Collateral in Banking Policy and Adverse Selection Gilroy, Bernard Michael and Broll, Udo 1986 Online at https://mpra.ub.uni-muenchen.de/18709/MPRA Paper No. 18709, posted 18 Nov 2009 10:39 UTC # COLLATERAL IN BANKING POLICY AND ADVERSE SELECTION* UDO BROLL and MICHAEL B. GILROY† University of Konstanz ### I INTRODUCTION Recent contributions to the theory of banking behaviour examine the observed phenomenon that borrowers may be rationed in the credit market (Milde, 1980, 1981; Stiglitz and Weiss, 1981; Smith, 1983; Kletzer, 1984). The market mechanism as inherent in the interest rate does not adequately regulate the market. Due to the existence of information asymmetry in the gredit market, transactions may be distorted. The potential borrowers of a bank lack signals to demonstrate their varying degrees of default propensities. Although borrowers may possess a priori knowledge of their own likelihood of default, lenders are not in a position to sort borrowers into the correct default risk category. Normally, an excess demand for credit would imply that the interest rate rises. Under an information asymmetry scenario, however, an increase in the interest rate has the undesired adverse selection effect that borrowers with low risk default propensities leave the market. High risk borrowers remain in the bank's credit pool, since they alone are willing to accept a higher interest rate payment. This in turn causes a decrease in the bank's expected return on loans due to the resulting adverse incentive and selection effects of an interest rate increase. It may be rational for a bank to abstain from interest rate increases, the consequence being that the credit market remains non-cleared. Equilibrium credit rationing may persist. In order to deal with this disequilibrium situation various proposals suggest the use of non-interest items tied to credit contracts in order to achieve market clearing (Baltensperger, 1978). One common proposal is to increase the collateral requirements of credit contracts. This paper presents a theoretical model of lending which emphasizes the role of asymmetric Manuscript received 15.1.85; final version received 29.10.85. The authors wish to acknowledge and thank Hellmuth Milde for his support and two anonymous referees for valuable comments and suggestions. however, emphasis here is placed upon collateral policy aspects of credit information and total debt-service obligations between creditors and debtors contracts as compared to the interest rate policy aspects. It is demonstrated The analytical approach is based upon that of Stiglitz and Weiss (1981); that under certain market constellations, even assuming a completely flexible collateral banking policy, the credit market may be characterized in Section III and some concluding comments follow in Section IV. results of Section II are then applied to derive an optimal collateral policy characterized by information asymmetry is presented in Section II. The by a disequilibrium situation. The basic model of lender and borrower behaviour in a credit market # II THE BASIC MODEL AND ADVERSE SELECTION assigned to groups of borrowers in the credit pool of a bank. Banks, on the often agents on one side of the market exhibit a large degree of heterogeneity, such as may be illustrated by the various default risk categories that may be characterized by aspects of heterogeneity and imperfect information. Quite other side of the market, are faced with imperfect information concerning knowledge is limited. The bank faces an optimization problem in which it assume that members of the heterogeneous group of borrowers are well the default propensity of their potential customers. It is reasonable to informed with regard to their default risk category, whereas the bank's Adverse selection problems are present in many areas of economics wishes to reduce this level of information asymmetry. forced to treat heterogeneous borrowers as being identical. The usual econcan attempt to cope with this type of information asymmetry by designing not quite as helpless as the above argument presumes. For instance, they borrowers into homogeneous subgroups are prohibitive. Banks are, however, omic reasoning for identical treatment is that the costs of separating demonstrated in the following sections using a simple model of lending and mation for placing borrowers into homogeneous default categories, as will be policies, e.g., an optimal collateral policy, so as to elicit the necessary infor-Under these circumstances, adverse selection arises when banks are ual bank are taken as given. The decision variable of the bank is c, collaterals be competitive. The interest rate r and the volume of credit K for an individborrowing behaviour. positive stochastic variable \tilde{R} with the density function $f(\tilde{R})$. As usual, the project. For simplicity, investment projects are assumed to be 100 per cent A potential credit customer wishes to obtain a loan to finance an investment, Lender Behaviour. The market structure of the banking sector is assumed to loan financed. The gross revenue of the borrower's investment project is > project but not the standard deviation σ . requirements. It is assumed that the bank knows the expected value μ of a moments, $E(\tilde{R}) \equiv \mu$ and $var(\tilde{R}) \equiv \sigma^2$. Credit repayment consists of either the agreed-upon credit volume plus principal due or the specified collateral density function may be described approximately by its first and second $\equiv (1+r)K - c$. The critical value R^* may be given the following interrevenues as they have earned, i.e., R + c (provided R + c < (1+r)K). If R is not large enough, they hand over the collateral c together with such repayment period. If R is large enough, then borrowers repay (1+r) K. stochastic variable. The realization of an effective investment project Rthat they themselves do not carry the full weight of a possible loan default. pretation: in this simple model borrowers face limited liability in the sense Hence, at the margin, R + c = (1+r)K, and there exists a critical value R^* determines the amount that the lending bank receives at the end of the The gross revenue return of an investment project \tilde{R} is a continuous projects. Hence, the bank's situation at the end of the loan repayment period is described as nigh-risk projects in comparison to lenders, who are interested in low-risk There exists a moral hazard problem since borrowers tend to prefer $$R^{B} = \begin{cases} R + c & \text{if } R < R^{*} \\ (1+r)K & \text{if } R \geqslant R^{*} \end{cases} \dots \dots (1)$$ The bank's expected profit is thus $$E(R^B) = c + \mu - \int_{R^*}^{+\infty} (R - R^*) f(R) dR$$ It is then helpful to introduce the following standardized stochastic variable \hat{u}_i $$\equiv \frac{\kappa - \mu}{\sigma} \qquad \dots (3.1)$$ $var(\tilde{u}) = 1$. Further defining the critical value u^* characterized by the density function g(u; o, 1) whereby $E(\tilde{u}) = 0$ and $$\iota^* \equiv \frac{R^* - \mu}{\sigma} \qquad \dots (3.2)$$ one obtains $$\frac{\partial \sigma}{\partial \sigma} = -\frac{u}{\sigma}$$(4) Finally, expected bank profits may be formulated as $$IIB(c, \sigma) = c + \mu - \sigma \int_{u^*}^{+\infty} (u - u^*)g(u)du \qquad(5)$$ $$\frac{\partial \Pi^B}{\partial \sigma} = -\int_{u^*}^{u} ug(u)du < 0 \qquad(6.1)$$ $$\frac{\partial \Pi^B}{\partial c} = +\int_{0}^{u^*} g(u)du > 0 \qquad(6.2)$$ Equation (6.1) simply states that the expected profit of the bank Π^B will be reduced given an increase in risk σ . The standard deviation σ of the density function f(R) is interpreted here as a risk indicator; an increasing σ value implies a higher risk level. Greater variability, or spread, around the common mean may be used as a criterion of risk. The distribution with "more weight in the tails" is thus the more risky.² Equation (6.2), on the other hand, illustrates that an increase in the collateral requirements of the credit contract, ceteris paribus, raises the bank's expected profit. Borrower Behaviour: The bank's credit customers are heterogeneous and exhibit risk-neutral behaviour. The volume of credit K, the interest rate r and the collateral requirements c are exogenous variables for each customer. For simplicity, it is assumed that each borrower has a choice of only one investment project, which is fully described by its μ and σ values. The borrower is aware of these project-specific moments. A 100 per cent credit-financed investment project will be undertaken only if the expected return of the project for the credit demander is positive, $E(R^D) > 0$. An individual 1The derivative of equation (5) with respect, e.g., to σ is obtained as follows $$\frac{\partial H^B}{\partial \sigma} = -\left\{\int_{u_*}^{+\infty} (u - u_*) g(u) du + \sigma\right\} \left(-\frac{du_*}{d\sigma}\right) g(u) du = -\int_{u_*}^{+\infty} u g(u) du < 0.$$ 2"More weight in the tails" could occur due to a transfer of density from the middle outwards leaving the mean constant. This method has been proposed by Rothschild and Stiglitz (1970). The mean preserving spread approach may be stated as follows. Assume that F_2 is obtained from F_1 by taking mass from the centre of F_1 and shifting it to the tails in such a manner that $E(x_1) = E(x_2)$. This transformation from F_1 to F_2 illustrates a mean preserving spread in which F_2 is said to be riskier than F_1 . Defining x_1 and x_2 on (0, 1), this transformation implies (i) $$_0$$ $\int_0^1 (F_2 - F_1) dx = 0.$ (ii) An x_3 exists, such that $F_2-F_1<0$ given $x>x_3$ and $F_2-F_1>0$ given $x< x_3$. These conditions satisfy, (iii) $$_0\int^t (F_2-F_1) dx > 0, 0 < t < 1.$$ F_2 is dominated by F_1 in the sense of second-order stochastic dominance and $E(x_1) = E(x_2)$. The two cumulative density functions cross at x_3 , and this single crossing is the main characteristic of a mean preserving spread. orrower thus faces the following situation at the end o Collateral in Banking Policy and Adverse Selection borrower thus faces the following situation at the end of the investment/borrowing period: $$R^{D} = \begin{cases} -c & \text{if } R < R^{*} \\ R - (1+r)K & \text{if } R \ge R^{*} \end{cases}$$(7) The borrower's expected profit is then $$\Pi^{D}(c,\sigma) = -c + \int_{R_{\bullet}}^{+\infty} (R - R^{*}) f(R) dR$$(8) Standardizing, one obtains $$II^{D}(c,\sigma) = -c + \sigma \int_{u^{*}}^{+\infty} (u-u^{*})g(u)du \qquad \dots (9)$$ The relevant derivatives of equation (9) are: $$\frac{\partial \Pi D(c,\sigma)}{\partial c} = -\int_{0}^{u^{*}} g(u)du < 0 \qquad \dots \dots (10.1)$$ $$\frac{\partial \Pi D(c,\sigma)}{\partial \sigma} = +\int_{u^{*}}^{+\infty} g(u)du > 0 \qquad \dots \dots (10.2)$$ In accord with the positive expected return assumption for the commencement of an investment project, the critical value upon which an investment will be founded is $$\Pi^D = 0$$. This critical value may be transformed for a given $c^* = \sigma \int_{u^*}^{+\infty} (u - u^*) g(u) du$ σ value into a critical collateral value The critical collateral value c^* denotes the necessary collateral requirement capable of insuring that the condition $\Pi^D=0$ in equation (9) is fulfilled. A borrower will not apply for a credit as long as the bank demands collateral requirements which are greater than the borrower's critical value c^* . If collateral requirements are, however, lower than the borrower's critical value c^* it is profitable to undertake the investment project and apply for a credit. Due to equation (10.1), the following two cases arise (a) for $$c > c^*$$ it follows that $\Pi^D(c, \sigma) < 0$ (b) for $$c < c^*$$ it follows that $\Pi^D(c,\sigma) > 0$. Iso-II^D curves for σ and c may be derived by the total differentiation of II^D(c, σ). Substituting into equations (10.1) and (10.2), one obtains the marginal rate of substitution, which is equivalent to the slope of the iso-II^D curve as $$\frac{d\sigma}{dc} \bigg|_{\Pi^D \text{ const. } \Pi^D_{\sigma}(c,\sigma)} = -\frac{\Pi^D_{\sigma}(c,\sigma)}{\Pi^D_{\sigma}(c,\sigma)} > 0 \qquad \dots \dots (11.1)$$ Graphing such iso- Π^D curves as illustrated below in Fig. 1, the credit pool's drop-out quota may be demonstrated using the instrument c^* , the an intuitive explanation may be seen in the fact that truncating the tail of a critical collateral value. With regard to the slope of the iso- Π^D curve (11.1) truncating the tail of a low variance distribution. high variance distribution increases the conditioned mean by more than does The Adverse Selection Effect situations characterized by $c < c^*$, the borrowers' expected return is positive is defined for a given standard deviation value σ_0 at which $\Pi^D=0$. In Given $c > c^*$, the expected return will be negative. Increasing the value cwith a standard deviation σ_0 makes a project appear less and less likely to be to be profitable than lower-risk ones. interpreted as saying that, for a given c, higher-risk projects are more likely profitable in the eyes of a potential borrower. Alternatively, Fig. 1 may be Fig. 1 may be given the following interpretation. The critical value c* for a given σ -value there exists a critical collateral value c^*), there exists a Analogous to the above transformation (from the borrower's perspective > standard deviation value under a given collateral requirement c, which is critical value σ^* for a given collateral requirement c. σ^* is defined as that capable of fulfilling the condition $\Pi^{D}=0$ in equation (9). Based upon equation (10.2), the following two constellations may occur - (a') for $\sigma < \sigma^*$ it follows that $\Pi^D(c, \sigma) < 0$ - (b') for $\sigma > \sigma^*$ it follows that $\Pi^D(c, \sigma) > 0$. of the bank. The critical value of riskiness σ^* is also a positive function of project is characterized by $\sigma > \sigma^*$ (case (b')). For projects in which $\sigma < \sigma^*$ collateral required by the bank (σ^* (c)). From (10.1) and (10.2) one obtains some borrowers drop out of the credit pool (case (a')). "High"-risk borrowers Effective borrowing occurs only when a potential individual investment thus in similar fashion; $(\sigma > \sigma^*)$, however, remain in the market, increasing the average risk level $$\frac{d\sigma^*}{dc} = -\frac{\prod_{c}^{D}(c, \sigma)}{\prod_{\sigma}^{D}(c, \sigma)} > 0 \qquad \dots (11.2)$$ requirements demonstrates "adverse selection". This positive relationship between average risk and increasing collateral ## III OPTIMAL COLLATERAL POLICY bank must apply a uniform collateral policy for all customers. discriminating collateral requirements specifically for each customer. The g-values, it also does not know the c*-values. The bank is not capable of parameter known only to the borrower. Since the bank cannot observe the credit customer. It was shown that the critical value c^* is determined by a the uncertainty facing the bank concerning the \sigma-value of an individual In Section II, it was argued that information asymmetry arises from to equation (11.1) and (11.2) through the collateral policy of the bank. The bank's credit pool. The loss of low-risk borrowers may be influenced according not. Significant here is the fact that only low-risk borrowers drop out of the into two categories: those who accept the credit conditions and those who do bank must, however, consider the subsequent effects of any chosen collateral contemplating an optimal collateral policy (Wette, 1983). repayment effect. The bank must consider these two contrary effects when policy: a raising of the collateral requirement c induces further low-risk other hand, an increase in the collateral requirement c brings about a positive uses, thereby lowering the bank's average expected profit $\Pi^{B}(c, \sigma)$. On the borrowers decreases—in other words, the average credit risk $\overline{\sigma}$ for the bank borrowers to drop out of the credit pool. The average quality of the remaining The critical collateral value c* separates the pool of potential borrowers In calculating average expected profit the bank must observe that a credit contract will come about only with borrowers who are characterized by $\sigma > \sigma^*$. The uncertainty facing the bank with regard to the true σ -values for a specific potential borrower is the origin of the asymmetric information environment of the bank. The entire set of all possible σ -values may be characterized by the density function $h(\sigma)$ defined over the interval $\{\sigma_1, \sigma_2\}$. The lender's expected return on a ban of risk σ is Π^B (c, σ) . Since the lender cannot distinguish between which borrower undertakes the project, the bank must calculate an "average" expected return The next step is to show that $\overline{\Pi}^{B}(c, \overline{\sigma}(c))$ is not necessarily a monotone increasing function of c. This follows from differentiation of equation (12) with regard to c $$\frac{\partial \overline{\Pi} B(c, \overline{\sigma}(c))}{\partial c} = \frac{\sigma^*(c) \ c}{\sigma^*(c) \ c}$$ $$\frac{\sigma^*(c)}{\int_0^x h(\sigma) d\sigma}$$ $$\frac{(\Pi B - \overline{\Pi} B) h(\sigma^*) \sigma^*_c}{\int_0^x h(\sigma) d\sigma}$$ $$\sigma^*(c)$$ e first term in the above equation represents the 1 The first term in the above equation represents the repayment effect and is positive. The second term characterizes the adverse selection effect and is negative given equation (11.2), $d\sigma^*/dc > 0$, and $\Pi^B > \overline{\Pi}^B$. The expected return on a loan to the bank is a decreasing function of the level of riskiness σ of the investment project financed (compare Theorem 3 in Stiglitz and Weiss, 1981). ## IV CONCLUDING REMARKS It follows from equation (13), therefore, that the bank's "average" expected profit $\overline{\Pi}^B$ need not be a monotone increasing function of c, rather the negative adverse selection effect may compensate the positive repayment effect. There exists, however, a specific value ℓ , which fulfils the condition $\overline{\Pi}^B_{\ell}(\cdot) = 0$. This specific value determines the optimal collateral policy for the bank. Given that the second-order conditions are fulfilled, the bank's optimal collateral policy may be illustrated graphically as shown in Fig. 2 below As Fig. 2 demonstrates, given a situation ℓ characterized by an excess demand for credit, some potential borrowers are rationed. However, any increase in the collateral requirements of a loan to the right of ℓ in Fig. 2 will be accompanied by a decrease in the bank's average profits. The bank has no incentive to raise collateral requirements above ℓ , which implies that some potential borrowers remain rationed. #### KEFERENCES Baltensperger, E. (1978). "Credit Rationing—Issues and Questions", Journal of Money, Credit and Banking, Vol. 10, No. 2, pp. 170-183. Metzer, K. M. (1984). "Asymmetries of Information and LDC Borrowing with Sovereign Risk", *Economic Journal*, Vol. 94, No. 374, pp. 287-307. Mide, H. (1980). "Kreditrationierung, Zinsdispersion und Sequentialsuche", Zeitschrift für die gesamte Staatswissenschaft, Vol. 136, No. 2, pp. 266-285. - Milde, H. (1981). "Adverse Selektion und Kreditsicherheiten" in H. Göppl and R. Henn (eds.), Geld, Banken und Versicherungen, Vol. II, pp. 1089-1100. - Smith, B. (1983). "Limited Information, Credit Rationing, and Optimal Government Lending Policy", American Economic Review, Vol. 73, No. 3, pp. 305-318. - Stiglitz, J. E. and Rothschild, M. (1970). "Increasing Risk: A Definition", Journal of Economic Theory, Vol. 2, No. 3, pp. 225-243. - Stiglitz, J. E. and Weiss, A. (1981). "Credit Rationing in Markets with Imperfect Information", American Economic Review, Vol. 71, No. 3, pp. 393-410. - Wette, H. C. (1983). "Collateral in Credit Rationing in Markets with Imperfect Information: Note", American Economic Review, Vol. 73, No. 3, pp. 442-445.