highly negative systematic factor, the increase in default probability could be much 

smaller comparing with the increase of loss given default and results in negative forward 

recovery. The same thing can happen with the Pykhtin model. 

 

 

8 Conclusion 
 

We have defined a general framework to introduce correlated stochastic recovery and 

have also extended several models recently proposed to more general forms. It is known 

that the current static Gaussian Copula base correlation framework introduces arbitrage 

and inconsistency. Moreover, correlated stochastic recovery models in the current static 

framework may have negative instantaneous forward recovery rate when the fixed 

systematic factor becomes very negative. Although the problems are more of theoretical 

nature, it is worth building more consistent and arbitrage-free models, including dynamic 

models, to price CDOs, CDO options and forward products. For a recent discussion of a 

dynamic model framework for CDOs, see for example Li (2009). One specific 

assumption that needs careful examination is the fixed expected recovery rate at all future 

times. Some people have suggested to relax it, but others have argued that the tranche 

market should be consistent with the index and single name CDS market for hedging 

purposes. In a sense, this will depend on how the market on recovery risk evolves. 

 

Although our discussion has been focused on Gaussian copula, it is obvious that the 

framework is in a more general setting. We noticed that a recent work has extended 

stochastic recovery in a nested Archimedean copula framework (Höcht and Zagst, 2009). 

We emphasize that the inconsistency is still inherent in all static models although 

different copula could introduce more tail risk. We also want to emphasize the technical 

fact that the marginal recovery distribution may be different from the distribution used to 

add correlation to stochastic recovery. This will make the calibration process more 

complicated.  

 

 

Appendix  A useful Gaussian integral 
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Proof: Let 11 1 ερερ −++−= azz  and 22 1 ερερ −++−= czz  where , z ε , 1ε , 

2ε  are independent standard normal random variables. Then 

 

 

∫
∞+

∞−

⋅++=

+≤−++≤−+=

≤≤=≤≤

dzzfdczbazN

zdczbazPE

zdzbzPEdzbzP

N )();,(

))1,1((

)),((),(

2

21

2121

ρ

ερερερερ  

 

 16



Meanwhile, the correlation between  and  is 1z 2z
)1)(1( 22

ca

ac

++

+ ρ
. So we have 
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In the special case 0=ρ , the integral reduces to 
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