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Abstract 
This paper examines the multi-scale relationship between the interest rate, exchange rate and 

stock price using wavelet transform. In particular, we apply the maximum overlap discrete 

wavelet transform (MODWT) to the interest rate, exchange rate and stock price for US over 

the period 1990:1- 2008:12 and using the definitions of wavelet variance, wavelet correlation 

and cross-correlations analyze the association as well as the lead/lag relationship between 

these series at the different time scales. Our results show that the relationship between interest 

rate and exchange rate is not significantly different from zero at all scales. On the other hand, 

the relationship between interest rate returns and stock index returns is significantly different 

zero only at the highest scales. The exchange rate returns and stock index returns have a 

relationship bidirectional in this period at longer horizons. 

 

Keywords: Wavelet analysis, Interest rate, Stock price, Wavelet cross-correlation, Granger 

causality. 

J.E.L Classification: C02, C22, 

 

1. Introduction: 
 

The stock markets are becoming an integral part of the economies of many countries. 

With the introduction of free and open economic policies and advanced technologies, 

investors are finding easy access to stock markets around the world. The fact that stock 
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market indices have become an indication of the health of the economy of a country indicates 

the importance of stock markets. This increasing importance of the stock market has 

motivated the formulation of many theories to describe the working of the stock markets. 

One piece of information which arrives quite often to the stock markets are interest rates 

and stock price fluctuations. In theory the interest rates and the stock price have a negative 

correlation. This is because a rise in the interest rate reduces the present value of future 

dividends income which should de press stock prices. Conversely, low interest rates result in a 

lower opportunity cost of borrowing. Lower interest rates stimulate investments and economic 

activities which would cause prices to rise. On the other hand according to the parity 

conditions the interest rates and the exchange prices should be related with a negative 

coefficient. Hence we would expect a relationship between exchange price and stock price 

with a positive coefficient. 

However the empirical studies carried out in the various markets had revealed conflicting 

results on causality between stock prices and the above economic variables. Mok (1993), 

verified the causality of daily interest rate, exchange rate and stock prices in Hong Kong for 

the period 1986 to 1991. The results indicate that the HIBOR (Hong Kong Inter Bank Offered 

Rate) and the price indices are independent series. As a further extension to the study the 

relationship between exchange rate and stock price was examined, the research concluded that 

those series are also independent. 

Hashemzadeh and Taylor (1988) have found bi-directional causality present in regression 

models between money supply and stock returns using stock indexes to estimate market 

returns. As regards, the interest rate the results are not as conclusive. The direction of 

causality seems to be mostly running from interest’s rate to stock price but not the other way. 

Solnik (1987) found a weak positive relation between real stock return deferential and the 

changes in the real exchange rate and he also found that a real growth in the stock market also 

has a positive influence on the exchange rate. 

 

In this paper, we examine the relationship between interest rate, exchange rate and stock 

price. We adopt the time series technique based in wavelet analysis. We apply the wavelet 

cross-correlation between these series based upon the maximum overlap discrete wavelet 

transform MODWT [Percival, and Mofjeld (1997) and Daubechies (1992)] families of 

wavelets. The decomposition of a time series on a scale-by-scale basis has the ability to unveil 

structure at deferent time horizons. For example, the wavelet transform produces an 

alternative, known as the wavelet variance, to the periodogram. This variance decomposition 

may be easily generalized for multivariate time series. Standard time-domain measures of 

association for multivariate time series (e.g., cross-covariance and cross-correlation) may be 

defined using the coefficients from the application of the wavelet transform to each series, 

thus producing the wavelet cross-covariance and wavelet cross-correlation. 

 

The remainder of the paper is organized as follow. The main properties of the wavelets 

and the analytical deference’s with other filtering methods are dealt with in section 2, where 

we present the statistical properties of the wavelet variance, correlation and cross-correlation. 

In section 3, we describe the data used in the study and the basic statistic. Section 4 discusses 

the empirical finding. Finally, section 5 concludes and highlights some relevant remarks. 
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2. Wavelet Analysis: 
 

The series were filtered using wavelet analysis that is a relatively new (at least for 

economists) statistical tool that, roughly speaking, decomposes a given series in orthogonal 

components, as in the Fourier approach, but according to scale (time components) instead of 

frequencies. The comparison with the Fourier analysis is useful first because wavelets use a 

similar strategy: find some orthogonal objects (wavelets functions instead of sines and cosines) 

and use them to decompose the series. Second, since the Fourier analysis is a common tool in 

economics, it may be useful in understanding the methodology and also in the interpretation 

of results. Saying that, we have to stress the main deference between the two tools. Wavelet 

analysis does not need stationary assumption in order to decompose the series. This is because 

the Fourier approach decomposes in frequencies space that may be interpreted as events of 

time-period T (where T is the number of observations). Put differently, spectral decomposition 

methods perform a global analysis whereas, on the other hand, wavelets methods act locally 

in time and so do not need stationary cyclical components. Recently, to relax the stationary 

frequencies assumption a windowing Fourier decomposition that essentially use, for 

frequencies estimation, a time-period M (the window) event less than the number of 

observations T. The problem with this approach is the right choice of the window and, more 

important, its constancy over time. Coming back to wavelets and going into some 

mathematical detail we may note that there are two basic wavelet functions: the father wavelet 

φ  and mother wavelets ψ  such that: 
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  , ,, kjkj ψφ the so-called scaling are and wavelet functions, respectively. The formal definition 

of the father wavelets is the function 
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defined as non-zero over a finite time length support that corresponds to given mother 

wavelets 

                                              )2(2)( 2/

, ktt
jj

kj −= −− ψψ                                                          (4) 

 

The former integrates to 1 and reconstructs the longest time-scale component of the series 

(trend), while the latter integrates to 0 (similarly to sine and cosine) and is used to describe all 

deviations from trend. The mother wavelets play a role similar to sins and cosines in the 

Fourier decomposition. 
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2.1. The Discrete Wavelet Transform: 
 

Let h1 = (h1,0 ,  . . . , h1,L-1 ,0, . . . , 0)
T
 denote the wavelet filter coefficients of a Daubechies 

compactly supported wavelet for unit scale Daubechies (1992), zero padded to length N by 

defining h1,l =0 for l > L. A wavelet filter must satisfy the following three basic properties: 
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That is, a wavelet filter must sum to zero (have zero mean), must have unit energy, and must 

be orthogonal to its even shifts. 

Let g1 = (g1,0 ,  . . . , g1,L-1 ,0, . . . , 0)
T
  be the zero padded scaling filter coefficients, defined via  

1,1

1
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l hg  and let  X0, . . ., XN-1 be a time series. For scales that N ≥  Lj , where 
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j , we can filter the time series using hj to obtain the wavelet coefficients 
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The tjW ,

~
 coefficients are associated with changes on a scale of length 12 −= j

jτ and are 

obtained by sub sampling every 2
j
th of the tjW ,

~
coefficients, which forms a portion of the 

maximal overlap discrete wavelet. 

However the orthonormal discrete wavelet transform (DWT), even if widely applied to time 

series analysis in many disciplines, has two main drawbacks: the dyadic length requirement 

(i.e. a sample size divisible by 2
J
 ), and the fact that the wavelet and scaling coefficients are 

not shift invariant due to their sensitivity to circular shifts because of the decimation operation. 

An alternative to DWT is represented by a non-orthogonal variant of DWT: the maximal 

overlap DWT (MODWT). 

 

2. 2 Maximal Overlap DWT (MODWT): 
 

In contrast to the DWT, the MODWT Percival et al (2000), does not decimate the coefficients 

and therefore the number of scaling and wavelet coefficients at every level of the transform is 

the same as the number of sample observations. For this reason the MODWT is also called 

non-decimated DWT. Although it loses orthogonality and efficiency in computation, this 

transform does not have any restriction on the sample size and it is shift invariant. Wavelet 

coefficients, i.e. tjw ,
~ and scaling coefficients, i.e. tjv ,

~  at levels j;  j = 1, . . . , J, are obtained as 

follows: 
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decimated wavelet coefficients represent differences between generalized averages of the data 

on a scale 12 −= j

jτ  (or level j). 

MODWT provides the usual functions of the DWT, such as multiresolution decomposition 

analysis and cross-correlation analysis based on wavelet transform coefficients, but unlike the 

classical DWT it can handle any sample size; is translation invariant, as a shift in the signal 

does not change the pattern of wavelet transform coefficients; and provides increased 

resolution at coarser scales. In addition, MODWT provides a larger sample size in the wavelet 

correlation analysis and produces a more asymptotically efficient wavelet covariance 

estimator than the DWT. 

 

2.3 The wavelet variance, covariance, correlation and cross-correlation: 
 

 

The basic idea of the wavelet variance is to substitute the notion of variability over certain 

scales for the global measure of variability estimated by sample variance. 

The wavelet variance of stochastic process X is estimated using the MODWT coefficients for 

scale 12 −= j

jτ  through: 
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where kjW ,
ˆ is the MODWT wavelet coefficient of variable X at scale jτ  . 1ˆ +−= jj LNN  is 

the number of coefficients unaffected by boundary, and 1)1)(12( +−−= LL
j

j  is the length 

of the scale jτ  wavelet filter. 

Although the wavelet covariance decompose the covariance between two stochastic processes 

on a scale-by-scale, in some situations it may be beneficial to normalize the wavelet 

covariance by the variability inherent in the observed wavelet coefficients. The wavelet 

covariance at scale jτ  can be expressed as follows: 
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Given that covariance does not take into account the variation of univariate time series, it is 

natural to introduce the concept of wavelet correlation. 

 

The wavelet correlation is simply made up of the wavelet covariance for {Xt, Yt} and wavelet 

variances for {Xt} and {Yt}. The MODWT estimator of wavelet correlation can be expressed 

as follows: 
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As with the usual correlation coefficient between two random variables, ( ) 1ˆ ≤jXY τρ . The 

wavelet correlation is analogous to its Fourier equivalent, the complex coherency (Gençay et 

al (2002, p: 258)). 

 

The wavelet cross-correlation decomposes the cross-correlation between two time series on a 

scale-by-scale basis thereby making it possible to see how the association between two time 

series changes as a function of time horizon. Genaçay et al (2002) define the wavelet cross-

correlation as: 
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where  ( )
jτσ 2

1  , ( )
jτσ 2

2  are, respectively, the wavelet variances for x1,t and x2,t associated with 

scale jτ  and ( )
jkX τγ ,  the wavelet covariance between x1,t and x2, t – k associated with scale jτ . 

Just as the usual cross-correlation is used to determine lead-lag relationships between two 

processes, the wavelet cross-correlation should be able to provide a lead-lag relationship on a 

scale by scale basis (Gençay et al (2002)). 

3 Data description and basic statistics: 
 

The analysis was conducted using monthly data for the interest rate of American Treasury 

securities at 3-month constant maturity provided by the Federal Reserve and the exchange rate 

between USD and EURO. The closing S&P500 index is used as the indication of the stock 

price fluctuation. Empirical analysis covers the period form January 1990 to December 2008 

providing a 228 observation in total. In this study, we investigate the returns 

series ( ) ( )1lnln −−= ttt ppr . Initially Table1 shows some brief summary statistics for the 

returns series of interest rate, exchange rate and stock index respectively. From the Table 1, 

we make the following observations. (a) The mean of returns series is equal zero for all series. 

(b) Interest rate returns have higher standard deviation than exchange rate and stock index 

returns showing that the interest rate has higher volatility than the exchange rate and than the 

stock market. (c) Monthly returns of interest rate tend to have high excess kurtosis. 

 

Both series appear to have similar characteristics, in terms of mean and variation, but a more 

thorough description is available to use through a multi scale analysis. 

 

min max mean std.dev skewness kurtosis

Interest rate -1.85 0.3 -0.02 0.17 -7.37 68

Stock index -0.06 0.08 0 0.02 0.14 0.16

Exchange rate -0.18 0.11 0 0.04 -0.88 2.04  
Table 1 : Descriptive Statistics for returns series 

4  Multi Scale Analysis: 
 

We apply the maximal overlap discrete wavelet transform to the monthly returns for the three 

series using the Daubechies (D) wavelet filter of length L = 4, that is D(4), based on four non-
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zero coefficients Daudechies (1992), with periodic boundary conditions. The application of 

the translation invariant wavelet transform with a number of scales J = 5 produces five 

vectors of wavelet filter coefficients, that is w5, w4, w3, w2, w1, and one vector of scaling 

coefficients, v5. Since we use monthly data, the wavelet filter coefficients, w5,k, . . . , w1,k, 

represent progressively finer scale deviations from the smooth behavior, and correspond to 

32 – 64, 16 – 32, 8 – 16, 4 – 8 and 2 – 4 months period, respectively. 

 

The main purposes of this paper are to examine the lead-lag relationship and cross-correlation 

between interest rate, stock market and exchange rate over the various time scales using 

wavelet analysis. To examine the lead-lag relationship in wavelet analysis, first we test for 

Granger causality up to level 5. The results of the Granger causality tests are reported in Table 

2. As can be seen in Table 2, the stock market and interest rate show a feedback relationship 

only at higher scales (D4 and D5). The results show also, the unidirectional causality from 

stock market to exchange market in various time scales and from interest rate to exchange 

market at scales D2, D3, D4 and D5. 

 

 S5 D1 D2 D3 D4 D5 
FX → IR 3.935* 

(0.001) 

1.850* 
(0.038) 

1.2413  

(0.2489) 

1.6985  

(0.0833) 

1.1638  

(0.2918) 

1.6188  

(0.0565) 

SM → IR 2.910* 

(0.002) 

1.405 
(0.159) 

1.2349  

(0.2533) 

1.6506  

(0.0950) 

1.9651*  

(0.0113) 

2.8365*  

(0.0002) 

IR → FX 1.225 
(0.276) 

1.700 
(0.063) 

2.0217*  
(0.0183) 

2.7712*  

(0.0032) 

3.0075*  

(0.0001) 

1.9646*  

(0.0126) 

SM → FX 2.087* 
(0.0271) 

2.156* 
(0.013) 

2.8408*  

(0.0007) 

2.3289*  

(0.0130) 

1.4176*  

(0.1202) 

2.4540*  

(0.0012) 

IR → SM 2.1934* 
(0.019) 

1.399 
(0.162) 

1.1638  

(0.3065) 

1.1361  

(0.3371) 

2.1623*  

(0.0044) 

2.4685*  

(0.0011) 

FX → SM 1.653 
(0.0934) 

1.480 
(0.127) 

1.2736  

(0.2273) 

2.0022*  

(0.0349) 

1.4643  

(0.1003) 

1.2351  

(0.2348) 
Note – S5 is the original data transformed by the wavelet filter D(4). The significances levels in parentheses. 

* Significant at the 5% level. 

Table 2: Multi scale Granger Causality 
Turning to the second purpose of our paper (cross-correlation in various time scale), we 

examine the cross-correlation between the stock market, interest rate and exchange rate in 

various time scale.  

In Figures 1, 2 and 3 we report the estimated wavelet cross-correlations coefficients and the 

corresponding approximate confidence intervals against time leads and lags for all scales 

between the interest rate returns and exchange rate returns, interest rate returns and stock 

index returns and between exchange rate returns and stock index returns respectively. Figure1 

shows that, for all scales, the relationship between interest rate and exchange rate in generally 

not significantly different from zero at all leads and lags (slightly significant at scale 3). This 

means that interest rate returns and exchange rate returns in this period were independent and 

historical information of interest rate was not significantly predictive for exchange rate. In 

Figure2, we report that at shortest scales, i.e. 1–3, the relationship between interest rate and 

stock index is not significantly different from zero. On the other hand, at the coarsest scales, 

i.e. 4–5, we report a significant positive relationship between the two series. Also, at scale 5, 

we underlying positive leading relationship between interest rate and stock returns, and we 

note the asymmetry in the wavelet cross-correlation sequence. At the fifth scale (associated 

with associations of 32 to 64 months), the interest rate is positively correlated with the stock 

return at a lead 10 months but not at a lag of 10 months. This figure also shows that most of 
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significant coefficients have positive values. This indicates that the interest rate appreciation 

(depreciation) was associated with a fall (rise) in stock index. The wavelet cross-correlation 

provides that exchange rate returns and stock index returns are independent at short horizons 

(high frequencies). The Figure3 also shows a significant relationship between the two series 

only at coarsest scale. We note also that significant coefficients have positive values at leads 

and negative values at lags (scale 5). This means the existence a relationship bidirectional 

between the two series at long horizons. 

 

 

 
Figure 1: Wavelet cross-correlation between Interest rate and Exchange rate returns 
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Figure 2: Wavelet cross-correlation between Interest rate and Stock index returns 

 

 

5 Conclusion: 
 

In this paper we apply a wavelet multi-scaling approach based on a maximum overlap discrete 

wavelet transform to investigate the relationship between interest rate, exchange rate and 

stock price over different time scale. Through a scale by scale decomposition of the cross-

correlation between two time series we try to shed some light on the scaling properties on the 

relationship at different time horizons. The main results are summarized as follows: 

•   The wavelet cross-correlation analysis show that the relationship between interest rate 

and exchange rate not significantly different from zero at all leads and lags and at all scales. 

•   The relationship between interest rate and stock index is significantly different zero only 

at the coarsest scales, i.e. 4–5, which corresponding to longer horizons. The analysis provides 

evidence about the finding that interest rate returns are leading stock index returns. 

•  Only at low frequencies (longer horizons), we remark a significant relationship between 

exchange rate and stock index at this period. 
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In general it seems that the interest rate and exchange rate series are generally quite 

independent at the period of studies and at all scales. There was, however a possible 

unidirectional causality running from interest rate to the stock price but not vice versa at 

highest scales. Therefore, our results show that a possible bidirectional causality running 

between exchange rate and stock index only at longer horizons. 

 

 
Figure 3: Wavelet cross-correlation between Exchange rate and Stock index returns 
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