
MPRA
Munich Personal RePEc Archive

Asymptotic properties of OLS estimates
in autoregressions with bounded or
slowly growing deterministic trends

Kairat Mynbaev

Kazakhstan Institute of Management, Economics, and Strategic
Research (KIMEP)

2003

Online at http://mpra.ub.uni-muenchen.de/18448/
MPRA Paper No. 18448, posted 8. November 2009 06:36 UTC

http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/18448/


ASYMPTOTIC PROPERTIES OF OLS ESTIMATES IN AUTOREGRESSIONS WITH

BOUNDED OR SLOWLY GROWING DETERMINISTIC TRENDS

Kairat T. Mynbaev

Department of Economics

KIMEP

Abai Ave. 4, 480100 Almaty, Kazakhstan

kairat@kimep.kz

Key Words: autoregression; deterministic trend; OLS estimator asymptotics.

ABSTRACT

We propose a general method of modeling deterministic trends for autoregressions. The

method relies on the notion of L2-approximable regressors previously developed by the au-

thor. Some facts from the theory of functions play an important role in the proof. In its

present form, the method encompasses slowly growing regressors, such as logarithmic trends,

and leaves open the case of polynomial trends.

1. INTRODUCTION

Consider the following autoregressive model:

yi = β1ti + β2yi−1 + ei, i = 1, . . . , n, (1.1)

where the parameters β1 and β2 are to be estimated by Ordinary Least Squares (OLS). The

regressor t = (t1, . . . , tn)′ is assumed to be nonstochastic (in applications it is often a time

trend); the coefficient β2 satisfies the stability condition |β2| < 1; the errors ei are martingale

differences satisfying certain second- and fourth-order conditional moment restrictions (in

particular, the errors can be normal independent identically distributed (i.i.d.) with mean

zero and variance σ2). Denote β = (β1, β2)′ and let β̂ be the OLS estimator of β based on a

sample of size n. The logarithmic trend

ti = ln i, i = 1, . . . , n, (1.2)
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and polynomial trend

ti = ik, i = 1, . . . , n, (1.3)

are examples of growing trends (here k is some natural number). The most recent papers

about models with growing trends include Ng and Vogelsang (2002), Sibbertsen (2001), and

Rahbek et al. (1999). Bounded trends are also interesting for modeling seasonal variations

(see Nabeya (2000) and Tam and Reinsel (1998)). Leonenko and Šilac-Benšić (1997) treat

the continuous case and the stress is on the singular errors.

The abundance of papers about models with particular types of trends testifies to the

continuing interest in deterministic trends and calls for a general method that would be

applicable to all types. One such method in a setup different from ours has been developed

by Andrews and McDermott (1995). We pursue an approach based on the notion of L2-

approximable regressors introduced in Mynbaev (2001) (a narrower notion of L2-generated

regressors has been suggested in Moussatat (1976)). Specifically, our purpose is to find

the asymptotic distribution of β̂, as n → ∞, when the normalized exogenous regressor is

L2-approximable. Mynbaev and Castelar (2001) have shown that the last condition holds

true for (1.2) and (1.3). In the same paper it is proved that normalization of the geometric

progression xn = (a0, a1, . . . , an−1), where a 6= 1 is real, and the exponential trend xn =

(ea, . . . , ena), where a 6= 0 is real, does not lead to L2-approximable sequences. This is

because both the geometric progression and exponential trend are too concentrated at one

end of their domain, while L2-approximability implies some ”smearing” over the domain. It

is well known that regressing on the geometric progression or exponential trend leads to bad

asymptotic properties for the OLS estimator.

When there are no autoregressive terms, the solution to this problem does not require the

L2-approximability assumption, is relatively simple and given by Anderson (1971), Theorem

2.6.1. For the case β2 6= 0 and |β2| < 1, the most advanced result, including stochastic

t, is contained in Anderson and Kunitomo (1992). However, that result does not cover

growing regressors like (1.2) and (1.3). Sims, Stock, and Watson (1990), in order to find

the asymptotics of β̂ in the case of a simple linear trend, found the asymptotics for a
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transformed regression. This method is not feasible because the transformation involves

unknown parameters. The exposition of their approach can also be found in Hamilton

(1994) (see Chapter 16). The feasibility problem does not exist in our case since we just

normalize the exogenous variables.

To explain the nature of difficulties arising in case (1.3), we need to review the way the

OLS asymptotics is usually derived. Let us write the linear model in the form

y = Xβ + e (1.4)

where X is a n× k matrix of linearly independent regressors, β is a k × 1 parameter vector

to be estimated, and e is an error vector. The OLS estimator for (1.4) is

β̂ = (X ′X)−1X ′y = β + (X ′X)−1X ′e .

By transferring β to the left side and premultiplying the resulting equation by a nondegen-

erate diagonal matrix M we obtain

M(β̂ − β) = [(XM−1)′XM−1]−1(XM−1)′e = (H ′H)−1H ′e (1.5)

where H = XM−1. The conventional scheme of deriving the asymptotics of β̂ consists in

choosing the matrix M in such a way that the matrix Q = H ′H converges in probability to

a nondegenerate matrix Q∞ and the factor w = H ′e converges in distribution to a normal

vector w∞. Then it immediately follows that M(β̂−β) converges in distribution to a normal

vector. The matrix M is called a normalizer. Usually, Q∞ is the variance of w∞.

An obvious problem is that of choosing M . When β1 = 0 and β2 6= 0, |β2| < 1, the

standard choice is M =
√
n. When β2 = 0 and β1 6= 0, Anderson (1971) suggested to put

M = (
∑n
i=1 t

2
i )

1/2. These two facts helped us to come up with the normalizer in Theorem

2.1 below.

Another problem is that when the exogenous regressor grows quickly (like a polynomial

trend), the vector H ′e converges in distribution to a degenerate normal vector, whose second

coordinate is proportional to the first one. For this reason the limit of H ′H is degenerate in

case (1.3). In this case we have proved convergence of w and Q but not M(β̂−β). The idea of
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the method is explained in the paragraph preceding Lemma 2.1. The proof is pretty involved.

It relies on properties of L2-approximable sequences established in Mynbaev (2001) as well as

on a martingale Weak Law of Large Numbers (WLLN) by Chow (1971) and Davidson (1994),

mixingale WLLN due to Andrews (1988) and Davidson (1994), the McLeish (1974) Central

Limit Theorem (CLT), and Burkholder’s (1973) theorem on transforms of martingales. All

these results, for the reader’s convenience, are gathered in the Appendix. The main result

is stated as Theorem 2.1 in Section 2.

The author hopes to consider elsewhere the model with q deterministic exogenous regres-

sors and p lags of the dependent variable

yi =
q∑
j=1

β1
j tji +

p∑
j=1

β2
j yi−j + ei.

This is why the intercept term is not included in (1.1): the intercept would be just another

L2-approximable regressor, and its inclusion, within the framework suggested, would not be

any easier than considering more trends. The exogenous regressors will be required to satisfy

the L2-approximability condition (see assumption A2) below).

The L2-approximability notion was applied in Mynbaev (2001) to find a limiting distri-

bution of quadratic forms of random variables, in Mynbaev (1997) to find the asymptotics of

the fitted value for a linear regression with nonstochastic regressors, and in Mynbaev (2003)

to prove a CLT applicable to an SUR-type system of linear regressions without autoregres-

sive terms. In response to referee’s question, I am pretty confident that this notion can

be applied to nonstationary models (with unit roots). One way this would be possible to

do is by proving an invariance principle parallel to the central limit theorem contained in

Mynbaev (2001).

2. MAIN RESULT

If (Ω, µ) is a probability space with measure µ, then Lp(Ω, µ) denotes the set of measurable

functions F : Ω → R provided with the norm ‖f‖p = (
∫

Ω |f(x)|pdµ(x))1/p, 1 ≤ p < ∞.

When Ω = (0, 1) and µ is the Lebesgue measure, we write L2 instead of L2((0, 1), µ) and

‖f‖ instead of ‖f‖2. The space `2, a discrete analog of L2, consists of sequences {zj : j ∈ J}
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with a finite norm ‖z‖ = (
∑
j∈J |zj|2)1/2; the set of indices J depends on the context. Rn is

the Euclidean space provided with this norm. plim (dlim) means a limit in probability (in

distribution, respectively). N(m,V ) denotes the set of normal vectors with mean m and a

matrix variance V .

The discretization operator dn : L2 → Rn is defined as follows. For a function f ∈ L2,

the vector dnf ∈ Rn has components

(dnf)j =
√
n
∫
ij
f(x)dx, j = 1, . . . , n,

where the intervals ij = ((j− 1)/n, j/n) form a partition of (0, 1). The sequence {dnf : n =

1, 2, . . .} is called L2-generated by f . The notion of L2-generated sequences was introduced

by Moussatat (1976). A sequence {un : n = 1, 2, . . .}, where un ∈ Rn for each n, is called

L2-approximable, if there exists a function f ∈ L2 such that ‖un − dnf‖ → 0, n → ∞.

Besides, in this case {un} is called L2-approximated by f . L2-approximable sequences have

been introduced and studied by Mynbaev (2001). In statistics often sequences of vectors

with an increasing number of coordinates are used. Conditions on such sequences imposed

in terms of limits of different expressions involving them look awkward and are difficult

to check. The idea behind L2-approximability is to approximate sequences with functions

of a continuous argument and then derive (instead of imposing) the required properties

of sequences from properties of functions. This is facilitated by the fact that the theory

of L2 spaces and operators in them is well developed. A comparison of properties of L2-

approximable sequences contained in Mynbaev (2001) with those imposed directly in, say,

Anderson (1971) shows that not very much is lost in terms of generality.

Before we state the main result we need to do a little housekeeping. We assume that in

(1.4)

y = (y1, . . . , yn)′, X = (x1, x2), x1 = (t1, . . . , tn)′,

x2 = (y0, . . . , yn−1)′, e = (en1, . . . , enn)′,

where {eni, Fni}ni=1 is a martingale difference (m.d.) sequence for each n, that is, Fni are

σ-fields such that Fn1 ⊂ . . . ⊂ Fnn and E(eni|Fn,i−1) = 0.
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Now we state and discuss the main assumptions.

A1) β1β2 6= 0, |β2| < 1.

The cases β1 = 0 and β2 = 0 are excluded as known (see Anderson (1971) and Hamilton

(1994)).

A2) ‖x1‖ > 0 for all large n and the sequence un = x1/‖x1‖ = t/‖t‖ is L2-approximable.

Mynbaev and Castelar (2001) have shown that if un = t/‖t‖, where t is defined by (1.2)

or (1.3), then un is L2-approximable. See Theorem 3.1 and Lemma 2.1 about implications

of L2-approximability.

A3) The initial condition y0 is a square-integrable random variable.

As usual, the influence of y0 is asymptotically negligible.

A4) {eni, Fni} is a p-integrable m.d. sequence such that supn,i ‖eni‖p <∞ for some p > 4

and

E(e2
ni|Fn,i−1) = σ2 ∀n, i,

where 0 < σ2 <∞, and with some σ2
1 > σ4 and c > 0

E(e4
ni|Fn,i−1) = σ2

1, E(|e2
ni − σ2||Fn,i−1) ≥ c ∀n, i.

For example, if {ei} is i.i.d. normal, then

E(e4
i |Fi−1) = Ee4

i = 3σ4 > σ4, E(|e2
i − σ2||Fi−1) = ‖e2

i − σ2‖1 = c > 0.

A5) The limit

λ = lim
n→∞

√
n

‖t‖
= lim

n→∞

√
n

‖x1‖
∈ [0,∞]

exists.

The limit λ measures the relative magnitude of the error term and the regressor t. When

t is a polynomial with k > 0, one has λ = 0. If t is a logarithmic trend, then 0 < λ < ∞.

Since λ = ∞ is admitted, in the formulas that follow we put 1/∞ = 0, ∞/∞ = 1. For

L2-approximable normalized regressors we find a general answer, which covers (1.2) but

not (1.3). If the regressor grows quickly relative to the error, then λ = 0, which, in turn,
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renders degenerate the matrix Q∞ from (2.4). In the latter case we suggest a conjecture for

profession’s discussion.

To state the main result, we need to define the elements of the conventional scheme. Let

m1 = ‖x1‖, m2 = ‖x1‖+
√
n, M = diag[m1,m2].

With this M , the matrix H = XM−1 from (1.5) has the vectors

h1 = x1/‖x1‖, h2 = x2/(‖x1‖+
√
n) (2.1)

as its columns: H = (h1, h2). Therefore in (1.5)

Q = H ′H =

(
h′1
h′2

)
(h1h2) =

h′1h1 h′1h2

h′2h1 h′2h2

 =

 1 h′1h2

h′2h1 ‖h2‖2

 (2.2)

and

w = H ′e =

(
h′1e

h′2e

)
. (2.3)

Denote

γ =
β1

(1 + λ)(1− β2)
, Q∞ =

 1 γ

γ γ2 + ( σλ
1+λ

)2 1
1−β2

2

 . (2.4)

Obviously, detQ∞ = 0 if and only if λ = 0.

Theorem 2.1. Under assumptions A1) through A5), one has

w∞ ≡ dlim w ∈ N(0, σ2Q∞), plim Q = Q∞. (2.5)

Hence, if λ > 0, then dlim M(β̂ − β) ∈ N(0, σ2Q−1
∞ ).

From the point of view of this theorem, the case λ = 0 presents a problem. There are

reasons to believe that the following is true.

Conjecture. If one chooses M = | detQ|1/2diag [m1,m2] in case λ = 0, then M(β̂ − β)

will converge in distribution to a vector w∞ such that w∞1 = γw∞2.

By the Cramér-Wold theorem, to prove convergence of w in distribution to an element of

N(0, σ2Q∞), it is sufficient to prove, for any vector a ∈ R2, convergence of a′w to an element

of N(0, σ2a′Q∞a). The last problem will be reduced to another one, using the fact that the
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influence of the initial condition y0 is negligible. Replacing ei by eni in (1.1), by induction

we obtain the solution

yi =
i∑

k=1

βi−k2 (β1x1k + enk) + βi2y0, 1 ≤ i ≤ n. (2.6)

Using (2.1), (2.3), and (2.6), rearrange a′w as follows

a′w = a1h
′
1e+ a2h

′
2e =

n∑
i=2

(a1h1i +
a2

m2

yi−1)eni + (a1h11 +
a2

m2

y0)en1 =

=
n∑
i=2

{
a1h1i +

a2

m2

[ i−1∑
k=1

βi−1−k
2 (β1x1k + enk) + βi−1

2 y0

]}
eni + (a1h11 +

a2

m2

y0)en1 =

=
n∑
i=2

Yni + Zn,

where we put

Yni =
[
a1h1i +

a2

m2

i−1∑
k=1

βi−1−k
2 (β1x1k + enk)

]
eni, Zn =

a2

m2

n∑
i=1

βi−1
2 y0eni + a1h11en1.

Using conditions A1) through A4) and the fact that m2 →∞, n→∞, we have by Hölder’s

inequality

‖Zn‖1 ≤
|a2|
m2

n∑
i=1

|β2|i−1‖y0‖2‖eni‖2 + |a1h11|‖en1‖1 ≤
c

m2

∞∑
i=0

|β2|i + c|h11| → 0.

Here h11 → 0 by Theorem 3.1b). Hence, plim Zn = 0 and

dlim a′w = dlim
n∑
i=2

Yni. (2.7)

Next we derive the main representation of Yni. Decompose it as

Yni =
(
a1h1i+

a2

m2

‖x1‖β1

i−1∑
k=1

βi−1−k
2

x1k

‖x1‖
)
eni+

a2

m2

i−1∑
k=1

βi−1−k
2 enkeni = Ani+Bni, i ≥ 2, (2.8)

where we put

Ani =
(
a1h1i +

β1a2

1 + λn

i−1∑
k=1

βi−1−k
2 h1k

)
eni; λn =

√
n

‖x1‖
; Bni =

a2

m2

( i−1∑
k=1

βi−1−k
2 enk

)
eni. (2.9)

In definition (3.3) put ψj = 0, j ≥ 1; ψj = β−j2 , j ≤ 0. Then (see also (3.1))

Ψnz =
( i∑
k=1

βi−k2 zk
)n
i=1

;
i−1∑
k=1

βi−1−k
2 zk = (LnΨnz)i, i ≥ 2. (2.10)
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With the notation

µn =
β1a2

1 + λn
, νn =

a2

m2

, un = h1, gn = a1un + µnLnΨnun (2.11)

we see that

a1h1i +
β1a2

1 + λn

i−1∑
k=1

βi−1−k
2 h1k = (a1un + µnLnΨnun)i = gni. (2.12)

h1 is denoted by un because of its special role in the proof. Thus, we have representation

(2.8) of Yni in terms of variables

Ani = gnieni, Bni = νn(LnΨne)ieni, i ≥ 2.

Besides, if we denote µ = β1a2

1+λ
, then from A5) we get

limλn = λ, limµn = µ, limnν2
n =

( a2λ

1 + λ

)2
(2.13)

for all 0 ≤ λ ≤ ∞.

Now we are in a position to outline the idea of the proof of convergence of
∑
Yni. According

to the McLeish CLT (Theorem 3.4), we need to consider
∑
EY 2

ni. (2.8) and (2.9) imply

Y 2
ni = A2

ni + 2AniBni +B2
ni where

A2
ni = g2

nie
2
ni, (2.14′)

B2
ni = ν2

n

( i−1∑
k=1

β
2(i−1−k)
2 e2

nk + 2
∑

1≤k<l≤i−1

β2i−2−k−l
2 enkenl

)
e2
ni, (2.14′′)

AniBni = gniνn
( i−1∑
k=1

βi−1−k
2 enk

)
e2
ni. (2.14′′′)

The sum
∑
A2
ni is responsible mainly for the contribution of the exogenous regressor;

∑
B2
ni

accounts for the contribution of the autoregressive term, and
∑
AniBni controls interaction

between the two. Each of these three sums needs separate treatment. Before doing that we

gather in one lemma various implications of Theorem 3.1.

Lemma 2.1. Under assumptions A1), A2), and A5) the following is true.

a) For any a ∈ R2 and λ ∈ [0,∞] (see (2.4) for the notation of γ)

lim
n→∞

‖a1un + µnLnΨnun‖ = |a1 + a2γ|.
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b) The constants cni = g2
ni, 2 ≤ i ≤ n, (see (2.11)) satisfy conditions (b) and (c) of

Theorem 3.2 and

max
i
cni → 0. (2.15)

c) The constants cni = ν2
n satisfy conditions (b) and (c) of Theorem 3.2.

d) limn→∞ u
′
n(µnLnΨnun) = γ.

Proof.

a) Theorem 3.1 (part b)), identity (3.4), assumptions A1) and A2), and the choice of ψj

imply

‖LnΨnun −ΨnLnun‖ ≤ max
1≤j≤n

|unj|
[∑
j

ψ2
j +

(∑
j

|ψj|
)2]1/2

→ 0.

Hence, by Theorem 3.1, parts a), c), and d), we have

∥∥∥∑ψjun − LnΨnun
∥∥∥ ≤ ∥∥∥(∑ψj −Ψn

)
un
∥∥∥+ ‖Ψn(un − Lnun)‖+

+‖ΨnLnun − LnΨnun‖ → 0.

Now using normalization ‖un‖ = 1, the identity
∑
j ψj = 1/(1 − β2), (3.2), Theorem 3.1a)

and (2.13), we obtain the desired result:

∣∣∣‖a1un + µnLnΨnun‖ − |a1 + a2γ|
∣∣∣ =

∣∣∣∣‖a1un + µnLnΨnun‖ −
∥∥∥(a1 + µ

∑
ψj
)
un
∥∥∥∣∣∣∣ ≤

≤
∥∥∥µnLnΨnun − µ

∑
ψjun

∥∥∥ ≤ |µn − µ|‖LnΨnun‖+ |µ|
∥∥∥LnΨnun −

∑
ψjun

∥∥∥ ≤
≤ |µn − µ|αψ‖un‖+ |µ|

∥∥∥∑ψjun − LnΨnun
∥∥∥→ 0.

b) From (3.2), Theorem 3.1a), normalization of un and (2.13), we see that condition (b)

of Theorem 3.2 is satisfied:

lim sup
n→∞

n∑
i=2

cni ≤ lim sup
n→∞

‖a1un + µnLnΨnu‖2 ≤ (2.16)

≤ lim sup
n→∞

[|a1|‖un‖+ |µn|αψ‖un‖]2 <∞.

Further, (2.15) follows from (2.13), assumption A1), and Theorem 3.1b):

max
i
cni = max

i

(
a1uni + µn

i−1∑
k=1

βi−1−k
2 unk

)2

i
≤ c(max

i
|uni|)2 → 0.
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This bound and (2.16) imply condition (c) of Theorem 3.2:

lim
n→∞

n∑
i=2

c2
ni ≤ lim

n→∞
max
2≤j≤n

cnj
n∑
i=2

cni = 0.

c) Since cni = ν2
n ≤ c/n, we do not need to use Theorem 3.1:

lim sup
n→∞

n∑
i=2

cni ≤ c sup
n

n∑
i=2

1/n <∞,

lim sup
n→∞

n∑
i=2

c2
ni ≤ c2 lim

n→∞

n∑
i=2

1/n2 = 0.

d) Choosing a1 = −γ, a2 = 1 in property a) above, we get by normalization of un

|u′n(µnLnΨnun)− γ| = |u′n(µnLnΨnun − γun)| ≤ ‖un‖‖µnLnΨnun − γun‖ → 0.

The proof is complete.

In order to apply the McLeish CLT, we need to normalize Yni by Σn, which is defined by

Σn =
( n∑
i=2

EY 2
ni

)1/2
,

and study the asymptotical behavior of Σn. From now on we assume that all conditions

A1)-A5) hold.

Lemma 2.2. With notation (2.11) one has

EY 2
ni = σ2g2

ni + ν2
nσ

4 1− β2(i−1)
2

1− β2
2

, (2.17)

Σ2
n = σ2(‖gn‖2 − g2

n1) +
ν2
nσ

4

1− β2
2

(
n− 1− β2n

2

1− β2
2

)
, (2.18)

lim
n→∞

Σ2
n = σ2a′Q∞a = σ2

[
(a1 + γa2)2 +

( a2σλ

1 + λ

)2 1

1− β2
2

]
. (2.19)

Proof. Assumption A4) and identities (2.14′), (2.14′′), and (2.14′′′) imply by the Law of

Iterated Expectations (LIE)

EA2
ni = σ2g2

ni, (2.20′)

EB2
ni = σ4ν2

n

i−1∑
k=1

β
2(i−1−k)
2 = σ4ν2

n

1− β2(i−1)
2

1− β2
2

, (2.20′′)
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EAniBni = 0. (2.20′′′)

These equations immediately yield (2.17). Hence, (2.18) follows:

Σ2
n = σ2

n∑
i=2

g2
ni +

σ4ν2
n

1− β2
2

n∑
i=2

(1− β2(i−1)
2 ) = σ2(‖gn‖2 − g2

n1) +
σ4ν2

n

1− β2
2

(
n− 1− β2n

2

1− β2
2

)
.

Since gn1 → 0 by (2.15), (2.19) follows from the last equation, Lemma 2.1a), and the last

equation in (2.13). The proof is finished.

From Yni we pass to normalized variables Xni ≡ Yni/Σn. The objective of the next three

lemmas is to show that

qn(X) ≡
n∑
i=2

X2
ni −

n∑
i=2

EX2
ni = Σ−2

n

n∑
i=2

(Y 2
ni − EY 2

ni)
p→ 0.

By (2.20′′′)

Y 2
ni − EY 2

ni = (A2
ni − EA2

ni) + (B2
ni − EB2

ni) + 2AniBni.

Lemma 2.3. plim
∑n
i=2(A2

ni − EA2
ni) = 0.

Proof. The constants cni from Lemma 2.1b) satisfy conditions of Theorem 3.2. From

assumption A4), (2.14′), and (2.20′), it follows that A2
ni − EA2

ni is a martingale difference:

E(A2
ni − EA2

ni|Fn,i−1) = cni[E(e2
ni|Fn,i−1)− σ2] = 0.

By assumption A4) the functions e2
ni − σ2 are uniformly integrable. By Theorem 3.2∑n

i=2(A2
ni − EA2

ni) converges to zero in L1 and, hence, in probability.

Lemma 2.4. plim
∑n
i=2(B2

ni − EB2
ni) = 0.

Proof. Denote Ini = B2
ni − EB2

ni. This time we use the mixingale WLLN because

{Ini, Fni} is not a m.d. sequence.

Put

Ini = 0, Fni = {∅,Ω}, i ≤ 1; cni = ν2
n ∀i.

We shall show that {Ini, Fni} satisfies conditions 1) through 3) of the definition of a L1-

mixingale from the Appendix.

1) Obviously, Fni form an increasing sequence of σ-subfields of F .

12



2) Now we show that the family {Ini/cni} is uniformly integrable. Note that since

EB2
ni/cni are uniformly bounded (see (2.20′′)), it suffices to prove that the variables Jni ≡

B2
ni/cni are uniformly integrable. The estimate (see (2.14′′) and assumption A4))

EJni = σ2
∥∥∥ i−1∑
k=1

βi−1−k
2 enk

∥∥∥2

2
= σ4

i−1∑
k=1

β
2(i−1−k)
2 ≤ c (2.21)

proves uniform L1-boundedness. By assumption A4) and Hölder’s inequality with r = p/4

we have ∥∥∥ 4∏
j=1

enkj

∥∥∥
r
≤

4∏
j=1

‖enkj
‖p ≤ c (2.22)

for any kj ≥ 1. (2.21) and (2.22) imply (r′ is defined from 1/r + 1/r′ = 1 and 1(A) is the

indicator of a set A)

E
[∣∣∣ 4∏
j=1

enkj

∣∣∣1(Jni > N)
]
≤
∥∥∥ 4∏
j=1

enkj

∥∥∥
r
[E1(Jni > N)]1/r

′ ≤

≤ c1N
−1/r′(EJni)

1/r′ ≤ c2N
−1/r′ .

Hence, uniformly with respect to n and i

EJni1(Jni > N) ≤
i−1∑
k=1

β
2(i−1−k)
2 Ee2

nke
2
ni1(Jni > N)+

+2
∑

1≤k<l≤i−1

|β2|2i−2−k−lE|enkenle2
ni1(Jni > N)| ≤ c3N

−1/r′ → 0, N →∞.

Thus, the functions Ini/cni are uniformly integrable.

3) Bounds (3.5) and (3.6) are trivial for i ≤ 1. Let i ≥ 2. For m ≥ 0 and all k ≤ i − 1

one has Fnk ⊂ Fni ⊂ Fn,i+m. From (2.14′′) then

E(Ini|Fn,i+m) = Ini ∀m ≥ 0, (2.23)

so (3.6) is trivial. To prove (3.5), consider three cases.

3.1) m = 0. (2.23) applies and yields, by the LIE, (2.14′′) and (2.20′′),

‖E(Ini|Fni)‖1 = ‖Ini‖1 = ν2
n

∥∥∥( i−1∑
k=1

βi−1−k
2 enk

)2
e2
ni − σ4(1− β2(i−1)

2 )/(1− β2
2)
∥∥∥

1
≤

13



≤ ν2
n

{
E
[( i−1∑
k=1

βi−1−k
2 enk

)2
E(e2

ni|Fn,i−1)
]

+ c1

}
= ν2

n

(
σ2
∥∥∥ i−1∑
k=1

βi−1−k
2 enk

∥∥∥2

2
+ c1

)
≤ c2ν

2
n.

Here we have used also assumptions A1) and A4).

3.2) i− 1 ≥ m ≥ 1. Noting that Fn,i−m ⊂ Fn,i−1 and using assumption A4), (2.14′′) and

(2.20′′), we get

E(Ini|Fn,i−m) = E[E(Ini|Fn,i−1)|Fn,i−m] =

= ν2
nσ

2E
[ i−1∑
k=1

β
2(i−1−k)
2 (e2

nk − σ2) + 2
∑

1≤k<l≤i−1

β2i−2−k−l
2 enkenl|Fn,i−m

]
=

= ν2
nσ

2
[i−m∑
k=1

β
2(i−1−k)
2 (e2

nk − σ2) + 2
∑

1≤k<l≤i−m
β2i−2−k−l

2 enkenl
]

=

= ν2
nσ

2
[( i−m∑

k=1

βi−1−k
2 enk

)2
− σ2

i−m∑
k=1

β
2(i−1−k)
2

]
.

Hence, with ζm+1 ≡ cβ
2(m−1)
2 by orthogonality

‖E(Ini|Fn,i−m)‖1 ≤ ν2
nσ

2
(∥∥∥i−m∑

k=1

βi−1−k
2 enk

∥∥∥2

2
+ σ2

i−m∑
k=1

β
2(i−1−k)
2

)
=

= 2ν2
nσ

4
i−m∑
k=1

β
2(i−1−k)
2 ≤ ν2

nζm+1.

3.3) m > i− 1. Then Fn,i−m = {∅,Ω} by definition, so by assumption A4), (2.14′′), and

(2.20′′)

E(Ini|Fn,i−m) = E[E(Ini|Fn,i−1)] =

= ν2
nσ

2E
[ i−1∑
k=1

β
2(i−1−k)
2 (e2

nk − σ2) + 2
∑

1≤k<l≤i−1

β2i−2−k−l
2 enkenl

]
= 0.

Summarizing, (3.5) holds with ζm+1 = cβ
2(m−1)
2 , 0 ≤ m ≤ i− 1; ζm = 0, m > i− 1.

By Lemma 2.1c), the scaling coefficients cni satisfy the requirements of Theorem 3.3, so

‖∑n
i=2 Ini‖1 → 0, which proves the lemma.

Lemma 2.5. plim
∑n
i=2 AniBni = 0.

Proof. {AniBni;Fni} is a mixingale but its scaling coefficients cni do not seem to satisfy

the conditions of Theorem 3.3. Therefore the approach here is different from that in Lemma

2.4. Denoting

rni = gniνn
i−1∑
k=1

βi−1−k
2 enk,

14



we can write (see (2.14′′′))

AniBni = rnie
2
ni = rni(e

2
ni − σ2) + σ2rni. (2.24)

By assumption A4), the variables xni = (e2
ni − σ2)/

√
σ2

1 − σ4 satisfy Burkholder’s condition

from Theorem 3.5:

E(x2
ni|Fn,i−1) = E

(e4
ni − 2σ2e2

ni + σ4

σ2
1 − σ4

|Fn,i−1

)
=
σ2

1 − σ4

σ2
1 − σ4

= 1,

E(|xni||Fn,i−1) ≥ c/
√
σ2

1 − σ4.

Therefore

E
∣∣∣ n∑
i=2

rni(e
2
ni − σ2)

∣∣∣2 ≤ (σ2
1 − σ4)E max

2≤k≤n

∣∣∣ k∑
i=2

rnixni
∣∣∣2 ≤ c1

n∑
i=2

Er2
ni. (2.25)

(2.12) implies

rni ≤ c2 max
j
|unj||νn|

i−1∑
k=1

βi−1−k
2 |enk|.

Taking also into account Theorem 3.1b) and (2.13), we have

n∑
i=2

Er2
ni ≤ c3(max

j
|unj|νn)2

n∑
i=2

E
( i−1∑
k=1

|β2|i−1−kenk
)2
≤

≤ c4(max
j
|unj|νn)2

n∑
i=2

( i−1∑
k=1

|β2|i−1−k‖enk‖2

)2
≤ c5(max

j
|unj|)2ν2

nn→ 0.

This inequality and (2.25) show that

plim
n∑
i=2

rni(e
2
ni − σ2) = 0. (2.26)

Next we show that ∥∥∥ n∑
i=2

rni
∥∥∥

2
→ 0. (2.27)

Using gn from (2.11) we have

n∑
i=2

rni = νn
n∑
i=2

i−1∑
k=1

βi−1−k
2 gnienk = νn

n−1∑
k=1

enk
n∑

i=k+1

βi−1−k
2 gni.
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Let

Φnz =
( n∑
i=k

βi−k2 zi
)n
k=1

. (2.28)

Φn is obtained from (3.3) by putting ψj = 0, j < 0, ψj = βj2, j ≥ 0. Then

n∑
i=2

rni = νn
n−1∑
k=1

enk(Φngn)k+1 = νn
n∑
k=2

en,k−1(Φngn)k.

It follows by orthogonality, Lemma 2.1a), and Theorem 3.1a) that

∥∥∥ n∑
i=2

rni
∥∥∥

2
= νnσ

[ n∑
k=2

(Φngn)2
k

]1/2
≤ c1|νn|‖gn‖ ≤ c2|νn| → 0.

Now (2.24), (2.26), and (2.27) prove the lemma.

The next lemma supplies the final ingredient for Theorem 3.4.

Lemma 2.6. If lim Σn > 0, then plim maxi |Xni| = 0.

Proof. Since lim Σn > 0, the statement to be proved is equivalent to plim maxi |Yni| = 0.

Obviously,

P (max
i
|Yni| > 2ε) ≤ P (max

i
|Ani| > ε) + P (max

i
|Bni| > ε).

With p > 2 we have by assumption A4), Lemma 2.1a) and (2.15)

P (max
i
|Ani| > ε) ≤ ε−pEmax

i
|Ani|p ≤ ε−p

n∑
i=2

E|Ani|p =

= ε−p
n∑
i=2

|gni|p−2+2E|eni|p ≤ c1ε
−p max

i
|gni|p−2‖gn‖2

2 → 0.

Similarly, using the estimate |νn| ≤ c/
√
n, we have from (2.9) by Hölder’s inequality and

assumption A4)

P (max
i
|Bni| > ε) ≤ ε−p

n∑
i=2

E|Bni|p = ε−p|νn|p
n∑
i=2

∥∥∥ i−1∑
k=1

βi−1−k
2 enkeni

∥∥∥p
p
≤

≤ ε−p|νn|p
n∑
i=2

( i−1∑
k=1

|β2|i−1−k‖enkeni‖p
)p
≤

≤ c1ε
−pn−p/2

n∑
i=2

( i−1∑
k=1

|β2|i−1−k‖enk‖2p‖eni‖2p

)p
≤ c2ε

−pn1−p/2 → 0.

This completes the proof.
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In the following two lemmas we consider convergence in probability of elements of Q (see

(2.2)).

Lemma 2.7. plim‖h2‖2 = γ2 + ( σλ
1+λ

)2 1
1−β2

2
.

Proof. Let Gn = ‖h2‖2. From (2.1), (2.6) and (2.10), one has

Gn =
1

(‖x1‖+
√
n)2

n−1∑
i=0

y2
i , yi = β1(Ψnx1)i + (Ψne)i + βi2y0. (2.29)

Using notation (2.11) with a2 = 1, we can write Gn as

Gn = ν2
n

{
y2

0 +
n−1∑
i=1

[β1(Ψnx1)i + (Ψne)i + βi2y0]2
}

=

(multiplying through by ν2
n and using the identity β1‖x1‖νn = µn)

= ν2
ny

2
0 +

n−1∑
i=1

[µn(Ψnun)i + νn(Ψne)i + νnβ
i
2y0]2 =

(squaring the parentheses)

= ν2
ny

2
0 +

∑
i

[(µnΨnun)2
i + (νnΨne)

2
i + (νnβ

i
2y0)2+

+2(µnΨnun)i(νnΨne)i + 2((µnΨnun)i + (νnΨne)i)νnβ
i
2y0] =

5∑
i=1

Gni,

where we have denoted

Gn1 =
n−1∑
i=0

(νnβ
i
2y0)2, Gn2 =

n−1∑
i=1

(µnΨnun)2
i , Gn3 =

n−1∑
i=1

(νnΨne)
2
i ,

Gn4 = 2µnνn
n−1∑
i=1

(Ψnun)i(Ψne)i, Gn5 = 2νn
n−1∑
i=1

((µnΨnun)i + (νnΨne)i)β
i
2y0.

We consider these terms one by one.

1) plimGn1 = 0 because

‖Gn1‖1 = ν2
n

n−1∑
i=0

β2i
2 ‖y2

0‖1 ≤ c/n→ 0.

2) LnΨnun and Ψnun have the same limits (see the proof of Lemma 2.1). Therefore,

choosing a1 = 0 and a2 = 1 in Lemma 2.1, parts a) and b), we get

lim
n→∞

Gn2 = lim
n→∞

(‖µnΨnun‖2
2 − g2

nn) = γ2. (2.30)
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3) Gn3 is represented as Gn6 +Gn7 where

Gn6 = EGn3 = σ2ν2
n

n−1∑
i=1

i∑
k=1

β
2(i−k)
2 ,

Gn7 = Gn3 − EGn3 = ν2
n

n−1∑
i=1

[ i∑
k=1

β
2(i−k)
2 (e2

nk − σ2) + 2
∑

1≤k<l≤i
β2i−k−l

2 enkenl
]
.

By (2.13)

lim
n→∞

Gn6 =
σ2

1− β2
2

lim
n→∞

ν2
n

n−1∑
i=1

(1− β2i
2 ) =

( σλ

1 + λ

)2 1

1− β2
2

. (2.31)

Handling Gn7 is the most difficult. We start with revealing its martingale nature. Chang-

ing the summation order and calculating the inner sums gives

Gn7 = ν2
n

[n−1∑
i=1

i∑
k=1

β
2(i−k)
2 (e2

nk − σ2) + 2
n−1∑
i=1

i−1∑
k=1

i∑
l=k+1

β2i−k−l
2 enkenl

]
=

= ν2
n

[n−1∑
k=1

(e2
nk − σ2)

n−1∑
i=k

β
2(i−k)
2 + 2

n−2∑
k=1

enk
n−1∑
i=k+1

i∑
l=k+1

β2i−k−l
2 enl

]
=

= ν2
n

[n−1∑
k=1

ank(e
2
nk − σ2) + 2

n−2∑
k=1

enk
n−1∑
l=k+1

enlbnkl
]

where we denote

ank =
n−1∑
i=k

β
2(i−k)
2 =

1− β2(n−k)
2

1− β2
2

, bnkl =
n−1∑
i=l

β2i−k−l
2 = βl−k2 anl.

Changing the order of summation once again and denoting

rn1 = ν2
nan1(e2

n1 − σ2), rni = ν2
n

[
ani(e

2
ni − σ2) + 2eni

i−1∑
l=1

enlbnli

]
, 2 ≤ i ≤ n− 1,

we obtain

Gn7 = ν2
n

[n−1∑
k=1

ank(e
2
nk − σ2) + 2

n−1∑
l=2

enl
l−1∑
k=1

enkbnkl
]

=

= ν2
n

{
an1(e2

n1 − σ2) +
n−1∑
i=2

[
ani(e

2
ni − σ2) + 2eni

i−1∑
k=1

enkbnki
]}

=
n∑
i=1

rni.

Here {rni, Fni} is a m.d. sequence.

By Lemma 2.1c), the constants cni = ν2
n satisfy conditions (b) and (c) of Theorem 3.2.

To check the other conditions of that theorem, denote sni = rni/cni. For 2 ≤ i ≤ n− 1

‖sni‖1 ≤ c1‖e2
ni − σ2‖1 + 2 sup

i,l,n
‖enienl‖1

i−1∑
l=1

|bnli|.
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Here by Hölder’s inequality and assumption A4)

i−1∑
l=1

|bnli| ≤ c2

i−1∑
l=1

|β2|i−l ≤ c3, ‖enienl‖1 ≤ c4, (2.32)

so that ‖sni‖1 ≤ c5. Further, with q = p/2 we have

‖enienl‖q ≤ ‖eni‖p‖enl‖p ≤ c6 ∀i, l, n.

It follows that (q′ is defined by 1/q + 1/q′ = 1)

E|enienl1(sni > N)| ≤ ‖enienl‖q[E1(sni > N)]1/q
′ ≤

≤ c6N
−1/q′‖sni‖1/q′

1 ≤ c7N
−1/q′ .

Hence, uniformly in i, n (see also (2.32))

E|sni1(sni > N)| = E
∣∣∣[ani(e2

ni − σ2) + 2
i−1∑
l=1

enienlbnli
]
1(sni > N)

∣∣∣ ≤
≤ c8N

−1/q′ → 0, N →∞.

We have proved that the family {sni} is uniformly integrable. Hence, by Theorem 3.2

‖Gn7‖1 → 0.

4) Using definitions (2.10) and (2.28), we can write

Gn4 = 2µnνn
n−1∑
i=1

(Ψnun)i
i∑

k=1

βi−k2 enk = 2µnνn
n−1∑
k=1

enk
n−1∑
i=k

βi−k2 (Ψnun)i =

= 2µnνn
n−1∑
k=1

enk
[ n∑
i=k

βi−k2 (Ψnun)i − βn−k2 (Ψnun)n
]

=

= 2µnνn
n−1∑
k=1

enk[(ΦnΨnun)k − βn−k2 (Ψnun)n].

By orthogonality and Theorem 3.1a)

‖Gn4‖2 = 2|µnνn|
[n−1∑
k=1

|(ΦnΨnun)k − βn−k2 (Ψnun)n|2
]1/2
≤

≤ c1n
−1/2

[
‖ΦnΨnun‖2 + ‖Ψnun‖

(n−1∑
k=1

β
2(n−k)
2

)1/2]
≤ c2n

−1/2 → 0.
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5) By Theorem 3.1a) and (2.13)

‖Gn5‖1 ≤ 2|µnνn|
n−1∑
i=1

|βi2(Ψnun)i|‖y0‖1 + 2ν2
n

n−1∑
i=1

|βi2|
i∑

k=1

|βi−k2 |‖enky0‖1 ≤

≤ c1

[
νn
(n−1∑
i=1

β2i
2

)1/2
‖Ψnun‖2 + ν2

n

]
≤ c2n

−1/2 → 0.

Summarizing, of all terms in the decomposition of Gn, only Gn2 and Gn6 have nontrivial

limits in probability. (2.30) and (2.31) give the desired result.

Lemma 2.8. plim h′1h2 = γ.

Proof. (2.1), (2.6) and (2.10) lead to

h′1h2 =
1

‖x1‖(‖x1‖+
√
n)

n∑
i=1

x1iyi−1 =

=
1

‖x1‖(‖x1‖+
√
n)

[ n∑
i=1

x1i

(
β1(Ψnx1)i−1 + (Ψne)i−1 + βi−1

2 y0

)]
= G1 +G2 +G3,

where

G1 = µn
n∑
i=1

uni(LnΨnun)i = µnu
′
nLnΨnun,

G2 = νn
n∑
i=1

uni
i−1∑
k=1

βi−1−k
2 enk = νn

n−1∑
k=1

enk
n∑

i=k+1

βi−1−k
2 uni =

= νn
n∑
k=2

en,k−1

n∑
i=k

βi−k2 uni = νn
n∑
k=2

en,k−1(Φnun)k,

G3 = νn
n∑
i=1

uniβ
i−1
2 y0.

Here we have used definitions (2.11) with a2 = 1 and (2.28).

By virtue of Lemma 2.1d), limn→∞G1 = γ. By orthogonality and Theorem 3.1a)

‖G2‖2 ≤ νn‖Φnun‖ ≤ cνn → 0.

Further, according to Theorem 3.1b),

‖G3‖1 ≤ νn‖y0‖1 max
i
|uni|

∑
i≥1

|β2|i−1 → 0.

These three facts prove the lemma.
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Proof of Theorem 2.1. Recall that the problem of convergence in distribution of w

has been reduced to that of
∑
Yni, for each a ∈ R2 (see (2.7)). We consider two cases.

1) If lim Σn > 0, then convergence of
∑
Yni is equivalent to that of

∑
Xni, where Xni =

Yni/Σn. It is seen from the definition of Yni that Xni are martingale differences, and they

satisfy the normalization condition from Theorem 3.4. Condition (a) from that theorem is

equivalent to plim qn(X) = 0. Because lim Σn > 0, Lemmas 2.3, 2.4, and 2.5 show that the

last equation is true. Lemma 2.6 provides condition (b) from Theorem 3.4. Thus,
∑
Xni

converges to a standard normal and
∑
Yni converges to a normal with mean 0 and variance

σ2a′Q∞a (see (2.19)). By the Cramér-Wold theorem, this proves the first relation in (2.5)

in the case under consideration.

2) Let us prove convergence in distribution of w1, the first coordinate of w. Choosing in

all previous definitions a1 = 1, a2 = 0, we see from (2.19) that lim Σn > 0. Hence, the first

part of the proof applies and w∞,1 = dlim w1 exists and has variance σ2.

Now suppose that lim Σn = 0. Then (2.19) implies a1 + γa2 = 0, a2λ = 0. If λ > 0, then

a2 = 0 and a1 = 0. In this case convergence of a′w is trivial. To avoid triviality, we assume

that

λ = 0, a2 6= 0, a1 = −γa2. (2.33)

For a general a satisfying (2.33) we are going to show that plim a′w = 0. Along with

(2.7) one has plim a′w = plim
∑n
i=2 Yni, if the limit at the right exists. From (2.8), (2.9), and

(2.10) it follows that

n∑
i=2

Yni = a2

[ n∑
i=2

(− γh1i +
β1

1 + λn
(Ψnh1)i−1)eni +

1

m2

n∑
i=2

(Ψne)i−1eni
]

= (2.34)

(using (2.11) with a2 = 1, a1 = −γ)

= a2

[ n∑
i=2

(−γun + µnLnΨnun)ieni + νn
n∑
i=2

(LnΨne)ieni
]
.

Choosing a1 = −γ and a2 = 1 in Lemma 2.1, parts a) and b), we obtain by orthogonality

lim
n→∞

∥∥∥ n∑
i=2

(−γun + µnLnΨnun)ieni
∥∥∥

2
= lim

n→∞
‖ − γun + µnLnΨnun‖ = 0. (2.35)
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Since (LnΨne)j is Fn,j−1-measurable, assumption A4) gives

E
(
νn

n∑
i=2

(LnΨne)ieni
)2

= ν2
nE
[ n∑
i=2

(Lnψne)
2
i e

2
ni+ (2.36)

+2
∑

2≤i<j≤n
(LnΨne)i(LnΨne)jenienj

]
= σ2ν2

n

n∑
i=2

E(LnΨne)
2
i ≤

≤ σ2ν2
nE‖LnΨne‖2

2 ≤

(using (3.2) and Theorem 3.1a))

≤ c1ν
2
n

n∑
i=1

Ee2
ni = c2ν

2
nn = c2

( λn
1 + λn

)2
→ 0.

This is because λn → 0 (see (2.13) and (2.33)). (2.34), (2.35), and (2.36) prove that

plim a′w = a2plim(−γw1+w2) = 0. Because w1 converges in distribution to w∞,1 ∈ N(0, σ2),

w2 converges in distribution to w∞,2 = γw∞,1 ∈ N(0, σ2γ2). w converges in distribution to

w∞ whose variance is σ2

 1 γ

γ γ2

 . The proof of the first equation in (2.5) is complete.

The second equation in (2.5) is an immediate consequence of Lemmas 2.7 and 2.8.

3. APPENDIX

By definition, the interpolation operator Dn : Rn → L2 takes a vector z ∈ Rn to a simple

function

Dnz =
√
n

n∑
j=1

zj1(ij).

Here 1(ij) stands for the indicator of ij. The lag operator Ln : Rn → Rn is defined by

(Lnz)j = zj−1, j = 2, . . . , n; (Lnz)1 = 0. (3.1)

It is easy to see that the operators dn and Ln are uniformly bounded and Dn is isometric:

‖dnf‖ ≤ ‖f‖, f ∈ L2; ‖Lnz‖ ≤ ‖z‖, ‖Dnz‖ = ‖z‖, z ∈ Rn. (3.2)

Let {ψj : j = 0,±1, . . .} be a summable sequence of real numbers. We define Ψn : Rn →

Rn by

(Ψnz)k =
n∑
j=1

ψj−kzj, k = 1, . . . , n. (3.3)
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With the sequence {ψj} we can also associate the number αψ =
∑
j |ψj| < ∞. It is easy to

check that

‖LnΨnz −ΨnLnz‖ =
[
z2
n

n∑
k=2

ψ2
n−k+1 +

(n−1∑
j=1

ψjzj
)2]1/2

. (3.4)

The less obvious properties, which have been established in Mynbaev (2001), are gathered

in the next theorem.

Theorem 3.1.

a) If αψ <∞, then

‖Ψnz‖ ≤ αψ‖z‖, z ∈ Rn, n ≥ 1.

b) If {un} is L2-approximated by f , then

lim
n→∞

‖un‖ = ‖f‖, lim
n→∞

max
1≤j≤n

|unj| = 0.

c) If αψ <∞ and {un} is L2-approximable, then

lim
n→∞

∥∥∥( ∞∑
j=−∞

ψj −Ψn

)
un
∥∥∥ = 0.

d) If {un} is L2-approximable, then

lim
n→∞

‖Lnun − un‖ = 0.

The next three results can be found in Davidson (1994).

Theorem 3.2 (Chow-Davidson martingale WLLN). Let {Xni, Fni} be a martingale dif-

ference array, {cni} a positive constant array, and {kn} an increasing integer sequence with

kn ↑ ∞. If

(a) {Xni/cni} is uniformly integrable,

(b) lim supn→∞
∑kn
i=1 cni <∞, and

(c) limn→∞
∑kn
i=1 c

2
ni = 0,

then ‖ ∑kn
i=1Xni ‖1 →0.

Let (Ω, F, P ) be a probability space. The array {{Xni, Fni}∞i=−∞}∞n=1 is called an L1-

mixingale, if

1) for each n, {Fni} is an increasing sequence of σ-subfields of F ,
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2) Xni are integrable random variables, and

3) there exist an array of nonnegative constants {{cni}∞i=−∞}∞n=1 and a nonnegative sequence

{ζm}∞m=0 such that limm→∞ ζm = 0 and

‖E(Xni|Fn,i−m)‖1 ≤ cniζm, (3.5)

‖Xni − E(Xni|Fn,i+m)‖1 ≤ cniζm+1 (3.6)

hold for all i, n, and m ≥ 0.

Theorem 3.3 (Andrews-Davidson mixingale WLLN). Let the array {Xni, Fni} be an L1-

mixingale with respect to a constant array {cni}. If for some increasing integer sequence with

kn ↑ ∞ conditions (a), (b), and (c) from Theorem 3.2 are satisfied, then ‖ ∑kn
i=1Xni ‖1 →0.

Theorem 3.4 (McLeish CLT). Let {Xni, Fni} be a m.d. array with finite unconditional

variances σ2
ni, and

∑n
i=1 σ

2
ni = 1. If

(a) plim
∑n
i=1X

2
ni = 1, and

(b) plim max1≤j≤n |Xnj| = 0,

then
∑n
j=1Xnj converges in distribution to an element of N(0, 1).

Let {Xni, Fni} be a m.d. array and let ri be Fn,i−1-measurable. Then

Sn =
n∑
i=1

riXni

is called a transform of {Xni, Fni}. The next theorem has been established by Burkholder

(1973).

Theorem 3.5. Let {Xni, Fni} satisfy

E(X2
ni|Fn,i−1) = 1, E(|Xni||Fn,i−1) ≥ c.

Then the martingale Sn satisfies

E max
1≤j≤n

S2
j ≤ c

n∑
j=1

Er2
j .
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