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Abstract. This paper characterizes the optimal time paths of extraction of several 

nonrenewable resource deposits with different costs of extraction when the extracted 

resource can be converted into productive capital and the extraction process, as well as 

the production of the substitute, requires two primary factors of production. Under a 

technological assumption granting that the time paths of primary factor prices are 

monotonic, we show that, for each pair (lower cost/higher cost) of deposits, an 

intensity condition is necessary in order to have discontinuous extraction of the lower 

cost deposit. We also show that the same condition is sufficient for discontinuous 

extraction of the lower cost deposit, provided the stock of the lower cost deposit is 

sufficiently large and the stocks of all other deposits are sufficiently small. 

JEL classification: Q3; Q4 
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1. Introduction 

If an “energy” sector can exploit several deposits of an exhaustible resource, then a 

problem of order of extraction arises. Partial equilibrium analysis suggests that 

efficient extraction should occur sequentially from the lowest-cost deposit to the 

highest-cost one (Herfindahl, 1967) and that, if a high-cost substitute exists, then its 

production by means of the 'backstop technology' should begin after exhaustion of all 

deposits. In an attempt to evaluate the generality of the above principles, Kemp and 

Long (1980) showed that both the above 'folk theorems' are invalid in a “Ricardian” 

general equilibrium context. Within that framework, the ‘theorems’ fail because the 

desire to smooth consumption and the fact that the product is non-storable provide an 

incentive to delaying extraction from low cost deposit. In turn, procrastination of 

extraction implies the generic existence of time intervals during which (at least) two 

processes are operated. Building on this argument, Lewis (1982) developed an 

extended model in which storage is allowed, and proved that the least-cost-first 

principle is restored, provided the extracted resource can be converted into productive 

capital, where productive capital means that stored capital grows at a positive rate. 

More recently, Amigues, Favard, Gaudet and Moreaux (1998) have modified the 

Kemp and Long model by introducing a constraint for the capacity of the backstop that 

is active in the long run equilibrium. Amigues et al. (1998) found that the capacity 

constraint generates an additional incentive to delay extraction, which may lead to start 

the backstop well before a lower cost resource is ever put into use. Favard (2002) 

extended these results to the Lewis (1982) framework. Capacity constraints have been 

further investigated by Freni (2004) and Holland (2003) in partial equilibrium settings. 
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Both studies reported a series of negative counter-examples showing, in particular, that 

deposits may be temporarily abandoned after a period of initial extraction and that 

high-cost deposits may be either opened or exhausted before low-cost ones. To our 

knowledge, Freni’s (2004) and Holland’s (2003) articles are the only studies that 

reported the possibility of discontinuous extraction of a nonrenewable resource reserve 

in a single demand setting (for discontinuous extraction with multiple demands see 

Gaudet, Moreaux and Salant, 2001 and Im, Chackavorty and Roumasset, 2006). 

Capacity constraints reflect the existence of specific primary factors of production 

in fixed supply. In general, therefore, adding a capacity constraint increases by one the 

number of primary factors of the system and opens the door to 'substitution' effects 

associated with the transitional dynamics of factor prices. These effects are indeed at 

the root of the results of Amigues et al. (1998), Favard (2002), Freni (2004) and 

Holland (2003). For example, in Favard's (2002) model, which involves two factors of 

production (transferable 'labor' and a backstop-specific factor of production), the 

specific factor price increases and the price of the transferable factor decreases during 

the transition to the long run equilibrium. Hence, in Favard’s (2002) model, delaying 

extraction is optimal because a factor that will be cheaper in the future is intensively 

used in exploiting the resource. Analogous mechanisms are at work in the Amigues et 

al. (1998), Freni (2004), and Holland (2003) models, although in these models 

consumption smoothing operates as in the Kemp and Long (1980) model, and labor 

supply is elastic. 

The purpose of this paper is to characterize the optimal time paths of extraction and 

production of an “energy” sector in which two non-specific primary factors of 
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production are required to exploit the reserves and to produce the substitute. The main 

result is that the incentive to procrastinate extraction in response to monotonic factor 

price dynamics can lead to discontinuous extraction of lower cost deposits along the 

optimal path, even if the resource can be converted into productive capital (Solow and 

Wan, 1976, Lewis, 1982). Given a higher cost and a lower cost deposit, a factor 

intensity condition turns out to be necessary for a complete cost reversal. The 

condition is also sufficient, provided the stocks in the higher cost deposit and in all 

other deposits are sufficiently small. In this case, if the stock in the lower cost deposit 

is small, then the higher cost deposit is exploited before the lower cost one. On the 

other hand, if the stock in the lower cost deposit is sufficiently large, it will be optimal 

to have an initial phase during which the lower cost deposit is exploited. 

For the sake of simplicity, we embed the results in a simple endogenous growth 

model in which, as it is typically assumed in the endogenous growth literature, the 

instantaneous utility function exhibits a constant inter-temporal elasticity of 

substitution and the discount rate is smaller than the given maximum rate of growth. 

Such a set of assumptions ensures an equilibrium in which a constant consumption 

growth rate is sustained by a constant rate of interest, while only level effects are 

associated with the existence of non-reproducible factors either in fixed or, as for the 

exhaustible resources, in decreasing supply. 

 In Section 2, I present the model and give the optimality conditions for the general 

case of n, n ≥ 2, deposits. The structure of the optimal paths for the case of two 

deposits is discussed in details in Section 3. Section 4 characterizes the optimal 

extraction path for the case of n deposits. Section 5 presents some concluding remarks. 
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2. The model 

Consider an “energy” sector whose output derives either from the exploitation of n, 

n ≥ 2, deposits of an exhaustible resource or from the activation of a backstop 

technology, or from both. The backstop system is the one sector AK model with a drift, 

in which the drift is due to the possibility of operating a backstop production process 

without the use of capital. This process can be run at any scale of operation, but 

requires the services of two primary resources, called 'labor' and ‘land’, which are in 

fixed supply. We normalize the existing amounts of labor and land to 1. 

The initial stocks in the n deposits are given by the vector y , y ! R++
n . As for the 

backstop, the extraction technology from each deposit exhibits constant returns and 

requires (the services of) labor and/or land in a given proportion. Storage of the good is 

possible. The rate of growth of stored capital is a constant !, ! " R . The capital stock 

at time zero is denoted by s , s !R+ . 

Formally, we have n + 1 production processes for “energy”: the backstop and the n 

extraction processes. At the unitary level, the backstop requires l0, l0 > 0, units of labor 

and d0, d0 > 0, units of land:  

 (l0, d0 ) -> 1, 

while the extraction process i , 
 

i ! 1.2,K,n{ } , requires li, li ≥ 0, units of labor, di, di ≥ 

0, units of land, and depletes deposit i  of one unit of the resource:  

       (li, di, 1 ) -> 1. 
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At time t, s(t) denotes the stock of capital, and y(t)  denotes the resource stocks. 

Moreover, I use x0(t) to indicate the intensity of the backstop production process and 

x(t)  to indicate the intensities of the extraction processes. To simplify the notation, 

whenever the context makes clear which time is referred to, I omit the time argument. 

The preference side of the model is standard. There is a representative consumer 

with an infinite horizon, who derives utility only from consumption of “energy”, c(t), 

c(t) ≥ 0. His utility function is time additive separable, with the instantaneous utility 

function u(c) taking the form:  

     u(c) =

c1!"

1 !"
" # 1

log(c) " =1

$ 

% 
& 

' 
& 

   (CES) 

Future utilities are discounted at the constant rate ρ.1 

The Pareto-optimal allocations of our system are therefore the solutions of the 

following optimal control problem: 

             V s ,y( )= sup e
!"t
u(c(t))dt

0

#

$    (PO1) 

                             s. to      x
0
(t)l

0
+ x(t)l !1     (1) 

                              x
0
(t)d

0
+ x(t)d !1     (2)                      

          
 
&s(t) = x

0
(t)+ x(t)e+!s(t)" c(t)    (3) 

                        
 
&y(t) = !x(t)     (4) 

                 x
0
(t) ! 0 x(t) ! 0       (5) 

 c(t) ! 0     (6) 

                   s(t) ! 0 y(t) ! 0     (7) 
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                 s(0) = s y(0) = y     (8), 

where 
 

l = l
1
, l

2
, K, l

n[ ] , 
 

d = d
1
, d

2
, K, d

n[ ] , 
 

e = 1, 1, K, 1[ ] , and 

u(c(t))  takes the CES form given above. 

In this section, we study problem (PO1) under the following set of assumptions: 

[A1]  (li, di) ≥ 0, (li, di) ≠ 0, (li, di) ≠ (lj, dj), (l0, d0) >> (li, di), j, 
 

i ! 1,2,K,n{ } , 

[A2]  Γ > 0, 

[A3]  ρ - Γ(1 - σ) > 0, 

[A4] Γ − ρ > 0. 

Assumption [A1] means that there is not free lunch and that, although deposits differ 

from one another, each extraction process dominates the backstop production method. 

The meaning of [A2] is that capital is productive. The inequality under [A3] is a 

condition ensuring the existence of an optimal solution of problem (PO1) with 

!" <V s ,y( ) <" (see Freni, Gozzi and Salvadori, 2006). The condition in [A4] gives 

the incentive to accumulate. Assumptions [A1] - [A4]  imply that the optimal 

production path is nonincreasing. This conclusion, that is the main result of this 

section, is presented in Proposition 1 below. 

In the two following sections, we specialize problem (PO1) by adding two further 

assumptions. 

 

[A5]  d0 < l0, di > li 
 

i ! 1,2,K,n{ } ,  

[A6] (l1, d1) >> (l2, d2) >> … >> (ln, dn). 

                                                                                                                                             
1 As in Rebelo (1991), I do not assume ρ > 0. 
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Assumption [A5] means that the total endowments of the two factor inputs belong 

to each diversification cone generated by the backstop process and any extraction 

process. This assumption grants monotonic dynamics of the factor prices and, almost 

ever, prevents simultaneous extraction from multiple deposits. Finally, Assumption 

[A6] contains the conditions that allow us to order deposits with costs in a natural way. 

Whenever this assumption holds, I label the deposits in reverse order of costs. 

Define the current value Lagrangian function: 

L s,y,v,p, x
0
,x,c,q,µ( )= u(c)+ (x0 + xe+!s " c)v " xp + yq+ sµ  

where v and p are the costate variables corresponding to s and y, respectively, and q 

and µ are the multipliers for the non-negativity constraints in (7), and let w(t) and r(t) 

be the multipliers for the constraints (1) and (2), respectively.2 Then the following 

conditions are sufficient for optimality:3 

 
&s(t) = x

0
(t)+ x(t)e+!s(t)" c(t)   (3) 

˙ y (t ) = !x(t)     (4) 

        
 
&v(t) ! (" #$)v(t)    (9) 

   s(t) ! 0     (10) 

                                                 
2 The usual interpretation in terms of spot competitive prices applies both to the costates, v(t) and p(t), 

and to the multipliers, w(t) and r(t). Thus, in what follows, I will often refer to v(t) as to the competitive 

price of energy, to p(t) as to the vector of the in situ competitive prices for the different grades of the 

resource, to w(t) as to the wage rate, and to r(t) as to the land rent rate. 
3 See Freni, Gozzi and Pignotti (2008). 
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&v(t)s(t) = (! "#)v(t)s(t)    (11)     

˙ p (t) ! "p(t)     (12)                

y(t ) ! 0     (13) 

˙ p (t)y(t) = !p(t)y(t)    (14) 

p(t) ! 0     (15) 

   c(t)!" = v(t) > 0     (16) 

               

min w(t)+ r(t)[ ]

v(t) ! w(t)l
0
+ r(t)d

0

ev(t)" p(t) ! w(t)l+ r(t)d

w(t) # 0, r(t) # 0

   (17) 

              

max x
0
(t)v(t)+ x(t) ev(t)! p(t)[ ]{ }
x
0
(t)l

0
+ x(t)l "1

x
0
(t)d

0
+ x(t)d "1

x
0
(t) # 0, x(t) # 0

  (18) 

                          lim
t!"

e
#$t

s(t)v(t) + y(t)p(t)[ ] = 0 .   (19) 

Given that exhaustion of a deposit is irreversible, condition (12) can be satisfied as 

an equality. Moreover, since Assumption [A4] implies that for each optimal path we 

must have s(t) > 0 for t > 0, we can use Theorem 5.3 in Freni, Gozzi and Pignotti 

(2008) to claim that the above conditions are also necessary for optimality. This allow 

us to state condition (9) as an equality without missing any of the optimal solutions. 

We can therefore immediately derive from condition (16) that the rate of growth of 

consumption is the constant go =
! " #

$
 along the whole optimal path. 

From the above set of conditions and Assumption [A1], we must have that the 

scarcity rent vector p(t) is positive. Otherwise the demand for a grade of the resource 
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would become infinite. Henceforth, given that conditions (9), (12) and (14) imply that 

the left side of inequality ev(t)! p(t) " w(t)l+ r(t)d  becomes negative in finite time, 

the date of exhaustion of the resources is finite. We denote this date by Ty , Ty > 0 . 

Once all deposits are exhausted, the system behavior is given by the solution of the 

following problem: 

         sup e
!"t
u(c(t))dt

0

#

$   (POB) 

                
 

&s(t) =
1

l
0

+!s(t)" c(t)
    

              c(t) ! 0, s(t) ! 0, s(0) = ŝ ! 0 . 

Given that the utility function takes the CES form, a straightforward verification 

procedure (see for example Jones and Manuelli, 1990, or Rebelo, 1991) provides the 

solutions of (POB): 

      c
B
(t) = (! " go ) ŝ +

1

!l
0

#

$
%

&

'
(e

gt
   (20) 

            sB (t) = !
1

"l
0

+
c
B
(t)

" ! g
o
, s

B
(t) # 0 .  (21) 

Figure 1 illustrates the optimal trajectory (21) in the (s(t), c(t)) space. We note that 

along the optimal path condition (21) must hold from the time Ty  on, because, once 

we have y(t) = 0 , the transversality condition (19) forces the optimal solution of (PO1) 

on the half-line AB. 

Let us define p̂(t) =
1

v(t)
p(t) , ŵ(t) =

w(t)

v(t)
 and r̂(t) =

r(t)

v(t)
. Substituting these in the 

above optimality conditions, we first rearrange the linear problems (17) and (18) as 

follows: 
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min ŵ(t)+ r̂(t)[ ]

1! ŵ(t)l
0
+ r̂(t)d

0

e " p̂(t) ! ŵ(t)l+ r̂(t)d

ŵ(t) # 0, r̂(t) # 0

   (22) 

 

            

max x
0
(t)+ x(t) e ! p̂(t)[ ]{ }

x
0
(t)l

0
+ x(t)l "1

x
0
(t)d

0
+ x(t)d "1

x
0
(t) # 0, x(t) # 0

,   (23) 

 and then, taking conditions (9) and (12) as equalities, we get: 

     
 
&̂p(t) = !p̂(t) ,    (24) 

which can be interpreted as the Hotelling rule,4 

Using equation (24) in conjunction with the dual linear problems (22) and (23), we 

can now derive the following proposition: 

Proposition 1: Let Assumptions [A1]-[A4] hold. Then the optimal production paths, 

x
0
(t)+ x(t)e , is a decreasing step function with x(t) ! 0  and x

0
(t)+ x(t)e  > 

max
1

l
0

,
1

d
0

!

"
#

$

%
&  for t < Ty , and x(t) = 0  and x0 (t) =max

1

l
0

,
1

d
0

!

"
#

$

%
&  for t > Ty . 

Proof. Note that equation (24) implies constancy in the scarcity rents ratios. Thus, 

fixing p̂(0) , the family of vectors

 

p̂
1
(0)

p̂
n
(0)
,

p̂
2
(0)

p̂
n
(0)
, K,

p̂
n!1(0)

p̂
n
(0)

, 1
"

#
$

%

&
' p̂n (t)  can be 

used in (22) to generate a family of linear programs. Linear parametric programming 

theory then implies that the minimum value, m( p̂
n
(t)) =min ŵ(t)+ r̂(t)( ) , is a 

continuous, convex and piecewise linear function of p̂
n
(t) . Furthermore, given that the 

                                                 
4 Since 

 
&v(t) = (! "#)v(t) , the maximum rate of uniform growth and the rate of interest in the dual price 

system are equal as in von Neumann (1945) (see also Rebelo, 1991). 
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admissible region of problem (22) is non-decreasing with p̂
n
(t) , the function is non-

increasing and becomes the constant max
1

l
0

,
1

d
0

!

"
#

$

%
&  for p̂

n
(t)≥ p̂n (Ty ) . An example 

of the minimum function is depicted in Figure 2. Then, from the Duality Theorem of 

Linear Programming we get: 

 

 

m( p̂
n
(t)) = x

0
(t)+ x(t)e ! x(t)

p̂
1
(0)

p̂
n
(0)
,

p̂
2
(0)

p̂
n
(0)
, K,

p̂
n!1(0)

p̂
n
(0)

, 1
"

#
$

%

&
'

T

p̂
n
(t) , 

where x
0
(t)+ x(t)e  is the output associated with an optimal basic solution. 

We therefore conclude that the optimal production paths x0 (t)+ x(t)e , is a decreasing 

step function with the stated properties.  

An implication of Proposition 1 is that the optimal stock trajectory solves the 

following piecewise linear differential equation: 

   
 
&s(t) = x

0
(t)+ x(t)e+!s(t)" c(0)e

g
o
t ,   (25) 

in which consumption at time zero is jointly determined by the initial condition 

s(0) = s , and by the “final” condition 

      s(Ty ) = !
1

"l
0

+
c(Ty )

" ! g
o
, s(Ty ) # 0 .   (26) 

What is left out is the analysis of the production path and, hence, the determination of  

date Ty  given in equations (25) and (26). For the case where Assumptions [A5] and 

[A6] hold, this is the task we accomplish in the following two sections. To fix ideas, in 

the next section we take n = 2 and give a complete characterization of both the 

extraction and the substitute production optimal paths. 
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3. Order of extraction with two deposits 

Let us now consider the case where n = 2 and Assumptions [A5] and [A6] hold. 

The factor intensity conditions in Assumption [A5] have two main implications. First, 

given that each extraction process is relatively more land-intensive and the backstop is 

relatively more labor-intensive than is the overall system, then we have 
l
0

d
0

l
i

d
i

> 0  

and 1, 1[ ]
l
0

d
0

l
i

d
i

!

"
#

$

%
&

'1

>> 0 0[ ], i ( 1,2{ } . On the other hand, either  

      
l
1

d
1

l
2

d
2

= 0 , 

and x
1
, x

2[ ]
l
1

d
1

l
2

d
2

!

"
#

$

%
&= 1, 1[ ]  does not have a solution by Assumption [A1], 

or 

                          1, 1[ ]
l
1

d
1

l
2

d
2

!

"
#

$

%
&

'1

/( 0, 0[ ] . 

Therefore six basic feasible solutions of the linear problem (23) exist and we can 

compute them to be: 

      x
0

1
,x

1!" #$= 0, 0,
1

d
2

%

&
'

(

)
*

!

"
+

#

$
,, x0

2
,x

2!" #$= 0,
1

d
1

, 0
%

&
'

(

)
*

!

"
+

#

$
,,  
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    x
0

3
,x

3!" #$=
d
1
% l

1

l
0
d
1
% l

1
d
0

,
l
0
% d

0

l
0
d
1
% l

1
d
0

, 0
&

'
(

)

*
+

!

"
,

#

$
-, x0

4
,x

4!" #$=
d
2
% l

2

l
0
d
2
% l

2
d
0

, 0,
l
0
% d

0

l
0
d
2
% l

2
d
0

&

'
(

)

*
+

!

"
,

#

$
-

      x
0

5
,x

5!" #$=
1

l
0

, 0, 0( )
!

"
%

#

$
& , x

0

6
,x

6!" #$= 0, 0, 0( )!" #$ . 

We note that the first five of these solutions can be optimal and that the fifth is indeed 

the long-run optimal solution. 

Now we can use Proposition 1 to get 

           m( p̂2 (t)) =max
1

l
0

, G
1
( p̂

2
(t)), G

2
( p̂

2
(t))

!
"
#

$
%
&

,  (27) 

where 

       

G
1
( p̂

2
(t)) =max x

2
e(1!

p̂
1
(0)

p̂
2
(0)

p̂
2
(t)), x

3
e+ x

0

3 ! x3e
p̂
1
(0)

p̂
2
(0)

p̂
2
(t)

"
#
$

%
&
'

 

(28) 

 

and 

 

   G
2
( p̂

2
(t)) =max x1e(1! p̂

2
(t)), x

4
e+ x

0

4
! x

4
ep̂

2
(t){ } . (29) 

 

Both function G
1
( p̂

2
(t)) and G

2
( p̂

2
(t)) are continuous, piecewise linear, convex, and 

decreasing, and both the graphs have a kink, the first at (
p̂
2
(0)

p̂
1
(0)
(1!

d
1

d
0

),
1

d
0

)  and the 

second one at ((1!
d
2

d
0

),
1

d
0

) . The graph of m( p̂
2
(t)) for a given value of 

p̂
2
(0)

p̂
1
(0)

 is 

depicted in Figure 3. 

 

Thus, we can conclude that deposits extraction will always end with a phase during 

which the substitute is produced and that an initial phase during which the backstop is 

inactive will exist only if the stocks are sufficiently large. 

A second implication of Assumption [A5] is that, along the optimal path, the price 

of the factor that is used intensively in the extraction processes cannot increase and the 

price of factor that is used intensively in the production of the substitute cannot 



 15 

decrease. To prove this, consider the family of linear problems (22). We note that 

when the backstop is inactive the solution is ŵ = 0, r̂ =max G
1
, G

2( ) , while in the 

long run we have ŵ =
1

l
0

, r̂ = 0 . Furthermore, when the substitute is produced in the 

phase preceding exhaustion of the resource, the equilibrium factor prices solve the 

system of equations 

                   
ŵ

r̂

!

"
#
$

%
&
l
0

d
0

li* di*

!

"
#

$

%
&=

1

1' pi*

!

"
#

$

%
& , 

where i* is the cost-minimizing extraction process. The desired result follows from the 

fact that the entries of 
l
0

d
0

l
i*

d
i*

!

"
#

$

%
&

'1

are positive at the diagonal and negative off the 

diagonal.5 

We are now ready to determine the structure of the optimal extraction path. In 

constructing Figure 3, we showed that the extraction path ends with a phase during 

which x
0
(t) > 0 . The maximum length of this phase, L, is the solution of the following 

equation: 

    p̂
2
(Ty ) =max 1!

d
2

d
0

, (1!
d
1

d
0

)
p̂
2
(0)

p̂
1
(0)

"
#
$

%
&
'
e
(t

, 

where p̂2 (Ty ) =max 1!
l
2

l
0

, (1!
l
1

l
0

)
p̂
2
(0)

p̂
1
(0)

"
#
$

%
&
'

. Thus,  

    L =
1

!
log

max 1"
l2

l0
, (1"

l1

l0
)
p̂2 (0)

p̂1(0)

#
$
%

&
'
(

max 1"
d2

d0
, (1"

d1

d0
)
p̂2 (0)

p̂1(0)

#
$
%

&
'
(

.  (30) 

                                                 
5 Note that this result is a version of the Samuelson-Stolper Theorem. 
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Since 
p̂
2
(0)

p̂
1
(0)

<min

1!
l
2

l
0

1!
l
1

l
0

,

1!
d
2

d
0

1!
d
1

d
0

"

#
$$

%
$
$

&

'
$$

(
$
$

 implies m( p̂
2
(t)) >G

1
( p̂

2
(t)) for each p̂

2
(t) , the 

resource price ratio that supports an optimal path must satisfy the inequality  

p̂
2
(0)

p̂
1
(0)

!min

1"
l
2

l
0

1"
l
1

l
0

,

1"
d
2

d
0

1"
d
1

d
0

#

$
%%

&
%
%

'

(
%%

)
%
%

. If 
p̂
2
(0)

p̂
1
(0)

!max

1"
l
2

l
0

1"
l
1

l
0

,

1"
d
2

d
0

1"
d
1

d
0

#

$
%%

&
%
%

'

(
%%

)
%
%

>min

1"
l
2

l
0

1"
l
1

l
0

,

1"
d
2

d
0

1"
d
1

d
0

#

$
%%

&
%
%

'

(
%%

)
%
%

, 

then, as shown in Figure 3, only the higher cost deposit is exploited during the phase in 

which the substitute is produced. On the other hand, if 

min

1!
l
2

l
0

1!
l
1

l
0

,

1!
d
2

d
0

1!
d
1

d
0

"

#
$$

%
$
$

&

'
$$

(
$
$

<
p̂
2
(0)

p̂
1
(0)

<max

1!
l
2

l
0

1!
l
1

l
0

,

1!
d
2

d
0

1!
d
1

d
0

"

#
$$

%
$
$

&

'
$$

(
$
$

, then a part of the time L is spent 

in exploiting the higher cost deposit and the rest in exploiting the lower cost deposit. In 

this case, the precise sequence of extraction will depend on the value of 

max

1!
l
2

l
0

1!
l
1

l
0

,

1!
d
2

d
0

1!
d
1

d
0

"

#
$$

%
$
$

&

'
$$

(
$
$

. If  

1!
d
2

d
0

1!
d
1

d
0

>

1!
l
2

l
0

1!
l
1

l
0

, then the lower cost deposit is extracted 

before the higher cost deposit. On the contrary, if 

1!
d
2

d
0

1!
d
1

d
0

<

1!
l
2

l
0

1!
l
1

l
0

, then a cost reversal 

occurs and the higher cost deposit is used first. Finally, if 

1!
d
2

d
0

1!
d
1

d
0

=

1!
l
2

l
0

1!
l
1

l
0

=
p̂
2
(0)

p̂
1
(0)

, then 

there is a continuum of optimal extraction paths and the sequence of extraction is 

therefore indeterminate. Figures 4(a), 4(b) and 4(c) depict the graphs of m( p̂
2
(t))  for 
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the three case discussed above. Figure 4(a) portrays a “normal” case where 

1!
d
2

d
0

1!
d
1

d
0

>

1!
l
2

l
0

1!
l
1

l
0

 and Figure 4(c) depicts the pathological situation where 

1!
d
2

d
0

1!
d
1

d
0

=

1!
l
2

l
0

1!
l
1

l
0

=
p̂
2
(0)

p̂
1
(0)

. On the other hand, Figure 4(b) illustrates that, when a cost 

reversal occurs in the phase just preceding the transition to the backstop, then it can be 

optimal to exploit the lower cost deposit over two disjoint intervals and, from the 

above analysis, we expect that for any given initial stock y
1
 below a critical value, 

there is a threshold level on y
2
 which will determine whether or not discontinuous 

extraction will occur.  

 In order to pursue all these cases more deeply, we now study the minimum value of 

the family of linear programs (22) as a function of the two in situ prices, ( p̂
1
, p̂

2
) . The 

graph of this function consists of flat faces, each of which is associated with a specific 

production of the substitute/extraction profile, so changes in the production of the 

substitute/extraction strategy occur when a ( p̂
1
(t), p̂

2
(t))  ray from the origin crosses 

the projection of the edges of the graph in the ( p̂
1
, p̂

2
)  plane (i. e., where the minimum 

function is not differentiable). Substituting p̂
1
(t) =

p̂
1
(0)

p̂
2
(0)

p̂
2
(t)  in (27) and (28) and 

rearranging the terms in (27), we first calculate: 

m( p̂
1
(t), p̂

2
(t)) =max x2e(1! p̂

1
(t)), x

1
e(1! p̂

2
(t)){ }  

   for min
1! p̂

1
(t)

d
1

,
1! p̂

2
(t)

d
2

"
#
$

%
&
'
(
1

d
0

,  (31) 
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       m( p̂
1
(t), p̂

2
(t)) =max x3e+ x

0

3
! x

3
ep̂

1
(t), x

4
e+ x

0

4
! x

4
ep̂

2
(t){ }    for 

min
1! p̂

1
(t)

d
1

,
1! p̂

2
(t)

d
2

"
#
$

%
&
'
(
1

d
0

,min
1! p̂

1
(t)

l
1

,
1! p̂

2
(t)

l
2

"
#
$

%
&
'
)
1

l
0

,(32) 

and 

   m( p̂
1
(t), p̂

2
(t)) =

1

l
0

   for min
1! p̂

1
(t)

l
1

,
1! p̂

2
(t)

l
2

"
#
$

%
&
'
(
1

l
0

, (33) 

and then, using expression (31), (32) and (33), we identify the five regions in the 

( p̂
1
, p̂

2
)  plane where the basic solutions x

0

1
,x

1!" #$, x0
2
,x

2!" #$, x
0

3
,x

3!" #$, x0
4
,x

4!" #$, and 

x
0

5
,x

5!" #$are optimal. 

 In Figure 5(a), we depict these regions for the case 

1!
d
2

d
0

1!
d
1

d
0

>

1!
l
2

l
0

1!
l
1

l
0

. Extraction 

occurs from the lower (higher) cost deposit when ( p̂
1
(t), p̂

2
(t)) belongs to the union of 

sets 1 and 4 (2 and 3). The long run is reached when a ray from the origin crosses set 

5. Making time runs backwards, we note that the interior of the union of set 1 and 4 

absorbs the trajectories generated by equation (24). We therefore conclude that 

extraction occurs in order of costs. We also note that  
l
2

d
2

!
l
1

d
1

"

1#
d
2

d
0

1#
d
1

d
0

>

1#
l
2

l
0

1#
l
1

l
0

. 

 Using Figure 5(a) we can construct the optimal policy of extraction as follows. 

Assume 
p̂
2
(0)

p̂
1
(0)

!

1"
l
2

l
0

1"
l
1

l
0

, let p̂
2
(t) =

p̂
2
(0)

p̂
1
(0)

p̂
1
(t)be a ray from the origin generated by 
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solving equation (24) on the time interval !", "( ) , and let L1
3 p̂

2
(0)

p̂
1
(0)

!

"
#

$

%
&  be the interval 

of time that the trajectory spends in set 3. Once L
1

3 p̂
2
(0)

p̂
1
(0)

!

"
#

$

%
&  is known, the time spent in 

set 4, L
2

4 p̂
2
(0)

p̂
1
(0)

!

"
#

$

%
& , can be found using equation (30) as follows: 

   L2
4 p̂2 (0)

p̂1(0)

!

"
#

$

%
& =

1

'
log

(1(
l1

l0
)
p̂2 (0)

p̂1(0)

max 1(
d2

d0
, (1(

d1

d0
)
p̂2 (0)

p̂1(0)

)
*
+

,
-
.

( L
1

3 p̂2 (0)

p̂1(0)

!

"
#

$

%
& , (34) 

If 
p̂
2
(0)

p̂
1
(0)

!

1"
d
2

d
0

1"
d
1

d
0

, then L
1

3 p̂2 (0)

p̂1(0)

!

"
#

$

%
& =

1

'
log

1(
l1

l0

1(
d1

d0

 and L
2

4 p̂
2
(0)

p̂
1
(0)

!

"
#

$

%
& = 0 . On the other 

side, if 
p̂
2
(0)

p̂
1
(0)

=

1!
l
2

l
0

1!
l
1

l
0

, then L
1

3 p̂
2
(0)

p̂
1
(0)

!

"
#

$

%
& = 0  and L

2

4 p̂2 (0)

p̂1(0)

!

"
#

$

%
& =

1

'
log

1(
l2

l0

1(
d2

d0

. For 

intermediate values of the resources price ratio, using (32) to find the coordinates of 

the point where a trajectory enters region 3 and using equation (24) to evaluate 

L
1

3 p̂
2
(0)

p̂
1
(0)

!

"
#

$

%
& , we get 

    e
!L

1

3 p̂2 (0)

p̂1 (0)

"

#
$

%

&
'

=

(1(
l
1

l
0

)(x
3
e ( x4e

p̂
2
(0)

p̂
1
(0)
)

x
3
e+ x

0

3 ( x4e ( x
0

4
,   (35). 

Then, substituting from (35) for 
p̂
2
(0)

p̂
1
(0)

 in (34), we obtain 
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   L
2

4
=
1

!
log

(1"
l1

l0

)
x
3
e

x
4
e
"
x
3
e+ x0

3
" x

4
e " x0

4

x
4
e

e
!L

1

3

1"
d2

d0

" L
1

3   (36). 

Finally, since the amounts extracted in regions 3 and 4, y
1

*  and y
2

* , are given by x
3
eL

1

3
 

and x
4
eL

2

4
, respectively, substituting these values in (36) we get 

  y2
*
= x

4
e
1

!
log

(1"
l1

l0
)
x
3
e

x
4
e
"
x
3
e+ x0

3
" x

4
e " x0

4

x
4
e

e
!
y1
*

x
3
e

1"
d2

d0

"
x
4
e

x
3
e
y1
*  (37) 

 Figure 5(b) portraits the projection of the optimal paths in the (y
1
(t), y

2
(t)) -space. In 

the figure, the graph of function (37) is the decreasing dashed curve that identifies the 

boundary of the region where x
0
(t) > 0  

 In a similar way, we can use Figure 6(a) to fully characterize the optimal extraction 

paths when 

1!
d
2

d
0

1!
d
1

d
0

<

1!
l
2

l
0

1!
l
1

l
0

 and Figure 7(a) for the singular case 

1!
d
2

d
0

1!
d
1

d
0

=

1!
l
2

l
0

1!
l
1

l
0

. In the 

first case, 

1!
d
2

d
0

1!
d
1

d
0

<
p̂
2
(0)

p̂
1
(0)

<

1!
l
2

l
0

1!
l
1

l
0

implies that a ray will re-enter the union of set 1 and 

4 after leaving it. Therefore, instead of the single function in (37), we need two 

different functions to define the threshold levels where the lower cost deposit is 

temporary abandoned and where x
0
(t) > 0 , respectively. We graph the two curves in 

Figure 6(b), where we also portrait the projection of the optimal paths in the 

(y
1
(t), y

2
(t)) -space. The algebra is relegated in the Appendix. 
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 In the second case, the extraction policy is determined, and no cost reversal occurs, 

only if the stock in the higher cost deposit is sufficiently large. Otherwise, the optimal 

path is indeterminate. Figure 7(b) depicts the region of indeterminacy. In the Appendix 

we provide a formal derivation of the results. 

 The above findings are summarized in Proposition 2. 

Proposition 2: Let Assumptions [A1]-[A6] hold and let n = 2. Then: 

(i) for each ray (!y
1
(t),!y

2
(t))" R+

2 , ! " 0  there is a number M > 0 such that 

! < M " x
0
(t) > 0  and ! > M " x

0
(t) = 0 . 

(ii) the real rental rate of factor used intensively in the extraction processes is not 

increasing and the real rental rate of factor that is used intensively in the production 

of the substitute is not decreasing along any dual optimal path, 

(iii) if 

1!
d
2

d
0

1!
d
1

d
0

>

1!
l
2

l
0

1!
l
1

l
0

 , then the optimal order of extraction is the order of costs. If 

1!
d
2

d
0

1!
d
1

d
0

"

1!
l
2

l
0

1!
l
1

l
0

, then there is a number N > 0 such that: (a) deposits are optimally 

extracted in order of costs if y
1
! N , (b) a cost reversal occurs along the optimal 

path if y
1
< N and 

1!
d
2

d
0

1!
d
1

d
0

<

1!
l
2

l
0

1!
l
1

l
0

. In this case, for each y
1
< N  there is a threshold 

value on y
2
, P(y

1
) , such that the lower cost resource is optimally extracted on two 
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disjoint intervals if and only if y
2
> P(y

1
) , (c) If y

1
< N  and 

1!
d
2

d
0

1!
d
1

d
0

=

1!
l
2

l
0

1!
l
1

l
0

, then a 

portion of the optimal extraction path is indeterminate. 

4. Order of extraction with any number of deposits 

 Consider the general case of an arbitrary number of deposits n and let Assumptions 

[A5] and [A6] hold. By extending the argument used in section 3, we see that 

 

1, 1[ ]
l
0

d
0

l
i

d
i

!

"
#

$

%
&

'1

>> 0 0[ ], i ( 1,2,L,n{ } and no system xi , x j!" #$
li di

l j d j

!

"
%

#

$
&= 1, 1[ ]  

has a non-negative solution for 
 
i, j ! 1,2,L,n{ },i " j . Therefore, only 2n – 1 semi-

positive basic feasible solutions of the linear problem (23) exist and, hence, by using 

Proposition 1, we can get 

        

 

m( p̂n (t)) =max
1

l
0

,G
1
( p̂n (t)),G2

( p̂n (t)),K,Gn ( p̂n (t))
!
"
#

$
%
&

,  (38) 

where 

 Gi ( p̂n (t)) =max

1!
p̂i (0)

p̂n (0)
p̂n (t)

di
,

di ! li + l0 ! d0
l
0
di ! lid0

!
l
0
! d

0

l
0
di ! lid0

p̂i (0)

p̂n (0)
p̂n (t)

"

#
$$

%
$
$

&

'
$$

(
$
$

 

     
 
i ! 1,2,L,n{ } .    (39) 

 Since the graph of each Gi ( p̂n (t))  is kinked at (
p̂n (0)

p̂i (0)
(1!

di

d
0

),
1

d
0

) , as for the two-

deposits case, extraction will always ends with a phase during which x
0
(t) > 0 , and an 

extraction phase during which the backstop is inactive will exists only if the stocks are 

sufficiently large. Thus, along the optimal dual path the “wage rate” is still not 



 23 

decreasing, while the “land rent rate” is still not increasing and, furthermore, the 

maximum number of disjoint intervals during which a single deposit can be used is 

two. We have, therefore, constrained the optimal extraction path, and established that 

point (ii) and the general analog of point (i) of Proposition 2 hold with an arbitrary 

number of deposits. 

 We can further characterize the optimal extraction path as in Proposition 3. 

Proposition 3: Let Assumptions [A1]-[A6] hold. Then: 

(i) if 

1!
d j

d
0

1!
di

d
0

>

1!
l j

l
0

1!
li

l
0

 
! i, j " 1,2,L,n{ },i < j  , then the optimal order of extraction 

is the order of costs, 

(ii) if 
 
! i, j " 1,2,L,n{ }, i < j  such that 

1!
d j

d
0

1!
di

d
0

<

1!
l j

l
0

1!
li

l
0

, then there exist a non 

zero measure subset of R++
n , U, such that y !U implies that deposit j is extracted 

on two disjoint intervals. 

 Proof. First, note that if 

1!
d j

d
0

1!
di

d
0

>

1!
l j

l
0

1!
li

l
0

, 
 
i, j ! 1,2,L,n{ },i < j , then 

Gi ( p̂n
*
) =G j ( p̂n

*
)!  Gi ( p̂n ) >G j ( p̂n )  for each p̂

n
> p̂

n

* . This proves point (i).  Assume 

now that
 
! i, j " 1,2,L,n{ }, i < j  such that 

1!
d j

d
0

1!
di

d
0

<

1!
l j

l
0

1!
li

l
0

. By choosing sufficiently 

high resource price ratios 
p̂
z
(0)

p̂
i
(0)

 and 
p̂
z
(0)

p̂
j
(0)

, z ! i, j , we know from point (iii) of 
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Proposition 2 that we can choose 
p̂
j
(0)

p̂
i
(0)

 in such a way that deposit j is cost-

minimizing on two disjoint intervals of the range of p̂
n

. Now, we can progressively 

diminish prices p̂
z
(0)  until each deposit will appear on the m( p̂

n
(t)) frontier on (at 

least) an interval of the range of p̂
n

, leaving at the same time deposit j on the frontier 

on two disjoint intervals. This proves point (ii).  

5. Concluding remarks 

 We have examined the optimal order of extraction of several nonrenewable 

resource deposits with different costs of extraction when the extracted resource can be 

converted into productive capital and the extraction process, as well as the production 

of the substitute, requires two primary factors of production. As we have shown, even 

if the time paths of primary factor prices are monotonic, when high cost resources are 

not abundant, then complete cost reversals can occur depending on whether or not an 

intensity condition is satisfied for each pair of deposits. In turn, these cost reversals 

will determine discontinuous extraction from low cost reserves if the initial 

endowment of these low cost deposits is sufficiently large. 

 Our analysis extends to a single demand setting in which resources are 

differentiated by cost and the extracted resource can be converted into productive 

capital a phenomenon that is known can arise with multiple demands (Gaudet, 

Moreaux and Salant, 2001, Im, Chackavorty and Roumasset, 2006), with resources 

that are differentiated by their polluting characteristics (Chackavorty, Moreaux and 

Tidball, 2008), and with capacity constraints on the extraction rate of a non storable 

resource (Freni, 2004, Holland, 2003). 
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 Two important assumptions in the model are that there is in incentive to accumulate 

(Assumption [A4]), and that the factor intensity of the overall system is intermediate 

between the factor intensity of the backstop and that of each extraction process 

(Assumption [A5]), implying that transitional dynamics of factor price is monotonic. It 

may be of some interest to know what kind of new phenomena can arise without these 

assumptions. 
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Appendix 
 

Consider in Figure 6(a) a ray from the origin whose slope 
p̂
2
(0)

p̂
1
(0)

lies in the interval 

1!
d
2

d
0

1!
d
1

d
0

,

1!
l
2

l
0

1!
l
1

l
0

"

#

$
$
$
$

%

&

'
'
'
'

. Let p
1

* p̂
2
(0)

p̂
1
(0)

!

"
#

$

%
&,
p̂
2
(0)

p̂
1
(0)

p
1

* p̂
2
(0)

p̂
1
(0)

!

"
#

$

%
&

!

"
##

$

%
&&  be the coordinates of the point 

where the ray intersects the set (3! 4) and let p
1

** p̂
2
(0)

p̂
1
(0)

!

"
#

$

%
&,
p̂
2
(0)

p̂
1
(0)

p
1

** p̂
2
(0)

p̂
1
(0)

!

"
#

$

%
&

!

"
##

$

%
&&  be the 

coordinates of the point where the ray intersect the set (1! 2) . Using first equation (24) 

to calculate the time the trajectory stays in the different regions, and then (31) and (32) 

to evaluate p
1

* p̂
2
(0)

p̂
1
(0)

!

"
#

$

%
&  and p

1

** p̂
2
(0)

p̂
1
(0)

!

"
#

$

%
&  we get 

    e
!L

1

3 p̂2 (0)

p̂1 (0)

"

#
$

%

&
'

=

p
1

* p̂
2
(0)

p̂
1
(0)

"

#
$

%

&
'

1(
d
1

d
0

   (A1) 

    e
!L

2

4 p̂2 (0)

p̂1 (0)

"

#
$

%

&
'

=

1(
l
2

l
0

p̂
2
(0)

p̂
1
(0)

p
1

* p̂
2
(0)

p̂
1
(0)

"

#
$

%

&
'

   (A2) 

     e
!L

1

2 p̂2 (0)

p̂1 (0)

"

#
$

%

&
'

=

1(
d
1

d
0

p
1

** p̂
2
(0)

p̂
1
(0)

"

#
$

%

&
'

   (A3) 

    p
1

* p̂
2
(0)

p̂
1
(0)

!

"
#

$

%
& =
x
3
e+ x

0

3 ' x4e ' x
0

4

x
3
e ' x4e

p̂
2
(0)

p̂
1
(0)

  (A4) 

and 
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    p
1

** p̂
2
(0)

p̂
1
(0)

!

"
#

$

%
& =

x
2
e ' x1e

x
2
e '

p̂
2
(0)

p̂
1
(0)
x
1
e

 ,  (A5) 

where L
1

2 p̂
2
(0)

p̂
1
(0)

!

"
#

$

%
&  is the time spent in set 2. Then, substituting from (A4) 
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Finally, since the amount of the resource extracted in set 2, y
1

** , is given by x2eL
1

2 , 

substituting from (A7) for 
p̂
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 into (A6) and (A8) and remembering that 
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The graph of function (A9) and that of the sum of the functions (A9) and (A10) 

give the two threshold curves in Figure 6(b). 

 Consider now the case depicted in Figure 7(a). Note that 
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implies that the minimum amount extracted from the higher cost deposit exceeds 
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Hence, by inspecting Figure 7(a) we can conclude that the optimal extraction path is 

determined if y1 > x
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have a support in (3! 4)  if and only if 
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the result stated in point (iii)-(c) of Proposition 2. 
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