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Abstract

This paper suggests a knowledge based approach to the formation
of collaboration networks in basic research. Though mainly focused on
foundations, it provides the example of a set of knowledge distributions
supporting pairwise equilibrium outcomes which correspond to a star-
like collaboration network. Restrictions yielding the small world property
are also speci�ed. A closing remark expands on the knowledge growth
maximizing allocation of e¤ort, compared to the allocation produced by
private incentives.
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1 Aims and scope of the paper

This paper recomposes under a unifying framework two styles of analysis con-
cerned with the production of ideas, but so far developed in separate and seem-
ingly independent strands of the literature. One is the evolutionary approach
to the knowledge based analysis of the division of labour. This takes place not
only in the production of goods, but also and most crucially in the production
of ideas (a review essay is Marengo, Pasquali and Valente [22]). Here the analy-
sis has often availed itself of Stuart Kau¤man�s N �K �tness landscapes and
of other tools and concepts borrowed from the natural sciences. The second
�eld of enquiry is concerned with the incentive based explanation (as opposed
to the statistical explanation) of collaboration networks in scienti�c research.
Here the analysis is focused on the structural characteristics and the incentive
mechanisms which may be responsible of the empirical �nding that research net-
works, like many other social networks, meet the small world property. Recent



contributions in the second �eld are Carayol and Roux [7], Goyal, van der Leij
and Moraga [13], [12].
The social network approach to the production of ideas has paid only lip

service to the fact that agents are widely heterogeneous with respect to their
knowledge endowment, and that the distribution of this endowment is a main
determinant of the network architectures which can be sustained as equilibrium
outcomes. Rather than introducing a knowledge stock variable, Goyal, van der
Leij and Moraga [13], [12] introduce a agent�s type variable (high or low quality),
and explain network formation on this premise. In our view, the main limit of
this approach is that the agent type comes to be an innate, unchanging property.
The approach is not suited to allow for the simple de-facto observation that often
research collaborations take place because there are positive complementarities
between agents� specializations. Moreover, it seems most appropriate that the
formation of a research collaboration feeds back into the individual accumulation
of ideas of its participants. In this way, the very process of idea growth provides
endogenously changing incentives to research collaboration.
In this paper, agents� quality is determined by what they know. The speci�-

cation of the aggregate knowledge stock leads to an endogenous determination
of the knowledge �elds in the economy, with the expectation that individual
knowledge is mostly specialized in a particular �eld or sub�eld. The further
speci�cation of a knowledge distribution over the set of agents induces a mea-
sure of knowledge heterogeneity on this set (as opposed to the geographical
distance introduced in Carayol and Roux [7]), which gives rise to a trade o¤ in
the allocation of private e¤ort to isolated research projects, or to collaboration
with more, or less, heterogeneous agents. For a given size of i�s and j�s knowl-
edge endowments, the larger the knowledge heterogeneity between them, the
higher the joint competence of their collaboration project. Still, a greater het-
erogeneity signals a higher heterogeneity between agents� specializations, which
makes collaboration more demanding in terms of the private e¤ort which is
necessary to make that competence e¤ective.
The paper is organized as follows. Section 2 presents a short list of the struc-

tural properties shared by the co-authorship networks in a number of scienti�c
disciplines. Section 3 presents the main line of argument. Section 4 builds
the basic framework concerning the de�nition and properties of a knowledge
endowment and produces an endogenous partition of the aggregate knowledge
stock at a given date into disciplinary �elds, based on the notion of modular-
ity. Section 5 introduces a knowledge distribution over the set of agents and
provides an accurate distinction between basic research, aimed at discovering
new types (lineages) of ideas, and development, the activity of �nding improved
ideas within the existing lineages. The paper is mainly concerned with the
former. Section 6 develops the knowledge based approach to the formation of
collaboration networks in basic research. Section 7 concludes.



2 Scienti�c collaboration networks: empirical prop-

erties

In this section we present a synthetic list of the main structural features that are
shared by the co-authorship networks in a number of scienti�c disciplines, such
as mathematics, physics, biology and medical science, economics1 . A review
of these properties is available in Newman [27] and in Goyal, van der Leij and
Moraga [12]. It will turn out that these properties are consistent with the
predictions of the model developed in this paper. A scienti�c collaboration
network is built as follows. Every node identi�es a researcher, and two nodes
are linked if they co-authored a paper in a given time interval. The weight of the
link in question is an increasing function of the number of co-authored papers.

1. The set of researchers can be endogenously partitioned into scienti�c com-
munities on the ground that a node belongs to a community if its within
community relations are stronger than its between community relations.
Newman and Girvan [29] apply their method of community-structure iden-
ti�cation to the collaboration network of scientists at the Santa Fe Insti-
tute, and �nd that the communities thus identi�ed broadly correspond to
scienti�c �elds and sub-�elds.

2. The distribution of collaborators has a fat tail: a small fraction of scientists
has a very large number of collaborators2 .

3. The typical collaboration network has 1 giant component comprising the
majority of nodes; the other components are relatively small.

4. The relational distance between two nodes is the minimum number of links
separating the nodes. The average relational distance between nodes is
small, and the maximum relational distance (the diameter) is also small

5. The average clustering coe¢cient (the fraction of a node�s neighbours that
are each-other neighbours) is high, at least compared to random networks.

6. Nodes with many collaborators have a higher than average probability of
being directly connected (positive assortativity), and most of their indirect
connections go through small number of collaborators.

7. Network connectivity is susceptible to removal of the most connected
nodes3 .

8. Collaboration grows through time.

1According to the �ndings reported in Moody ([24]) sociology may be a partial exception,
but the hypothesis seems to require corroboration through more directly comparable tests.

2Unlike other networks, the distribution for these collaboration networks do not strictly
follow a power-law (are not scale free), although it has been suggested that they may follow
a power law with an exponential cut-o¤ (Newman, [27]).

3More precisely, of the nodes with the highest betweenness score (Newman[27]). Moreover,
the betweenness scores of collaborators are uncorrelated.



9. Network structure is broadly consistent with the preferential attachment
model of network formation4 .

Conjecture 1 The undirected representation of a typical scienti�c collabora-
tion network is approximated by a system of quasi-stars hierarchically connected,
mostly through their centres.

De�nition 2 A N star is a connected undirected network with N nodes and
N � 1 links. The centre node is directly connected to each of the other N � 1
nodes, which form the periphery. A N quasi star is a connected undirected
network with N nodes, such that: the number of links is larger than N � 1;
the centre node is directly connected to each of the other N � 1 nodes; self-
loops are allowed; a periphery node may have P > 1 links, provided that P

N�1 is
su¢ciently small.

There are two models of network formation explaining the above character-
ization of collaboration networks:

� The preferential attachment model (Barabasi and others [5]) introduces
the following hypothesis: the probability that a new published paper con-
tributes new connections to an individual researcher is an increasing func-
tion of the number of connections that the individual already has.

� The incentive based, game theoretic model (Goyal, van der Leij and Mor-
aga [13]) is based on the hypothesis that there are two types of researchers,
the smart ones, which can produce high quality ideas (and papers), and
the others, which produce low quality ideas, but may contribute to the
routine work, which is needed in research.

Claim 3 To support a quasi-star structure as a pairwise equilibrium outcome
it is not necessary to introduce innate, intrinsic di¤erences between agents. To
that end, it is su¢cient to assume that the knowledge endowments di¤er in com-
position, although they may not di¤er in size. Notice that the agent�s knowledge,
unlike the innate agent�s type, changes endogenously through time as a result of
discoveries.

3 The line of argument

Our basic assumption is that there is a selection for modularity in the evolution
of knowledge (Simon, [36], Marengo et al. [22]). As a result, the knowledge

4 In the preferential attachment model the links, once they are formed, are preserved in the
future periods. In the incentive based model the links are optimally chosen, each period. We
may contaminate the model developed in this paper with the idea of preferential attachment,
by assuming that the intellectual formation of the new nodes takes place through a period
of acquaintance with 1 pre-existing node. The choice of acquaintance is in�uenced by the
reputation stock of the existing nodes. This comes close to preferential attachment in the
choice of education. After education, collaboration strategies are chosen optimally.



set characterizing a scienti�c discipline is nearly decomposable into modules
corresponding to more or less specialized �elds or sub�elds. Like in Simon and
Ando ([37]) original formulation of near-decomposability, the �tness interactions
between ideas belonging to di¤erent modules are unfrequent, but, contrary to
Simon ([36]), if the interaction occurs, it may have a strong in�uence on �tness
(relative performance). If this is the case, the interaction between the specialized
modules cannot be neglected (see Watson, [38]).

De�nition 4 Ideas are embodied in the human brains. An idea is codi�ed
knowledge de�ned by a string a 2 f0; 1; sgN of N elements. An element an
is identi�ed by its location n, 1 � n � N on the string. A location n is silent
(une¤ective) for idea a if and only if an = s. The family (type) of a is de�ned
by its subset of non silent locations: NS(a) � f1; :::; Ng such that an 6= s, for
n 2 NS(a).

De�nition 5 Development is the search for better con�gurations of a set of
idea types, which leaves the set of types unchanged. Basic research is the activity
aimed at discovering new types of ideas.

Every agent spends her time endowment in development and basic research
according to �xed proportions. The time endowment available for basic research
is E, which is uniform across agents.
The bene�ts of modularity are most relevant in development. To make sure

that the bene�ts from knowledge specialization do not entail the loss of the
positive complementarities between the di¤erent �elds, it is necessary that a
set of agents, the knowledge integrators, preserve in their endowment the core
ideas which provide the interfaces connecting the specialized �elds. The above
premises justify a distribution of knowledge, de�ned as a distribution of types,
such that the endowments of two specialists in di¤erent �elds are su¢ciently
heterogeneous; the endowments of two specialists in the same �eld are highly
homogeneous; for very specialized endowment, there is a �knowledge integrator�s
endowment, which is only partly heterogeneous with respect to the former.

� We introduce a measure d(ij) of heterogeneity between i�s and j�s knowl-
edge endowments. If i and j form a collaboration, their joined competence
is increasing with respect to the heterogeneity of their endowments. The
trade o¤ is that higher heterogeneity means that higher e¤ort is required
to make the collaboration e¤ective.

� The setH of agents is partitioned intoM+1 communities. H= fH1; :::;HM ;HM+1g,
such that Hz, with z = 1; :::;M , is the scienti�c community of agents
which develop the ideas belonging to �eld z. HM+1 is the community of
agents endowed with the core ideas, that is, the knowledge interfaces.

� There are RM + P agents. R is the number of agents in each community
z = 1; :::;M .



� For the sake of simplicity we assume that if i and j belong to the same
specialized community, d(ij) = 0; if i and j belong to di¤erent specialized
communities, d(ij) � 
 > 1; for every z 2 f1; :::;Mg and i 2 Hz, there
exists h 2 HM+1such that d(ih) = 1.

� We assume that if d(ij) is su¢ciently large, the private e¤ort required
to sustain the research output of collaboration (ij) becomes arbitrarily
large. As a result, two specialists in di¤erent �elds are not prepared to
collaborate.

� Every agent i 2 H can allocate her time endowment to a collaboration
project (ij) with j 2 Hz, and/or to a collaboration (ih) with h 2 HM+1,
and/or to a isolated research project (ii).

De�nition 6 A collaboration strategy of agent i is a choice of e¤ort allocation
Si = fei1; :::; eiHg, where eij is i�s e¤ort contribution to the collaboration (ij).

De�nition 7 A strategy pro�le S� = fS�1; :::;S
�
Hg is a pairwise equilibrium if:

(i) S� is a Nash equilibrium. (ii) For every i and j in H, such that 0 = eij 2 S
�
i ,

0 = eji 2 S�j , there is no strategy pair (S
0
i;S

0
j), such that: 0 < eij 2 S0i,

0 < eji 2 S
0
j , and both i and j prefer the strategy pro�le S

0 = (S��(i+j);S
0
i;S

0
j)

the the pro�le S�.

Claim 8 The knowledge distribution motivated by the above axioms supports a
quasi-star network as a pairwise equilibrium outcome.

4 Ideas

An idea is codi�ed knowledge de�ned by a string a 2 f0; 1; sgN of N elements.
An element an is identi�ed by its location n, 1 � n � N on the string. A
location n is silent for idea a if and only if an = s. This means that location n
plays no role in the de�nition of the idea in question. A non silent location n
is active, in which case, an 2 f0; 1g. NS(a) � N �f1; :::; Ng is the set of the
active (non silent) locations of a. A family, or type, of useful ideas, for instance,
the family of the di¤erent versions of �the wheel�, is the subspace F �f0; 1; sgN

of ideas with identical silent and non silent locations: if a 2 F and a0 2 F,
then an = s if and only if a

0
n = s. An idea is a con�guration of a family type,

and a type F is uniquely identi�ed by the set of its non silent locations NS(F).
F is useful, if at least one useful idea in F has been discovered. �t is the set
of useful types at t, and �(�t) = #�t is the number of such types. We �x a
labelling of types in �, such that � = fF1;F2; :::;F�(�)g. A con�guration of �,
or knowledge con�guration, is a list � = fa(F1);a(F2); :::;a(F�(�))g specifying
one idea con�guration af = a(Ff ) for each family Ff in �. � = faf [ a�fg,
where a�f is the con�guration of the families other than Ff . In general, only
a vanishing small fraction of the possible con�gurations of each idea type is
�useful�. The usefulness of an idea con�guration af is, like �tness in biology, a
relative, not an absolute concept, and can only be evaluated in the context of



the given concomitant knowledge con�guration a�f . This is because usefulness
is a¤ected by the positive or negative complementarities between ideas. The
relative �tness of two ideas af and a

0
f belonging to the same type Ff is evaluated

by a �tness ratio V (af ;a�f )=V (a
0
f ;a�f ), where V () is a real function V : �!

R+. We distinguish between discovery and development. Discovery at t is the
�nding of a new useful string a0 which de�nes a new type F0 =2 �t. In particular,
a radical discovery may not only de�ne a new set �t+1 � �t, but may also
(though not invariably) expand the set of components: a0 2 f0; 1; sgN(t+1), with
Nt+1 > Nt. Development is adaptation in the con�guration of a given type F,
which leads to develop ever improved ideas belonging to the same family. The
set A of ideas can be partitioned into �(�) disjoint subsetsfA1;A2; :::;A�(�)g
each subset containing all and only the ideas belonging to a given type.
Ideas can be used as building blocks for the production of other ideas. If

a is a building block of a0, then an = a0n, for every n 2 NS(a). The subset
NS(a) \ NS(a0) � N is the overlap between the types F and F0, such that
a 2 F and a0 2 F0, or between a and a0 for short. By extension, if B and C are
subsets of A, the set f[c2CNS(c)g \ f[b2BNS(b) � N is the overlap between
B and C. The overlap size is the cardinality of the overlap. Types F and F0 are
independent if and only if they have an empty overlap: NS(F) \NS(F0) = ; .
� is separable if every couple of types in � is independent. � is block separable
(alternatively, nearly decomposable), if there exists a partition f�1; :::;�Zg of
�, such that the size of the overlap between every couple of subsets �j , �h

in the partition, with j 6= h, j; h = 1; :::; Z, is zero (alternatively, su¢ciently
small). We assume that if the types Ff and Fg are independent, then there are
no positive or negative complementarities between them. This means that the
relative �tness of two di¤erent ideas af and a

0
f belonging to Ff is invariant to

a change of a�f , if the latter is produced exclusively by a change ag ! a0g in
the state of Fg.

4.1 Modularity in idea space

Both discovery and development face constraints resulting from the complemen-
tarities between non independent ideas.
A con�guration change in the active locus n of F 2 � may a¤ect the relative

�tness between couples of ideas belonging to each other type F0 which shares
with F the active locus n. This is why the �tness function V () is de�ned on the
domain �, rather than on a single family type. The di¢culty arising from a wide
potential overlap (interaction) between the types in � is that the improvements
in the design of one type may con�ict with other potential improvements in the
design of the types with which it interacts (Simon [36], p. xì).
The di¢culty can be reduced if � can be partitioned into subsets with (su¢-

ciently) small overlaps between the components. Consistently with the literature
(Callebaut and Rasskin-Gutman [8]) we call modularity the measure of the ex-
tent in which the interaction (complementarity) between the elements (ideas) in
the same subset is stronger than the interaction between the subsets. Adaptively
changing systems exhibiting this structural property are nearly decomposable



(Simon [35], [34] ), or modular, and are shown to develop greater evolvability
(Altenberg [1], Marengo et al. [22])5 .

4.1.1 Modularity measures in idea space

The relevance of a modularity measure on � is here judged from the view point of
the relation between �modularity� and the minimum number �Min(�) of con�g-
urations of � which need evaluation, to �nd the optimal con�guration. �Min(�)
is the minimum dimension of the search space �. Intuitively, the modularity of
a search space is a measure of the relative extent in which the dimension of the
search space can be reduced.
To avoid the di¢culties faced by other measures of modularity in idea space

(appendix A), we propose that modularity measures suggested in the network
literature be borrowed for the puropse of measuring the decomposability of �.
A preliminary step in this direction is the de�nition of the network structure
between the types in �.

De�nition 9 We �x an ordering of the types in �, such that � = fF1;F2; :::;F�(�)g.
L(�) = f1; 2; :::; �(�)g the set of labels corresponding to the types in �. NSj is
the set of the active locations corresponding to type Fj. The knowledge network
induced by � is the weighted directed network (L(�);W(�)), where L is the set
of nodes, W(�) is the set of weighted links between such nodes, and will be re-
ferred to as networkW(�)6 . The strength whg of the link from node g to node h
is derived as follows. Let nhg = ngh = #fNSh\NSgg, for g 6= h; nhh = #NSh.
For every g and h in L, whg =

nhg
#NSg

. By de�nition, 0 � whg � 1. For ease

of notation, W shall also denote the �(�) � �(�) matrix [whg] of connection
weights.

whg is a measure of the average frequency with which a con�guration change
in one active component of type g may a¤ect the relative �tness of type h�s con-
�guration. Accordingly, the network (L;W) is separable ifW is diagonal; it is
block-separable if there exists a partition fL1; :::;LZg of L and a corresponding
permutation matrix P, such that PWPT is block diagonal7 .
If the conditions for the block separability of W are quite demanding, the

modularity of W is more a matter of degree. From an intuitive view point,

5The bene�ts of modularity should not be overemphasized or misrepresented. Some de-
gree of interaction between modules may yield the optimal trade-o¤ between the advantage
of reducing the dimension of the search space, and the bene�t resulting from the exploitation
of positive between module complementarities. In particular, if the �tness functions embed
a su¢ciently strong non linearity, the additional gain obtained from solving the coordination
between the con�gurations of two weakly (at a low time frequency) interacting modules �h
and �f is potentially very large. Watson [38] provides examples of such strongly non linear
cases, in which �nding the appropriate coordination between the modules may confer a de-
cisive advantage in evolution. Examples of compositional evolution abound in nature and in
engineered systems, as shown by sex, by symbiosis, by the relations between a cell and its
environment, or by the interactions between a subroutine and the rest of a computer program.

6The script (�) will be omitted, if unnecessary.
7Here, T is the transpose operator.



the modularity of the interaction matrix W has to do with the possibility of
�nding a partition of L into groups fL1; :::;LZg, such that the frequency of
interaction between any two di¤erent groups of the partition is su¢ciently low,
relative to the average frequency of interaction within the two groups 8 . This
intuitive and quite general idea of modularity admits a quantitative expression,
based on recent contributions to the mathematical theory of networks and its
applications. The construction of a network between idea types, brings to our
disposal the measures of network modularity, such as the Newman and Girvan
([30]) Q measure, extended by Leicht and Newman ([20]) to weighted directed
networks. For each possible partition of L(�) Leicht and Newman ([20]) de�ne
a corresponding Q measure of modularity. Network modularity Q(W) is the
measure corresponding to the Q maximizing partition. If there is no meaning-
ful way of de�ning di¤erent modules in W, Q(W) is zero. If W is diagonal,
Q(W) is maximal for the given �(�), which is written Q(W) = Q�(�), and
lim�(�)!1Q�(�) = 1 (see appendix B).
The notion of a knowledge network W induced by � and the related op-

erational de�nition of network modularity, together with de facto observation,
motivate the de�nition of a disciplinary knowledge �eld as a module in the space
�.9

De�nition 10 The set of disciplinary �elds f1; :::; Zg is endogenously de�ned
by the Q maximizing partition of L into modules fL1; :::;LZg.

We developed a number of simulations suggesting that the Q measure per-
forms well as an indicator of the extent in which the dimension of a search space
� can be reduced to the end of �nding its optimal con�guration. If � and �0

are such that �(�) = �(�0), and �Min(�) < �Min(�
0), then Q(�) > Q(�0). In

this respect, Q performs better than the measure of modularity on technological
�tness landscapes recently suggested in Frenken [11] (see appendix A).

5 The carriers of ideas

In what follows, we expand on the fact that ideas are generally embodied in
human brains, although they may also be embodied in artefacts, or real world
objects. H is the set of agents, and H is the cardinality thereof. The statement
that a is an element in the set Ai of codi�able ideas embodied in agent i�s

8"Another way to describe this structure is to state that the frequencies of interaction
among elements in any particular subsystem of a system are an order of magnitude or two
greater than the frequencies of interaction between the subsystems. We call systems with this
property nearly completely decomposable systems, or for short, nearly decomposable (ND)
systems (Simon and Ando [37] )". (Simon [36], p. x, citation in the original).

9Some quantitative evidence of the modular organization of knowledge into disciplinary
�elds, which broadly correspond to application domains, is o¤ered by the network of patent-
citation �ows connecting the technology �elds. The patent citation networks recovered from
USPTO data for the periods 1975-1986 and 1987-1999 yield Q measures above 0:6 (Caminati
and Stabile[9]).



brain, does not simply mean that agent i has access to the information string
corresponding to a. It means instead that agent i understands the relations
between a and its fellow ideas inAi, so that she has some capability to carry out
a set of operations on �i. We may refer here to a standard example, which marks
the di¤erence between having a mathematics handbook at one�s disposal, and
having a full grasp of the proofs and potential applications of the mathematical
proposition printed in the text. As a rule, agents� knowledge is specialized in a
disciplinary �eld de�ned as above and a �eld identi�es a scienti�c community10 .
Although agents have a physical existence of their own, an agent i is here

uniquely identi�ed by the set Ai of codi�able ideas embodied in her brain at a
given date, which de�nes also the set �i of types to which such ideas belong.
We shall abstract in what follows from innate exogenous di¤erences between
agents, concerning their capabilities in the processing of ideas. Ideas processing
by agent i requires some endowment of the capability to carry out operations
on a subset of ideas, such as the copying of ideas from an exogenous source
into Ai, or more signi�cantly the production of new ideas. To the extent that
such operations are codi�able, the endowment of the capability in question is
itself a subset of ideas. For our purposes, we distinguish between two classes
of operations. Operations in the �rst class expand A, but leave the aggregate
set � of types unchanged. They generate new con�gurations of � and test their
usefulness. These operations are essential to the activity of development which
consists of the search procedures aimed at �nding better con�gurations within
a given set of types. The second class of operations expands the set �, and
is constitutive of basic research, which is the activity of producing discoveries.
Although research and development are separate activities, every agent engages
in both. For the sake of simplicity, we assume that the amount of time allocated
to development and research is �xed and uniform across agents.
The knowledge output of a development project is measured, not by the

number of new deas produced, but by the �tness improvement enabled by these
new con�gurations of �. In basic research, the �tness improvement correspond-
ing to a new type of idea is only potential, because the new type may need to
go through a long development phase, before it can successfully compete with
pre-existing ideas. Since usefulness is only potential in basic research, novelty
and originality is all what matters. We assume that research output is measured
by the number of new types produced by a research project. A research contri-
bution is more �original� if it produces a larger number of new and potentially
useful types.
There are complementarities between development and research. On the

ground that modularity reduces the dimension of the search space faced by the
activity of development, there is a powerful incentive to specialization in human
capital formation. This intuition is made more precise as follows.

10This means that there exists a partition of H into M communities, fH1; :::;HMg, such
that the union of the knowledge sets of the agents belonging to the same community, covers
some disciplinary �eld (formally, there exist �z in f�1; :::;�Zg, and Hm in fH1; :::;HMg,
such that �z � [i�i; i 2 H

m, where �i is agent i�s knowledge set).



5.1 Specialization in development

Given the set L of labels corresponding to the types in �, consider the Q max-
imizing partition fL1; :::;LZg of L into label groups, which de�ne the set of
disciplinary �elds or sub�elds. If the groups Ly and Lx have an empty overlap,
the activity of developing the types in Ly can be carried out independently of
the corresponding activity on Lx. This provides a straightforward powerful in-
centive to specialization in development, and through this, also to specialization
in human capital formation. If instead the groups Ly and Lx have a low, but
non zero, frequency of interaction, the possibility of reducing the dimension of
the search space is still provided by the organization of the search activity ac-
cording to a hierarchic modular design. In particular, if the weak interactions
between Ly and Lx are not sparse, but are carried by speci�c nodes (types),
then the hierarchic form of modularity is supported by a decentralization of
development to specialized agents. We may think of the example in which
Ly = fy; y + 1; :::; y + mg, Lx = fx; x + 1; :::; x + ng and the interaction be-
tween the two groups takes place through the link connecting the nodes (types)
y and x. Conditional on the con�guration of y and x, the choice of the optimal
con�guration of the two sub�elds fLy � yg and fLx � xg can be assigned to
di¤erent specialized agents, which may have in their knowledge endowment only
the �elds Ly and Lx, respectively. The two specialists do not need to commu-
nicate between them, if they communicate with a third agent who is endowed
with the knowledge of both types y and x. These types contain the core ideas,
connecting the �elds Ly and Lx. The agent endowed with the core ideas acts
like a knowledge integrator. Upon communication of the best selections sepa-
rately made by the specialists, she can �x the optimal joint con�guration of the
types y and x.
This argument provides useful guidelines suggesting what may be relevant

distributions of the knowledge endowment across the set of agents. To the ex-
tent that the knowledge network is highly, but not perfectly modular, we expect
a distribution of the knowledge endowments such that a large number of agents
is specialized in a speci�c �eld or sub�eld11 . The number of types shared by
agents i and j will be typically high or low, depending on whether they are
specialized in the same or in di¤erent �elds. Simultaneously, knowledge special-
ization requires that there agents preserving in their knowledge endowment the
core ideas providing the knowledge interfaces connecting the specialized �elds
or sub�elds.

11 If there are non negligible interactions between �elds Ly and Lx in idea space, we expect
to �nd meaningful knowledge �ows between the communities working in such �elds. These
knowledge �ows take place in a variety of ways (e.g. access to paper and patent publications,
as evidenced by citations), including direct collaboration between the scientists. The point
made in the text is that the desirable extent of knowledge specialization is increased, if the
need of direct and frequent communication between di¤erent-�eld specialists is replaced by
the �xation and adaptation of the appropriate interface standards between the �elds. The
ideas providing such interfaces are in the knowledge endowment of one or more agents acting
as knowledge integrators. This argument is partly reminiscent of the literature on system
integration in production technology ( [10]).



6 Collaboration networks in basic research

Discoveries (new types of ideas) are the outcome of the innovation e¤ort pro-
duced by the agents engaged in basic research12 . Research projects may be
carried out in collaboration with another agent, or in isolation. For the sake of
simplicity, we assume that at most two members of H collaborate on a single
project. A couple jointly working on a project is also called a collaboration;
at any date a collaboration is engaged in a single project, although a single
agent can participate in many projects simultaneously. A �self-collaboration� is
a project carried out by one agent in isolation.
We hold to the view that new types of ideas grow as a result of recombina-

tions of pre-existing types ideas (Weitzman)13 . On this premise, we move some
steps toward the construction of a knowledge based approach to the explanation
of collaboration networks in basic research.
We assume that for every i 2 H, the set �i 6= ;. B(i; j) is the �ow of new

basic ideas (new types) produced by the collaboration (ij) between agents i
and j. We assume that B(i; j) depends on the e¤ective competence k(ij) =
k(eij ; eji) and e¤ective e¤ort e(ij) � 0 of the coalition (ij). Formally:

B(ij) = B(k(ij); e(ij)) = B(k(eij ; eji); e(eij ; eji)) (1)

B(k; e) = k�e � � 1 (2)

For the sake of simplicity we assume that every project has a maximum scale:
0 � e(ij) � D.
The competence of the collaboration (ij) re�ects the joint size of i�s and j�s

knowledge contributions, provided that their respective e¤ort in the collabora-
tion is strictly positive.

k(eij ; eji) = �(�i [�j) if eij � eji > 0; k(eij ; 0) = �(�i); k(0; eji) = �(�j) (3)

where 0 � eij � E and 0 � eji � E are the individual e¤orts produced by i
and j (respectively) within the collaboration (ij).
The joint e¤ort e(ij) = e(eij ; eji) is a performance function e() which de-

pends on the parameters wij and d = d(ij).

e(ij) = [f(d)]
�1
h
wij (eij)

�
+(1� wij) (eji)

�
i1=�

(4)

where: � = 1� d, f
0

� 0, and limd!1 f(d) = F .

12Occasionally, the discovery of a new type is the serendipitous outcome of a development
project. For the sake of simplicity, we rule the possibility of serendipitous discoveries and
assume that a research output is the outcome of a deliberate allocation of e¤ort to a research
project.
13The occasional hint at the possibility that a recombination is potentially useful, may be

o¤ered by input ideas that are not the �ttest in their family. Evidence in this sense is provided
by radical discoveries occasioned by seemingly obsolete input ideas.



wij enters the performance function to characterize how the relative size of
i�s and j�s knowledge contributions:

wij =
�(�i)

�(�i) + �(�j)
; wji = (1� wij) =

�(�j)

�(�i) + �(�j)
; wii = 1 (5)

d(ij) is the heterogeneity between i�s and j�s idea types:

d(ij) =
�(�i [ �j)� �(�i \ �j)

�(�i \ �j)
=
�(�i [ �j)

�(�i \ �j)
� 1; d(ii) = 0 (6)

d(ij) has the properties: 0 � d(ij) � 1; d(ii) = 0; d(ij) = d(ji); d(ij) =1
if and only if �i \ �j = ;. Is is worth stressing that the function d(ij) may
not meet the triangle inequality. For instance, if i and j do not have any
idea in common, but each of them shares some idea with h, then 1 = d(ij) >
d(ih)+d(hj). d(ij) a¤ects the joint e¤ective e¤ort in two ways. In the �rst place,
the productivity of i�s and j�s individual e¤orts may be lower (ceteris paribus),
if the heterogeneity d(ij) between their knowledge sets is larger, because the
agents are less familiar with each other �elds of specialization, which makes the
production of coordinated research e¤ort more demanding. We therefore assume
that a parametric increase in d(ij) beyond the threshold d(ij) = 1 lowers the
e¤ective joint e¤ort e(ij):

@e

@d
= 0 if 0 � d � 1;

@e

@d
< 0 if d > 1; lim

d!1
e(ij) = 0 (7)

More precisely, we assume the following speci�cation of f(d) in equation (4):
f(d) = 1 + �(d), �(d) = 0 if 0 � d � 1; �0 > 0 if d > 1.
In the second place, the rules by which the e¤orts eij and eji cooperate to

produce new ideas depend on the circumstances a¤ecting the substitutability or
complementarity between i�s and j�s idea sets. We assume that the higher the
heterogeneity d(i; j), the lower the substitutability between i�s and j�s knowl-
edge, hence, the higher the complementarity between eij and eji. If i and j have
identical types of ideas, d(ij) = 0, and their e¤orts are perfect complements, if
they do not have any idea in common, d(ij) = 1, and their e¤orts are perfect
complements; in the intermediate situation where d(ij) = 1, e() is Cobb Dou-
glas (see appendix C). In particular, if �(�i) = �(�j), so that wij = wji = 1=2,
this yields the following restrictions:

d(ij) = 1 ! e(ij) = e
1=2
ij e

1=2
ji (8)

d(ij) = 0! e(ij) =
1

2
(eij + eji) (9)

e(ii) = eii

The B(�) function determines the knowledge output of the R&D e¤ort produced
by the collaboration (ij). Although in the real world economies the social in-
centive to collaboration in research may not be perfectly in line with the social



target of knowledge growth, it is instructive to consider the abstract case in
which the former is largely determined by the latter. In particular, we shall
assume that the reputation payo¤ earned by each member of the coalition (ij)
is rB(ij), where 0 < r < 1, if i 6= j, and r = 1, if i = j. The cost to agent i of
her participation in the project (ij) is a linear increasing function c � eij of the
e¤ort produced.
A basic research strategy by agent i is a choice Si = (ei1; :::; eiH). eij = 0

means that i is not prepared to collaborate with j 2 H. Agent i chooses Si to
maximize net pay-o¤:

�i = B(ii)� ceii +

"
X

z2H�i

rB(iz)� c
X

z2H�i

eiz

#

(10)

subject to the constraint: X

z2H

eiz = E

Network formation is formalized as a simultaneous �collaboration game�. Each
agent i 2 H simultaneously announces her strategy Si. The collaboration (ij)
takes place if and only if eij > 0, eji > 0; gij(S) = g(eij) for eij 2 Si 2 S. �i(S)
is i�s payo¤ induced by the strategy pro�le S.
It is worth summarizing some implications which follow from the knowledge

production function B(ij). and the payo¤ function (10).
a. Since it is never optimal to o¤er collaboration to an agent who is not

reciprocating the o¤er, a very weak necessary requirement for S being a pairwise
equilibrium is gij(S) > 0 only if gji(S) > 0.
b. An agent obtains a competence advantage from collaborating with those

agents which contribute with ideas that are not in her �eld of specialization. In
particular, for �xed cardinalities �(�i) and �(�j), competence k(ij) increases
with heterogeneity d(ij). If instead i and j have identical ideas, d(ij) = 0, and
the competence bene�t from a positive collaboration (ij) is null: k(ij) = k(ii) =
k(jj). Moreover (see appendix C), in this case, i�s and j�s e¤orts are perfect
substitutes in the production of joint e¤ort: e(ij) = eij + eji.
c. There is a drawback in collaborating with an agent whose �eld of spe-

cialization is too remote from ours. A productive collaboration (ij) will be
one in which i and j share some knowledge background. This is formalized by
assuming that the limit in (7) is zero.

De�nition 11 The strategy pro�le S generates the square H�H weight matrix
g(S), such that for every i and j in H, gij(S) = eij. This de�nes the weighted
directed network fH;g(S)g, where H is the set of nodes, and there exists a
directed link from node i to node j, if and only if the weight gij(S) > 0. g(S)
fully de�nes the weighted directed network supported by S and will be referred to
as network g(S) in what follows.

De�nition 12 The weighted directed network g(S) de�nes the H�H adiacency
matrix G(S), such that for every i and j in H, Gij(S) = Gji(S) = 1, if and only



if gij(S) > 0 and gji(S) > 0; Gij(S) = Gji(S) = 0 otherwise. G(S) uniquely
de�nes the unweighted undirected network fH;�(S)g such that ij is a link in
�(S) if and only if Gij(S) = Gji(S) = 1. For ease of reference, G(S) denotes
in what follows the undirected network supported by S.

It is worth observing that, if eji = 0, then agent j would give no contri-
bution whatsoever to the collaboration (ij), but would share its gross output
B(ij). Thus, eij > 0 is never a best reply to eji = 0. Correspondingly, a Nash
equilibrium S� of the collaboration game has the property: for every i and j
in H, eij(S

�) > 0 only if eji(S
�) > 0. The following de�nition extends the

corresponding de�nition in Goyal ([14]), which refers to undirected networks.

6.1 Equilibrium in collaboration in a system with �eld

specialists and knowledge integrators

Equipped with the remarks above, we consider the collaboration equilibria which
are supported by specialization in the knowledge system of the form discussed
above. We assume that the there exists a partition fH1; :::;HM ;HM+1g of H,
such that Hz, with z = 1; :::;M , is the scienti�c community of agents which
develop the ideas belonging to �eld z. HM+1 is the community of agents en-
dowed with the core ideas, that is, the knowledge interfaces which may directly
or indirectly connect the specialized �elds. For the sake of simplicity, we as-
sume that every community Hz z = 1; :::;M , contains the same number R of
researchers; moreover, any two agents belonging to the same community have
identical knowledge endowments; if they belong to di¤erent specialized �elds,
their endowment are �su¢ciently� heterogeneous. We study the equilibrium
collaborations which are supported by the varying heterogeneity, as opposed to
the varying size, of agents� endowments. In particular, we consider the following
case:

Case 13 A knowledge distribution supporting a star-like equilibrium

1. For every i 2 H, �(�i) = �.

2. #Hz = R, z = 1; :::;M ; H = RM + P , where P = # HM+1.

3. Fix z 2 f1; :::;Mg.If i 2 Hz, j 2 Hz, then, d(ij) = 0.

4. Fix i 2HM+1. As j spans through fHM+1�ig, the conditionsMin[d(ij)] =
1; Max[d(ij)] = 
 > 1 hold true.

5. If i 2 Hz, j 2 Hv, with v 6= z, fv; zg � f1; :::;Mg, then, d(ij) � 
 > 1.

6. Fix z 2 f1; :::;Mg. There exists one and only one j 2 HM+1such that
i 2 Hz implies: d(ij) = 1; d(ih) � 
 > 1, if h 2 fHM+1 � jg.

Proposition 14 Assume case 1 above. The following restriction holds.

k(ij) = 2�
d(ij) + 1

d(ij) + 2
= k(d(ij)) (11)



Remark 15 We may notice from 11 that competence k(ij) increases with het-
erogeneity d(ij), but at a slower rate; moreover, d(ij) = 0 implies k(ij) = �;
d(ij) = 1 implies k(ij) = � 43 .

De�nition 16 A collaboration (ij) is symmetric if and only if eij = eji.

Proposition 17 If eii < D and ejj < D, a symmetric collaboration project
(ij) such that d(ij) = 0 can not be sustained as a Nash outcome..

Proof: For any value of r 2 [0; 1], i�s marginal bene�t from increasing e¤ort
in project (ii) is higher than i�s marginal bene�t from increasing e¤ort in (ij).

�� � c >
1

2
r�� � c

Proposition 18 Assume eii = D and ejj = D. A symmetric collaboration
project (ij) such that d(ij) = 0 can be sustained as a Nash outcome only if

1

2
r��(eij + eji)� ceij = eij

�
r�� � c

�
> 0

Proposition 19 Assume that agent i has the opportunity to participate in a
collaboration (ih) such that d(ih) = 1. i�s marginal e¤ort re-allocation away
from a symmetric collaboration (ij) such that d(ij) = 0, towards (ih) is payo¤
increasing (neutral) if:

eih
ehi

< (=)

�
4

3

�2�
(12)

i�s marginal e¤ort re-allocation away from a project (ii) towards (ih) is payo¤
increasing (neutral) if:

eih
ehi

< (=)
1

4

�
4

3

�2�
(13)

Proposition 20 Assume that the restrictions of the case above hold,
�
r�� � c

�
>

0, P = M , and 
 is su¢ciently large. There exists a non empty range of the
parameters �, R, E=D supporting a pairwise equilibrium with the following prop-
erties. (i) Every collaboration (ij) with d(ij) = 0 is symmetric. (ii) For every
h 2 HM+1there exists a unique z 2 f1; :::;Mg such that, for every i 2 Hz, h
enters a size D collaboration (ih) with d(ih) = 1. Every h 2 HM+1enters a
collaboration (ph) with d(ph) = 1, and p 2 HM+1. (iii) For each z 2 f1; :::;Mg,
every i 2 Hz invests simultaneously her e¤ort: in a project (ii) of size D; in
one and only one project (ih) such that d(ih) = 1 and h 2 HM+1; in a number
V � 0 of projects (ij) such that d(ij) = 0 and j 2 Hz.

Proof (outline): For every z 2 f1; :::;Mg, every i 2 Hz has the following
investment opportunities: the project (ii); R�1 projects (ij) such that d(ij) = 0
and j 2 Hz; one and only one project (ih) such that d(ih) = 1 and h 2 HM+1.
At eih=ehi such that 12 holds with strict equality, project (ii) is i�s preferred



alternative. i invests eii = D in the project (ii) and for E � D+
�
4
3

��
D, she is

prepared to invest eih =
�
4
3

��
D in the project (ih) of size D. She invests the

residual endowment E � D
h
1 +

�
4
3

��i
in V projects of type d(ij) = 0, where

0 � V � R� 1, and V is the largest integer T meeting T � E=D�
h
1 +

�
4
3

��i
.

Such projects of type d(ij) = 0 are sustainable as Nash outcomes under the
speci�ed conditions. For every h 2 HM+1there exists one z 2 f1; :::;Mg, such
that for i 2 Hz the project (ih) is of type d(ih) = 1, and it is h�s best investment

opportunity at ehi=eih =
�
3
4

�2�
. For E su¢ciently large, h invests R

�
3
4

��
D in

R projects of this type. At
�
4
3

��
� 2, h invests the residual endowment in

symmetric projects (hp) such that d(hp) = 1 and p 2 HM+1. To �x our ideas,

choose � and E=D such that V = E=D �
h
1 +

�
4
3

��i
. With this restriction,

E=D = V + 1 +
�
4
3

��
and R �

�
4
3

�� h
V + 1 +

�
4
3

��i
.

7 Conclusions and directions of further work

The main goal of this paper is to move some steps towards a foundation of a
knowledge based approach to the analysis of division of labour and collaboration
in research. So far, the knowledge based approach to the division of labour, and
the incentive based explanation of research networks, have been separated �elds
of analysis in the economic literature. In this closing section we outline some
implications of our approach, and suggest promising directions of further work.
The general intuition behind the propositions of the preceding section is that

the measure of heterogeneity between agents� knowledge endowments induces a
trade o¤ in the allocation of e¤ort to isolated projects, or to joint collaborations
with more or less heterogeneous agents. For a given size �(�i) and �(�j) of
i�s and j�s knowledge endowment, the larger the heterogeneity d(ij) between
them, the higher the competence k(ij) of their joint project. Still, a larger d(ij)
makes research activity more demanding, in terms of the private e¤ort which is
necessary to produce the same amount of e¤ective joint e¤ort. As a result, when
the distribution of the knowledge endowment �(�i) is not too asymmetric across
the set of j� potential collaborators, ceteris paribus, j will �nd it more pro�table
to collaborate with an agent whose scienti�c specialization is neither too similar,
nor too dissimilar, compared to j�s specialization. Taking into account the
previous remarks concerning the de�nition of the disciplinary �elds as modules
in the space �, this points to the conclusion that we are to expect collaborations
to occur only between those agents with partly di¤erent specializations in the
same �eld, or between agents with trans-disciplinary knowledge endowments.
The example of equilibrium network discussed in the previous section ex-

ploits the drastic assumption that the heterogeneity between selected couples of
nodes is �su¢ciently large�. This assumption can be weakened, without chang-
ing the qualitative nature of the results, but at the cost of making computation
much more cumbersome. The star-like equilibria produced by these propositions



show a centre and periphery nodes which are identi�ed by the special composi-
tion of their knowledge endowment. In this way, it may be suggested that our
results, like the equilibrium networks produced in a recent paper on research
collaboration in economics (Goyal, van der Leij and Moraga, 2004, 2006), rely
on the critical assumption that there are basic di¤erences concerning the types
of agents in the economy. In our view, a great advantage of the approach sug-
gested in this paper, is that such di¤erences between agent types do not rest in
our case on the innate and unchanging characteristics of their qualitative nature,
but only on their knowledge endowment. To the extent that the model is about
knowledge production, it is natural to think of dynamic extensions in which i�s
knowledge endowment at t is the outcome of her endowment at t�1, and of the
knowledge output of the projects entered by i at t� 1. In this dynamic version,
the types of agents becomes an endogenous variable.

8 Appendix

8.1 Appendix A. On a pleiotropy based measure of mod-

ularity

The structural complementarities imposed by wide overlaps between idea types
can be partly described by adapting to our purpose the biologically inspired
de�nition of a system pleiotropy. The number Pj of idea types in � sharing the
active location j is the pleiotropy of j. Assuming that location j is not always
silent in �, then 1 � Pj � �. Frenken [11] measures system pleiotropy P as:

P =� log

 
NY

n=1

Pn

!

(14)

Here � log is base � logarithm. The structural relation between string compo-
nents and types is described by the ��N matrix � = [�fn]. Each row in this
matrix corresponds to a di¤erent type in �, and �fn = 1, or �fn = 0 depending
on whether n is or is not a active location of the fth type in �. Biologically
inspired problem representations identify a string a with a phenotype character
and label � the genotype�phenotype map. Following Frenken [11], we may as-
sume a non-separable space �, and observe that the proposed P measure (14)
achieves its minimum Pmin when N � 1 components have Pj = 1 and one and
only one component has Pj = �. This yields Pmin =

� log(�) = 1. Maximum
system pleiotropy Pmax obtains when all components j have Pj = �, yielding
Pmax =

� log(�N ) = N . Frenken [11] suggests a measure M of system modular-
ity based on the notion that the lower P , the lower the average interdependency
between the idea types. More precisely, M depends on the comparison between
Pmax and the observed value of P .

M = 1�
P

Pmax
= 1�

P

N
(15)



According to this measure, the modularity of a non-separable system is in-
versely related with system pleiotropy; its maximum Mmax =

N�1
N tends to 1 as

N tends to 1; its minimum is Mmin = 0. Apart from the restriction that M is
by de�nition applicable only to non-separable systems, the main problem with
this measure is that, in so far as it depends only on the product of pleiotropy
measures Pn, it does not retain more detailed information on the interdepen-
dence structure between the types in �. It turns out that two sets � and �0,
such that N(�) = N(�0), �(�) = �(�0), and M(�) = M(�0) may nevertheless
have �Min(�) 6= �Min(�

0).

8.2 Appendix B. Modularity measure on weighted directed

networks

For the given partition f�1; :::;�Zg of �, the total intensity of an outward
link from group h directed to itself or to other groups is âh =

P
i

P
j wij ,

j 2 �h; i = 1; :::; Z.. The corresponding total intensity of an inward link to
group h from itself or from other groups is �ah =

P
j

P
i wij , i 2 �

h, j = 1; :::; Z.
If the total intensity of links in W is T =

P
i

P
j wij , i; j = 1; :::; Z, then the

average relative frequency with which an outward link in W originates from,
and arrives to, group h is êh =

âh
T and �eh =

�ah
T , respectively. The modularity

measure Qh of the links from and to group h in the context of the given network
W, is then expressed by the extent to which the frequency of within-group links
exceeds the frequency that would be expected from the hypothesis of a random
wiring.

Qh =
1

T

2

4
X

i2fFhg

X

j2fFhg

wij

3

5� êh�eh (16)

The modularity ofW according to the partition f�igZi=1 = f�
1; :::;�Zg is then

expressed by the sum Q =
PZ

h=1Qh, which may be negative, if the partition
is ill-chosen. Indeed, the relative goodness of two alternative partitions of � is
evaluated by choosing the partition yielding a higher value of Q. In this spirit,
the modules of the network f�;Wg are endogenously determined by selecting
the Q-maximizing partition f�i�gZ

�

i=1([30]), and the modularity of f�;Wg) is
the Q-measure induced by such partition. Z� is the number of modules in the Q
maximizing partition. Since the Q modularity of the null partition f�g is zero,
the Q modularity ofW takes values in the interval [0; 1]. IfW is diagonal, then
Q(W) ! 1 as F ! +1. A fast algorithm for the computation of Q in large
undirected networks [28] was subsequently extended to weighted undirected and
directed networks([20], [9]).

8.3 Appendix C. Complementarity and substitutability in

the production of e¤ective collaboration e¤ort

We assume that e¤ective joint e¤ort e(ij) is speci�ed by:



e(ij) = = [f(d(ij)]
�1
h
wij (eij)

�
+(1� wij) (eji)

�
i1=�

(17)

where: � = 1 � d(ij); f(d) = 1 + �(d) � d; �(d) = 0 if 0 � d � 1; f 0 > 0 if
d > 1; limd!1 f(d) = F . For a given �xed speci�cation of the parameters wij ,
and d(ij), the e(�) function 17 belongs to the family of CES functions, linear
homogeneous with respect to eij , eji (Klump and Preissler [18], p.46), and
elasticity of substitution 1=(� � 1) = �1=d(ij) between eij and eji. If agents i
and j contribute to the coalition with identical types of ideas, d(ij) = 0, and
wik = wji = 1=2. i�s and j�s e¤orts are then perfect substitutes, with constant
marginal contributions to e¤ective e¤ort e(ij).

e(ij) =
wijeij
f(d(ij))

+
wjieji
f(d(ij))

=
eij + eji
2f(d(ij))

=
1

2
(eij + eji) (18)

The intermediate case d(ij) = 1 implies � = 0, so that e(�) is Cobb-Douglas:

e(ij) =

�
eij

f(d(ij))

�wij � eji
f(d(ij))

�wji
= e

wij
ij e

wji
ji (19)

Finally, if d(ij) = +1, then � = �1: when i�s and j�s knowledge sets are
disjoint, their e¤orts are perfect complements; the performance function is then
Leontiev.

e(ij) = min

�
eij

f(d(ij))
;

eji
f(d(ij))

�
= min

heij
F
;
eji
F

i
(20)
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