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1 Introduction

In 1981 Magill [10] provided a result concerning the existence of optimal strategies in
linear multisector models when time is continuous and the preferences of the representative
agent are characterized by two parameters: the rate of time discount ρ and the constant
elasticity of substitution σ > 0, within a more general formulation in which technology
is not necessarily linear. He proved indeed ([10], Theorem 9.15, p. 703) that in a von
Neumann technology with constant returns if

Γ0 >
Γ0 − ρ

σ
,

then an optimal strategy exists, where Γ0 is the maximum rate of growth (Magill [10] did
not provide any non-existence results; but see [11]). Magill, however, used an assumption
on ”regularity” ([10], Assumption T.2, p. 703) justified on the basis of the Gale [8] inde-
composability assumption implying that the upper bound of the uniform over time rates
of reproduction of any commodity equals the maximum rate of growth.

In a more recent paper Freni et alii [6] analyzed more deeply the existence of op-
timal strategies in linear multisector models when time is continuous and proved in the
assumption that only one commodity is consumed that if

Γ1 >
Γ1 − ρ

σ
,

then an optimal strategy exists, whereas if

Γ1 <
Γ1 − ρ

σ
,

then no optimal strategy exists, where Γ1 is the upper bound of the uniform over time
rate of reproduction of commodity 1, which is the only commodity which is consumed.
Freni et alii [6] considered also the case in which

Γ1 =
Γ1 − ρ

σ
,

and provided further results of existence on non existence in dependence of size of σ.
Therefore what matters is not the maximum rate of growth, but the upper bound of the
uniform over time rates of reproduction of the consumption good if only one commodity
is consumed. In this paper we want to generalize that result to the case in which several
consumption goods exist. More precisely we will prove that if

Γν >
Γν − ρ

σ
,

then an optimal strategy exists, whereas if

Γν <
Γν − ρ

σ
,
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then no optimal strategy exists, where Γν is an average of the upper bounds of the uniform
over time rates of reproduction of consumption commodities. Such an average is defined
by the instantaneous utility function only and is totally independent from technology
whereas the upper bound of the uniform over time rate of reproduction of a commodity
depends on technology only and is independent on the preferences of consumers.

The plan of the paper is the following: first we describe the model in Section 2,
discussing also the main assumptions. In Section 3 we give the main results and a couple
of examples to show the complexity of the limiting cases; Section 4 is devoted to proving
the main results.

2 The Model

There are n ≥ 1 commodities, and k of them are consumed, say commodities 1, . . . , k.
Preferences with respect to consumption over time are such that they can be described by
a single intertemporal utility function Uσ, which is the usual C.E.S. (Constant Elasticity
of Substitution) function: for a given consumption path c : [0,+∞) → R

k, (ct ≥ 0 a.e.),
we set

Uσ (c (·)) =

∫ +∞

0

e−ρtuσ (ν(c (t))) dt (1)

where ρ ∈ R is the rate of time discount of the representative agent, the instantaneous
utility function uσ : [0,+∞) → R∪{−∞} depends on a single parameter σ > 0 (the
elasticity of substitution) and is given by

uσ (ν) = ν1−σ−1
1−σ

for σ > 0, σ 6= 1

u1 (ν) = log ν for σ = 1

(with the agreement that uσ(0) = −∞ for σ ≥ 1), and ν : R
k
+ → R is continuous,

increasing on every component, concave, homogeneous of degree 1. Possible examples of
function ν are the following.

ν(c) = cα1

1 c
α2

2 · · · cαk

k , αi ∈ (0, 1), i = 1, . . . k,
k
∑

i=1

αi = 1 (2)

ν(c) = min {α1c1, α2c2, . . . , αkck} , αi ∈ (0, 1), i = 1, . . . k,
k
∑

i=1

αi = 1 (3)

ν(c) = α1c1 + α2c2 + · · · + αkck, αi ∈ (0, 1), i = 1, . . . k,
k
∑

i=1

αi = 1. (4)

In the first case preferences are Cobb-Douglas, in the second consumed commodities are
perfect complements, in the third consumed commodities are perfect substitutes.

For the sake of simplicity we will drop the additive constant − (1 − σ)−1 in the fol-
lowing since this will not affect the optimal paths.
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Technology is fully described by a pair of nonnegative matrices (the m× n material
input matrix A and the m× n material output matrix B, m ≥ 0) and by a uniform rate
of depreciation δx of capital goods used for production. The rate of depreciation for goods
not employed in production is δz. If m = 0, we say that matrices A and B are void. In
this degenerate case production does not hold and all capital goods decay at rate δz the
model reduces to the standard one-dimensional AK model with A = −δz ≤ 0.

The amounts of commodities available as capital at time t are defined by the vector
st. They may be either used for production (if m > 0) or disposed of. That is

sT
t = xT

t A + zT
t ,

where x ≥ 0 denotes the vector of the intensities of operation and z ≥ 0 the vector of the
amounts of goods which are disposed of. Production consists in combining the productive
services from the stocks to generate flows that add to the existing stocks. Decay and
consumption, on the other hand, drain away the stocks:

ṡT
t = xT

t [B − δxA] − δzz
T
t − ĉT

t ; ĉt ≥ 0 s0 = s̄

where ĉt is the n× 1 vector obtained from the k× 1 consumption vector ct and adding a
zero component for each pure capital good at the places k + 1, . . . , n. By eliminating the
variable z and setting δ = −δz + δx, we obtain

ṡT
t = xT

t [B − δA] − δzs
T
t − ĉT

t ; (5)

with the initial condition
s0 = s̄ ≥ 0 (6)

and the constraints
xt ≥ 0, sT

t ≥ xT
t A, ct ≥ 0. (7)

If we add also the constraint
xT

t B ≥ ĉT
t (8)

the proof of existence here provided would be simplified since the constraint (8) would
imply that the set of admissible control strategies is relatively compact in the space of
integrable functions with a suitable weight. As a consequence a simpler procedure to prove
existence could be used (see Remark 4.4 after the proof of Lemma 4.2). The economic
interpretation of the constraint (8) is the following: commodities which in principle can
be used both as consumption and as capital (the first k commodities in our case) cannot
be converted to consumption once they are installed as capital. One of the aims of this
paper is to show that a constraint of this type is not needed.1

1On the contrary, constraints of this type are used by Magill [10], Becker et alii [3], and Balder [1]. In
[10], Definition 4.1 and Assumption 1, p. 686 (then in Section 9, Definition 9.5 and subsequent results)
allow to get the existence of what Magill calls an expansion function (Definition 5.1 and Assumption 3,
p.687, [10]) which is a key assumption for proving the existence theorem. In [3], Section 4.3, the same
setting of [10], Section 9, is used. This allows to prove that the Technology Conditions (i) and (ii), p.
81 are verified and again this is a key point to prove the existence theorem. In [1] we find the Growth
Condition 2.4 (p. 424) to be essential for the proof of existence (together with the compactness of A (0)).
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Our problem is then to maximize the intertemporal utility (1) over all production-
consumption strategies (x, c) that satisfy the constraints (5), (6) and (7). This is an
optimal control problem where s is the state variable and x and c are the control variables.
We now describe this problem more formally.

A production-consumption strategy (x, c) is defined as a measurable and locally in-
tegrable function of t : R

+ →R
m × R

k (we will denote by L1
loc

(

0,+∞; Rm+k
)

the set of
such functions). Then the differential equation (5) has a unique solution : R

+ 7→R
n which

is absolutely continuous (we will denote by W
1,1
loc (0,+∞; Rn) the set of such functions).

Such a solution clearly depends on the initial datum s̄ and on the production-consumption
strategy (x, c) so it will be denoted by the symbol st;̄s,(x,c), omitting the subscript s̄, (x, c)
when it is clear from the context.

Given an initial endowment s̄ we will say that a strategy (x, c) is admissible from
s̄ if the triple

(

x, c, st;̄s,(x,c)

)

satisfies the constraints (7) and U1 (c) is well defined2. The
set of admissible control strategies starting at s̄ will be denoted by A(̄s). We adopt the
following definition of optimal strategies.

Definition 2.1 A strategy (x∗, c∗) ∈ A(̄s) will be called optimal if we have Uσ(c∗) > −∞
and

+∞ > Uσ(c∗) ≥ Uσ(c)

for every admissible control pair (x, c) ∈ A(̄s).

We now comment on a set of assumptions that will be used throughout the paper.

Assumption 2.2 Each row of matrix A is semipositive.

This assumption means that no commodity can be produced without using some
commodity as an input.

Assumption 2.3 Each row of matrix B is semipositive.

This assumption means that each process produces something: i.e. that pure destruc-
tion processes are not dealt with as production processes.

Assumption 2.4 The initial datum s̄ ≥ 0 and the matrices A and B are such that there
is an admissible strategy (x∗, c∗) ∈ A(̄s) and a time t∗ > 0 such that ν

(

s̃t∗ ;̄s,(x∗,c∗)

)

> 0,
where s̃ is the subvector of vector s consisting of the first k elements.

2The condition on U1 (c) is relevant only when σ = 1. Note that for σ ∈ (0, 1) the function t →
e−ρtuσ (ν(ct)) is always nonnegative so it is always semiintegrable (with the integral eventually +∞).
On the other hand for σ > 1 the function t → e−ρtuσ (ν(ct)) is always negative (and may be −∞ when
ν(c)t = 0) and again it is always semiintegrable (with the integral eventually −∞). This means that the
intertemporal utility Uσ is always well defined for σ 6= 1. For σ = 1 the function t → e−ρtuσ (ν(ct)) may
change sign so it may be not semiintegrable on [0,+∞). This is the reason why we need to require that
U1 (c) is well defined to define the admissibility of c.
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If this assumption does not hold, then every admissible strategy starting from s̄ must
have that ν(ct) = 0 a.e. This case is not an interesting case to be investigated.

Assumption 2.5 The initial datum s̄ ≥ 0 and the matrices A and B are such that there
is an admissible strategy (x∗, c∗) ∈ A(̄s) and a time t∗ such that st∗ ;̄s,(x∗,c∗) is positive.

Assumption 2.5 implies that all commodities are available at any time t > 0 and, in
particular, implies that Assumption 2.4 is satisfied. Moreover Assumptions 2.4 and 2.5
could be stated in terms of the zero components of the initial datum s̄ and of the structure
of the matrices A and B, see on this Appendix D of [7].

It is also obvious that if Assumption 2.5 holds, then Assumption 2.4 holds too. Nev-
ertheless it can be shown that Assumption 2.5 is not really restrictive, provided that
Assumption 2.4 holds, in the sense that when it does not hold, matrices A and B, vector
s̄, and consumption goods can be redefined in order to obtain an equivalent model in
which Assumption 2.5 holds. Assume, in fact, that Assumption 2.5 does not hold. Then
there is a commodity j which is not available at any time t ≥ 0 (sT

t ej = 0 for every
t ≥ 0). In this case any production process i in which commodity j is employed (aij > 0)
cannot be used. The model is then equivalent to one in which matrices B and A and
vector s, in the state equation (5), are substituted with matrices D and C and vector s′,
respectively, where matrix C is obtained from A by deleting the j-th column and all rows
which on the j-th column have a positive element, matrix D is obtained from matrix B
by deleting the corresponding rows and the j-th column, and vector s′ is obtained from
vector s by deleting the j-th element. (If commodity j is a consumption good, it is also
deleted by the list of consumption goods.) Note that if in the new equivalent model the
Assumption 2.5 does not hold and matrices C and D are not void, the argument can be
iterated. If matrices C and D are void, then an equivalent model satisfying Assumption
2.5 is obtained by deleting the nought elements of vector s′. In any case the algorithm
is able to determine an equivalent model in which Assumption 2.5 does hold. We will
refer to the equivalent model found in this way as the truncated model and to the corre-
sponding technology as the truncated technology, which then depends on s̄. It can easily
be proved that if Assumptions 2.2, 2.3, 2.4 hold in the original technology, then they hold
in the truncated technology too (see Appendix D of [7]). Except when it is not mentioned
explicitly, all the following assumptions refer to the truncated technology.

Let us define

G0 :=
{

γ|∃x ∈ R
m : x ≥ 0,x 6= 0,xT [B − (γ + δx)A] ≥0

}

, Γ0 = maxG0

and, for i = 1, . . . , k,

Gi :=
{

γ|∃x ∈ R
m : x ≥ 0,xT [B − (γ + δx)A] ≥ eT

i

}

, Γi = supGi

Γ0 is clearly the maximum among the uniform over time rates of growth feasible for
this economy and corresponds to what von Neumann [14] found both as growth rate and
as rate of profit. Γi is the upper bound of the uniform over time rates of reproduction of
the i−th consumption good. Obviously Γi ≤ Γ0 for every i = 1, . . . , k.
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Magill [10], Assumption T.2, p. 703, assumed that if x ∈ X , then xTB > 0T , where

X =
{

x|x ≥ 0,x 6= 0,xT [B − (Γ0 + δx)A] ≥ 0T
}

It is easily checked that, under this assumption, if x ∈ X and xTAei = 0, then there is
α > 0 such that

xT [B − (Γ0 + δx)A] ≥ αeT
i

whereas if x ∈ X and xTAei > 0, then for any ε > 0 there is α > 0 such that

xT [B − (Γ0 − ε+ δx)A] ≥ αeT
i

In any case

sup
{

γ|∃x ∈ R
m : x ≥ 0,x 6= 0,xT [B − (γ + δx)A] ≥ eT

i

}

= Γ0

that is, the upper bound of the uniform over time rates of reproduction of any commodity
equals the maximum rate of growth. In this paper we will not make any assumption on
indecomposability.

It is easily proved that the Γi’s relative to the truncated technology are not greater
than the corresponding Γi’s relative to the original one. If either Bei = Aei = 0 or
matrices A and B are void, then Γi = −∞. Moreover if Bei = 0 and Aei 6= 0 then
Γi = −δx. Finally, if Bei 6= 0 and if commodity j is available at time 0 (̄sTej > 0) and
is essential to the reproduction of the i−th consumption good, then Γi = −δx.

3 (see [7]
Proposition 4.4).

Assumption 2.6 Bei 6= 0 for each consumption good i and δz < δx.

Assumption 2.6 is not necessary, but it helps in simplifying the exposition since it
implies that Γi > −δz for each consumption good i. Moreover, it is not very restrictive.
It implies that the use of commodities in production dominates their storing.

We call
Γmax := max

i=1,...,k
Γi, Γmin := min

i=1,...,k
Γi > 0

Moreover we introduce the following number

Γν = inf

{

η ∈ R : lim
t→+∞

e−ηtν
(

eΓ1t, eΓ2t, . . . , eΓkt
)

= 0

}

= sup

{

η ∈ R : lim
t→+∞

e−ηtν
(

eΓ1t, eΓ2t, . . . , eΓkt
)

= +∞

}

3We say that commodity j is essential to the reproduction of the i−th consumption good when

(

x ≥ 0, ε > 0,xT [B − εA] ≥ ei

)

⇒ xT Aej 6= 0.
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Since, by the 1−homogeneity and the monotonicity of ν we have

eΓmintν(1, 1, . . . , 1) ≤ ν
(

eΓ1t, eΓ2t, . . . , eΓkt
)

≤ eΓmaxtν(1, 1, . . . , 1)

then it is easy to see that Γmin ≤ Γν ≤ Γmax.
Furthermore observe that, calling, for η > 0, s̄ ≥ 0 and (x, c) ∈ A(s̄),

Iη(c) :=

∫ +∞

0

e−ηrν (c1r, c2r, . . . , ckr) dr

we have (see section 4: proof of Propositions 4.5 and 4.7)

Γν = inf

{

η > 0 : sup
c∈A(s̄)

Iη(c) < +∞

}

It is also easy to check that, for the three examples given in (2), (3) and (4), we have:

• in the example (2), Γν =
∑k

i=1 αiΓi,

• in the example (3), Γν = min{Γi, i = 1, . . . , k},

• in the example (4), Γν = max{Γi, i = 1, . . . , k}.

As mentioned in the introduction this paper is mainly devoted to show the role that the
following assumption plays for the existence of optimal strategies of the problem under
analysis.

Assumption 2.7

Γν >
Γν − ρ

σ

The reader should have noticed that we have used the convoluted expression “the
upper bound of the uniform over time rates of reproduction of the i−th consumption
good” instead of the more straightforward “the upper bound of the rates of reproduction of
the i−th consumption good”. This phraseology is used as for particular forms of matrices
growth rates of consumption might be found which are higher, but not uniform over time.
In [6] we provided the following example, with the details, to clarify this point.

Example 2.8 k = 1, δx = δz ∈ (0, 1) and

A =

[

0 1 0
0 0 1

]

, B =

[

1 1 0
0 1 1

]

.

It is immediately recognized that Γ1 = 1− δx > 0. Nevertheless consumption can grow at
the rate

ċ

c
= Γ1 +

β

α+ βt
> Γ1

where α and β are positive constants.
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3 The main results

The main goal of this paper is to show that in the general context outlined by Assumptions
2.2, 2.3, 2.5, 2.6, we have substantially an if and only if condition for the existence of
optimal strategies. In fact in this paper we will prove the following results:

Theorem 3.1 If Assumptions 2.2, 2.3, 2.5, 2.6 and 2.7 hold, then there is an optimal
strategy (x, c) for problem (Pσ) starting at s̄. Moreover this strategy is unique in the sense
that if (x̂, ĉ) is another optimal strategy, then ν(ĉ) ≡ ν(c). If ν is strictly concave, then
we also have ĉ ≡ c.

Theorem 3.2 Let Assumptions 2.2, 2.3, 2.5, 2.6 hold. If

Γν <
Γν − ρ

σ

then no optimal strategy exists for problem (Pσ) starting at s̄.

Theorem 3.3 Let Assumptions 2.2, 2.3, 2.5, 2.6 hold. Let

Γν =
Γν − ρ

σ
.

Then we have the following:

1. Let σ = 1. If, either Γν < 0, or Γν = 0, each Γi is not a maximum and

lim
t→+∞

e−Γνtν
(

eΓ1t, . . . , eΓkt
)

< +∞, (9)

then all strategies have value −∞ and so no optimal strategy exists for problem (P1)
starting at s̄. Moreover if Γν > 0 there exists an admissible strategy with value +∞
and so no optimal strategy exists for problem (P1) starting at s̄.

2. Let σ ∈ (0, 1). If each Γi is a maximum and

lim
t→+∞

e−Γνtν
(

eΓ1t, . . . , eΓkt
)

> 0 (10)

then there exists an admissible strategy with value +∞ and so no optimal strategy
exists for problem (Pσ) starting at s̄.

3. Let σ > 1. If each Γi is not a maximum and (9) holds, then all strategies have value
−∞ and so no optimal strategy exists for problem (Pσ) starting at s̄.

The limit cases where Γν = Γν−ρ

σ
and

1. σ = 1, Γν = 0, and at least one Γi is a maximum or (9) does not hold;

2. σ ∈ (0, 1) and at least one Γi is not a maximum or (10) does not hold;

3. σ > 1 and at least one Γi is a maximum or (9) does not hold;

are intrinsically more complex than the others. Indeed in such cases we can have existence
or nonexistence depending on the value of σ. In the paper [6] (see also [7] for details) we
have provided two examples of matrices A and B and scalars ρ, δx, δz showing this fact
with k = 1.
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4 Proofs of the main results

In this section, we provide the proofs of the main results stated in section 3. The proofs
require a set of preliminary results which we discuss in Subsection 4.1. In Subsection 4.2
we prove the existence and nonexistence results stated above as Theorems 3.1, 3.2 and
3.3.

Throughout this section we will assume that Assumptions 2.2, 2.3, 2.5, 2.6 hold
without explicitly mentioning them. We observe that some results hold in the more general
framework when Assumption 2.6 does not hold; on this point see also Appendix A and B
of [7].

4.1 Preliminary lemmata

The following Lemma provides the basis for estimates of the state and control trajectories.

Lemma 4.1 Let i ∈ {1, . . . , k}. If Γi is not a maximum

γ ≥ Γi ⇐⇒ ∃vi
F≥ 0 : (B− (γ + δx)A)vi

F≤ 0, eT
i vi

F =1. (11)

If Γi is a maximum

γ > Γi ⇐⇒ ∃vi
F≥ 0 : (B− (γ + δx)A)vi

F≤ 0, eT
i vi

F = 1, (12)

Moreover
∃vi

S≥ 0 : (B− (Γi + δx)A)vi
S≤ 0,vi

S 6= 0, (13)

and
eT

i vi
S = yT [B − (Γi + δx)A]vi

S = 0, (14)

where
y ∈

{

x|x ≥ 0,xT [B − (Γi + δx)A] ≥ eT
i

}

.

Proof. Statements (11) and (12) are obvious applications of the Farkas Lemma (see
for instance Gale’s theorem for linear inequalities; [9] or [12], pp. 33-34). Assume now
that statement (13) does not hold and obtain, once again from the Farkas Lemma (see
for instance Motzkin’s theorem of the alternative; [13] or [12], pp. 28-29), that

∃w ≥ 0 : wT [B − (Γi + δx)A] > 0T .

Hence there is φ > 0 so large and η > 0 so small that

φwT [B − (Γi + δx)A] ≥ eT
i + ηφwTA

Hence a contradiction since Γi = supGi. By remarking that

0 ≥ yT [B − (Γi + δx)A]vi
S ≥ eT

i vi
S ≥ 0

the proof is completed.
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The next lemma and the subsequent corollary give various estimates for the state and
control variables that will be the basis for the proof of existence and nonexistence. Note
that for the case σ ∈ (0, 1) we are interested in an estimate from above of the integral
∫ t

0
e−ρsν(cs)

1−σds giving finiteness of the value function for ρ − Γν(1 − σ) > 0 (so we
need terms that remain bounded when t → +∞), while for the case σ ∈ (1,+∞) we are
interested in an estimate from below of the same integral to show that the value function
is equal to −∞ when ρ− Γν(1− σ) < 0, (so we need terms that explode when t→ +∞).
These different targets require the use of different estimates with different methods of
proof. Of course, both methods can be applied to both cases, albeit yielding estimates
that are not useful for our target. In order to simplify notation we will set, for ε ≥ 0,

Γi := max{−δz,Γi} (15)

Γi,ε := max{−δz,Γi + ε} (16)

ai,ε = ρ− Γi,ε(1 − σ) (17)

aν,ε = ρ− (Γν + ε) (1 − σ). (18)

Obviously, if Assumption 2.6 holds, Γi = Γi and Γi,ε := Γi + ε.

Lemma 4.2 Let i ∈ {1, . . . , k} and σ > 0. Fix ε > 0 when Γi is a maximum and
ε = 0 when Γi is not a maximum; call vi

F,ε the vector given by Lemma 4.1. For every
0 ≤ t < +∞, s̄ ∈ R

n, s̄ ≥ 0 we have, for every admissible control strategy (x, c) ∈ A(̄s),

sT
t vi

F,ε ≤ eΓi,εts̄Tvi
F,ε, (19)

and, for η ∈ R

∫ t

0
e−ηssT

s vi
F,εds ≤ s̄Tvi

F,ε
e
(Γi,ε−η)t

−1
Γi,ε−η

; η 6= Γi,ε;

∫ t

0
e−ηssT

s vi
F,εds ≤ s̄Tvi

F,εt; η = Γi,ε;

(20)

and, setting Ii,ε(t) :=
∫ t

0
e−Γi,εsĉT

s vi
F,εds,

Ii,ε(t) + e−Γi,εtxT
t Avi

F,ε ≤ s̄Tvi
F,ε. (21)

Moreover, for 0 ≤ τ ≤ t < +∞, and η ∈ R,

xT
t Avi

F,εe
−ηt +

∫ t

τ

e−ηsĉT
s vi

F,εds ≤ e−ητ s̄T
τ vi

F,εe
(Γi,ε−η)

+
(t−τ). (22)

Finally there exists a constant λ > 0 (depending only on the matrices A and B) such
that, for every t ≥ 0

∣

∣

∣

∣xT
t A
∣

∣

∣

∣≤ ||st|| ≤ eλt ||̄s|| , ||xt|| ≤ Ceλt ||̄s|| (23)

for suitable real number C > 0 (depending only on the matrix A).

11



Proof. We prove the five inequalities (19)–(23) in order of presentation. We give only
a sketch. To avoid heavy notation we will write vi

F for vi
F,ε along this proof.

(1) Let i ∈ {1, . . . , k}. First we observe that, by multiplying the state equation (5) by
vi

F we obtain

ṡT
t vi

F = −δzs
T
t vi

F + xT
t [B−δA]vi

F − ĉT
t vi

F t ∈ (0,+∞),

sT
0 vi

F = s̄Tvi
F ≥ 0.

Now for every x and ε,

xT [B−δA] = xT [B− (Γi+ε+ δx)A] + (Γi + ε+ δz)x
TA

Moreover for x ≥ 0 we have by (11) and (12) xT [B− (Γi + ε+ δx)A]vi
F ≤ 0 with

the agreement that ε = 0 when Γi is not a maximum. Then

ṡT
t vi

F = −δzs
T
t vi

F + xT
t [B− (Γi + ε+ δx)A]vi

F + (Γi + ε+ δz)x
T
t Avi

F − ĉT
t vi

F

≤ −δzs
T
t vi

F + (Γi + ε+ δz)x
TAvi

F − ĉT
t vi

F

If Γi + ε ≥ −δz, from the constraint sT
t ≥ xT

t A and from the non-negativity of ĉt,
we get

ṡT
t vi

F ≤ (Γi + ε) sT
t vi

F − ĉT
t vi

F ≤ (Γi + ε) sT
t vi

F t ∈ (0,+∞), (24)

and so, by integrating on [0, t] and using the Gronwall lemma (see e.g. [2, p. 218])
we get the first claim (19).

Take now Γi + ε < −δz in this case we have (Γi + ε+ δz)x
TAvi

F ≤ 0 which gives

ṡT
t vi

F ≤ −δzs
T
t vi

F − ĉT
t vi

F ≤ −δzs
T
t vi

F , t ∈ (0,+∞), (25)

and so the claim (in this case we clearly can take ε = 0).

(2) Inequalities (20) are proved by multiplying the inequality (19) by e−ηs and integrat-
ing on [0, t].

(3) From (24) (taking ε = 0 when allowed)

ṡT
s vF ≤ Γi,εs

T
s vi

F − ĉT
s vi

F ∀s ∈ [0, t] (26)

so that, by the comparison theorem for ODE’s

sT
t vi

F ≤ s̄Tvi
F e

Γi,εt −

∫ t

0

eΓi,ε(t−s)ĉT
s vi

Fds

From the inequality xT
t Avi

F≤ sT
t vi

F we get inequality (21) by rearranging the terms.

12



(4) For simplicity we take the case τ = 0. Inequality (22) easily follows by multiplying
both sides of (26) by e−ηs and then integrating. Indeed we have

0 ≤ e−ηsĉT
s vi

F ≤ e−ηs
[

Γi,εs
T
s vi

F − ṡT
s vi

F

]

∀s ∈ [0, t]

Now we integrate the above expression, then we integrate by parts and use that
xT

t Avi
F≤ sT

t vi
F :

∫ t

0

e−ηsĉT
s vi

Fds ≤

∫ t

0

e−ηs
[

Γi,εs
T
s vi

F − ṡT
s vi

F

]

ds

=

∫ t

0

e−ηsΓi,εs
T
s vi

Fds− e−ηtsT
t vi

F + s̄Tvi
F − η

∫ t

0

e−ηssT
s vi

Fds

≤ s̄Tvi
F − e−ηtxT

t Avi
F +

(

Γi,ε − η
)

∫ t

0

e−ηssT
s vi

Fds

Now, if η ≥ Γi,ε the above inequality gives the claim immediately. If η < Γi,ε we get
the claim by using (20).

(5) The inequality (23) comes as follows. By Assumption 2.2 for every i there exists j
such that aij > 0 so that

xTei ≤ a−1
ij sTej

and we can find a nonnegative matrix n ×m C with exactly one positive element
for every column such that xT ≤ sTC. Consequently we have, for xTA ≤ sT ,

xTB ≤ sTCB.

Now the matrix D = CB is n × n and has only positive elements. From the state
equation (5) it follows that for every admissible strategy we have

ṡT
t ≤ sT

t D − δzs
T
t − ĉT

t .

Since the control ĉ is positive and D has only positive elements one gets

sT
t ≤ s̄T et[D−δzI]

so the claim easily follows taking any λ > max {Reµ,µ eigenvalue of D} − δz

For η ∈ R define, for every 0 ≤ s < +∞, s̄ ∈ R
n, s̄ ≥ 0 and (x, c) ∈ A(̄s), the

quantity

Iη(s) :=

∫ s

0

e−ηrν (c1r, c2r, . . . , ckr) dr. (27)

The following estimates hold.

13



Lemma 4.3 Let t ≥ 0, s̄ ∈ R
n, s̄ ≥ 0 and (x, c) ∈ A(̄s). We have, for σ ∈ (0, 1),

∫ t

0

e−ρsν (c1s, c2s, . . . , cks)
1−σ

ds ≤ tσ
[

I ρ

1−σ
(t)
]1−σ

(28)

while, for σ ∈ (1,+∞),
∫ t

0

e−ρsν (c1s, c2s, . . . , cks)
1−σ

ds ≥ tσ
[

I ρ

1−σ
(t)
]1−σ

. (29)

Moreover let η ∈ R. Then, for σ = 1 we have
∫ t

0

e−ρs log [ν (c1s, c2s, . . . , cks)] ds ≤ te−ρt

[

η

2
t+ log

(

Iη(t)

t

)]

(30)

+[ρ]+
∫ t

0

se−ρs

[

η

2
s+ log

(

Iη(s)

s

)]

ds

while, for σ ∈ (0, 1),
∫ t

0

e−ρsν (c1s, c2s, . . . , cks)
1−σ

ds (31)

≤ Iη(t)
1−σtσe−(ρ−η(1−σ))t + [ρ− η(1 − σ)]+

∫ t

0

Iη(s)
1−σsσe−(ρ−η(1−σ))sds

and, for σ > 1, and ρ > η(1 − σ),
∫ t

0

e−ρsν (c1s, c2s, . . . , cks)
1−σ

ds (32)

≥ Iη(t)
1−σtσe−(ρ−η(1−σ))t + (ρ− η(1 − σ))

∫ t

0

Iη(s)
1−σsσe−(ρ−η(1−σ))sds

Proof.

(1) Concerning inequality (31) we take η ∈ R. Setting

hη(s) :=

∫ s

0

[

e−ηrν (c1s, c2s, . . . , cks)
]1−σ

dr

we have, by Jensen’s inequality, for σ ∈ (0, 1)

hη(s) ≤ s

[

1

s

∫ s

0

e−ηrν (c1s, c2s, . . . , cks) dr

]1−σ

= sσIη(s)
1−σ (33)

Now integrating by parts we obtain
∫ t

0

e−ρsν (c1s, c2s, . . . , cks)
1−σ

ds =

∫ t

0

e−(ρ−η(1−σ))s
[

e−ηsν (c1s, c2s, . . . , cks)
]1−σ

ds

= e−(ρ−η(1−σ))thη(t) +

∫ t

0

(ρ− η (1 − σ)) e−(ρ−η(1−σ))shη(s)ds (34)

≤ e−(ρ−η(1−σ))tsσIη(t)
1−σ + [ρ− η (1 − σ)]+

∫ t

0

e−(ρ−η(1−σ))ssσIη(s)
1−σds.

14



which gives the claim. Inequality (28) follows observing that

∫ t

0

e−ρsν (c1s, c2s, . . . , cks)
1−σ

ds = h ρ

1−σ
(t) (35)

and using inequality (33).

(2) To prove inequality (29) dealing with the case when σ ∈ (1,+∞) we still observe
that (35) holds and then apply the Jensen inequality. Since the power function
x→ x1−σ is convex we get the inequality (33) with ≥ and so the claim.

Similarly inequality (32) follows integrating by part exactly as for proving (31) and
then applying the reversed Jensen inequality.

(3) Inequality (30) follows by similar arguments. In fact, calling, for η ∈ R

h(s) :=

∫ s

0

log ν(cr)dr =

∫ s

0

ηrdr +

∫ s

0

log
(

e−ηrν(cr)
)

dr

we have, because of Jensen’s inequality

h(s) ≤ η
s2

2
+ s log

[

Iη(s)

s

]

. (36)

Now, integrating by parts as in (34), we obtain

∫ t

0

e−ρs log ν(cs)ds = e−ρth(t) +

∫ t

0

ρe−ρsh(s)ds. (37)

which, together with (36) and (21), gives the claim.

Remark 4.4 We observe that, if the constraint (8) is assumed to hold then the proof of
the above lemma would be simpler. Indeed all estimates on the integrals containing the
consumption strategy (21)–(30) would be immediately true since, thanks to (19) and (23)
we would have an estimate of the type ct ≤ Ceλt ||̄s||.

Moreover an estimate of this kind would allow us to prove the existence result more
simply, using the technique of proof of the existence Theorem 2.8 of [1] (see also [3, 10]),
based on the compactness of the derivatives of the stock (Theorem 4.2) in the space of ab-
solutely continuous functions (which, in our model, would be equivalent to the compactness
of the set of admissible strategies in a suitable weighted space of integrable functions).

Since we do not have this property we employ a different technique that exploits the
structure of our problem. In the case when σ ∈ (0, 1), we change variables to get compact-
ness in the new variable and then we go back to the old variable; in the other cases we use
a result that strongly exploits the structure of the problem, in particular the monotonicity
of the functions involved.

15



4.2 Proof of existence and nonexistence theorems

We now prove the above Theorem 3.1 about existence and Theorems 3.2, 3.3 about
nonexistence of optimal strategies. The proof of nonexistence consists in providing suitable
estimates for the value of admissible strategies; the proof of existence requires a “dual”
version of such estimates and then uses compactness arguments. Due to the complexity of
the problem (that combines the difficulties of solving inequalities for positive matrices with
the dynamic optimization problem), to our knowledge the results given in the literature
cannot apply to this case (see [4] and [16] for similar results). For this reason we give a
complete proof.

The structure of the proof is a little complex since various cases need to be analyzed.
To be precise, for existence we need to prove that:

1 the admissible strategies always have the value < +∞ (this is obvious for σ > 1 as
uσ ≥ 0, but nontrivial for σ ≤ 1)

2 at least one admissible strategy has the value > −∞ (this is obvious for σ < 1 as
uσ > 0, but nontrivial for σ ≥ 1);

3 suitable compactness arguments can be applied.

For the nonexistence proof we need to prove that

1′ in the case when σ < 1 (or σ = 1 and Γν > 0) either at least one admissible strategy
has the value = +∞ or there exists a sequence of admissible strategies with values
converging to +∞;

2′ in the case σ > 1 (or σ = 1 and Γν ≤ 0), all admissible strategies have the value
= −∞.

The techniques needed to prove points 1 and 2′ are very similar. Moreover, the tech-
niques needed to prove points 2 and 1′ are also very similar. So we give first Proposition
4.5 where points 1 and 2′ are dealt with. Then in Proposition 4.7 points 2 and 1′ are
treated. These two Propositions prove the nonexistence Theorems 3.2, 3.3 and provide
elements for the proof of Theorem 3.1. In order to complete the proof of the existence
Theorem 3.1 we still have to tackle point 3 which is the aim of Proposition 4.9. In the
statement below we denote by ΓE the Euler Gamma function.

Proposition 4.5 Given any s ≥ 0, satisfying Assumption 2.5 the following hold.

1. Let σ ∈ (0, 1). Fix ε > 0 (ε = 0 when Γi is not a maximum for every i = 1, . . . , k)
such that ρ

1−σ
> Γν +ε. Then for any (x, c) ∈ A(s) and η such that ρ

1−σ
> η > Γν +ε

we have

0 ≤ Uσ(c) ≤
ρ− η(1 − σ)

1 − σ
·

ΓE(1 + σ)

(ρ− η(1 − σ))1+σ

[

Cε

k
∑

i=1

s̄Tvi
F,ε

]1−σ

< +∞ (38)

for a suitable Cε independent of the initial datum and of the control strategy.
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2. Let σ = 1 (in this case for every ε we have aν,ε = ρ). If ρ > 0 and η > Γν + ε then
for every (x, c) ∈ A(s) we have

Uσ(c) ≤ ρ

∫ +∞

0

e−ρss

[

η

2
s+ log

(

C1
ε

∑k

i=1 s̄Tvi
F,ε

s

)]

ds < +∞. (39)

for a suitable C1
ε independent of the initial datum and the control strategy. If ρ ≤ 0

and Γν < 0 then Uσ(c) = −∞ for every (x, c) ∈ A(s). The same if ρ ≤ 0, Γν = 0,

lim
t→+∞

e−Γνtν
(

eΓ̄1t, . . . , eΓ̄kt
)

< +∞ (40)

and Γi is not a maximum for every i = 1, . . . k.

3. If σ > 1, then
Uσ(c) ≤ 0.

Moreover if aν,0 < 0 then Uσ(c) = −∞ for every (x, c) ∈ A(s). The same holds if
aν,0 = 0, (40) holds and Γi is not a maximum for every i = 1, . . . k.

Proof.

(0) We first prove a key estimate for Iη(t). Setting, for i = 1, . . . , k, ε > 0 (ε = 0 if each
Γi is not a maximum), s ≥ 0,

ωi,ε,s := e−Γ̄i,εscis, ωmax,ε,s := max{ωi,ε,s, i = 1, . . . , k},

we have, using (21) and the fact that eT
i vi

F,ε=1,

∫ t

0

ωmax,ε,sds ≤
k
∑

i=1

∫ t

0

ωi,ε,sds ≤
k
∑

i=1

s̄Tvi
F,ε, ∀t ≥ 0. (41)

Now, for η ∈ R, we have

Iη(t) =

∫ t

0

e−ηsν (c1s, c2s, . . . , cks) ds

=

∫ t

0

e−(η−Γν)se−Γνsν
(

eΓ̄1,εsω1,ε,s, e
Γ̄2,εsω2,ε,s, . . . , e

Γ̄k,εsωk,ε,s

)

ds

≤

∫ t

0

e−(η−(Γν+ε))se−Γνsν
(

eΓ̄1sω1,ε,s, e
Γ̄2sω2,ε,s, . . . , e

Γ̄ksωk,ε,s

)

ds

≤

∫ t

0

e−(η−(Γν+ε))sωmax,ε,se
−Γνsν

(

eΓ̄1s, . . . , eΓ̄ks
)

ds (42)

If η > Γν + ε then, by the definition of Γν , we have that the function

t→ e−(η−(Γν+ε))se−Γνsν
(

eΓ̄1s, . . . , eΓ̄ks
)
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is bounded on [0,+∞) (say by a constant Cε independent of the initial datum and
on the control strategy) and so, by putting (41) into (42) we get

Iη(t) ≤ Cε

k
∑

i=1

s̄Tvi
F,ε, ∀t ≥ 0. (43)

Similarly, if

lim
t→+∞

e−Γνtν
(

eΓ̄1t, . . . , eΓ̄kt
)

< +∞

and Γi is not a maximum for every i = 1, . . . k, then we can choose ε = 0 and η = Γν

in (42) and still get (43) with ε = 0, η = Γν .

(1) Now we prove estimate (38) using (31). Take η < ρ

1−σ
, put the estimate (43) into

(31) and let t→ +∞. We get

Uσ(c) ≤
ρ− η(1 − σ)

1 − σ

[

Cε

k
∑

i=1

s̄Tvi
F,ε

]1−σ
∫ +∞

0

sσe−(ρ−η(1−σ))sds

≤
ρ− η(1 − σ)

1 − σ
·

ΓE(1 + σ)

(ρ− η(1 − σ))1+σ

[

Cε

k
∑

i=1

s̄Tvi
F,ε

]1−σ

so the claim (38) follows.

(2) If σ = 1 and ρ > 0 we get (39) taking η > Γν + ε, putting (43) into (30) and letting
t→ +∞.

If ρ = 0, then from (30) and (43) we get, for η > Γν + ε

∫ t

0

log ν(cs)ds ≤ t

[

t
η

2
+ log

(

Cε

∑k

i=1 s̄Tvi
F,ε

t

)]

so if Γν < 0 we take ε > 0, η < 0 such that η > Γν + ε. Then we get, in the limit
for t→ +∞, that U1(c) = −∞.

Let finally Γν = 0,

lim
t→+∞

e−Γνtν
(

eΓ̄1t, . . . , eΓ̄kt
)

< +∞

and Γi is not a maximum for every i = 1, . . . k. Then by part (0) of this proof we
can take η = Γν = 0 and ε = 0 in (43) so the estimate (30) becomes

∫ t

0

log ν(cs)ds ≤ t log

(

C0

∑k

i=1 s̄Tvi
F,0

t

)

so, in the limit for t→ +∞, we still get that U1(c) = −∞. If ρ < 0 and Γν < 0 (or
Γν = 0 when possible) then

∫ t

0

e−ρs log ν(cs)ds =

∫ t

0

e−ρs [log ν(cs)]
+
ds+

∫ t

0

e−ρs [log ν(cs)]
−
ds.
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Now, thanks to the nonpositivity of the negative part and to the fact that e−ρs ≥ 1,

∫ t

0

e−ρs [log ν(cs)]
−
ds ≤

∫ t

0

[log ν(cs)]
−
ds.

Since the right hand side goes to −∞ as t → +∞ (thanks to the case ρ = 0) we
have

∫ +∞

0
e−ρs [log ν(cs)]

−
ds = −∞. By admissibility this implies that the integral

of the positive part is finite and so U1(c) = −∞.

(3) When σ > 1 it is obvious that Uσ(c) ≤ 0 by construction. Moreover using (29) and
(43) with η = ρ

1−σ
> Γν + ε we get

1

1 − σ

∫ t

0

e−ρsν(c1s, c2s, . . . , cks)
1−σds ≤

tσ

1 − σ

(

Cε

k
∑

i=1

s̄Tvi
F,ε

)1−σ

and letting t → +∞ we get Uσ(c) = −∞ for every admissible strategy. Finally
if aν,0 = 0, (40) holds and Γi is not a maximum for every i = 1, . . . k, we know
from part (0) of this proof that (43) still holds so we can still let t → +∞ and get
Uσ(c) = −∞ for every admissible strategy.

Remark 4.6 The above result shows in particular that, when aν,0 > 0 and σ ∈ (0, 1), the
intertemporal utility functional Uσ(c) is finite and uniformly bounded for every admissible
production-consumption strategy (while for σ ≥ 1 it is only bounded from above). In the
cases when

1. σ = 1, ρ ≤ 0, Γν < 0;

2. σ = 1, ρ ≤ 0 and Γν = 0, each Γi is not a maximum and (40) holds;

3. σ > 1, aν,0 < 0;

4. σ > 1, aν,0 = 0, each Γi is not a maximum and (40) holds;

Proposition 4.5 shows that there are no optimal strategies in the sense of Definition 2.1
since all strategies have utility −∞.

Proposition 4.7 Let s ≥ 0.

1. Let σ ∈ (0, 1) and, either aν,0 < 0, or aν,0 = 0, each Γi is a maximum for i = 1, . . . , k
and

lim
t→+∞

e−Γνtν
(

eΓ1t, . . . , eΓkt
)

> 0. (44)

Then there exists an admissible strategy (x, c) ∈ A(s) such that Uσ(c) = +∞.
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2. Let σ = 1, aν,0 ≤ 0, Γν > 0. Then there exists an admissible strategy (x, c) ∈ A(s)
such that Uσ(c) = +∞.

3. Let σ ≥ 1 and aν,0 > 0, then there exists an admissible strategy (x, c) ∈ A(s) with
Uσ(c) > −∞.

Proof. We prove the three points separately.
Proof of 1. Consider first the case when σ ∈ (0, 1) and aν,0 < 0. First let the system

evolve to reach a state s0> 0 (this is possible since Assumption 2.5 holds). This means that
we can take from the beginning s̄ > 0. At this point we observe that for any i = 1, . . . , k
and ε > 0 (ε = 0 if Γi is a maximum for every i) we can find xi,ε ≥ 0 such that

xT
i,ε (B− (Γi − ε+ δx)A) ≥ eT

i ⇒ xT
i,ε (B−δA) ≥ eT

i + (Γi − ε+ δz)x
T
i,εA.

Take now β0 > 0 and β1, . . . βk such that βi ≥ 0. Set

xε,s := β0

k
∑

i=1

βixi,εe
(Γi−ε)s, s ≥ 0.

We clearly have that xε,s≥ 0, xε,s 6= 0 for every s ≥ 0 and

xT
ε,s (B−δA) ej = β0

k
∑

i=1

βie
(Γi−ε)sxT

i,ε (B−δA) ej ≥ β0

k
∑

i=1

βie
(Γi−ε)s

[

eT
i ej + (Γi − ε+ δz)x

T
i,εAej

]

Consider now the control strategy xt = xε,t, ct = β0(β1e
(Γ1−ε)t, . . . , βke

(Γk−ε)t) for each
t ≥ 0. Since, for t ≥ 0, we have

xT
ε,t (B−δA) ej − ĉT

t ej ≥ β0

k
∑

i=1

βie
(Γi−ε)t (Γi − ε+ δz)x

T
i,εAej

and the associated solution of the state equation (5) is given by:

sT
t = e−δzts̄T +

∫ t

0

e−δz(t−s)xT
ε,s [B − δA] ds−

∫ t

0

e−δz(t−s)ĉsds

= e−δzt

[

s̄T +

∫ t

0

(

xT
ε,s (B−δA) − ĉT

s

)

eδzsds

]

,

then

sT
t ej ≥ e−δzt

[

s̄Tej+

∫ t

0

β0

k
∑

i=1

βie
(δz+Γi−ε)s (Γi − ε+ δz)x

T
i,εAej ds

]

= e−δzt

[

s̄Tej+β0

k
∑

i=1

βix
T
i,εAej

∫ t

0

e(δz+Γi−ε)s (Γi − ε+ δz) ds

]
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= e−δzt

[

s̄Tej+β0

k
∑

i=1

βix
T
i,εAej

(

e(δz+Γi−ε)t − 1
)

]

= e−δzt

[

s̄Tej−β0

k
∑

i=1

βix
T
i,εAej

]

+ β0

k
∑

i=1

βie
(Γi−ε)txT

i,εAej

= e−δzt

[

s̄Tej−β0

k
∑

i=1

βix
T
i,εAej

]

+ xT
ε,tAej

In this case it is clear that the constraints sT
t ≥ xT

t A are satisfied if, for every j = 1, . . . , n,

s̄Tej − β0

k
∑

i=1

βix
T
i,εAej ≥ 0.

Since s̄ >0, the above is true if we set β0 sufficiently small. So our control strategy is
admissible. Moreover setting β1 = . . . = βk = 1 we have

U(c) =
β1−σ

0

1 − σ

∫ +∞

0

e−ρtν
(

e(Γ1−ε)t, . . . , e(Γk−ε)t
)1−σ

dt

=
β1−σ

0

1 − σ

∫ +∞

0

e[−ρ+(Γν−ε)(1−σ)]t
[

e−Γνtν
(

eΓ1t, . . . , eΓkt
)]1−σ

dt

Using the definition of Γν and the fact that aν,0 < 0 we get that, for ε sufficiently small,
the above integral is +∞ and so the claim.

The case aν,0 = 0 follows simply observing that, in the above equation, since Γi

is a maximum for i = 1, . . . , k, we can take ε = 0 and, thanks to (44), we can take
ρ = Γν(1 − σ).

Proof of 2. Take now the case when σ = 1 and aν,0 ≤ 0, Γν > 0. Since Γν > 0 let ε
such that Γν > 2ε. Then we take the above control strategy so that

U1(c) =

∫ +∞

0

e−ρt log ν
(

e(Γ1−ε)t, . . . , e(Γk−ε)t
)

ds =

=

∫ +∞

0

e−ρt
[

log β0 + (Γν − 2ε)t+ log
(

e−(Γν−ε)tν
(

eΓ1t, . . . , eΓkt
))]

dt.

Clearly, for aν,0 = ρ ≥ 0 the last integrand is locally bounded, definitely positive, and
goes to +∞ for t→ +∞. Then for this strategy we have U1(c) = +∞.

Proof of 3. Let aν,0 > 0 and σ ∈ [1,+∞). We observe that (since admissibility does
not depend on the value of σ) the strategy found in point 1 above is admissible. We then
have, for σ ∈ (1,+∞)

U(c) =
β1−σ

0

1 − σ

∫ +∞

0

e[−ρ+(Γν−ε)(1−σ)]t
[

e−Γνtν
(

eΓ1t, . . . , eΓkt
)]1−σ

dt
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so, if ε > 0 is such that −ρ+ (Γν − ε)(1 − σ) < 0 we get the claim.
For σ = 1 we have

U1(c) =

∫ +∞

0

e−ρt log ν
(

e(Γ1−ε)t, . . . , e(Γk−ε)t
)

ds =

=

∫ +∞

0

e−ρt
[

log β0 + Γνt+ log
(

e−(Γν+ε)tν
(

eΓ1t, . . . , eΓkt
))]

dt.

Since the last integrand is less than polynomially growing and ρ = aν,0 > 0 then the
integral above is finite, so U1(c) > −∞.

Remark 4.8 The above result shows in particular that, when aν,0 > 0 and σ ∈ [1,+∞),
the intertemporal utility functional Uσ(c) is not always −∞ so it is bounded from below
(recall that from Proposition 4.5 we already know that in these case Uσ(c) is bounded from
above). Moreover in the cases when

1. σ ∈ (0, 1) and aν,0 < 0

2. σ ∈ (0, 1), aν,0 = 0, each Γi is a maximum and (44) holds,

3. σ = 1, aν,0 ≤ 0 and Γν > 0,

Proposition 4.7 shows that there are no optimal strategies in the sense of Definition 2.1
since the supremum of the utility is +∞.

Summing up the informations taken from Propositions 4.5 and 4.7 we can say the
following.

• In the cases when aν,0 > 0 we know that the functional is uniformly bounded (case
σ ∈ (0, 1)) or bounded from from above and not identically −∞ (case σ ≥ 1);

• In the cases when aν,0 ≤ 0 we have nonexistence when

1. σ ∈ (0, 1) and aν,0 < 0;

2. σ ∈ (0, 1), aν,0 = 0, each Γi is a maximum and (44) holds;

3. σ = 1, aν,0 ≤ 0, Γν 6= 0

4. σ = 1, aν,0 ≤ 0, Γν = 0, each Γi is not a maximum and (40) holds;

5. σ > 1 and aν,0 < 0

6. σ > 1, aν,0 = 0, each Γi is not a maximum and (40) holds.

We observe that, to end the treatment of nonexistence result one should deal with a
complete treatment of the following limiting cases:
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• σ ∈ (0, 1) and aν,0 = 0;

• σ = 1, aν,0 ≤ 0, Γν = 0;

• σ > 1 and aν,0 = 0

Proof of Theorem 3.2. It follows directly from Proposition 4.5, Proposition 4.7
and the remarks above.

Now we come to prove existence when aν,0 > 0 using compactness arguments. To do
this we need first to prove suitable properties of the set A (̄s) which are given in the next
proposition. First we recall a simple definition: given a measurable function g1 : R

+→ R

we denote by L∞
g1

(0,+∞; Rm) the set of measurable functions f : R
+→ R

m such that the

product f · g1 is bounded on R
+. Moreover given a measurable function g2 : R

+→ R
k

we denote by L1
g2

(

0,+∞; Rk
)

the set of measurable functions f : R
+→ R

k such that the
product fi · g2,i is integrable on R

+ for each i = 1, . . . , k. We set g1 (t) = eλt (λ is given
by (23) of Lemma 4.2) and g2 (t) = (e(Γ1+ε)t, . . . , e(Γk+ε)t) for ε > 0 such that aν,ε > 0.

Proposition 4.9 Let Assumptions 2.2 and 2.3 be verified. Let also σ ∈ (0, 1)∪ (1,+∞).
Given any s̄ ≥ 0 the set A (̄s) of admissible control strategies starting at s̄ is a closed,
bounded, convex subset of the space L∞

g1
(0,+∞; Rm) × L1

g2

(

0,+∞; Rk
)

. Moreover

(x,c) ∈ A (̄s) , λ ∈ [0, 1] ⇒ (λx,λc) ∈ A (̄s) (45)

Finally, if ν is strictly concave the functional Uσ is strictly concave with respect to the
argument c. The same holds when σ = 1 and ρ > 0.

Proof. Convexity. Let i = 1, 2 and let (xi,ci) ∈ A (̄s), and λ ∈ [0, 1]. Calling

(xλ,cλ) = λ (x1,c1) + (1 − λ) (x2,c2)

then due to the linearity of the state equation (5)

st,̄s,(xλ,cλ) = λst,̄s,(x1,c1) + (1 − λ) st,̄s,(x2,c2).

Since all constraints on (s, (x, c)) (i.e. x ≥ 0, c ≥ 0, xTA ≤ sT ) are linear it follows that,
since (xi,ci) (i = 1, 2) satisfy them, then so does (xλ,cλ). This yields (xλ,cλ) ∈ A (̄s) when
σ ∈ (0, 1) ∪ (1,+∞). If σ = 1 we also have to prove that (xλ,cλ) is semiintegrable. This
follows from point (2) of Proposition 4.5. Indeed if ρ > 0, thanks to estimate (39) we know
all admissible strategies are upper semiintegrable, so also their convex combinations are
upper semiintegrable. Boundedness follows from the estimates of Lemma 4.2.

Closedness follows from the fact that all constraints are linear so all of them preserve
in the limit in the topology of L∞

g1
(0,+∞; Rm) × L1

g2

(

0,+∞; Rk
)

. For σ = 1 we need to
know that the limit of semiintegrable sequences is again semiintegrable. For ρ > 0 this
follows from the estimate (39).
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Homogeneity (45) follows from convexity and from the fact that the strategy (0,0)
is always admissible.

Strict concavity of the functional Uσ is a standard result (see e.g. [5]) and we omit
the proof.

Now we move on to the proof of Theorem 3.1.

Proof of Theorem 3.1. The uniqueness property follows from the strict concavity of
Uσ proved in Proposition 4.9. The existence result follows applying a suitable modification
of Theorems 21 and 22 in [16, p. 406] (see also [15]). We divide it into three cases depending
on the value of σ.

Case σ > 1.
Here we can apply directly Theorem 22 and note 26 of [16, p. 406] plus [16, note 20,

p.137]. In fact this theorem asks the following:

1. the set U where the controls take values is closed (in our case U is R
m
+ ×R

k
+ i.e. the

positive orthant of R
m+k);

2. the functions defining the running utility ((s, (x,c) , t) → e−ρtuσ (ν(c))), the dynam-
ics of the state equation ((s, (x,c) , t) → −δzs

T +xT (B−δA)−ĉ) and the constraints
((s, (x,c) , t) → sT − xTA) are defined on the set

S =
{

(s, (x,c) , t) ∈ R
n
+ ×

[

R
m
+ × R

k
+

]

× R+ : sT − xTA ≥ 0
}

,

are linear (or sum of linear and nondecreasing) in the variable s and continuous on
the set

S ′ =
{

(s, (x,c) , t) ∈ R
n
+ ×

[

R
m
+ × R

k
+

]

× R+ : sT − xTA ≥ 0
}

;

3. for each t ≥ 0 the set

S ′ (t) =
{

(s, (x,c)) ∈ R
n
+ ×

[

R
m
+ × R

k
+

]

: sT − xTA ≥ 0
}

is contained in the closure S0 (t) of the set

S0 (t) =
{

(s, (x,c)) ∈ R
n
+ × U : sT − xTA > 0

}

;

4. for each n ∈ N and t ≥ 0 the set

Γn
t =

{

(s, (x,c)) : sT − xTA ≥ 0, (x,c) ∈ U,

∣

∣

∣

∣

(

e−ρtuσ (ν(c)) ,−δzs
T + xT (B−δA) − ĉ

)∣

∣

∣

∣ ≤ n,
}

is closed and is contained in S ′ (t). The same for the set

Γn = {s : (s, (x,c)) ∈ Γn
t } ;
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5. there exists an admissible strategy with finite value;

6. the set

N (s,U, t) =
{(

e−ρtuσ (ν(c)) + γ,−δzs + xT (B−δA) − ĉ + γ
)

:

(γ, γ) ≤ 0, s − xTA ≥ 0, (x,c) ∈ U
}

is convex for all (s,t) ∈ R
n × [0,+∞) ;

7. the set N (s,U, t) has closed graph for each t as a function of s ∈ Γn. Closed graph
means that

sn ∈ Γn,vn ∈ N (s,U, t) , sn → s,vn → v ⇒ s ∈ Γn.

8. there exists q′ ∈ R
n+1, q′ ≥ 0 such that for every q ≥ q′ (q = (q0, q1, ..., qn) =

(q0,q1)) there exists locally integrable functions φq and ψq defined for t ∈ [0,+∞)
such that

e−ρtuσ (ν(c)) q0+
(

−δzs
T + xT (B−δA) − ĉ

)

q1 ≤ φq (t)+ψq (t)·max
[

0, sTe1, ..., s
Ten

]

for every (s, (x,c) , t) ∈ S.

9. for every i = 1, ..., n and every admissible state trajectory st, we have sT
t ei ≥ 0 for

every t ≥ 0. Moreover for every q0∈R, q0 ≥ 0, there exists an integrable function νq0

defined for t ∈ [0,+∞) such that, ,

e−ρtuσ (ν(ct)) (1 + q0) ≤ νq0
(t) ,

for every admissible strategy (x,c) ∈ A (̄s).

All points 1-4 and 6-7 are easily checked in our case thanks to the linearity of the
state equation and of the constraints. We omit the verification of them for brevity. Point
5 is known from previous results (Proposition 4.5 and Proposition 4.7). Point 9 comes
simply recalling that for σ > 1 the utility is negative and so one can choose νq0

(t) = 0
for every t ≥ 0. Point 8 is more delicate. Setting

g (c) = e−ρtuσ (ν(c)) q0 − ĉTq1

we have
g (c) ≤ 0

Moreover

−δzs
T + xT (B−δA) = −δz

(

sT − xTA
)

+ xT (B−δxA) ≤ xTB.

Now, recalling the proof of (23) we have that

xTB ≤ sTD ≤M max
[

0, sTe1, ..., s
Ten

]

whereM depends only on the coefficient of D. Setting, for t ≥ 0, φq (t) = 0 and ψq (t) = M

we see that φq and ψq are locally integrable functions and satisfy point 8.

Case σ = 1 and σ ∈ (0, 1).
Also this case goes applying Theorem 22 and note 26 of [16, p. 406] (see also [15] or

[16, Exercise 6.8.3, p.410]). In fact this theorem asks the following:
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1. the set U where the controls take values is closed (in our case U is R
m
+ ×R

k
+ i.e. the

positive orthant of R
m+k);

2. the functions defining the running utility ((s, (x,c) , t) → e−ρtuσ (c)), the dynamics
of the state equation ((s, (x,c) , t) → −δzs

T + xT (B−δA) − ĉ) and the constraints
((s, (x,c) , t) → sT − xTA) are defined on the set

S =
{

(s, (x,c) , t) ∈ R
n
+ × U × R+ : sT − xTA ≥ 0

}

are linear (or sum of linear and nondecreasing) in the variable s and continuous on
the set

S ′ =
{

(s, (x,c) , t) ∈ R
n
+ × U × R+ : sT − xTA ≥ 0

}

;

3. for each t ≥ 0 the set

S ′ (t) =
{

(s, (x,c)) ∈ R
n
+ × U : sT − xTA ≥ 0

}

is contained in the closure S0 (t) of the set

S0 (t) =
{

(s, (x,c)) ∈ R
n
+ × U : sT − xTA > 0

}

;

4. for each n ∈ N and t ≥ 0 the set

Γn
t =

{

(s, (x,c)) : sT − xTA ≥ 0, (x,c) ∈ U,

∣

∣

∣

∣

(

e−ρtuσ (ν(c)) ,−δzs
T + xT (B−δA) − ĉ

)∣

∣

∣

∣ ≤ n,
}

is closed and is contained in S ′ (t). The same for the set

Γn = {s : (s, (x,c)) ∈ Γn
t } ;

5. there exists an admissible strategy with finite value;

6. the set

N (s,U, t) =
{(

e−ρtuσ (ν(c)) + γ,−δzs + xT (B−δA) − ĉT + γ
)

:

(γ, γ) ≤ 0, s − xTA ≥ 0, (x,c) ∈ U
}

is convex for all (s,t) ∈ R
n × [0,+∞);

7. the set N (s,U, t) has closed graph for each t as a function of s ∈ Γn. Closed graph
means that

sn ∈ Γn,vn ∈ N (s,U, t) , sn → s,vn → v ⇒ s ∈ Γn.

8. there exists q′ ∈ R
n+1, q′ ≥ 0 such that for every q ≥ q′ (q = (q0, q1, ..., qn) =

(q0,q1)) there exists locally integrable functions φq and ψq defined for t ∈ [0,+∞)
such that

e−ρtuσ (ν(c)) q0+
(

−δzs
T + xT (B−δA) − ĉT

)

q1 ≤ φq (t)+ψq (t)·max
[

0, sTe1, ..., s
Ten

]

for every (s, (x,c) , t) ∈ S.
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9. for every i = 1, ..., n and every admissible state trajectory st, we have sT
t ei ≥ 0 for

every t ≥ 0. Moreover for every q0∈R, q0 ≥ 0, there exists an integrable function
νq0

, continuous functions χi
q0

and θi
q0

(i = 1, ..., n) defined for t ∈ [0,+∞) such that,
for every admissible strategy (x,c) ∈ A (̄s),

e−ρtuσ(ν(ct) (1 + q0) +
n
∑

i=1

χi
q0

(t)
(

−δzs
T
t + xT

t (B−δA) − ĉT
t

)

ei ≤ νq0
(t) ,

and

−

∫ +∞

s

χi
q0

(t)
(

−δzs
T
t + xT

t (B−δA) − ĉT
t

)

eidt ≤ θi
q0

(s)

where lims→+∞ θi
q0

(s) = 0.

All points 1-4 and 6-7 are easily checked in our case thanks to the linearity of the
state equation and of the constraints. We omit the verification of them for brevity. Point
5 is known from previous results (Proposition 4.5 and Proposition 4.7). Point 8 follows
arguing exactly as in the case σ > 1 except for the estimate of the function g(c) which is
done as follows. First observe that g(c) goes to −∞ as any ci → +∞, then observe that
g is positive on a compact set depending on q and t which is bounded uniformly when q
and t belong to a bounded set. This is enough to guarantee that g has a maximum point
and that the value of the maximum is uniformly bounded for q and t on bounded sets.

Point 9 is more delicate. We show it in the case σ = 1 as the other case is analogous.
Set χi

q0
(t) = e−dt for suitable d to choose later and consider the term containing ct first.

They are

e−ρt ln ν(ct) (1 + q0) − e−dt

k
∑

i=1

ci,t.

Then, setting

g (c) = e−ρt ln ν(c) (1 + q0) − e−dt

k
∑

i=1

ci

we have, arguing as for the g above, that for every c ≥ 0, g(c) is estimated from above
by an integrable function depending only on ρ, d, q0

g (c) ≤ e−ρt (1 + q0)·

[

ln

(

e−ρt (1 + q0)

e−dt

)

− 1

]

= e−ρt (1 + q0)·[(−ρ+ d) t+ ln (1 + q0) − 1] .

The right hand side is integrable for ρ > 0. Moreover

−δzs
T
t + xT

t (B−δA) = −δz
(

sT
t − xT

t A
)

+ xT
t (B−δxA) ≤ xT

t (B−δxA) .

Then, for every ε > 0,

[

−δzs
T
t + xT

t (B−δA)
]

vF e
−dt ≤ xT

t (B−δxA)vF e
−dt

≤ xT
t AvF (Γ + ε) e−dt ≤ e(Γ+ε)ts̄TvF (Γ + ε) e−dt.
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So if d > Γ the first part of point 9 is true. Now observe that

−

∫ +∞

s

χi
q0

(t)
(

−δzs
T
t + xT

t (B−δA) − cte
T
1

)

eidt

= −

∫ +∞

s

e−dteT
i vF ·

(

−δzs
T
t + xT

t (B−δA) − cte
T
1

)

eidt

≤

∫ +∞

s

e−dteT
i vF ·

(

δzs
T
t + δxx

T
t A + cte

T
1

)

eidt.

Now from the estimates 19.21

eT
i vF ·

(

δzs
T
t + δxx

T
t A
)

ei ≤Me(Γ+ε)t

so that
∫ +∞

s

e−dteT
i vF ·

(

δzs
T
t + δxx

T
t A
)

eidt ≤M1e
−(d−Γ−ε)s.

Moreover, thanks to stima 22-19 we get, for d > Γ + ε
∫ τ

s

e−drcrdr ≤ e−(d−Γ−ε)ss̄TvF

so that, sending τ → +∞,

∫ +∞

s

e−dtctdt ≤M2e
−(d−Γ−ε)s.

and this completes the proof.

References

[1] Balder, E. J.: Existence of Optimal Solutions for Control and Variational Problems
with Recursive Objectives. Journal of Mathematical Analysis and Applications, 178,
418-437 (1993)

[2] Bardi, M., Capuzzo Dolcetta, I.: Optimal Control and Viscosity Solutions of
Hamilton-Jacobi-Bellman Equations. Boston, Birkhauser, 1997.

[3] Becker, R. A., Boyd III, J. H., Sung, B. Y.: Recursive Utility and Optimal Capital
AccumulationI: Existence. Journal of Economic Theory, 47, 76-100 (1989)

[4] Cesari, L.: Optimization Theory and Applications. New York, Springer–Verlag, 1983

[5] Freni, G., Gozzi, F., Pignotti, C.: A Multisector AK Model with Endogenous Growth:
Value Function and Optimality Conditions. J. Math. Ec., 2008.

[6] Freni, G., Gozzi, F., Salvadori, N.: Existence of Optimal Strategies in linear multi-
sector models. Economic Theory, 29 25-48, 2006.

28



[7] Freni, G., Gozzi, F., Salvadori, N.: Existence of Optimal Strategies in linear Multi-
sector Models. Discussion papers, Collana di E-papers del Dipartimento di Scienze
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