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Abstracts 

This paper employs a combination of unit root tests and fractional integration 

technique to test for rational bubbles in Bombay Stock Exchange (BSE). It is 

indicated in the paper that evidence of a unit root in dividend yield is consistent with 

presence of rational bubbles in the stock prices. The results in the paper strongly 

support evidence of rational bubbles in BSE. Moreover, the paper also investigates the 

degree of conditional volatility persistence to show persistence of shocks to stock 

price volatility is short-termed.  
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1-Introduction: 

For the past two decades, emerging markets have been viewed as 

providers of new menu of opportunities for international investors, who 

seek extreme gain opportunities and ready to endure extreme loss 

possibilities. In these events, a crucial issue to be addressed is: to what 

extent a market is fundamentally a strong? In an efficient market the 

present value of the expected future dividends of a share represent the 

fundamental value of the share. This is because in an efficient market 

stock prices change only in response to a new information about change 

in fundamentals. When investors purchase shares solely for its future 

payoff (dividends), stock prices are said to be driven mainly by 

fundamentals. However, in a market dominated by non-fundamental 

speculative factors stock price diverge from its fundamental value. Thus, 

systematic divergence of stock price from its fundamental value is an 

indication of rational bubble. Blanchard and Watson, 1982, refer to 

rational bubbles as self-fulfilling expectations that push stock prices 
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towards expected price level, which unrelated to change in the 

fundamentals of the stock price. Sharma, and Bikhchandani, 2000, 

attribute  rational bubbles to the presence of a large number of investors 

reacting simultaneously to new information so that an overreaction in 

aggregate is created.  A number of authors (Campbell and Shiller, 1988; 

Diba and Grossman, 1988; Timmermann, 1995; Nasseh and Strauss, 

2003; Koustas and Serletis,2005; Cunado et al 2005) have  all 

investigated the presence of  rational bubbles in  a number of developed 

markets by investigating integration of stock prices and dividends. The 

main difference between the present paper and the above mentioned 

papers is that  in this paper our aim to test rational bubbles in a fast 

growing major emerging stock market, which is Bombay stock market. 

Following similar approach as that of Koustas and Serletis, 2005,  in this 

paper we employed the fractional integration technique, which test the 

order of integration,  I(d), when d, takes a fraction value between 0 and 1.  

The remaining parts of the paper includes the following. 

Section two discusses modeling rational bubbles. Section three illustrates 

ARFIMA(p,d,q) process, while section four illustrates the data and 

estimation results. The final section concludes the study.  

 

2-Modeling rational bubbles: 

In modeling rational bubbles we adopt the same approach as in Campbell 

and Shiller (1988b). Since  stock returns  at time t+1, can be defined as 

the capital gains plus expected dividend yield then: 
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period t. Taking the mathematical expectation on equation (1), based on 

the available information at time t, and rearranging terms we get: 
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Now solving equation (2) forward n-periods yield: 
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To solve for a unique solution, we need to assume that in the long term 

the last term in equation (3) diminishes to zero so that
1
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Then from (3) and (4) the fundamental value of the stock price defined 

as: 
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Taking into account (4) and (5) equation (3) can be re-stated as: 
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Campbell et al (1997) refer to the term in equation (6) as rational 

bubble, because it is consistent with rational expectation and the time 

path of the expected return. The time-varying expected stock return 

component in equation (6) render equation (6) into a nonlinear form. To 

tB

                                                 

1 This is  true for any positive end-period discount rate (i.e.,  )0>+ntr
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simplify equation (6) further, Campbell and Shiller (1988b) suggest a log-

linear approximation to equation (1) so that:  
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Equation (7) is a nonlinear function of the log dividend-price ratio. First-

order Taylor expansion around the mean, reduce equation (7) to the log-

linear approximation: 
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In a final step, take the mathematical expectation of (9), based on the 

available information at time t, and solve for the log dividend-price ratio, 

so that: 
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Equation (10) implies that when the dividend growth factor, , and the 

log of stock returns are stationary stochastic processes,  the log dividend 

yield is stationary, and thus no rational bubble is holding. As a result, in 

order to test for rational bubbles, we either test for unit roots in the 

tdΔ
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variables on the right-hand side of equation (10), or alternatively for a 

unit root in the left-hand side variable, which is the log dividend yield. 

In this paper we adopt, beside the classical unit root tests,  

ARFIMA(p,d,q) process to test the order of integration of stock price and 

dividend yield variables. 

 

3: The ARFIMA(p,d,q) process 
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and L is lag operator,  d is fractional differencing parameter, all roots of 

)(Lφ  and )(Lθ assumed to  lie out side the unit circle, and tε  is white 

noise.  

GARCH(p,q) models often used for modeling volatility persistence which 

have the features of relatively fast decaying persistence. However, in 

some cases volatility shows very long temporal dependence, i.e., the 

autocorrelation function decays very slowly. This motivates consideration 

of Fractionally Integrated Generalized Autoregressive Conditional 

Hetroskedasticity (FIGARCH) process (Baillie et al, 1996) defined as
2
: 
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2 For the FIGARCH(p,d,q) model to be well defined, and the conditional variance positive for all t, all 

the coefficients in the ARCH representation must be non-negative. 
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Following Baillie et al (1996), Bollerslev and Mikkelsen (1996), Granger 

and Ding (1996), the parameters in the ARFIMA(p,d,q)  and  

FIGARCH(p,d,q) models in (11) and (12) estimated using quasi-

maximum likelihood (QMLE) method. In the ARFIMA models, the 

short-run behavior of the data series is represented by the conventional 

ARMA parameters, while the long-run dependence can be captured by 

the fractional differencing parameter, d.  A similar result also applies 

when modeling conditional variance, as in equation (12). While for the 

covariance stationary GARCH(p,q) model a shock to the forecast of the 

future conditional variance dies out at an exponential rate, for the 

FIGARCH(p,d,q) model the effect of a shock to the future conditional 

variance decay at low hyperbolic rate. As a result, the fractional  

differencing parameter, d, in the equations (11) and (12) can be regarded 

the decay rate of a shock to the conditional variance (Bollerslev, 1996). 

In general, allowing for values of d in the range between zero and unity 

(or, 0<d<1)  add a flexibility that play an important role in modeling 

long-run dependence in time series
3
. 

Bollerslev, 1996, indicates that if d=0, the series is covariance stationary 

and possess short memory process, whereas in the case of  d =1 the series 

is non-stationary. However, in the case of   0<d<0.5,  the series even 

though covariance stationary,  its auto-covariance decays much more 

slowly than ARMA process. If  d is  0.5<d<1 the series is no longer 

covariance stationary, but still  mean reverting with the effect of a shock 

persist for a long period of time, and in that case the process is said to 

have a long memory. Given a discrete time series, , with ty

                                                 

3 See Diebold and Rudebuch (1989), Diebold, Husted and Ruch (1991), Lo (1991), and Swell (1992) 

for  a detailed discussion about the importance of allowing for non-integer values of integration when 

modeling  long-run dependence in the conditional mean of time series data. 

 6



autocorrelation function, jρ , at lag j, Mcleod and Hipel (1978) define 

long memory as a process 
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characterized as nonfinite. In the non-stationary and in the long memory 

process a shock at time t, continues to influence future for a longer 

horizon, k, than would be the case for the standard stationary ARMA 

process.  While there are varieties of ways to estimate the parameters of 

(11) and (12), in this paper we employed the maximum likelihood 

estimator. 
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4. Data and Estimation Results: 

The data employed in this research includes daily, weekly, and monthly 

aggregates of stock price and dividend yield of  Bombay Stock Exchange 

during the period from 1-Jan- 2002 to 1-Sept-2009. The weekly data 

corresponds to the averages of the five trading days in each week, 

whereas the monthly data correspond to the average of the trading days in 

each month. Before we resort to parametric tests of unit roots in the 

variables, it may be helpful to investigate the behavior of the ACFs from 

AR(1) process to see if they behave as stationary process
4
. The non-

stationarity condition can be characterized by large non-vanishing spikes 

in the sample ACF of the original series and insignificant zero ACF for 

the differenced series
5
. Visual inspection of the plots in figures (1) and 

(2) indicate the dividend yield and the stock price series are 
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nonstationary. Figure (3)  plots the logarithms of stock prices, and 

dividend yield of the daily data– which is presented against the second 

vertical axis. It is evident that there is no apparent trend in the log of the 

dividend yield. The sharp rise in the dividend yield that occurred during 

September –December months of 2008 is mainly due to the rapid decline 

of stock prices after the Lehman brothers bankruptcy announcement. 

Since the short-termed break in September-December period suggest the 

possibility of structural change in the trend of the dividend yield, we 

employed Chow test to check for such possibility. The Chow test results 

(not reported) indicate no significant structural changes in the trend of the 

dividend yield. Table (1), reports the unit root test results, using  

Augmented Dickey-Fuller (1979), Phillip-Perron (1988), and 

Kwiatkowski et al (1992), known as KPSS, tests
6
. The results of all the 

three tests, under  5% significance level, reject the stationarity  condition 

in favor of unit root hypothesis, for the daily, weekly, and the monthly 

series. As indicated earlier, evidence of unit root (non-stationarity ) in the 

log dividend yield is consistent with existence of rational bubbles, which 

imply persistent deviation of stock prices from its fundamental value, 

which is the dividend per share value. 

However, it is well documented in the literature that the Augmented 

Dickey-Fuller (ADF) and Phillip-Perron (PP) unit root tests in particular, 

suffer from very low power against stationary alternative if the roots 

close to the unit root. Diebold and Rudebusch (1991), and Hassler and 

Walters (1994) indicate ADF and PP unit root tests have very low power 

                                                 

6
KPSS test initially was developed to test the null-hypothesis I(0), against the alternative I(1). 

However, Lee and Schmidt (1996) indicated (Theorem 3, page 291)  the KPSS test is consistent with 

the null hypothesis of short memory, against stationary long memory alternatives, such as I(d) process 

for .Thus, KPSS test can also be used to distinguish short memory and long 

memory stationary processes. 

0),5.0,5.0( ≠−∈ dd
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against fractionally integrated alternative. To account for such a shortfall 

we investigate the order of integration of the two data sets using 

fractionally integrated ARMA process. Since the ADF, PP, and  KPSS 

unit root tests restrict the order of integration to the integer values of zero  

and one, the ARFIMA (p,d,q) process can verify an order of integration 

of fractional exponent. Results reported in table (2) reject the fractional 

integration of the log dividend yield and the log price level, for daily, 

weekly, and monthly time series data. The estimated values of,  d,  are 

significantly greater than the stationary range of (-0.5<d<0.5). Results of 

unit root tests and fractional integration test in tables (1) and (2) both 

suggest rejection of mean reversion hypothesis in the log prices and log 

dividend yield, in favor of the unit root hypothesis, which imply evidence 

of rational bubbles in BSE. 

The effect of aggregation bias in the data is realized by a number of 

authors in the literature (Schewart, 1989; Ng 1995; Taylor 2001, 2002) 

and pointed out that the use of low frequency data increase bias towards 

random walk process. For instance, Taylor (2001) concludes that if stock 

price adjustment towards its fundamental value (dividends) is of order of 

days or weeks, then using monthly data could bias the results towards 

finding unit roots in the data, and thus concluding existence of rational 

bubbles. To safeguard against these type of aggregation bias, we 

conducted Monte Carlo simulation of 2000 replication assuming random 

walk  Data Generating Process. The simulation results in table (3) show 

the fractional difference parameter, d, is unbiased and therefore 

complement the significance of the results in table (3), that is the unit root 

hypothesis of both log dividend yield, and the log price level. 

Table (4) present results of volatility persistence of FIGARCH model. 

The sign and size of the  parameter in the FIGARCH model indicate 

there is no evidence of long memory behavior in the conditional variance 

d̂
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of the dividend yield and the stock price. This implies that persistence of 

shocks to stock price volatility is of short memory.  

 

Table (1): Unit root tests 

      Dickey-Fuller  

(i)                       (ii)

  Phillip-Perron  

(i)                   (ii)

      KPSS 

ru ηη  

 log price: 

daily data 

weekly data 

monthly data 

 

1.32 

3.44 

1.26 

 

2.20 

2.84 

4.32 

 

2.13 

2.99 

1.92 

 

2.10 

2.69 

3.13 

 

81.64 

16.11 

0.48 

 

10.41 

5.44 

3.43 

 log dividends yield: 

daily data 

weekly data 

monthly data 

 

1.21 

3.35 

1.94 

 

2.13 

2.88 

2.65 

 

1.43 

3.27 

2.64 

 

2.28 

3.17 

3.49 

 

28.28 

16.99 

0.18 

 

3.53 

2.99 

1.17 

Critical values (5%) 

Significance level

4.59 4.68 4.59 4.68 0.463 0.146 

Note: (i) with drift only, (ii) with drift and trend. ru and ηη  statistics are respectively level 

stationarity and trend stationarity statistics. The reported KPSS statistics are based on 20 lags 

for daily, 8 lags for weekly, and 2 lags for monthly data. The optimal lag length order in ADF 

is selected by Akaike Information Criteria (AIC). 

 

 

Table (2): Estimation results of ARFIMA(1,d,1) 

    Log dividends yield     Log price level 

parameters daily weekly monthly daily weekly monthly 

d̂  
(std.error) 

0.99* 

( 0.26E-3) 

0.96* 

(0.0016) 

0.75* 

(0.016) 

0.99* 

(0.96E-4)

0.99* 

(0.59E-3) 

0.95* 

(0.008) 

φ̂  
(std.error) 

0.0026 

(0.002) 

0.29* 

(0.004) 

0.52* 

(0.019) 

0.067* 

(0.001) 

0.26* 

(0.39E-2) 

0.33* 

(0.021) 

θ̂  

(std.error) 

-0.16E-7 

(0.17E-7) 

-0.174E-6* 

(0.33E-7) 

0.14E-6* 

(0.93E-7)

0.11E-7 

(0.10E-7)

0.66E-8 

(0.25E-7) 

0.6E-7 

(0.15E-6) 

c 
(std.error) 

0.0014* 

(0.75E-4) 

0.0047* 

(0.0003) 

0.033* 

(0.0019) 

0.0057* 

(0.0003) 

0.024* 

(0.17E-2) 

0.14* 

(0.023) 

Log-likelihood 

function 

9401 1620 268 10368 1731 231 

*significant at 5% significance level. 
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Table (3): Monte Carlo simulation 

 Log dividend 

 yield 

Log price

Daily   

d  

ESE 

STDSE 

0.99 

0.07 

0.001 

1.000 

0.041 

0.0007 

weekly   

d  

ESE 

STDSE 

0.96 

0.17 

0.006 

0.99 

0.09 

0.003 

Monthly   

d  

ESE 

STDSE 

0.63 

0.36 

0.02 

0.92 

0.20 

0.01 

Note: d  is the average parameter estimate. ESE is the average standard error, STDSE is the 

standard deviation of the standard error. 

We used  DGP process of ARFIMA(0,d,1): 

 
noisewhiteisforeewhereeuyL tttttt

d εεθ +==−− −1)()1(

 

Table (4): FIGARCH(1,d,1) 

    Log dividends yield     Log price level 

parameters daily weekly monthly daily weekly monthly 

1d̂  
(std.error) 

0.099* 

(0.039) 

0.14* 

(0.09) 

0.39* 

(0.13) 

0.38* 

(0.030)

-0.49* 

(0.047) 

0.33* 

(0.15) 

1φ̂  
(std.error) 

-0.080* 

(0.043) 

-0.069 

(0.12) 

-0.21* 

(0.16) 

-0.16* 

(0.035)

0.79* 

(0.036) 

-0.17 

(0.17) 

1θ̂  

(std.error) 

0.050 

(1.00) 

0.050 

(1.00) 

0.050 

(1.00.) 

0.050 

(1.00) 

0.050 

(1.00) 

0.05 

(1.00) 

Log-likelihood 

function 

7477 987 146 10495 1854 254 

*significant at 5% significance level 
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5. Concluding remarks: 

This paper has employed a combination of unit root tests and fractional 

integration techniques to test the order of integration of log dividend yield 

in Bombay Stock Exchange. The paper shows that the presence of a unit 

root in the log dividend yield is consistent with the evidence of rational 

bubble in the stock price level. The paper also investigates the degree of 

conditional volatility persistence using FIGARCH(p,d,q) model for the 

log dividend and the log price on daily, weekly, and monthly series, 

during the period from January-1-2002 to September-1-2009. The results 

in the paper strongly support evidence of rational bubbles in  BSE. Our 

Monte Carlo simulation results fully support the estimation results and 

shows no aggregation bias effect on the results. Evidence of rational 

bubbles in BSE reflect consistent divergence of stock prices from stocks 

fundamental values. Presence of rational bubbles in BSE can be viewed 

as indication of herd behavior in the market trading activities, as large 

number of investors may react simultaneously to new information, and 

thus creating an overreaction in aggregate.  
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Fig 1-The sample ACF of dividend yield
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Fig 2-The sample ACF of stock price
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Fig.3:Dividends yield and stock price index 
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