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Abstract 

 
Heightened systematic risk in the credit crisis has created challenges to CDO pricing and 
risk management. One important focus has been on the modeling of stochastic recovery. 
Different approaches within the Gaussian Copula framework have been proposed, but a 

consistent model was lacking until the recent paper of Bennani and Maetz [6] which 
shifted the modeling from period recovery to spot recovery. In this paper, we generalize 
their model to an arbitrary spot recovery distribution setup and extend the deterministic 

dependency on systematic factor to a random one. Besides, an extra parameter is   
introduced to control the correlation between default and recovery rate and the correlation 

between the recovery rates. 

 

 

1. Introduction 
 
The credit crisis has seen heightened systematic risk and a slew of corporate defaults. 
From time to time, the standard Gaussian Copula model [8] with fixed recovery rate 
assumption could not calibrate to the market, especially for senior tranches. Attempts 
have been made to extend the model framework to allow stochastic recovery rate [3, 6, 7, 
10], with the emphasis that recovery rate should be positively correlated to the systematic 
factor, or loss rate should be negatively correlated to the systematic factor. This feature is 
based on the empirical observation [1] that, when default rates are high, recovery rates 
are normally lower. The focus has also shifted from modeling period recovery rate to 
modeling spot recovery rate [6, 10], as it was found that recent models of period recovery 
rate may lead to arbitrage and negative probability.  
 
In a previous paper [9], we discussed some general ways to add correlated stochastic 
recovery model to Gaussian Copula base correlation framework and showed that the 
construction may lead to negative forward recovery rate and thus may not be arbitrage-
free. A key feature of the discussion is that it works with period recovery rate and 
specifies the dependency of period recovery rate on period default probability through 
common systematic factors. The shortcomings of this kind of approach are also discussed 
in Y. Li [10] who suggested that a consistent model should be based on spot recovery 
rate. Recently, a new model of spot recovery rate for Gaussian Copula was proposed by 
Bennani and Maetz [6]. The model is flexible and tractable, easy to calibrate to index and 
tranche market. However, the form of the model does not lead to easy generalization to 
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more factors and other Copula models. Besides, the model specifies the spot recovery 
rate as a deterministic function of the systematic factor, which may not be consistent with 
empirical evidence. As mentioned in their paper, recent recovery rates have a large 
spectrum of values, ranging from 1.5% (Tribune) to 91.51% (Fanny Mae). So even with 
high systematic risk, the recovery rate could still be high, although the average recovery 
rate would be lower than normal situation. The current paper will discuss a general way 
to add stochastic spot recovery rate to the model framework which avoids the 
deterministic dependency of recovery rate on systematic factor and can be easily 
extended to more factors and other copula models. We also introduce a parameter to 
control the correlation between default and recovery rate and the correlation between 
recovery rates. It is still not clear how the parameter should be calibrated. 
 
The rest of the paper is organized as follows. In section 2, we introduce the Gaussian 
Copula model setup and discuss the conditional normal approximation in the context of 
the spot recovery rate model of Bennani and Maetz [6]. In section 3, we define a general 
model of stochastic spot recovery rate in a one factor setup and derive the important 
properties of the model that are useful for CDO valuation, such as the expected 
conditional portfolio loss and variance of the conditional portfolio loss. In section 4, we 
present two examples of spot recovery rate distribution and show that, under certain 
conditions, they both lead to the specific form of spot recovery in Bennani and Maetz [6]. 
In section 5, we present some numerical calibration results with a simple parsimonious 
spot recovery model. Section 6 concludes the paper. 
 
 

2. Model setup 
  

In the Gaussian Copula setup, a latent variable iddi ZV ερρ −+= 1  drives the default 

of obligor  of a credit portfolio, where i Z  and iε  are independent normal random 

variables and )1,0(~ N Z  is the systematic factor. The default event can be 

characterized by , where 

ti ≤τ1

))((1
tpvV iii

−Φ=≤ iτ  is the default time random variable, 

 is the cumulative default probability of the obligor i  and )(tpi )(xΦ is the standard 

cumulative normal distribution function. Conditional on the systematic factor Z , obligor 
defaults are independent and the conditional default probability for obligor  is given by i
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In the standard Gaussian Copula model, a constant recovery rate MKT
R  is assumed 

(usually 40% for senior unsecured debt), which is the same as the one used in the single 
name CDS market to calibrate default probability of an obligor. The expected portfolio 
conditional period loss before time t would be 
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where iω  is the weight of obligor i  in the portfolio. 

 
In Bennani and Maetz [6], spot recovery rate is assumed to be a deterministic function of 
the systematic factor Z  and applies to all obligors, 
 
 ],|)([),( zZtrEztr === ττ        (3) 

 
Then the expected portfolio conditional period loss before time t is 
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Integration over the normal random variable Z  will give us the expected portfolio 
unconditional period loss. 
 
To price CDO tranches, we have to calculate portfolio loss distribution through time. 
This can be done using standard recursion method [4] or the conditional normal 
approximation [11]. The conditional normal approximation is very efficient for stochastic 
recovery models. It assumes that the portfolio conditional period loss follows a normal 
distribution. Besides the portfolio conditional expected loss, the only other information 
needed is the variance of portfolio conditional loss 
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The loss  of a tranche with attachment  and detachment d  can be written as tL̂ a
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This is a call spread on the portfolio loss variable . Conditional on tL Z ,  can be 

approximated by a normal distribution 

tL

))(),((~ zVzLN tt . We can easily derive the 

tranche conditional expected loss as 
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where )(xφ  is the standard normal density function. The tranche unconditional expected 

loss can be computed by numerical integration over the normal variable Z . Once the 
tranche expected loss term structure is know, it is straight forward to value the CDO. For 
other numerical approximation methods, see also the recent paper of Amraoui et al [2]. 
 
 

3. A general spot recovery model 
 
Let us start with a generalized model of stochastic recovery where loss is driven by 

another latent variable illi ZW ξρρ −+= 1  through a cumulative distribution function 

, where )(lFL Z , iε , iξ  are independent normal random variables. In a previous paper 

[9], we specify that loss given default is defined by  conditional on ))((1
iLi WFL −Φ= −

ti ≤τ  or , where the negative sign in front of  is to ensure negative 

correlation between loss and the systematic factor. The loss defined this way is not the 
spot loss at default and may lead to arbitrage conditions. To build a consistent stochastic 
recovery model, we have to start with the spot loss or recovery upon default. 
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We need to define the condition on the latent variable such that default happens at a 
specific time instead of a time range. This depends on the continuity of the default 
probability curve. In general,  is a continuous and monotonically increasing 

function of time t . However, in certain situations, it is perfectly imaginable that the  

curve has a jump. For example, if an obligor has a large debt due in 30 days, the default 
probability within 30 days will be low while the default probability over 30 days will be 
much higher. For now we assume that the  curve is continuous such that the 

mapping between cumulative default probability and default time is one-to-one. Thus we 
have 

)(tpi

)(tpi

)(tpi
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Under this condition, it is easy to prove that   follows a normal distribution with mean iW

))((1 tpild

−Φρρ  and standard deviation ld ρρ−1 . To ensure that  is indeed the 

marginal cumulative distribution for the spot loss given default, we define  

)(lFL
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Thus 
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The recovery distribution is related to the loss distribution by 
 

 )1()1(1)1()()( rLPrFrLPrRPrF LR −=+−−=−≥=≤=   (10) 

 
If the loss distribution is continuous, the last term will be zero 
 
 )1(1)()( rFrRPrF LR −−=≤=       (11) 

 
We can equivalently define recovery as a function of  iW
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If the spot loss distribution  is time independent, then the distribution of loss to 

maturity is also time independent and is the same as . So if  has expected loss 

of 

)(lFL

)(lFL )(lFL

MKT
R−1 , then the model is automatically consistent with the single name CDS market. 

 

Conditional on , ))((1
tpV ii

−Φ= Z  follows a normal distribution with mean 

))((1 tpid

−Φρ  and standard deviation dρ−1 , while iξ  still follows the standard 

normal distribution. If we fix zZ = , then the conditional spot loss distribution will be 
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Thus the conditional spot recovery distribution is  
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Since  is right continuous, it is easy to show that )(rFR
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and 
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Next we derive the distribution for conditional period recovery rate defined as 
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Using the fact that (see [5]) 
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it is easy to prove that 
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Note that ρ~−  is essentially the negative correlation between default and recovery during 

the period conditional on Z . If 0=lρ , then recovery will be independent. As seen in 

equation (22), after integrating out Z , the marginal default and marginal recovery are 
independent as the marginal recovery distribution is time-independent. 
 
Another way to look at the result is as follows 
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such that  
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The unconditional recovery distribution can be calculated as follows 
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using the fact that (see [9]) 
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So the marginal distribution of period recovery rate is the same as marginal distribution 
of spot recovery and is time-independent. 
 
To value a CDO tranche, we need to look at the expected loss of the CDO tranche at each 
time horizon. As discussed in section 2, in the conditional normal approximation, only 
conditional portfolio expected loss and conditional portfolio loss variance will be 
important. The conditional expected loss for obligor i  before time  would be t
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The loss variance for obligor  is  i
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Under conditional independence, the portfolio expected loss and loss variance will be the 
sum of individual expected losses and loss variances. If the loss or recovery distribution 
is continuous, we have to use numerical integration to calculate the conditional loss 
expectation and loss variance unless the loss distribution takes some special form as 
discussed in the next section. 
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and the conditional loss variance is 
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With the knowledge of the expected conditional loss and the variance of conditional loss, 
we can easily apply the conditional normal approximation to value CDO tranches.  
 
In the case 1=lρ , the model reduces to deterministic spot recovery conditional on Z , 

which gives the general form for the Bennani-Maetz model [6].  
 

 

4. Two Examples of spot recovery distribution 
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Then the expected conditional spot recovery rate is 
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The expected conditional loss for obligor  up to time  is i t
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By taking the expectation of the conditional spot recovery and using it as the 
deterministic spot recovery rate conditional on Z , we generate a new set of spot recovery 
models that only depend on the systematic factor Z , see our previous paper [9]. These 
will be special forms of the Bennani-Maetz model [6].  The expected conditional loss is 
still the same as the above model, but the variance will be smaller. 
 
The variance of conditional loss for the new model is 
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We will use a general formula 
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which leads to the result (33). When 0=ρ , ca =  and db = , we have 
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Here we will show that the specific form of the Bennani-Maetz model [6] is actually 

related to a spot recovery distribution with fixed mean MKT
R  and maximum variance 

, just like how the Amraoui-Hitier model is related to the same 

distribution in a Krekel model (see [9]). A spot recovery distribution with mean 

)1( MKTMKT
RR −

MKT
R  

will have maximum variance when the recovery only takes the extreme values of 0 and 1 

with probabilities MKT
R−1  and MKT

R . The conditional spot recovery distribution is  
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           (36) 
Then the expected conditional spot recovery rate is 
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Comparing with equation (20) of Bennani and Maetz [6], we have 
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This shows that ργ  is determined by the correlations dρ  and lρ . A natural choice would 

be to assume ρρρ == ld  and then 
ρ
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=

1
 instead of 

ρ
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1

 in Bennani and 

Maetz [6]. 
 
Next we consider a continuous distribution which is not used often but actually is similar 
to the beta distribution, as shown in the Figure below.  
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It was discussed by Andersen and Sidenius [5], and is equivalent to the distribution used 
by Bennani and Maetz [6] as in equation (38). It has the following form 
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where  and 0≥a 10 0 ≤≤ r . This distribution will simplify calculation for Gaussian 

Copula model. It is easy to prove that the expected recovery rate is  and the variance of 

recovery rate is 
0r

 

  2
0

2
0

1
2

)1(2
;0),(21)( r

a

a
rrV −

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
Φ−Φ⋅−= −    (41) 

 

Assume . When  goes to zero, the variance goes to the maximum value 

, which corresponds to the case where 

MKT
Rr =0 a

)1( MKTMKT
RR − r  takes the value 0 or 1 just 

discussed in the previous example. When  goes to infinity, the variance goes to zero 

and the distribution reduces to a constant recovery 

a
MKT
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The original spot recovery equation can be written as  
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Then we have 
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           (43) 
The expected conditional spot recovery is 
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The expected conditional loss up to time  is t
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The variance of conditional loss up to time t  is 
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where 
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If we set 1=lρ , then recovery rate is only driven by the systematic factor and the model 

reduces to that of Bennani and Maetz [6] with 
a

1
=ργ .  

 
Another way is to define a new model with the expected conditional spot loss of the 
above model as the deterministic conditional spot loss, and we will again have a model 
similar to Bennani and Maetz [6] with (see equation (44)) 
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The expected conditional loss will be the same. The variance of conditional loss is 
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which will be smaller than the original variance in equation (46). 
 
 

5. Numerical Results 
 
We use a simple model specification to calibrate CDX S9 as of Norvember 18, 2008. The 

marginal spot recovery distribution will be the same as the first example with 0
~ =R , 

where recovery can only take the value of 0 or 1 with probabilities MKT
R−1  and MKT

R . 
We will use the parameter specification in Bennani and Maetz [6] (see equation (38)) 
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Using equations (30), (31), we can calculate the conditional expected loss and conditional 
loss variance, and then use the conditional normal approximation to calibrate the base 
correlations of the tranches. 
 
The table below shows the market quotes for CDX S9 on Norvember 18, 2008. 
  

CDX S9 Upfront Running Upfront Running Upfront Running 

Index Maturity/Spread 5Y 2.48% 7Y 2.26% 10Y 2.07% 

0%-3% 77.40% 5.00% 79.90% 5.00% 81.18% 5.00% 

3%-7% 45.64% 5.00% 51.91% 5.00% 55.25% 5.00% 

7%-10% 0.00% 9.65% 0.00% 10.06% 0.00% 10.13% 

10%-15% 0.00% 4.64% 0.00% 4.78% 0.00% 4.82% 

15%-30% 0.00% 1.35% 0.00% 1.40% 0.00% 1.44% 

 
 
The next table shows the calibration results for base correlation. 
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CDX S9 Fixed Recovery Stochastic Recovery 

Index Maturity 5Y 7Y 10Y 5Y 7Y 10Y 

3% 52.81% 55.09% 56.36% 32.12% 32.47% 31.90% 

7% 50.75% 51.87% 53.63% 31.62% 31.40% 31.31% 

10% 57.10% 56.95% 57.51% 35.17% 34.06% 33.17% 

15% 69.92% 70.49% 71.68% 42.36% 41.32% 40.56% 

30%  - -   - 67.46% 68.73% 70.23% 

 
 
As expected, the standard Gaussian Copula model with fixed recovery rate can not 
calibrate the senior most tranche, but the stochastic spot recovery model can. Besides, the 
base correlation curve is lower and less steep.  
 
It should be emphasized that this example is for illustration purpose only. The recovery 
distribution used is not realistic, but is close to the recovery markdown to zero. It has 
maximum variance, which should help with calibration range. A more detailed and 
systematic study of calibration ranges, loss distributions and hedging properties is needed 
to justify any choice of marginal spot recovery distribution, the correlation parameters 
and the possible relationship between the default correlation and recovery correlation. 
However, as observed by Andensen and Sidenius [5], stochastic recovery alone can not 
produce the strong correlation skew observed in the market. 
 
 

6. Conclusion 
 
In this paper, we present a general model of stochastic spot recovery rate as an extension 
to the Gaussian Copula framework. The model has several distinct features. First, the 
marginal recovery distribution is a free parameter, which can be chosen based on either 
historical data or market view. Second, spot recovery conditional on the systematic factor 
is not deterministic, which better reflects the empirical evidence. Third, the model 
separates the correlation between default latent variables ( dρ ), the correlation between 

default latent variable and recovery rate latent variable ( ld ρρ ) and the correlation 

between recovery rate latent variables ( lρ ). So it is not driven by a single correlation 

parameter. It is straight forward to extend the model to include a third independent 
parameter to further control the correlation between recovery rate latent variables by 
introducing a second independent systematic factor to the latent variable that drives the 
recovery rate as in Andersen and Sidenius [5]. 
 
Further analysis is needed to understand how to choose the marginal recovery 
distribution, how to calibrate the extra correlation parameter and the impact of stochastic 
recovery on pricing and hedging CDOs. The recent research work of Amraoui et al [2] 
should be extended to include spot recovery models. This may help us determine what 
kind of model will better describe the CDO market. 
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