

Economic Growth Change and Cancer Incidence

Ferretti, Fabrizio

Department of Social Sciences, University of Modena and Reggio Emilia, Ex Caserma Zucchi, Viale Allegri, 9 - 42121 Reggio Emilia, Italy

5 October 2008

Online at https://mpra.ub.uni-muenchen.de/18242/ MPRA Paper No. 18242, posted 11 Nov 2009 14:46 UTC

Economic Growth and Cancer Incidence*

Fabrizio Ferretti

University of Modena and Reggio Emilia - Department of Social Sciences Ex Caserma Zucchi, Viale Allegri, 9 - 42100 Reggio Emilia, Italy - E.mail: fabrizio.ferretti@unimore.it

Abstract. After heart disease, cancer is the most common cause of death in many developed countries. Understanding how the overall cancer incidence evolves during economic growth can help macroeconomic attempts to forecast the economic impact of cancer and to manage resources allocation in planning health services. In this paper, we discuss the relationship between economic growth and cancer incidence. The purposes of the paper are to describe and measure the influence of an increasing real per capita income on the overall incidence of cancer. Using worldwide cross-sectional data for 162 countries, regression results with crude and age-standardised rates, allow us to measure the elasticity of cancer incidence with respect to per capita income, and to decompose the elasticity coefficient into two components: age-effect and lifestyle-effect.

Keywords: Cancer Incidence, Economic Growth. **JEL classification**: O110, I190.

* Working paper 08/09 - Final paper: Ferretti F (2009) «Economic Structural Change and Cancer Incidence» Briefing Notes in Economics, Vol. 81, No. 2, pp. 1-15. please visit: <u>http://www.richmond.ac.uk/bne/</u>

1. Introduction

Health is a fundamental dimension of quality of life. In fact, almost all indices of economic and social well-being contain at least one variable for measuring health conditions. There are some important exceptions, but in the long-run, higher values of real per capita income usually correspond to better hygiene and sanitary conditions. During growth, however, each society undergoes several important changes in both demand and supply of health care. Thereby, the process of economic growth modifies the composition and order of importance of the main population health problems.

This paper analyses one of the foremost of these changes in society's health problems, and focuses on the relationship between economic growth and cancer incidence. In particular, we explore this relationship at the macroeconomic level, using worldwide cross-sectional data for 162 countries in 2002. We attempt to collect some empirical regularities concerning how an increasing real per capita income influences the overall incidence of cancer.

Understanding and measuring how cancer incidence evolves during economic growth can be useful for forecasting the economic impact of cancer and for governing the process of resources allocation in planning health services. However, it is necessary to emphasise that this is not a study about social and economic factors causing cancerous diseases. This paper simply highlights some basic empirical regularities and theoretical insights to be considered for further research in order to develop an economic theory of cancer incidence. The remainder of the paper is organized as follows. Section 2 briefly introduces three essential measures of cancer frequency. Section 3 is devoted to quantitative analysis. Section 4 concludes the paper with some suggestion for further research.

2. Basic measures of cancer frequency

In order to describe and measure the frequency of cancerous diseases, epidemiology utilises three main indicators: incidence, prevalence and mortality. Incidence and mortality are flow variables. They indicate the number of new cancer cases and the number of deaths due to cancer, respectively, which occur in a specific population over a given period (usually 1 year). Prevalence is a stock variable. It indicates the number of cancer cases in a specific population at a given point in time (Last, 2001).

Data on incidence, prevalence and mortality are usually expressed as absolute numbers or as rates. Rates can be crude or age-standardised. A crude rate is calculated by dividing the absolute number of new cases, cases or deaths by the corresponding number of people in the population at risk. An age-standardised rate is a weighted average of the age-specific crude rates, where the weights are the proportion of people in the corresponding age groups of a specific standard population. These age-adjusted rates are calculated to allow comparison between populations with different age structures, and they are particularly useful in making international comparisons. In this case, the most frequently used standard population is the world standard population (WHO, 2003) and the results are usually presented as annual rates per 100,000 persons at risk.

Where raw data are regularly collected by local cancer registry, these basic measures of cancer frequency can be computed for each type of cancer, usually classified according to the International Classification of Diseases (ICD) or for all cancerous diseases as a whole (WHO, 2005). In this latter case, epidemiologists usually refer to the overall prevalence rate as a measure of society's cancer burden. In the same way, since incidence is regarded as a useful approximation to the average risk of developing any type of cancer, the overall incidence rate is considered as an index of the level of cancer risk factors that exist in a given society, during a given period. Finally, the overall mortality rate provides an approximation to the average risk of dying from some type of cancer.

3. Some international evidence

Economic growth can affect cancer incidence, prevalence and mortality in various ways. In this paper we focus on the influence of a long-term increase in real per capita income on the overall incidence rate of all types of cancer.

Using data from the World Bank (WB) and the World Health Organization (WHO), we develop an empirical analysis of the relationship between economic growth and cancer incidence. For this purpose, we use cross-sectional data on per capita income and cancer incidence in 2002, for 162 countries included in WB and WHO statistical databases, and for a subset of these 162 countries, which consist of a more homogeneous group of 41 countries, that are characterised by a "Western lifestyle". In this subset there are 36 European countries plus Australia, Canada, New Zealand and the USA (from now, we simply refer to the whole set as the World group and to the subset as the Western group).

More particularly, real per capita income is measured by the ratio of GNI to population and it is expressed in current international dollars, using purchasing power parity (PPP) rates (World Bank, 2004). Cancer incidence is measured by the crude and the age-standardised rates of all types of

cancer ("all sites, but non melanoma skin", according to the ICD classification) provided by the WHO within *Globocan project* (Bray *et al.*, 2004). In fact, International Agency for Research on Cancer (IARC) publishes free software with worldwide estimation of cancer incidence, prevalence and mortality. For cancer incidence, these data include absolute numbers of new cancer cases, and crude and age-standardised rates, in both the male and female population.

Table 1 contains a short description and some basic descriptive statistics of all variables for the two groups of countries (the complete database is available from the author).

As a useful starting point to highlight this issue, in Figures 1 and 2, the crude rate of incidence of all types of cancers within the total population (TCR) is plotted against the per capita income (Y) for all 162 countries and for the subset of 41 countries. Both scatter plots seem to suggest a strong influence of real per capita income on the average risk of developing some type of cancer.

In order to measure the magnitude of this influence, Tables 2 and 3 show the results of ordinary least square (OLS) estimations of the relationship TCR = f(Y) in three different specifications: linear, quadratic and double-log. The goodness of fit is fairly high in all equations. The crude rate shows a strong positive and significant relationship with per capita income, but it tends to increase less than proportionally with respect to Y. In other words, during economic growth the crude rate of cancer incidence increases, but it evolves drawing approximately the early stage of an inverted U-shaped curve. Indeed, the quadratic and double-log forms are the two specifications that best fit data for the World and Western groups, respectively.

This analysis, however, neglects the powerful influence of sex and age on cancer incidence. Thus, it is necessary to repeat OLS estimation using crude and age-standardised rates (ASR), in both the male and female populations (again in linear, quadratic and double-log specifications).

The simple decomposition of crude rate by sex does not alter the previous results (as shown in Tables 2 and 3). Instead, using age-standardised rates there is a slight reduction in the goodness of fit. Changes in per capita income, however, continue to explain an important part of the change in cancer incidence. This effect is not due to the positive influence of economic growth on the average duration of life.

In particular, a straight line best describes the relationship between real per capita income and cancer incidence within the female population in both groups of data, while quadratic and double-log forms provide a reasonably close approximation to data for the male population in countries within the World and Western groups, respectively. All this seems to confirm a relevant negative effect of economic growth on the presence of cancer risk factors in different populations.

3.1. Income elasticity of cancer incidence

These results suggest that economic growth has a negative influence on cancer incidence, but they also indicate that in some cases cancer incidence tends to rise less than proportionally with respect to the increase in real per capita income. Moreover, the negative effect of economic growth on the overall rate of cancer incidence seems to be only partially related to the implications of an ageing population. Results of our regressions on crude and age-standardised rates indicate that there are both a *gross* and a *net* effect of economic growth on cancer incidence, respectively.

Regression models using the double-log specification allow us to easily calculate the elasticity of cancer incidence with respect to real per capita income. These coefficients provide an idea of the dimensions of both *gross* and *net* effects of economic growth on cancer incidence.

As shown in Table 4, all elasticities are positive but less than one. On average, the coefficient is about 0.4 for countries within the World group and 0.2 for those within the Western group. Differences in elasticity between these two groups, however, are mainly due to the effect of economic growth on the average life expectation at birth. As a matter of fact, using the age-

standardised rates cancer incidence increases, on average, by 0.23 and 0,16% in the World and Western groups, respectively, for each 1% increase in real per capita income.

Finally, using regression results from the quadratic specification, we can calculate the average hypothetical threshold level of Y (that is, the real per capita income beyond which cancer incidence starts diminishing, Y*). As shown in Table 4, in a long-run perspective, the process of economic growth may tend to exhaust the strong *net* negative effect on cancer incidence. However, our results within the male population indicate that this threshold level of real per capita income is extremely high (about \$33,000 and \$35,000 for the World and Western groups, respectively).

4. Conclusions

Describing and measuring the relationship between cancer incidence and real per capita income constitutes the first step in understanding how the process of economic growth affects population exposure to cancer causing factors.

In fact, real per capita income is not an accurate and adequate measure of a country's level of development and it is not possible to summarize in Y a set of economic, social and health features. Further research is needed to include more variables, as for example, those referring to personal income distribution, cultural habits and customs, general sanitary conditions and health policies. It is also necessary to utilise epidemiological data for each type of cancer within more homogeneous genetic populations.

This paper, however, highlights some basic empirical regularities and theoretical insights that may be useful in developing an economic theory of the evolution of cancer incidence in a growing economy.

References

Bosanquet N., Sikora K., The Economics of Cancer Care, Cambridge University Press, London, UK, 2006.

Bray F., Ferlay J., Parkin D.M. and Pisani P., Globocan Software 2002, IARC Press, Lyon, 2004.

International Agency for Research on Cancer, Cancer Mondial, IARC, Lyon, 2004.

Last, J. A., Dictionary of Epidemiology, Oxford University Press, New York, NY, 2001.

Nasca, P. C., Fundamentals of cancer epidemiology, Jones & Bartlett Publishing, Sudbury, MA, 2007.

Ukraintseva S.V. and Yashin A.I., "Economic progress as cancer risk factor", M. Planck Institute, WP22, 2005.

World Bank, World Economic Indicators, World Bank Press, Washington DC, 2004.

World Health Organization (2003), World Health Statistics, WHO Press, Geneva.

World Health Organization (2007), World Health Statistics, WHO Press, Geneva.

World Health Organization, International Classification of Diseases, WHO Press, Geneva, 2005.

Description	Variable	Mean	Std. Dev.	Min	Max
World group (n = 162)					
Per Capita Gross National Income	Υ	8.166,90	8.937,60	500,00	37.270,0
Total (Female and Male), Incidence Crude Rate	TCR	183,83	139,25	44,70	507,9
Female, Incidence Crude Rate	FCR	178,45	124,30	58,90	496,4
Female, Incidence Age-Standardized Rate	FASR	163,03	53,30	77,90	308,7
Male, Incidence Crude Rate	MCR	190,24	156,56	36,00	585,8
Male, Incidence Age-Standardized Rate	MASR	187,67	80,30	64,90	406,6
Western group (n = 41)					
Per Capita Gross National Income	Y	18.515,00	10.325,70	1.620,00	37.270,0
Total (Female and Male), Incidence Crude Rate	TCR	388,02	85,18	198,09	507,9
Female, Incidence Crude Rate	FCR	359,98	78,71	196,70	496,4
Female, Incidence Age-Standardized Rate	FASR	224,04	40,51	160,60	308,7
Male, Incidence Crude Rate	MCR	419,35	98,78	196,00	585,8
Male, Incidence Age-Standardized Rate	MASR	290,26	47,89	206,50	406,6

Y, Current International Dollars, Purchasing Power Parity - PPP, 2002 (World Bank, 2004) CR and ASR, Crude and Age-Standardized Rates for all types of cancers: all sites but non-melanoma skin (C00-C96, but C44, International Classification of Diseases ICD)

Incidence Rates per 100,000 persons, 2002 (International Agency for Research on Cancer, 2004)

Countries in the "Western gruoup": Albania, Austria, Belarus, Belgium, Bosnia and Herz, Bulgaria, Croatia, Czech rep Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Malta Nethederlands, Norway, Poland, Portugal, Rep. Moldova, Romania, Russian Fed., Serbia and Mont., Slovakia Slovenia, Spain. Sweden, Switzerland, TFYR Macedonia, United Kingdom, Ukraine, Australia, Canada, New Zealand, USA

Table 2 - Regression results, World group									
	Dependent					R - Bar	2	Functional Form**	
	variable	Regressor	Coefficient	T-Ratio	Prob	Squared	CHSQ LM Version	CHSQ LM Version	n
Total	(Female and	male) Crude	Rate						
01	TCR	Constant	75,52	9,67		0,72	0,920 [0,337]	9,063 [0,003]	162
		Y	0,132	20,52		·			
02	TCR	Constant	53,13	5,04		0,74	1,184 [0,276]	0,235 [0,627]	162
		Y	0,020	8,70					
		Y ²	-2,27E-07	-3,06					
03	LogTCR	Constant	0,286	2,45	0,01	0,61	0,010 [0,918]	21,66 [0,000]	162
		LogY	0,508	16,09					
Fema	le Crude rate								
04	FCR	Constant	81,43	11,79		0,73	1,206 [0,272]	7,730 [0,005]	162
01	Ten	Y	0,012	20,80		0,70	1,200 [0,272]	,,, ee [e,eee]	102
05	FCR	Constant	63,15	6,74		0,74	1,859 [0,173]	0,035 [0,850]	162
		Y	0,017	8,52					
		Υ^2	-1,86E-07	-2,82					
06	LogFCR	Constant	0,463	4,38		0,68	0,145 [0,703]	22,52 [0,000]	162
		LogY	0,462	16,19					
Male	Crude rate								
07	MCR	Constant	68,76	7,77		0,72	2,610 [0,106]	9,75 [0,002]	162
		Y	0,148	20,33					
08	MCR	Constant	42,48	3,57		0,73	3,000 [0,083]	0,617 [0,432]	162
		Y	0,023	8,78					
		Y ²	-2,67E-07	-3,19					
09	LogMCR	Constant	0,095	0,75	0,45	0,62	0,392 [0,531]	21,17 [0,000]	162
		LogY	0,558	16,21					
Fema	le Age-Stand	ardized Rate							
10	FASR	Constant	127,46	32,74		0,53	0,013 [0,907]	0,830 [0,362]	162
		Υ	0,043	13,52					
11	FASR	Constant	124,08	23,00		0,53	0,005 [0,940]	0,117 [0,732]	162
		Y	0,0054	4,56					
		Y ²	-3,43E-08	-0,90	0,37				
12	LogFASR	Constant	1,515	22,43		0,38	0,607 [0,436]	18,28 [0,000]	162
		LogY	0,184	10,06					
Male	Age-Standar	dized Rate							
13	MASR	Constant	132,48	23,41		0,56	0,087 [0,768]	10,63 [0,001]	162
		Y	0,0067	14,43					
14	MASR	Constant	114,93	15,13		0,59	0,003 [0,958]	0,465 [0,495]	162
		Y	0,012	7,28					
		Υ^2	-1,78E-07	-3,34					
15	LogMASR	Constant	1,232	14,75		0,47	6,039 [0,014]	12,98 [0,000]	162
		LogY	0,273	12,08					

* Based on the regression of sqared residuals on squared fitted values ** Ramsey's RESET test using the squares of the fitted values

Table 3 - Regression results, Western group									
	Dependent		0 10 1	T. D:		R - Bar	Heteroskedasticy*		
	variable	Regressor	Coefficient	T-Ratio	Prob	Squared	CHSQ LM Version	CHSQ LM Version	n
Total	(Female and	male) Crude	Rate						
01	TCR	Constant	268,50	15,44		0,60	0,233 [0,629]	6,305 [0,012]	41
		Y	0,0064	7,85		.,	,	· · · · · · · 1	-
02	TOP	Constant	200 AF	7 4 4		0.65	0.020.01.0.401	1 076 [0 160]	41
02	TCR	Constant Y	208,45 0,0156	7,44 4,36		0,65	0,039 [0,842]	1,976 [0,160]	41
		Y^2	-2,48E-07	-2,62	0,01				
03	LogTCR	Constant LogY	1,449 0,270	12,48 9,75		0,70	0,615 [0,433]	0,103 [0,748]	41
		LUGI	0,270	9,10					
Fema	le Crude rate								
04	FCR	Constant	246,55	16,06		0,64	0,194 [0,659]	3,942 [0,047]	41
		Y	0,0061	8,43					
05	FCR	Constant	204 61	8,00		0.66	0 0/2 10 02/1	1 177 [0 279]	41
03	ГЦК	Constant	204,61 0,0120	8,00 3,83		0,66	0,043 [0,834]	1,177 [0,278]	41
		Y ²	-1,73E-07	-2,01	0,05				
07	LeeECP	Constant	1 400	10.40		0.70	1 117 10 2011		41
06	LogFCR	Constant LogY	1,438 0,265	12,62 9,75		0,70	1,116 [0,291]	0,122 [0,727]	41
		2051	0,200	.,					
Male	Crude rate								
07	MCR	Constant	288,21	13,24		0,54	0,028 [0,867]	6,902 [0,009]	41
		Y	0,0071	6,87		•			
08	MCR	Constant	200 54	6,03		0,60	0,906 [0,341]	1 252 [0 245]	41
00	IVICK	Y	209,54 0,0192	6,03 4,30		0,00	0,700 [0,341]	1,353 [0,245]	41
		Y ²	-3,25E-07	-2,77	0,01				
09	LogMCR	Constant	1,440	10,75		0,65	0,112 [0,737]	0,327 [0,567]	41
09	LUGINICK	LogY	1,440 0,280	10,75 8,75		0,00	0,112 [0,737]	0,027 [0,007]	41
.	1	-		·					
Fema	le Age-Stand	ardized Rate							
10	FASR	Constant	169,13	19,45		0,56	0,013 [0,907]	0,018 [0,892]	41
		Y	0,0029	7,21					
11	FASR	Constant	170,75	11,21		0,55	0,023 [0,878]	0,030 [0,862]	41
	-	Y	0,0027	1,39	0,17	,	, <u>, , , , ,</u>		
		Y^2	6,71E-09	0,13	0,89				
12	LogFASR	Constant	1,598	13,92		0,51	0,542 [0,462]	3,968 [0,046]	41
		LogY	0,178	6,50		-,	.,= [0, 10=]	[.,]	
Male	Age-Standar	dized Rate							
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0								
13	MASR	Constant	239,14	18,95		0,34	0,014 [0,906]	1,253 [0,263]	41
		Y	0,0027	4,62					
14	MASR	Constant	219,72	10,09		0,34	0,219 [0,640]	3,911 [0,048]	41
		Y	0,0057	2,05	0,04				
		Υ^2	-8,02E-08	-1,09	0,28				
15	LogMASR	Constant	1,847	16,37		0,41	0,055 [0,814]	0,015 [0,969]	41
10									

* Based on the regression of sqared residuals on squared fitted values ** Ramsey's RESET test using the squares of the fitted values

	World	World	Western	Western Y*, PPP (2002)	
Variable	elasticity	Y*, PPP (2002)	elasticity		
01 - TCR	0,508	44.053	0,270	31.452	
02 - FCR	0,462	45.773	0,265	34.642	
03 - MCR	0,558	42.697	0,280	29.548	
Mean CR	0,510	44.235	0,273	32.095	
04 - FASR	0,184		0,178		
05 - MASR	0,273	33.632	0,146	35.532	
Mean ASR	0,229		0,162		
All observations					
Mean	0,397	41.539	0,228	32.793	
Std. Dev.	0,151	4.845	0,058	2.431	

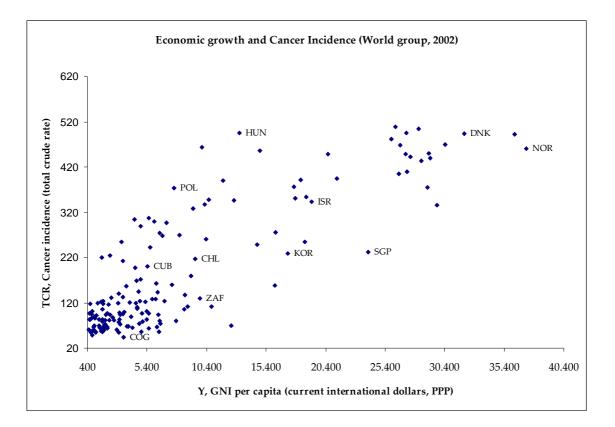


Figure 1

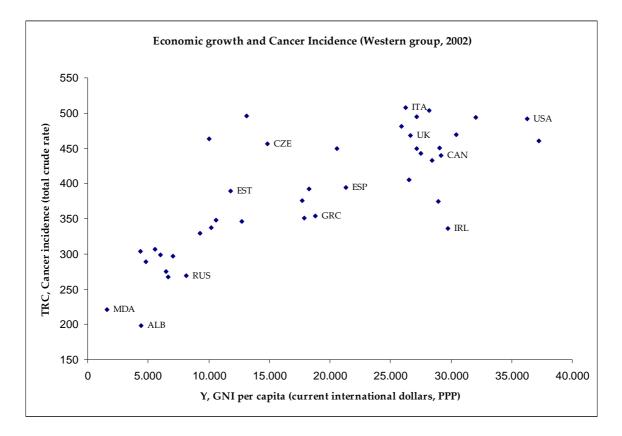


Figure 2