
Munich Personal RePEc Archive

On the Non-Cooperative Foundations of

Cooperative Bargaining

Corchon, Luis and Ritzberger, Klaus

Univerdity Carlos III

1992

Online at https://mpra.ub.uni-muenchen.de/18461/

MPRA Paper No. 18461, posted 08 Nov 2009 06:34 UTC



ON THE NON-COOPERA TIVE FOUNDATIONS 

OF COOPERATIVE BARGAINING* 

Luis C. Corchón and Klaus Ritzberger** 

WP-AD 92-06 

* We are grateful to I. Ortuño-Ortín and F. Vega-Redondo for lively discussions on this topie 

and to H. Bester, J. Friedman, A. Mas-Colell, N. Kukushkin, T. Sjostrom and E. van Oamme for very 

helpful comments. The first author acknowledges support from OGICYT under project PB 88 10289 • 

•• L.C. Corchón: Instituto Valenciano de Investigaciones Econ6micas and University of 

Alicante; K. Ritzberger: Institute for Advanced Studies (Vienna). 

BECPROGET
Rectángulo



ON THE NON-COOPERATIVE FOUNDATIONS 

OF COOPERA TIVE BARGAINING 

Luis C. Corchón and Klaus Ritzberger 

ABSTRACT 

In this note we challenge the non-cooperative foundations of cooperative 

bargaining solutions on the grounds that the limit operation for approaching a 

frictionless world is not robusto We show that when discounting almost ceases 

to play a role, any individually rational payoff can be supported by some 

subgame perfect equilibrium. To seLect the "correct" point imposes excessive 

informationaL requirements on the anaLyst. 
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l. INTRODUCTION 

The Strategic Approach to bargaining analyzes such models by means of 

non-cooperative game theory. The seminal contribution by Rubinstein (1982) 

considered a two players infinite horizon model with alternating offers which 

possesses a unique subgame perfect equilibrium as long as players are not 

infinitely patient (variants of this model are considered in Stahl (1972)) and 

Binmore & Dasgupta (1987)). A celebrated result (see Shaked & Sutton (1984), 

Binmore, Rubinstein & Wolinsky (1986)), establishes that, if the common 

discount factor tends to one, equilibrium payoffs tend to an equal split of 

the pie. This has been viewed as providing a non-cooperative foundation of 

cooperative bargaining solutions such as the Nash Bargaining solution. 

Analogous results can also be proved if the proposer is chosen by nature in 

each bargaining round (see Rubinstein & Wolinsky (1985), Binmore (1987)). The 

latter is what we refer to as the random proposer model(1~ 

In this paper we show that the limit result is an artifact of the 

particular discount parameter sequence that has been used. If, instead of 

supposing identical discount parameters for the two players, a slightly 

different sequence, converging to the same limit, is considered, any split of 

the pie can be generated as a subgame perfect equilibrium out come in both the 

alternating offer and the random proposer model. We emphasize that the 

sequence used to prove our result can be chosen arbitrarily cLose to the one 

considered by Shaked & Sutton (1984) and Binmore, Rubinstein & Wolinsky (1986) 

One motivation for our note is the fact that the equal split solution 

selects only one point among a continuum of limit points, since if the common 

discount factor is 1 any strictly positive payoff can be supported as a 

(1) The determlnacy of the solutlon In aH these models contrasts wlth Folk 

Theorems for Inflnltely repeated games (see Frledman (1971), Fudenberg Sr 

Maskln (1986» In whlch any IndlvlduaHy ratlonal payoff ls supportable by a 

subgame perfect equIllbrlum, If the dIscount factor ls sufflclently close to 

one. Thls dlscrepancy of results ls due to the fact that bilateral bargaInIng 

models do not have a supergame structure. 
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subgame perfect equilibrium (see Binmore, Rubinstein 8. Wolinsky (986), 

Proposition 1). Thus, the only argument in favor of the equal split is the 

observation that it can be approximated by the outcome under sufficiently 

large interior uniform discount factors. In other words, the correspondence 

which maps the cornmon discount factor into equilibrium payoffs is not 10wer 

hemi-continuous at 1. . However, this discontinuity is only an artifact of the 

particular sequence which is typically chosen. If discount factors of players 

are Just slightLy different, it is possible to approach any strictly positive 

payoff. In other words, the correspondence mapping pairs of discount factors 

to equilibrium payoffs is continuous. Therefore, the asymptotic 

non-cooperative foundation of the cooperative Nash bargaining solution cannot 

be regarded as robust, since in a neighbourhood of the point of no discounting 

the non-cooperative bargaining model with an infinite time horizon loses aH 

its predictive power. In this sense, we are back to the old presumption, 

challenged by the original limit results, that the outcome of bilateral 

monopoly is undetermined in a frictionless world. 

For the case of three bargaining partners it has already been shown that 

with sufficient patience any payoff vector can be supported by sorne subgame 

perfect equilibrium (Osborne 8. Rubinstein (1990) credit this result to A. 

Shaked, see also Herrero (1985». The nature of the argument is, however, 

different from the one employed here. The three players example uses 

non-stationary strategies to establish multiplicity. In this note we will 

(have to) use the unique (stationary) strategies from Rubinstein's original 

analysis. Thus our argument is not based on adding strategic options by 

introducing a third player, but on a careful way of approaching limits. 

The phenomenon encountered here may in fact be generated by the infinite 

time horizon rather than by the special structure of bargaining models. An 

analogous result was first discovered by GUth 8. Ritzberger (Jan. 1992) within 

the context of durable goods monopolies with an infinite time horizon. There, 

as well as here, it turns out that with an infinite time horizon the slightest 

difference between the players' time preferences has an enormous impact on the 

equilibrium, such that when discounting is small anything may happen. 
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The rest of the paper is as follows. In Section 2 we sketch both the 

alternating offer and the random proposer model and we prove our main result 

for these two models. Section 3 is a (somewhat technicaO generalization of 

the previous resulto Finally, Section 4 gathers our final comments. 

2. THE MAIN RESULT IN TWO BILATERAL BARGAINING MODELS 

We consider two models in the tradition of Rubinstein (1982). In both 

models two players, named 1 and 2, negotiate on how to share a pie of unit 

size. Both players are risk neutral and like pie. Player 1 (resp. 2) discounts 

future payoffs by a discount factor p (resp. ó) e [O, 1]. Time is divided into 

discrete periods and is assumed to be of infinite length. The last assumption 

has the advantage that it removes one potential friction, namely a finite 

horizon, which may otherwise bias the solution via backward induction. Hence 

the only remaining friction is that players are not infinitely patient. In 

every period the two players engage in a constituent extensive form game which 

will be referred to as a bargaining round. The two models differ with respect 

to how bargaining rounds are organized. 

In the version of the model which corresponds to Rubinstein's (1982) 

original contribution player 1 starts in the first round by making a proposal, 

denoted by x e [O, 1], on how to share the pie between him (with share x) and 

player 2 (with share 1 - x). Upon hearing player l's proposal, player 2 then 

decides whether to accept it, in which case the game ends and the proposal is 

implemented, or to reject it. In the latter case, a new bargaining round is 

entered with the roles of players reversed. We will refer to this version as 

the alternating offer modelo 

In the other version of the model a chance move at the beginning of each 

round decides whether player 1 (with probability ex e (O, 1)) or pI ayer 2 (with 

probability 1 - ex) is the proposer in this round. The rest works as in the 

previous model except that the roles of the players are never reversed. We 

will refer to this version as the random proposer modelo 
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It is not difficult to show that the equilibrium payoffs from the unique 

subgame perfect equilibrium for the alternating offer model are 

v = (l - al/(l - ap) (for player 1) and v = a(l - p)/(l - ap) (for player 2) 
1 2 

and for the random proposer model expected equilibrium payoffs are (see 

Appendix) 

u = o:(l-al/(l-(l-o:)p -o:a) and u = (1 - 0:)(1 - p)/(1-(l-o:)p -o:a). 
1 2 

Let us introduce some notation. A smooth path is a pair of CCO functions 

(a(t), p(t» such that a, p : IR ~ (0, 1) and lim a(t) = lim p(t) = 1. 
++ t~ t~ 

In the following theorem w will represent the predetermined share of the pie 

of pI ayer 1, € the maximum distance between a(t) and p(t), and u(a(t), p(t» 

the utility enjoyed by player 1 in the subgame perfect equilibrium when 

discount factors are a(t) and p(t). 

Theorem 1. Gi.ven w e (O, 1) ami € > O, 3 a smooth path (p(t), a(t» such that 

a) I p(t) - a(t) I < € 'rIt e IR and 
++ 

b) u(a(t), p(t» = w 'rIt e IR • 
++ 

Proof: We will start with the proof for the random proposer modelo First, let 

us fix € > O and define the smooth path by 

p(t) = 1 - € o: (1 - w) e-
t 

and a(t) = 1 - € (1 - 0:) w e~t 

Clearly I p(t) - act) I = € e-
t I w - o: I < € and u(act), p(t» = w. 

For the alternating offer model define the smooth path by 

p(t) = 1 - E: (1 - w) e-t 
and a(t) = 1 / (1 + E: W e-

t
). Thus 

I p(t) - act) I < (1 - p(t»/(1 - w p(t» ~ (1 - p(t»/(1 - w) = E: e-
t 

< E: 

and again u(act), p(t» = w .• 

As the Theorem states, discount factors supporting an arbitrary 

equilibrium payoff can be chosen arbitrarily close to each other. The 

asymptotic equal split result quoted aboye arises only when limits are taken 

exactly along the diagonaL Once slightly different sequences are considered 

(but still along perfectly smooth paths) the whole interval between zero and 
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one can be traced out as the limit seto Geometrically speaking, equilibrium 

payoffs as a function of ~ and p are a continuous correspondence which is set 

valued only at the point (1, O, where its value is the whole interval. 

Notice that in Theorem 1, in the case of the random proposer model, the 

particular sequences chosen to do the job are such that U - ~)lU - p) is 

constant along the smooth path. This has the advantage of interpreting the 

sequence as arising from games in which there is a shorter and shorter delay 

between offers (Le. bargaining gets more and more intense) in a linear way. 

In the random proposer model the required sequence could also been chosen such 

that the previous ratio remains constant along the smooth path. 

3. A GENERALIZATION 

One may think of the explicit formulae for the players' shares in 

equilibrium as an equilibrium outcome correspondence mapping the frictions p 

and ~ into equilibrium outcomes. The two cornerstones of our result in 

Section 2 are that 

1) the interior of the simplex of the players' shares is contained in the 

value of the equilibrium outcome correspondence at the point of no frictions, 

and 

2) the equilibrium outcome correspondence is lower hemi-continuous at the 

point of no frictions. 

In this Section we will generalize and sharpen the result from Section 2 

for a whole class of games which encompasses many non-cooperative models of 

bargaining on the division of a unit pie. The emphasis will be on how one 

obtains predictions on a frictionless world from knowledge on a world with 

frictions. In our view this is what the "non-cooperative foundations of the 

cooperative (Nash-bargaining) solution" attempt to do. 

For concreteness again consider the alternating offer bargaining model by 

Rubinstein (982). But now imagine that the delay between successive 
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bargaining rounds depends on the identity of the responder. Humans tend to 

have different reaction times under different technologies. Let player ['s, [ 

= 1,2, reaction time be the time span that it takes player i to respond to an 

offer with either an acceptance or a counteroffer, and denote this time span 

by 6. Thus in a subgame that starts with an offer by player i the closest 
1 

time when a payoff can be had is 6 j' j -:1; i, time units in the future. 

Alternatively one may think of 6
1

, i = 1, 2, as the length of time 

pi ayer can commit himself (Sutton (1986) p. 712). The vector 

for which a 

(6 ,6 ) E 'R
Z 

1 Z + 

represents the frictions in this game. But these frictions depend on the 

technology available to the players, Le. the players' reaction times will 

vary with the available technology for computations and communication. Since 

in the real world only technologies with non-vanishing frictions are feasible, 

(6
1

, 6
z
) E 'R~+, and an analyst attempting to generate predictions for a 

frictionless world must be content with extrapolating observations in a world 

with frictions to the limiting point where frictions vanish. 

Still more concretely imagine that experiments are run with the same two 

players under different technologies that are continually upgraded. First 

players are only equipped with paper and pencils, to do their calculations, 

and a messenger service that carries their letter back and forth. Then players 

are given pocket calculators, but still have to use themail service. Then the 

mail is substituted for by fax machines. Eventually players are given PC's 

instead of pocket calculators, the PC's being equipped with e-mail. Then 

telephones are introduced, and so on. Given player-specific skills the 

reaction times of players will vary with the technology. But, if the game has 

a unique solution for non-vanishing frictions, the analyst can reconstruct how 

the reaction times vary with the technology. 

To help the analyst we will allow her to take uncountable infinitely many 

observations (and technologies) such that she can reconstruct a continuous 

path on how frictions 6 E 'R
2 

vanish. The formal reason for this is that the 
+ 

analyst will eventually have to apply I'Hospital's rule which is inapplicable 

with only countably many observations. However, when in the end the analyst 

comes up with a single-valued prediction on how the pie will be shared under a 

perfect computation and communication technology (6 = O), we may still not 

trust her. And we will now explain why. 
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Consider a class of n-person games r(f1), parameterized by a vector of 

frictions f1 e 'R
n

, together with an equilibrium outcome 
+ 

F: 'R
n 
~ 

n-1 
5 , where 5

n
-

1 
is the (n-1)-dimensional simplex. 

correspondence 

The class of 
+ 

games r(f1) is characterized by the following assumptions: 

(r.l) F(O) ::> int 5
n

-
1
; 

f (f1) 
(r.2) F (f1) = __ 1 __ 

1 ~ f (f1) 
Lj=1 j 

'v'f1 e 'R n, {O}, 'v'i = 1, ... ,n; 
+ 

(r.3) f : 'R
n ~ 'R is smooth, Le. f e C

f1J
('R

n 
), 

1 + + i ++ 

f (O) = O, 'v'i = 1, ... ,n. 
1 

f (f1) > O, 
1 

'v'f1 e 'R
n 

, and 
++ 

All the models mentioned in the previous 5ection fall into this class. 

Even the three-players example with subgame perfect stationary equilibrium 

strategies as the solution concept is a member of this class. Also, it can be 

shown that the model of commitment studied in Muthoo (1992) falls in this 

class. 

5ince a world where cooperative solution concepts make sense is 

presumably one without frictions, the non-cooperative foundations of 

cooperative solutions consist of letting f1 approach zero. The last part of 

(r.3) makes explicit that this is not a trivial operation, because at f1 = O 

each share F (f1) becomes an indeterminate number. Indeed it has be en shown 
1 

(Binmore, Rubinstein and Wolinsky, 1986, Proposition 1) that in the limit, 

f1 = O, any distribution x e 5
n

-
1 

can be supported by a subgame perfect 

equilibrium: (r.l). To obtain a determinate solution in the limit thus 

requires a special way of approaching the limit 11 = O. This way is 

traditionally an application of I'Hospital's rule. 

Within the present framework an application of l' Hospital can be 

characterized as follows: A path of frictions, 1[, is a stratifiable and 

1-dimensional subset of 'R
n 

with the property that the origin O e 'R
n 

is an 
+ + 

element of 1[. Let TT denote the set of all paths 1[ of frictions. 

DEFINITION. An outcome x e $"-1 is attributable to the frictionless world by 

l'Hospital, if there exists 1[ e TT such that 

limA,j.. A F(I1) = x 
u O,ue1[ 
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Some consequences of the definition of paths are worth noticing. First, 

because 1[ is stratifiable, it is a finite union of smooth manifolds with 

maximum dimension 1 (because it is al-dimensional stratifiable set). 

ConsequentIy, there exists a neighborhood O of the origin O e 'R
n 

and (n-1) 1[ + 

independent and smooth functions g, ... ,g , g = (g, ... ,g ), g: O ,,'R
n 
~ 

1 n-1 1 n-1 1[ ++ 

'Rn
-

l 
such that g -1(0) = 1[ "O ,,'Rn 

(Guillemin and Pollack, 1974, p. 24). We 
1[ ++ 

n n-l -1 
will say that a function g : O ,,'R ~ 'R locally cuts out 1[, if g (O) = 1[ 1[ ++ 1[ 

Jacobian D~g1[(~) is of rank n-1 for all ~ e g~1(0), By 1[ "O ,,'R
n 

and the 
1[ ++ 

definition for every 1[ e TI there exists a function g which 10cal1y cuts out 1[ 

1[. 

Denote by f(~) = [f1(~)' ... ' 

corresponding to some ~ e 'R
n 

and 
+ 

f (~))' the (column vector of the f's 
n I 

let D~f(O) be the Jacobian matrix of f 

evaluated at ~ = O e 'R
n
. Denote by e' = (1, •.. ,1) the (row) summation vector. 

+ 

It is now easy to see that: 

,..,n-l 
Lemma 1. An outcome x e;::, is attributable to the frictionless world by 

l'Hospital, if and only if 

Proof: (O Suppose 

x e Image{D ~f(O» " sr-l. 

31[ e TI: limA,J, A F(~) = x e Sn-l 
u O,ue1[ 

Let g1[ be a function that locally cuts out 1[ and denote by D ~giO) its 

Jacobian matrix evaluated at ~ = O e 1[, viz. the limit of DAg (M along g -1(0) 
u 1[ rr 

as ~ ~ O (this exists by virtue of the existence of a continuous extension of 

the Jacobian to the boundary of O ,,'R
n
). Let ker{DAg (O» denote the kernel 1[ + u 1[ 

of the Jacobian evaluated at ~ = O. Then by l'Hospital 

12 



(H) Suppose x E Image(DAf(o» " sf-l. Choose an (nxn - 1) matrix A with 

rank n-l such that ker( A) e 'R
n 

v 'R
n 

and 
+ 

DAf(O)ker(A) = AJe, 

n n-l 
for any ;\ E 'R. Define the function g: 'R ~ 'R by g(A) = AA. Then g cuts out 

+ 

the path 1l = ker( A) E TI and 

All the models that were mentioned in Section 2 do in fact satisfy 

det(D A[(O) ~ O such that Image(D Af(o) " Sn-l = Sn-l. In other words: for all 

these models the set of outcomes attributable to the frictionless world by 
n-l 

l'Hospital is the full simplex S . This does not mean that anything can be 

attributed to the frictionless world. If our analyst has sufficient knowledge 

on how the frictions become smaller as the technology improves, she may still 

be able to select a single point from Sn-l. 

Still, at least in our view, the operation of approaching the limit, 

Le. the operation of attributing a solution to the frictionless world, should 

satisfy sorne basic robustness property. The most basic robustness property 

that comes to mind in this context is, of course, continuity. However, this is 

something that unfortunately fails whenever continuity is required on the 

mapping from TI to sn-l defined by limA.J, A F(A). To show this we proceed in 
u O,uEll 

two steps. 

Lemma 2. If det(D Af(O» ~ O, then for any function gll that locally cuts out 

1l E TI 

Proof: Define the set Hf = {A E 'R
n 

e'DAf(O)A = 1}. If DAf(O) is 

non-singular, then e'DAf(O) ~ O such that Hf is a (n-1)-dimensional hyperplane 

in 'R
n 

which does not contain the origino Let g be a function that locaHy cuts 

out 1l and note that by definiti.on dim(ker(DAg(O») ~ 1. Since Hf is a 

(n-1)-dimensional hyperplane which does not contain the origin and ker(DAg(O» 
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is a linear subspace of 'R,.n of mínimum dimension 1 which does contain the 

origin, one has Hf + ker(Dflg(O» = 'R,.n whenever Hf (\ ker(Dflg(O» $: O, such that 

the intersection Hf (\ ker(Dflg(O» is transversal. We show that this 

intersection is non-empty: 1f it would be empty, then 3y E 'R,.n \ {O} such that 

ker(Dflg(O» + y E Hf' because ker(Dflg(O» must then be parallel to the 

hyperplane H such that an affine translation will make them coincide. Since O 
f 

E ker(Dflg(O» this implies y E Hf with the consequence that 

Since this would imply that ker(Dflg(O» = {O} in contradiction to 

dim(ker(Dflg(O») ~ 1, the conclusion is that the intersection Hf (\ ker(Dflg(O» 

is non-empty and transversal. 

For a non-empty and transversal intersection we have 

(Guillemin and Pollack, 1974, p. 30) such that we have to conclude 

dim( Hfnker(Dflg(O») = dim( ker(Dflg(O») - 1. Together with the hypothesis 

rank(Dflf(O» = n this yields the statement of the Lemma, because 

lim A + A F(fl) = DAf(O)[H (\ ker(DAg(O»] .• 
u o,uEn u f u 

Lemma 2 says that our analyst, in order to extrapolate the solutions F(fl) 

to fl = 0, needs to extend a function g which 10cal1y cuts out the path n of 
n 

her observations to g (O) -or at least she needs to extend the derivatives of 
n 

this function g which cuts out n. Between two different functions g and g1T 
n n ,. 

which both cut out n our analyst canoot distinguish. And this is the reason, 

why we would not trust her when she comes up with a point prediction for the 

frictionless world. 

Theorem 2. 1f the limit operation, defined by 

n~ lim A+ A F(fl), 
u O,uEn 

is continuous, then its value is ~-l for all n E TI. 
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Proof: Assuming that the Limit operation is continuous we first show that for 

any 1t E TI its value must be (n-1)-dimensional. Fix some n E TI and let g be any 
~ 

function which locally cuts out n. Define a new function g by 

g(L~.) = (~ 1:.) g(l:.) 
L. 1 = 1 1 

-1 
\:JI:. E g (O), 

implies from r:: 1:. > O, \:JI:. E g -1(0), that g also cuts out n. However, 
1=1 1 

D I:.g(O) = O impLies ker(D I:.g(O») = 'Rn
, such that from Lemma 2 the dimension of 

the image set (of the Limit operation) is n-l. 

By the explicit representation of the limit operation at the end of the 

proof of Lemma 2 we obtain from H ,,'R
n = H that 

f f 

Since, therefore, alL paths n E TI map into Sn-1 this is the only value 

which can render the limit operation continuous .• 

Thus no topology on TI can make the limit operation continuous whenever it 

attempts to generate singleton predictions. Such single-valued predictions for 

the frictionless world are only feasible in a continuous fashion, if the 

knowledge on n extends smoothly beyond what can be observed: If n would be a 

smooth manifold (of dimension 1) that passes through the origin from 'R
n 

into 
++ 

'R
n

, then a topology on the set of paths can be constructed (by measuring 

angles or distances between the kernels of the Jacobians of functions that 

locally cut out paths) with respect to which the limit operation can be 

continuous even if its predictions are singletons. But how is the knowledge on 

such paths generated? 
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4. CONCLUSIONS 

In this note we have shown that, if we allow for the discount factors of 

players to be just slight1y different, any partition of the pie can be 

supported as a subgame perfect equilibrium when discount factors are close to 

one. From an intuitive point of view the result is driven by the fact that 

when players are ver y patient, the smallest discrepancy in time pref erences 

causes enormous differences in equilibrium payoffs. This intuition carries 

over to other models (e.g. the durable monopoly model considered by Güth & 

Ritzberger (Jan. 1992» and the authors have the strong suspicion that it 

might carry over to more infinite horizon models. In particular, in bargaining 

models with more than two players, even if they have a unique equilibrium (see 

Chae & Yang (1988), Yang (1992) and Asheim (1992», the problem revealed in 

this note is likely to reappear. 

The conclusion from the aboye is that, if the cooperative bargaining 

solution is to have any non-cooperative foundations, then it takes a world 

with non-vanishing frictions. However, our result points out that to choose 

the "right" frictions in infinite horizon models is a delicate task, because 

what is obtained in the limit depends very much on the sequence under 

consideration (for an alternative way to remove frictions see Sjostrom 

(991). That such delicacy with respect to limit operations is not shared by 

other parts of economic theory is exemplified by core convergence theorems 

which demonstrate that the core shrinks to the competitive equilibrium under 

fairly general circumstances. In Hildenbrand's words "The conclusion (that the 

differenee between the eore and the eompetitive equilibria tends to zero when 

the eeonomy is large enough), to be of general relevance, should be robust to 

small deviations from the strict replication procedure" Utalics added) 

(Hildenbrand (1987) p. 116). The non-cooperative models of bargaining 

considered in this note do not exhibit the analogous robustness property with 

respect to discounting. 
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APPENDIX 

In this Appendix we derive the corresponding formulae for the random 

proposer mode!. 

Let x resp. x (y, resp. ~) be the supremum (resp. infimum) of accepted 

equilibrium offers made by player 1 (2). Let x (y) denote an accepted 

equilibrium offer by player 1 (2). Denote by u i = 1, 2, player i expected 
1 

equilibrium payoff. An offer which satisfies 

1 - x > 0[0:(1 - x) + (1 - o:)y) 

will certainly be accepted by player 1, because in none of the OdenticaU 

subgames of the future she can get more than 0:(1 - x) + (¡ - o:)y by the 

definition of ~ and y. But then 1 - 0[0:(1 - ~) + (1 - o:)y) > x implies that 

there exists sorne e > O such that the offer x + e is strictly preferable for 

pi ayer 1 and x + e will still be accepted by player 2. Consequently 

~ ~ 1 - 0[0:(1 - ~) + (1 - o:)y) (1.1) 

By an analogous argument with the roles of players reversed 

~ ~ 1 - p [o: x + (¡ - 0:)(1 - ~)) (1.2) 

On the other hand, if the offer x by player 1 is to be accepted by player 

2, then it must satisfy 1 - x ~ 0[0:(1 - x) + (1 - o:)~), because otherwise 

player would be better off with waiting for the next periodo Consequently, the 

largest accepted equilibrium offer which player 1 can make in any equilibrium 

must satisfy 

1 - 0[0:(1 - x) + (1 - o:)y) 
-

~ x (2.1) 

And analogously for player 2 

1 - p [o: ~ + (1 - 0:)(1 - y») ~ y (2.2) 

Substituting (1. 2) into (2.0 and lengthy calculations yield 

-
(1 o) [1 - (1 - o:)plll1 - (1 - o:)p - 0:0) ~ x (3.1) 

Also, substituting (2.2) into (1.1) we get 

-
(1 o) [1 - (1 - o:)plll1 - (1 - o:)p - 0:0) ~ x (3.2) 

which shows that x = x = x. 
An analogous reasoning for player 2 shows that 

y = ~ = y = (1 - p) ( 1 - 0:0)/[1 - (1 - o:)p - 0:0) 

Finally since u = o:x + (1 - 0:)(1 - y) and u = 0:(1 - x) + (1 - o:)y we 
1 2 

obtain the desired result._ 
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