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FIAT MONEY AND THE VALUE OF BINDING PORTFOLIO CONSTRAINTS

MÁRIO R. PÁSCOA, MYRIAN PETRASSI AND JUAN PABLO TORRES-MARTÍNEZ

Abstract. We establish necessary and sufficient conditions for the individual optimality of a

consumption-portfolio plan in an infinite horizon economy where agents are uniformly impatient

and fiat money is the only asset available for intertemporal transfers of wealth. Next, we show

that fiat money has a positive equilibrium price if and only if for some agent the zero short sale

constraint is binding and has a positive shadow price (now or in the future). As there is always

an agent that is long, it follows that marginal rates of intertemporal substitution never coincide

across agents. That is, monetary equilibria are never full Pareto efficient. We also give a counter-

example illustrating the occurrence of monetary bubbles under incomplete markets in the absence

of uniform impatience.
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JEL classification: D50, D52.

1. Introduction

The uniform impatience assumption (see Hernández and Santos (1996, Assumption C.3) or Mag-

ill and Quinzii (1996, Assumptions B2 and B4)), together with borrowing constraints, is a usual

requirement for existence of equilibrium in economies with infinite lived agents. This condition is

satisfied whenever preferences are separable over time and across states so long as (i) the intertem-

poral discounted factor is constant, (ii) individual endowments are uniformly bounded away from

zero, and (iii) aggregate endowment is uniformly bounded from above.

As Santos and Woodford (1997, Theorem 3.3) showed, the assumption of uniform impatience has

important implications for asset pricing: it rules out speculation in assets in positive net supply for

deflator processes in the non-arbitrage pricing kernel,1 which yield finite present values of aggregate
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1Notice that under inequality constraints on portfolios, non-arbitrage (from one node to its immediate successors)

is equivalent to the existence of a positive vector of state prices solving a linear system of inequalities relating asset

1
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wealth. The well-known example of a positive price of fiat money by Bewley (1980) highlighted the

importance of the finiteness of the present value of aggregate wealth.

What happens if we use as deflators the agents’ inter-nodes marginal rates of substitution? These

deflators may fail to be in the asset pricing kernel when some portfolio constraints are binding. For

these Kuhn-Tucker deflators, assets in positive net supply may be priced above the series of deflated

dividends and the difference may be due to the presence of shadow prices rather than to a bubble.

Giménez (2007) already made this comment and Araujo, Páscoa and Torres-Mart́ınez (2008) worked

along these lines when addressing the pricing of long-lived collateralized assets.

To consider a simple and provocative case, we look, as in Bewley (1980), at economies with a

single asset, paying no dividends and in positive net supply. As usual, we call this asset fiat money

(or simply money), although we are quite aware that we are just looking at its role as a store of

value, i.e. as an instrument to transfer wealth across time and states of nature. In this context and

under uniform impatience, we show that money can and will only be positively valued as a result

of agents’ desire to take short positions that they cannot. That is, under uniform impatience, the

positive price of money must be due to the presence of shadow prices of binding constraints.

This result does not collide with the example by Bewley (1980) or the results by Santos and

Woodford (1997). It complements these results. Under uniform impatience, a positive price of

money implies that the present value of the aggregate wealth must be infinite for any deflator in the

asset pricing kernel (Theorem 3.3 of Santos and Woodford (1997)). Without uniform impatience, it

would only imply an infinite supremum for the present value of aggregate wealth, when all deflators

in that kernel are considered (see Theorem 3.1 in Santos and Woodford (1997)). However, for any

Kuhn-Tucker deflator process of a certain agent, the present value of the endowments of this agent

is finite, but this deflator may fail to be in the asset pricing kernel (when this agent has binding

portfolio constraints) or the present value of aggregate wealth may fail to be finite (when the deflator

is not the same for all agents and uniform impatience does not hold).

In Bewley’s (1980) example, the two uniformly impatient agents were not allowed to take short

positions and the economy had no uncertainty. The positive price of money was a bubble for the

unique deflator process in the asset pricing kernel and for this deflator the present value of aggregate

wealth was infinite. However, the zero short-sales constraint was binding infinitely often. Thus, for

the Kuhn-Tucker deflator process of each agent, the fundamental value of money was positive,

consisting of the shadow prices of debt constraints.

prices and returns (see Jouini and Kallal (1995) or Araujo, Fajardo and Páscoa (2005)). The state prices that make

all inequalities hold as equalities constitute the asset pricing kernel of the linear operator that defines the system, but

there may be other solutions (for example, those given by the Kuhn-Tucker multipliers).
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Hence, we obtain a result that may seem surprising: credit frictions create room for welfare

improvements through transfers of wealth that become possible only when money has a positive

price. However, monetary equilibria are always Pareto inefficient. Otherwise, by definition, agents’

rates of intertemporal substitution would coincide. However, as money is in positive net supply, at

least one agent must go long, having a zero shadow price. Thus, the shadow prices of all agents

should be zero and, therefore, the price of money could not be positive.

To clarify our results, we prove that when money has a positive value, there exists a deflator,

but not one of the Kuhn-Tucker deflators, under which the discounted value of aggregated wealth

is infinite and a bubble appears. That is, in our framework (that includes Bewley (1980) model)

it is always possible to interpret monetary equilibrium as a bubble. However, when we focus on

Kuhn-Tucker multipliers—deflators that make financial Euler conditions compatible with physical

Euler conditions—the positive price of money is always a consequence of a positive fundamental

value.

We close the paper with an example of a stochastic economy that does not satisfy the uniform

impatience assumption. Money is positive valued in equilibrium, although shadow prices of zero

short-sale constraints are equal to zero. For the Kuhn-Tucker deflator processes of both agents,

aggregate wealth has a finite present value.

Our main mathematical tool is a duality approach to dynamic programming problems that was

already used in the context of long-lived collateralized assets by Araujo, Páscoa and Torres-Mart́ınez

(2008). This approach allows us to characterize non-interior solutions and the respective Kuhn-

Tucker multiplier processes. A recent related paper by Rincón-Zapatero and Santos (2009) addresses

the uniqueness of this multiplier process and the differentiability of the value function, without

imposing the usual interiority assumptions.

The paper is organized as follows. Section 2 characterizes uniform impatience. Section 3 presents

the basic model. In Section 4, we develop the necessary mathematical tools: a duality theory of

individual optimization. In Section 5 we define the concepts of fundamental value of money and

asset pricing bubbles. Finally, Section 6 presents the results on monetary equilibria and Section 7

an example of monetary equilibrium in an economy without uniform impatience. Some proofs are

left to the Appendix.

2. Characterizing uniform impatience when utilities are separable

In this section, we recall the assumption of uniform impatience and characterize it for separable

utilities in terms of intertemporal discount factors. As a consequence, we show that the uniform

impatience assumption does not hold for agents with hyperbolic intertemporal discounting (see
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Laibson (1998)).

Consider an infinite horizon discrete time economy where the set of dates is {0, 1, . . .} and there

is no uncertainty at t = 0. Given a history of realizations of the states of nature for the first t − 1

dates, with t ≥ 1, st = (s0, . . . , st−1), there is a finite set S(st) of states that may occur at date t. A

vector ξ = (t, st, s), where t ≥ 1 and s ∈ S(st), is called a node. The only node at t = 0 is denoted

by ξ0. Let D be the (countable) event-tree, i.e., the set of all nodes.

Given ξ = (t, st, s) and µ = (t′, st′ , s
′), we say that µ is a successor of ξ, and we write µ > ξ, if

t′ > t and the first t + 1 coordinates of st′ are given by (st, s). We write µ ≥ ξ to say that either

µ > ξ or µ = ξ and we denote by t(ξ) the date associated with a node ξ. Let ξ+ = {µ ∈ D : (µ ≥

ξ) ∧ (t(µ) = t(ξ) + 1)} be the set of immediate successors of ξ. The (unique) predecessor of ξ > ξ0

is denoted by ξ− and D(ξ) := {µ ∈ D : µ ≥ ξ} is the sub-tree with root ξ.2 The set of nodes with

date T in D(ξ) is denoted by DT (ξ), and DT (ξ) =
⋃T

k=t(ξ) Dk(ξ) denotes the set of successors of ξ

with date less than or equal to T . When ξ = ξ0 notations above will be shorten to DT and DT .

At any node ξ ∈ D, a finite set of perishable commodities is available for trade, L. There is a

finite set of infinite-lived agents, H. Each agent h ∈ H has at any ξ ∈ D a physical endowment

wh(ξ) ∈ R
L
+ and has preferences over consumption plans, (x(ξ); ξ ∈ D) ∈ R

L×D
+ , which are repre-

sented by a function Uh : R
L×D
+ → R+ ∪ {+∞}.3 Aggregated physical endowments at a node ξ are

given by W (ξ) ∈ R
L
++.

Assumption 1 (Separability of preferences). For any agent h ∈ H, the utility function

Uh((x(ξ); ξ ∈ D)) =
∑

ξ∈D uh(ξ, x(ξ)), where for any ξ ∈ D, uh(ξ, ·) : R
L
+ → R+ is a continuous,

concave and strictly increasing function. Also,
∑

ξ∈D uh(ξ, W (ξ)) is finite.

Assumption 2 (Uniform impatience). There are π ∈ [0, 1) and (∆(µ);µ ∈ D) ∈ R
L×D
+ such

that, given a consumption plan (x(µ);µ ∈ D), with 0 ≤ x(µ) ≤ W (µ), for any h ∈ H, we have

uh (ξ, x(ξ) + ∆(ξ)) +
∑

µ>ξ

uh(µ, π′ x(µ)) >
∑

µ≥ξ

uh(µ, x(µ)), ∀ξ ∈ D, ∀π′ ∈ [π, 1).

Moreover, there is κ > 0 such that, wh(ξ) ≥ κ∆(ξ) > 0, ∀ξ ∈ D.

The requirements of impatience above depend on both preferences and physical endowments.

As particular cases we obtain the assumptions imposed by Hernández and Santos (1996)—for any

2The symbol “:=” means “defined by”.
3Since the event-tree D is countable and there is a finite number of commodities, the set R

L×D
+ of sequences of

consumption bundles (x(ξ); ξ ∈ D), with x(ξ) ∈ R
L
+ for any ξ ∈ D, is well defined.
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µ ∈ D, ∆(µ) = W (µ)—and Magill and Quinzii (1994, 1996)—initial endowments are uniformly

bounded away from zero by a bundle w ∈ R
L
++, and ∆(µ) = (1, 0, . . . , 0), ∀µ ∈ D.

Our characterization of uniform impatience is,

Proposition 1. Suppose that Assumption 1 holds, that (W (ξ); ξ ∈ D) is a bounded consumption

plan and that there is w ∈ R
L
+ \ {0} such that, wh(ξ) ≥ w, ∀ξ ∈ D. Moreover, assume that there

exists a function fh : R
L
+ → R+ such that, for any ξ ∈ D, uh(ξ, ·) ≡ βh

t(ξ)ρ
h(ξ)fh(·), where βh

t(ξ) is

a strictly positive discount factor and ρh(ξ) denotes the probability to reach node ξ, which satisfies

ρh(ξ) =
∑

µ∈ξ+ ρh(µ), with ρh(ξ0) = 1.

For each t ≥ 0, let ah
t = 1

βh
t

∑+∞
r=t+1 βh

r . Then, the function Uh satisfies uniform impatience (As-

sumption 2) if and only if the sequence (ah
t )t≥0 is bounded.

Proof. Assume that (W (ξ); ξ ∈ D) is a bounded consumption plan. That is, there is W ∈ R
L
+

such that, W (ξ) ≤ W, ∀ξ ∈ D. If (ah
t )t≥0 is bounded, then there exists ah > 0 such that, ah

t ≤ ah,

for each t ≥ 0. Also, since F := {x ∈ R
L
+ : x ≤ W} is compact, the continuity of fh assures that

there is π ∈ (0, 1) such that fh(x) − fh(π′ x) ≤ minz∈F

(

fh(z+w)−fh(z)
2ah

)

, ∀x ∈ F, ∀π′ ∈ [π, 1).

Thus, uniform impatience follows by choosing κ = 1 and ∆(ξ) = w, ∀ξ ∈ D. Indeed, given a plan

(x(µ);µ ∈ D) ∈ R
L×D
+ such that, x(µ) ≤ W (µ) ∀µ ∈ D, the concavity of uh assures that, for any

ξ ∈ D and π′ ∈ [π, 1),

X

µ>ξ

β
h
t(µ)ρ

h(µ)fh(x(µ)) −
X

µ>ξ

β
h
t(µ)ρ

h(µ)fh(π′
x(µ)) ≤

βh
t(ξ)a

h
t

2ah
ρ

h(ξ) min
z∈F

“

f
h(z + w) − f

h(z)
”

< β
h
t(ξ)ρ

h(ξ)fh(x(ξ) + ∆(ξ)) − β
h
t(ξ)ρ

h(ξ)fh(x(ξ)).

Reciprocally, suppose that uniform impatience property holds. Then, there are (π, κ) ∈ [0, 1) ×

R++ and (∆(µ);µ ∈ D) ∈ R
L×D
+ satisfying, for any ξ ∈ D, wh(ξ) ≥ κ∆(ξ), such that, given

(x(µ);µ ∈ D) ∈ R
L×D
+ with x(µ) ≤ W (µ), for all µ ∈ D, we have that, for any node ξ ∈ D,

1

βh
t(ξ)ρ

h(ξ)





∑

µ>ξ

βh
t(µ)ρ

h(µ)fh(x(µ)) −
∑

µ>ξ

βh
t(µ)ρ

h(µ)fh(πx(µ))



 < fh(x(ξ) + ∆(ξ)) − fh(x(ξ)).

It follows that, for any node ξ,

1

βh
t(ξ)ρ

h(ξ)





∑

µ>ξ

βh
t(µ)ρ

h(µ)fh(w) −
∑

µ>ξ

βh
t(µ)ρ

h(µ)fh(πw)



 < fh

((

1 +
1

κ

)

W

)

.

Therefore, we conclude that, for any ξ ∈ D,

1

βh
t(ξ)

(

fh(w) − fh(πw)
)

+∞
∑

t=t(ξ)+1

βh
t < fh

((

1 +
1

κ

)

W

)

,
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which implies that the sequence (ah
t )t≥0 is bounded. �

Under the conditions of Proposition 1, if intertemporal discount factors are constant, i.e. ∃λh ∈

R++ :
βh

t(ξ)+1

βh
t(ξ)

= λh, ∀ξ ∈ D, then both λh < 1 and ah
t = λh

1−λh , for each t ≥ 0. In this case, the

utility function Uh satisfies the uniform impatience condition.

However, even with bounded plans of endowments, uniform impatience is a restrictive condition

when intertemporal discount factors are time varying. For instance, if we consider hyperbolic in-

tertemporal discount factors, that is, βh
t = (1 + θt)−

τ
θ , where (τ, θ) ≫ 0, then the function Uh, as

defined in the statement of Proposition 1, satisfies Assumption 1 and the sequence (ah
t )t≥0 goes to

infinity as t increases. Therefore, in this case, uniform impatience does not hold.

3. A monetary model with uniform impatience agents

We assume that there is only one asset, money , that can be traded along the event-tree. Although

this security does not deliver any physical payment, it can be used to make intertemporal transfers.

Let q = (q(ξ); ξ ∈ D) be the plan of monetary prices. We assume that money is in positive net supply

that does not disappear from the economy and neither deteriorates. Denote money endowments at

a node ξ ∈ D by eh(ξ) ∈ R+. We denote by zh(ξ) ∈ R+ the quantity of money that h negotiates at

ξ. Let p(ξ) := (p(ξ, l); l ∈ L) be the commodity price at ξ ∈ D and p := (p(ξ); ξ ∈ D).

Given prices (p, q), let Bh(p, q) be the choice set of agent h ∈ H, that is, the set of plans

(x, z) := ((x(ξ); ξ ∈ D) , (z(ξ); ξ ∈ D)) ∈ R
L×D
+ ×R

D
+ , such that, at any ξ ∈ D, the following budget

constraint holds,

gh
ξ (yh(ξ), yh(ξ−); p, q) := p(ξ)

(

xh(ξ) − wh(ξ)
)

+ q(ξ)
(

zh(ξ) − eh(ξ) − zh(ξ−)
)

≤ 0,

where yh(ξ) = (xh(ξ), zh(ξ)), yh(ξ−0 ) := (xh(ξ−0 ), zh(ξ−0 )) = 0.

Agent’s h individual problem is to choose a plan yh = (xh, zh) in Bh(p, q) in order to maximize

her utility function Uh : R
L×D
+ → R+ ∪ {+∞}.

Definition 1.

An equilibrium for our economy is given by a vector of prices (p, q) jointly with individual plans
(

(xh, zh);h ∈ H
)

, such that,

(a) For each h ∈ H, the plan (xh, zh) ∈ Bh(p, q) is optimal at prices (p, q).

(b) At any ξ ∈ D, physical and asset markets clear,

∑

h∈H

xh(ξ) = W (ξ),
∑

h∈H

zh(ξ) =
∑

ξ0≤µ≤ξ

eh(µ).
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Note that a pure spot market equilibrium, i.e. an equilibrium with zero monetary price, always

exists provided that preferences satisfy Assumption 1 above.

4. Duality theory for individual optimization

In this section, we determine necessary and sufficient conditions for individual optimality.

Some previous definitions and notations are necessary. By normalization, we assume that prices

(p, q) belong to P := {(p, q) ∈ R
L×D
+ × R

D
+ :

∑

l∈L p(ξ, l) + q(ξ) = 1, ∀ξ ∈ D}. Given a concave

function f : X ⊂ R
L → R ∪ {−∞} the super-differential at x ∈ X, denoted by ∂f(x), is defined as

the set of vectors p ∈ R
L such that, for all x′ ∈ X, f(ξ, x′) − f(ξ, x) ≤ p(x′ − x).

Definition 2.

Given (p, q) ∈ P and yh = (xh, zh) ∈ Bh(p, q), we say that (γh(ξ); ξ ∈ D) ∈ R
D
+ constitutes a

family of Kuhn-Tucker multipliers (associated to yh) if there exist, for each ξ ∈ D, super-gradients

u′(ξ) ∈ ∂uh(ξ, xh(ξ)) such that,

(a) For every ξ ∈ D, γh(ξ) gh
ξ (yh(ξ), yh(ξ−); p, q) = 0.

(b) The following Euler conditions hold,

γh(ξ)p(ξ) − u′(ξ) ≥ 0,
(

γh(ξ)p(ξ) − u′(ξ)
)

xh(ξ) = 0,

γh(ξ)q(ξ) −
∑

µ∈ξ+

γh(µ)q(µ) ≥ 0,



γh(ξ)q(ξ) −
∑

µ∈ξ+

γh(µ)q(µ)



 zh(ξ) = 0.

(c) The following transversality condition holds: limT→+∞

∑

ξ∈DT

γh(ξ)q(ξ)zh(ξ) = 0.

First of all, we want to note that, when Kuhn-Tucker multipliers exist and are used as intertem-

poral deflators, the discounted value of individual endowments is finite.

Proposition 2. (Finite discounted value of individual endowments)

Let there be a plan (p, q) ∈ P and yh = (xh, zh) ∈ Bh(p, q) such that Uh(xh) < +∞. If Assump-

tion 1 holds then for any family of Kuhn-Tucker multipliers associated to yh, (γh(ξ); ξ ∈ D), we

have
∑

ξ∈D γh(ξ)
(

p(ξ) wh(ξ) + q(ξ)eh(ξ)
)

< +∞.

Since we only know that, for any plan (p, q) ∈ P, the choice set Bh(p, q) belongs to R
D×L
+ × R

D
+ ,

it is not obvious that a plan of Kuhn-Tucker multipliers will exist. Thus, as individual admissible

plans are determined by countably many inequalities, we will prove the existence of these multipliers

by direct construction, using the Kuhn-Tucker Theorem for Euclidean spaces.
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Proposition 3. (Necessary and sufficient conditions for individual optimality)

Under Assumption 1, let there be a plan (p, q) ∈ P and yh = (xh, zh) ∈ Bh(p, q). If Uh(xh) < +∞

and yh is an optimal plan for agent h ∈ H at prices (p, q), then there exists a family of Kuhn-Tucker

multipliers associated to yh. Reciprocally, if there exists a family of Kuhn-Tucker multipliers asso-

ciated to yh, then yh is an optimal plan for agent h at prices (p, q).

We say that debt constraints induce frictions over agent h in D̃ ⊂ D if the plan of shadow prices

(ηh(µ); µ ∈ D̃) defined, at each µ ∈ D̃, by ηh(µ) = γh(µ)q(µ) −
∑

ν∈µ+

γh(ν)q(ν) is different from

zero, where µ+ = {ν ∈ D : (ν ≥ µ) ∧ (t(ν) = t(µ) + 1)} is the set of immediate successors of µ and

(γh(µ);µ ∈ D) is the plan of Kuhn-Tucker multipliers of agents h. Note that, as a consequence of

financial Euler conditions, at any node µ ∈ D̃, ηh(µ)zh(µ) = 0.

The shadow price ηh(ξ) measures, for an agent h not purchasing money, the desire to violate

the debt constraint and take an arbitrarily small short position and, therefore, marginally increase

her utility today at a rate γh(ξ)q(ξ) while loosing tomorrow a marginal amount of utility at a rate
∑

µ∈ξ+ γh(µ)q(µ). Thus, for someone not purchasing money at node ξ, the price of money might

exceed the sum of deflated prices at the immediately following nodes if there is a positive incremental

desire to advance wealth from the next nodes to node ξ. The incremental desire to transfer wealth

to the node ξ is, in some sense, the price the agent would be willing to pay to get credit with fiat

money at this node (i.e. by short selling money) and, for this reason, we can refer to the shadow

price as the value that the agent places on the credit services of money (which are being ruled

out here and might be allowed but bounded under more general short sales constraints—see, for

instance, Páscoa, Petrassi and Torres-Mart́ınez (2008)).

Intuitively and focussing on the simplest case where each node µ ∈ D has a unique successor,

denoted by µ+1, if an agent h wishes to compensate a relative lack of resources at µ+1 by purchasing

money at µ, she should do it until (the marginal benefit) γh(µ + 1)q(µ + 1) equals (the marginal

cost) γh(µ)q(µ), or equivalently, until the personal marginal rate of substitution γh(µ)/γh(µ + 1)

matches the market rate q(µ + 1))/q(µ) (which is the one plus the interest rate).

However, if agent h wished to compensate a relative lack of resources at µ by short selling money

the analogous equalities could not be attained as short sales are ruled out. That is, the equalities

would be attained at the desired but unfeasible consumption plan (with a lower γh(µ) and a higher

γh(µ + 1)) but at the constrained optimal plan we have (the marginal benefit) γh(µ)q(µ) higher

than (the marginal cost) γh(µ+1)q(µ+1) with the equality holding once the shadow price of money

credit services is included on marginal costs. Equivalently, the personal marginal rate of substitution

γh(µ)/γh(µ+1) exceeds the market rate q(µ+1)/q(µ) but the equality holds once the shadow price

is taken into account.
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5. Fundamental values and bubbles

The recursive use of the financial Euler conditions lead us to define the fundamental value of an

asset at node ξ as the deflated sum of the value of the asset’s deliveries and of the incremental desires

to take positions prevented by portfolio constraints (i.e. the shadow prices of these constraints).

That is, the fundamental value of an asset at a node ξ is the deflated sum of the net value added at

each future node µ, which is given by q(µ) −
∑

η∈µ+
γh(η)
γh(µ)

q(η).

Hence, using agent h Kuhn Tucker multipliers as deflators, γh := (γh(ξ); ξ ∈ D), the fundamental

value of an asset at a node ξ, denoted by F (ξ, q, γh), is

F (ξ, q, γh) :=
∑

µ≥ξ

γh(µ)

γh(ξ)



q(µ) −
∑

η∈µ+

γh(η)

γh(µ)
q(η)



 .

In a frictionless world, that is, where the financial debt constraints are non-saturated, the fun-

damental value of an asset coincides with the discounted value of future deliveries that an agent

will receive for one unit of the asset that she buys and keeps forever (a consequence of financial

Euler conditions). However, when frictions occur, the fundamental value of an asset may include

the shadow prices of binding portfolio constraints.

For instance, in our context and as a consequence of the financial Euler conditions, the funda-

mental value of fiat money is the discounted sum of the shadow prices associated with the zero

short-sales constraints,

F (ξ, q, γh) =
1

γh(ξ)

∑

µ∈D(ξ)

ηh(µ).

That is, the fundamental value is the discounted sum of incremental desires of reallocating con-

sumption to the present at the expense of tomorrow , a measure of the effects that the absence of

monetary loans has on agent h.

Proposition 4.

Under Assumption 1, given an equilibrium
[

(p, q); ((xh, zh);h ∈ H)
]

, at each node ξ ∈ D and for

any h ∈ H, q(ξ) ≥ F (ξ, q, γh).

Therefore, the fundamental value of fiat money is always well defined and it is immediate to see

that the price q(ξ) is equal to F (ξ, q, γh) plus a residual value, limT→+∞

∑

µ∈DT (ξ)
γh(µ)
γh(ξ)

q(µ), called

the asset price bubble at node ξ. When q(ξ) > F (ξ, q, γh) we say that fiat money has a bubble at ξ

under γh.
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6. Characterizing monetary equilibria

Let us see under what conditions can we have equilibria with positive price of money, also called

monetary equilibria.

Theorem 1.

Suppose that Assumptions 1 holds and fix an equilibrium
[

(p, q); ((xh, zh);h ∈ H)
]

. If at some

node ξ ∈ D the monetary price q(ξ) is strictly positive and agents are uniform impatient, then debt

constraints induce frictions over each agent in D(ξ). Reciprocally, if debt constraints induce fric-

tions over some agent in the sub-tree D(ξ), then q(ξ) > 0.

Some observations.

(i) Intuitively, our Theorem asserts that a positive price of fiat money may only appear as a con-

sequence of a positive incremental desire of uniformly impatient agents to use future wealth to

consume more today. Moreover, even without uniform impatience, a positive desire for monetary

loans assures a positive price of fiat money.

(ii) This theorem is related to the result in Santos and Woodford (1997, Theorem 3.3), that asserted

that, under uniform impatience, assets in positive net supply are free of price bubbles for deflators,

in the asset pricing kernel, that yield finite present values of aggregate wealth. However, our Theo-

rem above asserts that we may have a positive price of money due to the presence of shadow prices

in the Kuhn-Tucker deflator process. Of course, in this case, for any kernel deflator, the present

value of aggregate wealth will be infinite.

(iii) A direct consequence of our Theorem is that, if fiat money has a positive value, then all agents

use it to transfer resources from the future to the present. Thus, under uniform impatience (which,

as we prove below, avoids monetary bubbles) monetary equilibria are incompatible with agents con-

suming, in equilibrium, their endowments throughout their life.

Proof of the Theorem 1.

By definition, if for some uniformly impatient agent h ∈ H, (ηh(µ);µ ≥ ξ) = 0 then F (ξ, q, γh(ξ)) =

0. Thus, a monetary equilibrium is a bubble for this agent. However, under uniform impatience

(Assumption 2) bubbles are ruled out in equilibrium for the deflators given by her Kuhn-Tucker

multipliers. Indeed, at each ξ ∈ D, q(ξ)zh(ξ) ≥ 0. Therefore, by the impatience property,

0 ≤ (1 − π)q(ξ)zh(ξ) ≤ p(ξ)∆(ξ). Moreover, as money is in positive net supply and all agents
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are uniform impatient, it follows that
(

q(ξ)
p(ξ)∆(ξ) ; ξ ∈ D

)

is uniformly bounded. Since by Proposition

2,
∑

ξ∈D γh(ξ)p(ξ)wh(ξ) < +∞, it follows from Assumption 2 that
∑

ξ∈D γh(ξ)q(ξ) < +∞, and,

therefore, agent h does not observe bubbles in equilibrium. Therefore, we conclude that, if q(ξ) > 0

then (ηh(µ);µ ≥ ξ) 6= 0, for each agent h ∈ H.

Reciprocally, by definition, if debt constraints induce frictions over some agent in the sub-tree

D(ξ), then the fundamental value of money at ξ is strictly positive, which implies that q(ξ) > 0. �

If we discount the future using other non-arbitrage deflators, instead of the Kuhn-Tucker mul-

tipliers, then fiat money may have a bubble. Remember that non-arbitrage deflators are plans of

state prices (ν(ξ); ξ ∈ D) that satisfy the Euler financial conditions. When the Euler financial con-

ditions are satisfied with equality at any node then we say that the deflator is in the (non-arbitrage)

asset-pricing kernel.

Corollary 1.

Under Assumption 1, given a monetary equilibrium
[

(p, q); ((xh, zh);h ∈ H)
]

, there always exists

a plan of non-arbitrage deflators in the asset-pricing kernel, (ν(ξ); ξ ∈ D), for which the fundamen-

tal value of money is zero and, therefore, the price of money is a bubble.

Proof. Fix an agent h ∈ H. It follows from Proposition 3 that there is a family of Kuhn-Tucker

multipliers associated with the plan (xh, zh), namely (γh(ξ); ξ ∈ D). Also, by Euler conditions, if

q(ξ) = 0 at some node ξ ∈ D, then q(µ) = 0, ∀µ > ξ.

Define ν := (ν(ξ) : ξ ∈ D) by ν(ξ0) = 1, and

ν(µ) = 1, ∀µ ∈ D such that∃ξ ∈ D : (µ > ξ) ∧ (q(ξ) = 0),

ν(µ)

ν(ξ)
=

γh(µ)

γh(ξ) − ηh(ξ)
q(ξ)

, ∀µ ∈ D \ {ξ0} such that q(µ−) > 0.

Euler conditions on (γh(ξ); ξ ∈ D) imply that, for each ξ ∈ D, ν(ξ)q(ξ) =
∑

µ∈ξ+ ν(µ)q(µ). There-

fore, using the plan of deflators ν, financial Euler conditions hold and the positive price of money

is a bubble. �

Under Assumption 2, the plan
(

q(ξ)
p(ξ)∆(ξ) ; ξ ∈ D

)

is uniformly bounded along the event-tree and,

therefore, the existence of a bubble for a plan of deflators (ν(ξ); ξ ∈ D) implies that the deflated

value of future individual endowments,
∑

ξ∈D ν(ξ)p(ξ)wh(ξ), has to be infinite for any agent h ∈ H.4

This plan of deflators, which is incompatible with physical Euler conditions, is compatible with zero

4In other case, Assumption 2 assure that
P

ξ∈D ν(ξ)q(ξ) < +∞, which is incompatible with bubbles.
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shadow prices and our observation conforms to the results by Santos and Woodford (1997, Theorem

3.3): a monetary bubble may only occur, for a plan of deflators in the asset pricing kernel, if the

associated present value of aggregate wealth is infinite.5

Some remarks:

◦ Adding an (unrestricted) asset that pays returns would not necessarily make fiat money useless,

since the degree of market incompleteness may still leave room for a spanning role of money. On

the other hand, if we allow for an increasing number of non-redundant (unrestricted) securities in

order to assure that aggregated wealth can be replicated by the deliveries of a portfolio trading

plan, money will have zero price. Indeed, in this context, independently of the non-arbitrage kernel

deflator, the discounted value of future wealth must be finite (see Santos and Woodford (1997),

Lemma 2.4). Therefore, if money has a positive value, we obtain a contradiction, since as we say

above, associated to any monetary equilibrium we may construct a deflator in the asset pricing

kernel under which the discounted value of aggregated wealth is infinite. However, the issue of new

assets in order to achieve that property of the financial markets can be too costly.

◦ In models addressing the role of money as a medium of exchange, starting with Clower (1967), it is

instead liquidity frictions that become crucial. Grandmont and Younès (1972) consider a temporary

equilibrium model where fiat money is the only store of value and prove that equilibrium exists as a

consequence of some “viscosity” in the exchange process. In a recent work along those lines, but in

the general equilibrium context, Santos (2006) showed that monetary equilibrium only arises when

cash-in-advance constraints are binding infinitely often for all agents. Also, in a cashless economy

with zero short-sales restrictions, Giménez (2007) provided examples of monetary bubbles that can

be reinterpreted as positive fundamental values.

Next, we show that given a monetary equilibrium allocation, there is always another feasible

allocation that makes some agent better off without hurting others, that is, monetary equilibria are

inefficient in the Pareto sense. This claim is shown by noticing that, in our context, Pareto efficiency

5Actually, under any non-arbitrage deflator obtained as a strict convex combination of a Kuhn-Tucker deflator and

the deflator in Corollary 1, fiat money has both a positive fundamental value and a bubble, but the present value of

wealth is infinite. Such indeterminacy is absent when a Kuhn-Tucker deflator is used, as the positive price of money

is just a consequence of a positive fundamental value, and, moreover, deflated wealth is finite.
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requires marginal rates of intertemporal substitution to be equal across agents.6

Proposition 5. Under Assumption 1, if for each ξ ∈ D, uh(ξ, ·) is differentiable in R
L
++, and for

any l ∈ L, limxl→0+ ∇uh(ξ, x) = +∞, then any monetary equilibrium is Pareto inefficient.

Proof. Suppose that there exists an efficient monetary equilibrium. Since limxl→0+ ∇uh(ξ, x) =

+∞, ∀(h, ξ, l) ∈ H ×D ×L, all agents have interior consumption along the event-tree. Positive net

supply of money implies that there exists, at each ξ ∈ D, at least one lender. Therefore, by the

efficiency property, it follows that all individuals have zero shadow prices. Thus, it follows from

the transversality condition of Definition 2, jointly with Proposition 4, that q(ξ) = 0 for any node

ξ ∈ D. A contradiction. �

The inefficiency of monetary equilibrium was previously addressed in the context of temporary

equilibrium models with cash-in-advance constraints by Grandmont and Younès (1973). Also, as

was analyzed by Hahn (1973) (see also Starrett (1973)), the existence of transactions costs may lead

to inefficient allocations.

7. Monetary equilibrium in the absence of uniform impatience

To highlight the role of uniform impatience we adapt Example 1 in Araujo, Páscoa and Torres-

Mart́ınez (2008) in order to show that without this assumption money may have a bubble for

deflators that give a finite present value of aggregate wealth, even when the deflator process is given

by Kuhn-Tucker multipliers.

Essentially this happens because individuals will believe that, as time goes on, the probability

that the economy may fall in a path in which endowments increase without an upper bound con-

verges to zero fast enough. In our example the Kuhn-Tucker deflator process is a non-arbitrage

kernel deflator yielding a finite present value of aggregate wealth, but we know that the supremum

over all asset pricing kernel deflators of the present value of aggregate wealth is infinite (see Santos

and Woodford (1997, Theorem 3.1 and Corollary 3.2)).

Example. Assume that each ξ ∈ D has two successors: ξ+ = {ξu, ξd}. There are two agents

H = {1, 2} and only one commodity. Each h ∈ H has physical endowments (wh(ξ))ξ∈D, receives

6More formally, an allocation ((xi(ξ))ξ∈D, i ∈ H) is Pareto efficient if for each agent i ∈ H it maximizes the

utility of the agent, U i((xi(ξ))ξ∈D), among the allocations ((xj(ξ))ξ∈D, j ∈ H) that satisfy both Uj((xj(ξ))ξ∈D) ≥

U i((xj(ξ))ξ∈D), ∀j 6= i; and
P

j∈H xj(ξ) ≤ W (ξ), ∀ξ ∈ D. Under the conditions of Proposition 5, the necessary

Kuhn-Tucker conditions for these problems imply that the marginal rates of intertemporal substitution must be equal

across agents.
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financial endowments eh ≥ 0 only at the first node, and has preferences represented by the utility

function Uh(x) =
∑

ξ∈D βt(ξ)ρh(ξ) x(ξ), where β ∈ (0, 1) and the plan (ρh(ξ))ξ∈D ∈ (0, 1)D satisfies

ρ(ξ0) = 1, ρh(ξ) = ρh(ξd) + ρh(ξu) and

ρ1(ξu) =
1

2t(ξ)+1
ρ1(ξ), ρ2(ξu) =

(

1 − 1
2t(ξ)+1

)

ρ2(ξ).

Suppose that agent h = 1 is the only one endowed with the asset, i.e. (e1, e2) = (1, 0) and that,

for each ξ ∈ D,

w1(ξ) =







1 + β−t(ξ) if ξ ∈ Ddu,

1 otherwise ;
w2(ξ) =







1 + β−t(ξ) if ξ ∈ {ξd
0} ∪ Dud,

1 otherwise ;

where Ddu is the set of nodes attained after going down followed by up, that is, Ddu = {φ ∈ D :

∃ξ, φ = (ξd)u } and Dud denotes the set of nodes reached by going up and then down, that is,

Dud = {φ ∈ D : ∃ξ, φ = (ξu)d }.

Agents will use positive endowment shocks in low probability states to buy money and sell it later

in states with higher probabilities. Let prices be (p(ξ), q(ξ))ξ∈D = ( βt(ξ), 1)ξ∈D and suppose that

consumption of agent h is given by xh(ξ) = wh′

(ξ), where h 6= h′. It follows from budget constraints

that, at each ξ, the portfolio of agent h must satisfy zh(ξ) = βt(ξ)(wh(ξ)−wh′

(ξ)) + zh(ξ−), where

zh(ξ−0 ) := eh and h 6= h′.

Thus, the consumption allocations above jointly with the portfolios (z1(ξ0), z1(ξu), z1(ξd)) =

(1, 1, 0) and (z2(ξ))ξ∈D = (1 − z1(ξ))ξ∈D are budget and market feasible. Finally, given (h, ξ) ∈

H × D, let γh(ξ) = ρh(ξ) be the candidate for Kuhn-Tucker multiplier of agent h at node ξ. It

follows that conditions below hold and they assure individual optimality (see Proposition 3 in the

Appendix),

(γh(ξ)pξ, γ
h(ξ)q(ξ)) = (βt(ξ)ρh(ξ), γh(ξu)q(ξu) + γh(ξd)q(ξd)),

∑

{φ∈D: t(φ)=T}

γh(φ)q(φ)zh(φ) −→ 0, as T → +∞.

By construction, the plan of shadow prices associated to zero short-sales constraints is zero.

Therefore, money has a zero fundamental value and a bubble under Kuhn-Tucker multipliers.

Intuitively, the price of the consumption good is falling at a rate that compensates the intertem-

poral impatience of the agents. Thus, since along the event-tree the purchase power of fiat money

is rising, it is not worthy for agents to have short positions on money and, therefore, binding zero

short-sale constraints do not induce frictions.
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Also, the diversity of individuals’ beliefs about the uncertainty (probabilities ρh(ξ)) implies that

both agents perceive a finite present value of aggregate wealth.7 Finally, Assumption 2 is not

satisfied, because aggregated physical endowments were unbounded along the event-tree.8 �

Conclusion

It is well known that, under uniform impatience, positive net supply assets are free of bubbles for

non-arbitrage kernel deflators which always yield finite present values of wealth. However, this does

not mean that prices cannot be above the series of deflated dividends for the deflators given by the

agents’ marginal rates of substitution, which also yield finite present values of individual wealth.

In this paper we showed that binding zero short-sales constraints lead to positive prices of fiat

money, due to positive fundamental values that consist of the deflated shadow values of the credit

services that money might but can not provide. These monetary equilibria improve upon the

allocations that would prevail when money was not available, but are still Pareto inefficient, as the

marginal rates of substitution will not be the same for an agent purchasing money and for an agent

who is being prevented from doing the desired shorting of money.

Appendix

Proof of Proposition 2. Let Lh
ξ : R

L+1 × R
L+1 → R ∪ {−∞} be the function defined by

Lh
ξ (y(ξ), y(ξ−)) = vh(ξ, y(ξ)) − γh(ξ) gh

ξ (y(ξ), y(ξ−); p, q), where y(ξ) = (x(ξ), z(ξ)) and vh(ξ, ·) :

7Using agent’ h Kuhn-Tucker multipliers as deflators, the present value of aggregated wealth at ξ ∈ D, denoted

by PV h(ξ), satisfies,

PV h(ξ) =
X

µ≥ξ

γh(µ)

γh(ξ)
p(µ) W (µ) =

2

ρh(ξ)

X

µ≥ξ

ρh(µ)βt(µ) +
1

ρh(ξ)

X

{µ≥ξ:µ∈Dud∪Ddu∪{ξd
0}}

ρh(µ)

= 2
βt(ξ)

1 − β
+

X

{µ≥ξ:µ∈Dud∪Ddu∪{ξd
0}, t(µ)≤t(ξ)+1}

ρh(µ)

ρh(ξ)
+

+∞
X

s=t(ξ)+1

»

1

2s+1

„

1 −
1

2s

«

+

„

1 −
1

2s+1

«

1

2s

–

= 2
βt(ξ)

1 − β
+

3

2

1

2t(ξ)
−

1

3

1

4t(ξ)
+

1

ρh(ξ)

X

{µ≥ξ:µ∈Dud∪Ddu, t(µ)≤t(ξ)+1}

ρh(µ) < +∞.

8If Assumption B holds, there are (κ, π) ∈ R++×(0, 1) such that, for any ξ ∈ Duu := {µ ∈ D : ∃φ ∈ D; µ = (φu)u},

1

κ
=

wh(ξ)

κ
>

1 − π

βt(ξ)ρh(ξ)

X

µ>ξ

ρh(µ)βt(µ)W (µ), ∀h ∈ H.

Thus, for all (ξ, h) ∈ Duu × H, βt(ξ)
“

1
κ(1−π)

+ W (ξ)
”

> PV h(ξ). On the other hand, given ξ ∈ Duu,

PV 1(ξ) ≥
1

ρ1(ξ)

X

{µ≥ξ:µ∈Dud∪Ddu, t(µ)≤t(ξ)+1}

ρ1(µ) = 1 −
1

2t(ξ)+1
.

Therefore, as for any T ∈ N there exists ξ ∈ Duu with t(ξ) = T , we conclude that, βT
“

1
κ(1−π)

+ 2
”

> 0.5, for all

T > 0. A contradiction.
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R
L × R → R ∪ {−∞} is given by

vh(ξ, y(ξ)) =







uh(ξ, x(ξ)) if x(ξ) ≥ 0;

−∞ otherwise.

It follows from Assumption 1 and Euler conditions that, for each T ≥ 0,

∑

ξ∈DT

Lh
ξ (0, 0) −

∑

ξ∈DT

Lh
ξ (yh(ξ), yh(ξ−)) ≤ −

∑

ξ∈DT

γh(ξ)q(ξ)(0 − zh(ξ)).

Therefore, as for each ξ ∈ D, γh(ξ) gh
ξ (yh(ξ), yh(ξ−); p, q) = 0, we have that, for any S ∈ N,

0 ≤
∑

ξ∈DS

γh(ξ)
(

p(ξ) wh(ξ) + q(ξ)eh(ξ)
)

≤ lim sup
T→+∞

∑

ξ∈DT

γh(ξ)
(

p(ξ) wh(ξ) + q(ξ)eh(ξ)
)

≤ Uh(xh) + lim sup
T→+∞

∑

ξ∈DT

γh(ξ)q(ξ)zh(ξ).

It follows from the transversality condition in the definition of Kuhn-Tucker multipliers that the last

term in the right hand side of the inequality above is equal to zero. Therefore, as Uh(xh) if finite,

we conclude the proof. �

Proof of Proposition 3. Suppose that (yh(ξ))ξ∈D is optimal for agent h ∈ H at prices (p, q).

For each T ∈ N, consider the truncated optimization problem,

(Ph,T )

max
∑

ξ∈DT

uh(ξ, x(ξ))

s.t.







gh
ξ (y(ξ), y(ξ−); p, q) ≤ 0, ∀ξ ∈ DT , where y(ξ) = (x(ξ), z(ξ)),

(x(ξ), z(ξ)) ≥ 0, ∀ξ ∈ DT .

It follows that, under Assumption 1, each truncated problem Ph,T has a solution (yh,T (ξ))ξ∈DT .9

Moreover, the optimality of (yh(ξ))ξ∈D in the original problem implies that Uh(xh) is greater than

9In fact, as (yh(ξ))ξ∈D is optimal and Uh(xh) < +∞, it follows that there exists a solution for P h,T if and only

if there exists a solution for the problem,

(P̃ h,T )

max
P

ξ∈DT

uh(ξ, x(ξ))

s.t.

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

gh
ξ

`

y(ξ), y(ξ−); p, q
´

≤ 0, ∀ξ ∈ DT , where y(ξ) = (x(ξ), z(ξ)),

z(ξ) ≥ 0, ∀ξ ∈ DT−1 such that q(ξ) > 0

z(ξ) = 0, if
ˆ

ξ ∈ DT−1 and q(ξ) = 0
˜

or ξ ∈ DT ,

x(ξ) ≥ 0, ∀ξ ∈ DT .

Indeed, it follows from the existence of an optimal plan which gives finite utility that if q(ξ) = 0 for some ξ ∈ D, then

q(µ) = 0 for each successor µ > ξ. Also, budget feasibility assures that,

z(ξ) ≤
p(ξ)wh(ξ)

q(ξ)
+ z(ξ−), ∀ξ ∈ DT−1 such that q(ξ) > 0.

As z(ξ−0 ) = 0, the set of feasible financial positions is bounded in the problem (P̃ h,T ). Thus, budget feasible

consumption allocations are also bounded and, therefore, the set of admissible strategies is compact. As the objective

function is continuous, there is a solution for (P̃ h,T ).
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or equal to
∑

ξ∈DT uh(ξ, xh,T (ξ)). In fact, the plan (ỹξ)ξ∈D that equals to ỹξ = yh,T
ξ , if ξ ∈ DT ,

and equals to ỹξ = 0, if ξ ∈ D \ DT , is budget feasible in the original economy and, therefore, the

allocation (yh,T (ξ))ξ∈DT cannot improve the utility level of agent h.

Define vh(ξ, ·) : R
L × R → R ∪ {−∞} by

vh(ξ, y(ξ)) =







uh(ξ, x(ξ)) if x(ξ) ≥ 0;

−∞ in other case.

where y(ξ) = (x(ξ), z(ξ)). Given a multiplier γ ∈ R, let Lh
ξ (·, γ; p, q) : R

L+1 × R
L+1 → R ∪ {−∞}

be the Lagrangian at node ξ, i.e.,

Lh
ξ (y(ξ), y(ξ−), γ; p, q) = vh(ξ, y(ξ)) − γ gh

ξ (y(ξ), y(ξ−); p, q).

It follows from Rockafellar (1997, Theorem 28.3, page 281) that there exist non-negative multi-

pliers (γh,T (ξ))ξ∈DT such that the following saddle point property

(1)
∑

ξ∈DT

Lh
ξ (y(ξ), y(ξ−), γh,T (ξ); p, q) ≤

∑

ξ∈DT

Lh
ξ (yh,T (ξ), yh,T (ξ−), γh,T (ξ); p, q),

is satisfied, for each plan (y(ξ))ξ∈DT = (x(ξ), z(ξ))ξ∈DT ∈ R
L×DT

+ × R
DT

+ . Moreover, at each node

ξ ∈ DT , multipliers satisfy γh,T (ξ) gh
ξ (yh,T (ξ), yh,T (ξ−); p, q) = 0.

Analogous arguments to those made in Claims A1-A3 in Araujo, Páscoa and Torres-Mart́ınez

(2008) implies that,

Claim. Under Assumption 1, the following conditions hold:

(i) For each t < T ,

0 ≤
∑

ξ∈Dt

γh,T (ξ)
(

p(ξ)wh(ξ) + q(ξ)eh(ξ)
)

≤ Uh(xh).

(ii) For each 0 < t < T ,

∑

ξ∈Dt

γh,T (ξ)q(ξ)zh(ξ−) ≤
∑

ξ∈D\Dt−1

uh(ξ, xh(ξ)).

(iii) For each ξ ∈ DT−1 and for any y(ξ) = (x(ξ), z(ξ)) ≥ 0,

uh(ξ, x(ξ))− uh(ξ, xh(ξ)) ≤



γh,T (ξ)p(ξ) ; γh,T (ξ)q(ξ) −
∑

µ∈ξ+

γh,T (µ)q(µ)



 · (y(ξ)− yh(ξ))

+
∑

η∈D\DT

uh(η, xh(η)).
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Now, at each ξ ∈ D, wh(ξ) := minl∈L wh(ξ, l) > 0. Also, as a consequence of monotonicity of

uh(ξ), ||p(ξ)||Σ > 0. Thus, item (i) above guarantees that, for each ξ ∈ D,

0 ≤ γh,T (ξ) ≤
Uh(xh)

wh(ξ) ||p(ξ)||Σ
, ∀T > t(ξ).

Therefore, the sequence (γh,T (ξ))T≥t(ξ) is bounded, node by node. As the event-tree is countable,

there is a common subsequence (Tk)k∈N ⊂ N and non-negative multipliers (γh(ξ))ξ∈D such that, for

each ξ ∈ D, γh,Tk(ξ) →k→+∞ γh(ξ), and

γh(ξ)gh
ξ (p, q, yh(ξ), yh(ξ−)) = 0 ;(2)

lim
t→+∞

∑

ξ∈Dt

γh(ξ)q(ξ)zh(ξ−) = 0 ,(3)

where equation (2) follows from the strictly monotonicity of uh(ξ), and equation (3) is a consequence

of item (ii) (taking the limit as T goes to infinity and, afterwards, the limit in t).

Moreover, using item (iii), and taking the limit as T goes to infinity, we obtain that, for each

y(ξ) = (x(ξ), z(ξ)) ≥ 0,

uh(ξ, x(ξ)) − uh(ξ, xh(ξ)) ≤



γh(ξ)p(ξ) ; γh(ξ)q(ξ) −
∑

µ∈ξ+

γh(µ)q(µ)



 · (y(ξ) − yh(ξ)).

It follows that
(

γh(ξ)p(ξ) ; γh(ξ)q(ξ) −
∑

µ∈ξ+ γh(µ)q(µ)
)

belongs to the super-differential set of

the function vh(ξ, ·) + δ(·, RL
+ × R+) at point yh(ξ), where δ(y, RL

+ × R+) = 0, when y ∈ R
L
+ × R+

and δ(y, RL
+ × R+) = −∞, otherwise. Notice that, for each y ∈ R

L
+ × R+, ς ∈ ∂δ(y, RL

+ × R+) ⇔

0 ≤ ς(y′ − y), ∀y′ ∈ R
L
+ × R+. Last condition holds if and only if both ς ≥ 0 and ς · y = 0.

Thus, by Theorem 23.8 in Rockafellar (1997, page 223),10 for all y ∈ R
L
+×R+, if v′(ξ) belongs to

∂
[

vh(ξ, y) + δ(y, RL
+ × R+)

]

then there exists ṽ′(ξ) ∈ ∂vh(ξ, y) such that v′(ξ)− ṽ′(ξ) ∈ ∂δ(y, RL
+ ×

R+), that is, v′(ξ)− ṽ′(ξ) ≥ 0 and (v′(ξ)− ṽ′(ξ)) · (x, z) = 0, where y = (x, z). Therefore, it follows

that there exists, for each ξ ∈ D, a super-gradient ṽ′(ξ) ∈ ∂vh(ξ, yh(ξ)) such that,



γh(ξ)p(ξ) ; γh(ξ)q(ξ) −
∑

µ∈ξ+

γh(µ)q(µ)



− ṽ′(ξ) ≥ 0,







γh(ξ)p(ξ) ; γh(ξ)q(ξ) −
∑

µ∈ξ+

γh(µ)q(µ)



− ṽ′(ξ)



 · (xh(ξ), zh(ξ)) = 0.

As ṽ′(ξ) ∈ ∂vh(ξ, yh(ξ)) if and only if there is u′(ξ) ∈ ∂uh(ξ, xh(ξ)) such that ṽ′(ξ) = (u′(ξ), 0),

it follows from last inequalities that Euler conditions hold.

10This result assure that the super-gradient set of the sum of a finite number of functions is equal to the sum of

the super-gradient sets of each function.
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On the other side, item (i) in claim above guarantees that,
∑

ξ∈D γh(ξ)(p(ξ)wh(ξ)+ q(ξ)eh(ξ)) <

+∞ and, therefore, equations (2) and (3) assure that,

lim
t→+∞

∑

ξ∈Dt

γh(ξ)q(ξ)zh(ξ) ≤ lim
t→+∞

∑

ξ∈Dt

γh(ξ)
(

p(ξ)wh(ξ) + q(ξ)eh(ξ) + q(ξ)zh(ξ−)
)

≤ lim
t→+∞

∑

ξ∈Dt

γh(ξ)q(ξ)zh(ξ−) = 0,

which implies that transversality condition holds.

Reciprocally, it follows from Euler conditions that, for each T ≥ 0,

∑

ξ∈DT

Lh
ξ (y(ξ), y(ξ−), γh(ξ); p, q)−

∑

ξ∈DT

Lh
ξ (yh(ξ), yh(ξ−), γh(ξ); p, q) ≤ −

∑

ξ∈DT

γh(ξ)q(ξ)(z(ξ)−zh(ξ)).

Moreover, as at each node ξ ∈ D we have that γh(ξ)gh
ξ (yh(ξ), yh(ξ−); p, q) = 0, each budget

feasible plan y = ((x(ξ), z(ξ)); ξ ∈ D) must satisfy

∑

ξ∈DT

uh(ξ, x(ξ)) −
∑

ξ∈DT

uh(ξ, xh(ξ)) ≤ −
∑

ξ∈DT

γh(ξ)q(ξ)(z(ξ) − zh(ξ)).

Now, as the sequence

(

∑

ξ∈DT

γh(ξ)q(ξ)zh(ξ)

)

T∈N

converges, it is bounded. Thus,

lim sup
T→+∞



−
∑

ξ∈DT

γh(ξ)q(ξ)(z(ξ) − zh(ξ))



 ≤ lim sup
T→+∞



−
∑

ξ∈DT

γh(ξ)q(ξ)z(ξ)



 ≤ 0

Therefore,

Uh(x) = lim sup
T→+∞

∑

ξ∈DT

uh(ξ, x(ξ)) ≤ Uh(xh),

which guarantees that the plan (xh(ξ), zh(ξ))ξ∈D is optimal. �

Proof of Proposition 4. By Proposition 3, there are, for each agent h ∈ H, non-negative shadow

prices (ηh(ξ); ξ ∈ D), satisfying for each ξ ∈ D,

0 = ηh(ξ)zh(ξ);

γh(ξ)q(ξ) =
∑

µ∈ξ+

γh(µ)q(µ) + ηh(ξ).

Therefore,

γh(ξ)q(ξ) =
∑

µ≥ξ

ηh(µ) + lim
T→+∞

∑

µ∈DT (ξ)

γh(µ)q(µ).

As multipliers and monetary prices are non-negative, the infinite sum in the right hand side of

equation above is well defined because its partial sums are increasing and bounded by γh(ξ)q(ξ).

This also implies that the limit of the (discounted) asset price exists. �
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[13] Páscoa, M.R., M. Petrassi, and J.P. Torres-Mart́ınez (2008): “Fiat Money and the Value of Binding Portfolio

Constraints,” Working Paper Series, 176, Banco Central do Brasil.

[14] Rincón-Zapatero, J.P., and M. Santos (2009): “Differentiability of the Value Function without Interiority As-

sumptions,” Journal of Economic Theory, 144, 1948-1964.

[15] Rockafellar, R.T. (1997): “Convex analysis,” Princeton University Press, Princeton, New Jersey, USA.

[16] Samuelson, P. (1958): “An Exact Consumption-Loan Model of Interest with or without the Social Contrivance

of Money,” Journal of Political Economy, 66, 467-482.

[17] Santos, M. (2006): “The Value of Money in a Dynamic Equilibrium Model,” Economic Theory, 27, 39-58.

[18] Santos, M., and M. Woodford (1997): “Rational Asset Pricing Bubbles,” Econometrica, 65, 19-57.

[19] Starret, D.A. (1973): “Inefficiency and the Demand for “Money” in a Sequence Economy,” Review of Economic

Studies, 40, 437-448.

Faculdade de Economia, Universidade Nova de Lisboa

Campus de Campolide, 1099-032 Lisbon, Portugal.

E-mail address: pascoa@fe.unl.pt



FIAT MONEY AND THE VALUE OF BINDING PORTFOLIO CONSTRAINTS 21

Research Department, Banco Central do Brasil

Avenida Presidente Vargas 730, 20071-001 Rio de Janeiro, Brazil.

E-mail address: myrian.petrassi@bcb.gov.br

Department of Economics, University of Chile

Diagonal Paraguay 257, office 1604, Santiago, Chile.

E-mail address: juan.torres@fen.uchile.cl


