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Abstract

Zhang (2009) shows that endogenous tari¤s and endogenous labor income taxes (Schmitt-

Grohe and Uribe, 1997) are equivalent in generating local indeterminacy. Using the method

developed by Stockman (2009), we extend Zhang�s analysis to prove that they are also equivalent in

generating global indeterminacy (chaotic equilibria) under a balanced-budget rule. We show that

the existence of Euler equation branching in an arbitrarily small neighborhood of a steady state

can imply topological chaos in the sense of Devaney. In addition, the Euler equation branching

occurs regardless of the local uniqueness of the equilibrium around the steady state(s).
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1. Introduction

Zhang (2009) shows that endogenous tari¤s and endogenous labor income taxes (Schmitt-Grohe and

Uribe, 1997) are equivalent in generating local indeterminacy. To be accurate, local indeterminacy
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can emerge when tari¤ rates levied on imported energy are endogenously determined by a balanced-

budget rule with a constant level of government expenditures (or lump-sum transfers). In this paper,

we extend Zhang�s analysis to prove that they are also equivalent in generating global indeterminacy

(chaotic equilibria) under this balanced-budget rule. A global analysis shows that as in Stockman

(2009), the existence of Euler equation branching in an arbitrarily small neighborhood of a steady

state can imply topological chaos in the sense of Devaney.1 In addition, multiple equilibria and

chaos through regime switching near a steady state can arise, regardless of the local uniqueness

of the equilibrium around the steady state(s). These results show that (1) global indeterminacy

always exists in the model of Zhang (2009), no matter whether the (low tari¤) steady state is locally

indeterminate or not, and (2) tari¤s and labor income taxes are equivalent in generating global

indeterminacy because Stockman (2009) shows that (endogenous) labor income taxes have the same

e¤ect on the model dynamics in a one-sector closed economy.

This type of regime switching sunspot equilibria are deterministic and once explored by Gardini

et al. (2009), Christiano and Harrison (1999), and Stockman (2009) among others.2 One important

characteristic of this type of indeterminacy is that the dynamics going backward are single-valued,

but multi-valued going forward (see, for example, Michener and Ravikumar, 1998).

In what follows, we describe our model in Section 2. In Section 3, we make a global analysis and

explore the implications of Euler equation branching. In Section 4, we conclude the paper.

1Here Euler equation branching means that the dynamics going forward can be expressed by a di¤erential inclusion
of the form

:
x 2 ff(x); g(x)g, i.e., a multi-valued dynamical system.

2For example, Christiano and Harrison (1999) analyzed this kind of regime switching sunspot equilibria in a one-
sector economy with productive externalities. And Stockman (2009) explores it in a one-sector economy with �scal
increasing returns.
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2. The One-Sector Economy With Tari¤s

This is the one-sector oil-in the production RBC model studied by Zhang (2009). A representative

agent maximizes the intertemporal utility function

Z 1

0
e��t(log ct � bnt)dt, b > 0, (1)

where ct and nt are the individual household�s consumption and hours worked, and � 2 (0; 1) is the

subjective discount rate. We assume that there are no intrinsic uncertainties present in the model.

The budget constraint of the representative agent is given by

:

kt = (rt � �)kt + wtnt � ct, k0 > 0 given, (2)

where
:

kt denotes net investment and the other variables are kt (capital), rt (rental rate), wt (real

wage) and � (depreciation rate).

On the production side, a single good is produced by the representative �rm with a Cobb-Douglas

production technology:

yt = k
ak
t n

an
t o

a0
t (3)

where yt is total output, ak + an + a0 = 1 (constant returns to scale), and the third factor in the

production, non-reproducible natural resources, say oil (ot), is imported. Perfect competition in

factor and product markets implies that factor demands are given by:

wt = an
yt
nt
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rt = ak
yt
kt

and

p0(1 + � t) = a0
yt
ot
,

where p0 denotes the real price of oil (the imported goods) and � t is the tari¤ rate levied on the

imported oil and uniform to all �rms. Here we should emphasize that (1) in this standard neoclassical

growth model, p0 is the relative price of the foreign input in terms of the single good, which is the

numeraire and tradable; and (2) the variable � t represents the endogenous tari¤ rate levied on the

foreign input and we require that � t � 0 to rule out the existence of import subsidies.
3

Since we assume that the foreign input is perfectly elastically supplied, the factor price (p0) is

independent of the factor demand for ot, we can substitute out ot in the production function using

ot = a0
yt

p0(1 + � t)

to obtain the following production function:

yt = Atk
ak

1�a0
t n

an
1�a0
t (4)

where At = ( a0
p0(1+� t)

)
a0

1�a0 acts as the "Solow residual" in a neoclassical growth model, which is

inversely related to the foreign factor price and � t.

3The model is based on the standard DSGE models that incorporate foreign energy as a third production factor.
This class of models (such as those of Rotemberg and Woodford (1994), and ACW (2005, 2007, and 2008)) have been
used widely to study the business-cycle e¤ects of oil price shocks.
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The government must select {� t} to balance its budget each period:

p0� tot = G (5)

with G > 0 given.

As in Stockman (2009), we consider a kind of global indeterminacy called "Euler equation branch-

ing". As we stated before, the model dynamics going forward can be expressed by a di¤erential

inclusion of the form
:
x 2 ff(x); g(x)g. The Euler equation branching occurs in our model because

multiple equilibria arise in the oil market. To be accurate, we consider paths for prices fwt; rtg and

tari¤s f� tg that are piecewise continuous with the following property: for any �nite time interval,

there are at most a �nite number of discontinuities. That is to say, the control variables should be

piecewise continuous and the state variable should be continuous with piecewise continuous derivative

with possible discontinuities which occur as the control variables and prices/tari¤s are discontinuous.

Moreover, at these discontinuous points, left and right limits should exist and be �nite (the �rst kind

of discontinuity).

A competitive equilibrium (CE) is de�ned as follows: A set of prices fwt; rtg, resource allocations

fct; kt; ntg and a �scal policy fG; � tg can be a CE if fct; kt; ntg is a solution of the household maxi-

mization problem, fkt; ntg is solution of the �rm pro�t�maximization problem and fG; � tg satis�es

the government budget constraint.

The current value Hamiltonian for our problem is,

V (kt; ct; nt;�t; t) = (log ct � bnt) + �t[(rt � �)kt + wtnt � ct], (6)

where �t is the costate variable. Using the same de�nitions of admissible trajectories and weak

maximality as in Stockman (2009), we have su¢cient conditions for the weakly optimal solution of
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our problem.4

Proposition 1. Assume that prices fwt; rtg, tari¤s f� tg and initial capital stock k0 are given. The

current-value Hamiltonian V (kt; ct; nt;�t; t) is concave in fct; kt; ntg for any given �t and t. Suppose

there exists a continuous and piecewise continuously di¤erentiable function ��t : R+ �! R and an

admissible interior plan fc�t ; k
�
t ; n

�
t g that satis�es the following conditions:

1

c�t
= ��t , (7)

b = ��tw
�
t , (8)

:

��t = (�+ � � rt)�
�
t , for almost t 2 R+ (9)

:

k�t = (rt � �)k
�
t + wtn

�
t � c

�
t , for almost t 2 R+ (10)

lim_
t�!1

e��t��t (kt � k
�
t ) � 0, for all admissible paths. (11)

Then fc�t ; k
�
t ; n

�
t g is weakly optimal.

Proof. The proof is similar to that of Proposition 1 in Stockman (2009).

3. Euler Equation Branching and Global Indeterminacy

We use the su¢cient conditions given in the section above and government budget constraint to show

the existence of global indeterminacy. As in Zhang (2009), equilibrium conditions can be expressed

as follows:

4A trajectory P := (c; n; k) is admissible if (a) c(t), n(t), k(t) � 0 and k(0) = k0 > 0 is given; (b) c and n are
piecewise continuous with at most a countable number of discontinuities and they satisfy the property that at most
a �nite number of discontinuities occur during any �nite time interval [a; b]; and (c) k is continuous and piecewise

continuously di¤erentiable and
:

kt = (rt � �)kt + wtnt � ct holds for almost t. Two admissible paths P
� and P are

comparable if we de�ne the following function: D(P �; P; T ime) =
R Time
0

e��t(log c�t�bn
�
t )dt�

R Time
0

e��t(log ct�bnt)dt.
The path P � is weakly optimal if for every admissible path P , lim

Time�!1
D(P �; P; T ime) � 0.
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_�t = �t[�+ � � akAtk
ak

1�ao
�1

t n
an
1�ao
t ], (12)

:

kt = (1� ao)Atk
ak

1�ao
t n

an
1�ao
t � �kt � 1=�t, (13)

b=�t = anAtk
ak

1�ao
t n

an
1�ao

�1

t , (14)

� taoyt
1 + � t

= G. (15)

In addition, any equilibrium path f�t; kt; ntg should also satisfy the conditions below

(i) kt and �t are continuous and piecewise continuously di¤erentiable;

(ii) nt is piecewise continuous with those restrictions that we stated in the section above; and

(iii) �t; kt; nt are bounded from above and not zero for any t.

Any path f�t; kt; ntg that satis�es those conditions above can be a CE. Equation (15) will show

that multiple equilibria in the oil market are the key of the Euler equation branching. To see this,

�rst, from equation (14), we express nt as a function of kt, �t and � t: nt = [anAtk
ak

1�ao
t �t=b]

1

1�
an
1�ao .

Second, using yt = Atk
ak

1�a0
t n

an
1�a0
t , nt = [anAtk

ak
1�ao
t �t=b]

1

1�
an
1�ao and At = ( a0

p0(1+� t)
)

a0
1�a0 , equation

(15) can be rewritten as follows:

G = � t

�
ao

1 + � t

�1+ ao
ak �

p0
�� ao

ak kt(an�t=b)
an
ak �M(� t; kt;�t) (16)

From the right-hand side of (16), one sees that the equilibrium oil demand curve is not monotonic

because � t

�
ao
1+� t

�1+ ao
ak is single peaked. Therefore, these two curves (the demand and supply curves)

intersect twice. As in Stockman (2009), we �nd that (1) the equilibrium oil demand curve is initially

beneath and ultimately below the oil supply curve, and (2) this branching is global and it exists in

an arbitrarily small open neighborhood of a steady state (k�;��).
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Proposition 2. A steady state exists for small G, and in a small open neighborhood of the steady

state, Euler equation branching occurs. Moreover, we have the following results:

(1) In the steady state, � + � = akA
�k�

ak
1�ao

�1n�
an
1�ao , (1� ao)A

�k�
ak

1�ao n�
an
1�ao = �k� + 1=��,

n� = [anA
�k�

ak
1�ao��=b]

1

1�
an
1�ao and G = ��

�
ao
1+��

�1+ ao
ak
�
p0
�� ao

ak k�(an�
�=b)

an
ak hold, where A� =

( a0
p0(1+��)

)
a0

1�a0 . Suppose that (1� ao)A
�k�

ak
1�ao n�

an
1�ao > �k�. Then there exists a steady state

(k�;��) which is a solution to the �rst three equations (given ��), and �� is a solution to the last

equation (given that k� and �� are functions of ��).

(2) In a small open neighborhood B of (��; k�), there can be two solutions to equation (16),

which are denoted by � t = g1(�t; kt) and � t = g2(�t; kt). Moreover, �� = g1(��; k�) and
~
� =

g2(��; k�) 6= ��. Therefore, equations (12), (13), (14) and (16) de�ne a multi-valued dynamical

system , which form can be written as ( _�t;
:

kt) 2 f�(�t; kt);	(�t; kt)g with 0 = �(�
�; k�) 6= 	(��; k�)

and �(�t; kt) 6= 	(�t; kt) for (�t; kt) 2 B. �(�t; kt) and 	(�t; kt) can be obtained from (12) and

(13) by replacing � t with g
1(�t; kt) and g

2(�t; kt). In this case, Euler equation branching occurs on

the set B.

Proof. The proof is left as an exercise for the reader. Hint: The proof is similar to that of Prop. 3

in Stockman (2009).

The key theorem in this paper is Theorem 1 in Section 4 of Stockman (2009).

Theorem 1. Let X � R2 be an open set containing x� and consider the multi-valued dynamical

system (MVDS) de�ned by
:
x 2 f�(x);	(x)g for all x 2 X where �;	 : X ! R2 are Cr functions

as in De�nition 5 of Stockman (2009). Suppose x� is a steady state of the single-valued di¤erential

equation
:
x = �(x), i.e., �(x�) = 0, and assume that 	(x�) = � 6= 0 is not collinear with any of the

eigenvectors of the Jacobian matrix E = D�(x�) evaluated at the steady state x�. Then the MVDS

is Devaney chaotic on an invariant compact set with a non-empty interior in each of the following

three cases:
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1. (Saddle) The steady state x� is a saddle under �, i.e., E = D�(x�) has real eigenvalues �1,

�2 with �1 < 0 < �2.

2. (Sink or source with distinct real roots) The steady state x� is a sink or source under � with

distinct real roots, i.e., E = D�(x�) has distinct real eigenvalues with 0 < �1 < �2 or �2 < �1 < 0.

3. (Sink or source with complex roots) The steady state x� is a sink or source under � with

complex roots, i.e., E = D�(x�) has complex eigenvalues u� vi with u 6= 0.

In a short sentence, this theorem says that a steady state associated with Euler equation branching

implies chaos. To see this in numerical cases, we consider two examples for the low tari¤ steady state

and �nd that no matter whether it is locally indeterminate or not, there always exist numerous

Devaney chaotic invariant sets with nonempty interiors. Let us continue to consider these two

equilibria in the oil market. Notice that rearranging terms in equation (16) gives:

G(an�t=b)
�an
ak = � t

�
ao

1 + � t

�1+ ao
ak �

p0
�� ao

ak kt = 
(� t). (17)

One can see that 
(� t) is single caved with 

0 (� t) > 0 for � t <

ak
ao
and 
0 (� t) < 0 for � t >

ak
ao
.

Therefore, we have the following results:

(1) 

�
ak
ao

�
= G(an�t=b)

�an
ak . A unique equilibrium exists in the oil market with � t =

ak
ao
.

(2) 

�
ak
ao

�
> G(an�t=b)

�an
ak . Two equilibria exist in the oil market, which we call �1t and �2t

with

0 < �1t <
ak
ao
< �2t <1.

Example 1. (Local determinacy). We set those parameter values at the following baseline values:

� = 0:04, ao = 0:21, an = 0:64, p0 = 0:01, b = 0:5, � = 0:1 and G = 0:25. We calculate the two

steady states and eigenvalues around them and we have:

1. Low tari¤ steady state values: �� = 0:3392, k� = 5:0362, �� = 0:31155, n� = 1:8745,
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c� = 3:2097, y� = 3:7719; eigenvalues �1 = �0:7237, �2 = 0:8903.

2. High tari¤ steady state values: � = 83:8794, k = 1:2907, � = 1:2156, n = 1:8745, c = 0:8226,

y = 0:9667; eigenvalues �1 = 0:2482, �2 = �0:3494.

It is obvious that these two steady states are locally determinate. Then we draw the trajectories

from both branches near the low tari¤ steady state and we �nd that numerous Devaney chaotic

invariants sets with non-empty interiors appear.

The caption of Figure 1: The low-tari¤ steady state is locally a saddle. The plotted trajectories

from the high-tari¤ branch are �owing from the bottom-right to the top-left. But the plotted

trajectories from the low-tari¤ branch are �owing down and to the right.

Example 2. (Local indeterminacy). We set those parameter values at the following baseline values:

� = 0:04, ao = 0:21, an = 0:64, p
0 = 0:01, b = 0:5, � = 0:1 and G = 0:4. We calculate the two steady

states and eigenvalues around them and we have:

1. Low tari¤ steady state values: �� = 0:8092, k� = 4:5628, �� = 0:3439, n� = 1:8745, c� =

2:9080, y� = 4:2586; eigenvalues �1 = �0:5767 + 1:3309i, �2 = �0:5767� 1:3309i.

2. High tari¤ steady state values: � = 16:5738, k = 2:1640, � = 0:7251, n = 1:8745, c = 1:3792,

y = 2:0197; eigenvalues �1 = 0:2278, �2 = �0:3341.

It is obvious that the low-tari¤ steady state is locally indeterminate and the high-tari¤ one is

locally determinate. Then we draw the trajectories from both branches near the low tari¤ steady

state and we �nd that numerous Devaney chaotic invariants sets with non-empty interiors appear.

The caption of Figure 2: The low-tari¤ steady state is locally a sink. The plotted trajectories from

the high-tari¤ branch are �owing from the top-left to the bottom-right. The plotted trajectories for

the low-tari¤ branch are �owing counter clockwise.
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4. Concluding Remark

We show that under a balanced�budget rule, endogenous tari¤s and endogenous labor income taxes

are equivalent in generating global indeterminacy in the form of Euler equation branching. The

methodology in our paper comes from Stockman (2009). Similar to Stockman (2009), the existence

of Euler equation branching depends crucially on an endogenous tari¤ rate. These �ndings show

that those multiple equilibria due to a balanced-budget rule studied by Zhang can always exist and

extend beyond local indeterminacy.
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