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Assessing the influence of spot price predictability on electricity futures hedging 

 

Abstract 

A common feature of energy prices is that spot price changes are partially predictable due to 

weather and demand seasonalities. This paper follows the Ederington and Salas (2008) framework 

and considers the expected change in spot prices when minimum variance hedge ratios are 

computed. The poor effectiveness of hedging strategies obtained in previous studies on electricity 

was because the standard hedging approach underestimates the effectiveness of hedging. In the 

empirical study made in this paper, weekly spot price risk is hedged with weekly futures in the Nord 

Pool electricity market. In this case, the optimal selection of the futures contract may produce risk 

reductions whose values vary between 60% and 80% – depending on the hedging duration (one to 

three weeks) and the analysed sub-period (in-sample and out-of-sample sub-periods). 

 

Key words: electricity markets, futures, hedging ratio, and electricity price risk. 
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Assessing the influence of spot price predictability on electricity futures hedging 

 

1. Introduction 

A common feature of energy prices is that spot price changes are partially predictable due to 

weather and demand seasonalities. The influence of weather variables on electricity load and prices 

has been studied in the literature by many authors. These variables are especially important at Nord 

Pool, the largest and most liquid European electricity market.
1
  

Recently, Ederington and Salas (2008) have adapted the standard minimum variance hedge ratio 

approach (Ederington, 1979) to the case where spot price changes are partially predictable. In this 

context, they show that the riskiness of the spot position is overestimated, the achievable risk 

reduction underestimated, and more efficient estimates of the hedge ratios are obtained. Ederington 

and Salas (2008) propose to use the basis (futures price minus the spot price) at the beginning of the 

hedge as the information variable to approximate the expected spot price change. If futures prices 

are unbiased predictors of futures spot price, the basis will be a measure of the expected change in 

the spot price until maturity (Fama & French, 1987). This new approach is followed in this paper, 

because it is very suitable for hedging electricity price risk at Nord Pool. 

Futures contract valuation and its use for risk management are more difficult than usual when 

dealing with a non-storable commodity, such as electricity. The lack of a cash-and-carry arbitrage 

mechanism produces a looser relationship between spot and futures prices, especially as futures 

maturity becomes more distant. In addition, electricity spot price behaviour has some well-known 

characteristics: jumps, positive skewness, very high volatility, mean-reversion, seasonalities, and 

heteroscedasticity (see, for example, Koopman et al. (2007) for daily frequency data from European 

markets). Both effects combined produce a lower than usual correlation between spot and futures 

prices, and might produce a poor performance when hedging spot price risk with futures contracts. 

                                                 
1 Engle et al.  1992; Peirson & Henley, 1994; Li & Sailor, 1995; Sailor & Muñoz, 1998; Henley & Peirson, 1998; Pardo 

et al. 2002; Koopman et al. 2007. 
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The main criticism of the existing literature in electricity hedging is the poor effectiveness 

obtained in reducing spot price risk (see Moulton (2005) for California-Oregon-Border and Palo 

Verde futures traded at NYMEX, and Bystrom (2003) for futures traded at Nord Pool).
2
 In Moulton 

(2005), the underlying spot to the NYMEX futures was the average of peak hour spot prices in a 

month. In this case, the poor effectiveness of hedging strategies was due to the mismatch between 

the hedging period of the spot position (one day) – and the underlying settlement period in the 

futures used as a hedging vehicle (one month). In Bystrom (2003), weekly spot price risk is hedged 

with weekly futures; but only one-week hedge durations were considered.  

To obtain an acceptable performance when electricity futures are used to hedge spot positions, 

two important and well-known considerations must be kept in mind – and these points are 

especially relevant in electricity price hedging.  

Firstly, the period of the spot position to hedge, and the underlying spot period in the futures 

contracts chosen for hedging should be identical – or at least similar. This consideration prevents 

the harmful effects of cross-hedging. The following example may be useful to aid understanding. 

The use of weekly futures will probably be fairly unsuccessful (monthly futures would be the worst) 

in hedging daily spot price risk – as the underlying price of weekly futures will be some sort of 

average of the contained daily spot prices; and so will not cope with day-of-the-week seasonal 

effects. Furthermore, daily and weekly prices will differ in their display of the typical statistical 

features of electricity prices.
3
  

Secondly, futures positions ought to be held until maturity, or as close to maturity as possible. If 

futures positions are cancelled early, basis risk will appear and the hedging result will be uncertain. 

                                                 
2 The risk reduction obtained in Moulton (2005) varies between -2% and 20%. In Bystrom (2003) the best performing 

hedge ratio strategy obtains risk reductions that range between 7% and 29% for the whole ‘out-of-sample’ period.  
3 As weekly prices are computed as some kind of average of seven daily prices, the number and size of the spikes will 

decrease with weekly prices. Consequently, descriptive statistical values will be dampened in weekly prices and lower 

volatility, kurtosis, and skewness will be expected.  
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However, hedging performance will be satisfactory if the futures hedge is held as near as possible to 

the futures maturity. 
4
 

Taking the above two considerations into account, a direct hedge is the most advisable hedging 

strategy in this commodity. That is, hedging until maturity and with a perfect match between the 

futures underlying settlement period, and the period length in which the electricity is going to be 

bought or sold on the spot market. This desirable perfect match between the spot position to hedge 

and the futures underlying asset probably explains the wide range of maturities and delivery periods 

offered in derivatives markets. Nord Pool, for example, trades daily and weekly futures and 

monthly, quarterly, and yearly forward contracts.  

This paper presents empirical results about hedging electricity price risk with futures when an 

early cancellation of futures positions is made. The empirical study is made with data from one of 

the oldest and most important deregulated electricity markets in the world, the Nord Pool. Using 

weekly futures contracts and the weekly spot price for the period 1998 to 2008, several 

combinations of hedging period lengths (one to three weeks) and ‘times to maturity’ when futures 

positions are cancelled (one to three weeks) are examined. Results can be summarised in the 

following points: (i) hedging performance improves as hedging duration increases. That is, two-

week hedges perform better than one-week hedges and so on; (ii) hedging strategy performances 

worsen as ‘time to maturity’ increases when futures positions are cancelled early. For example, 

those hedges whose futures positions are cancelled two weeks prior to futures settlement perform 

worse that those whose futures positions are held until one week prior to futures settlement, and so 

on; (iii) minimum variance hedge ratios are unconditionally estimated with the new approach 

proposed in Ederington and Salas (2008) and conditionally estimated with the multivariate GARCH 

model proposed by Kroner and Ng (1998), and known as the Asymmetric Dynamic Covariance 

model (ADC, hereafter) – but using a bivariate t-Student distribution. Results are not conclusive in 

favour of any method, and consequently it does not seem that improving statistical price modelling 

                                                 
4 Typically, basis value variation will be constricted by the maturity effect, as at maturity, futures and spot prices are 

forced to be equal. This effect means that uncertainty about a futures hedging result decreases as maturity approaches 

(Hull, 2006; chapter 3).  
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will guarantee better performance;(iv) it is found that the basis has an important predictive power 

for explaining spot price changes (between 25% and 50%), consequently, the Ederington and Salas 

(2008) framework perfectly suits to our experiment and unexpected spot prices changes must be 

computed using the information contained in the basis; (v) it is shown that very large risk 

reductions, unprecedented in electricity markets, are achievable by using the new approach 

proposed in Ederington and Salas (2008) and optimizing the futures contract selection as described 

above. Specifically, risk reduction values vary between 60% and 80% – depending on the hedging 

duration (one to three weeks) and the analysed sub-period (in-sample and out-of-sample sub-

periods). 

This article is divided into seven sections. In section 2, hedging ratios and their effectiveness 

measure are defined. In section 3, the econometric model used to obtain conditional estimates of 

hedging ratios is presented. Section 4 contains the data description and some preliminary analysis. 

Estimation and hedging results are shown in section 5. The paper finishes with conclusions and 

cited references.  

 

2. The Minimum Variance Hedge Ratio  

 

The conventional minimum variance hedge ratio is defined in a one-period model. At the 

beginning of the period, or ‘t’, an individual is committed to a given position in the spot market. To 

reduce the risk exposure, the individual may choose to hedge at time ‘t’ in the futures market with 

the same underlying asset. At the end of the period, say, ‘t + 1’, the hedger’s result per unit of spot 

is calculated as follows  

 

xt+1 = ΔS(t) – bt ΔF(t,T)                                                                                           (1) 
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where xt+1 is the value variation between t and t+1, ΔS(t)=log(S(t+1)/ S(t)) is the spot value log 

variation, ΔF(t,T)=log(F(t+1,T)/ F(t,T)) the futures value log variation of a futures contract 

maturing at T and bt the hedging ratio. If bt is positive (negative), short (long) positions are taken in 

futures. The hedger will choose bt to minimize the risk associated with the random result xt+1. A 

standard way to measure risk in economics is by the variance conditional on the available 

information. The risk of a hedge strategy is calculated as the variance of xt+1,  

 

[ ] ( ) ( )[ ]tttt T,tFbtSVARxVAR ψψ Δ−Δ=+1                                       (2) 

 

The most used definition for the optimal hedge ratio
5
 is the Minimum Variance Hedge Ratio 

that can be obtained by minimizing equation (2)  

 

( ) ( )
( ) )(

)(

t

t
t
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T,tF,tScov
b

ψ
ψ

Δ
ΔΔ

=                                                  (3) 

 

where second moments are conditioned to the information set available at the beginning of the 

hedging period, tψ . When an unconditional probability distribution is used, the hedge ratio in 

equation (3) can be estimated from a linear relationship between spot and futures returns. That is, 

estimating by OLS the linear relationship appearing in equation (1), but adding an intercept and 

white noise  

ΔS(t) = a + bΔF(t,T) + ε(t)                                                 (4)  

 

In this case, the OLS estimator of b is the unconditional definition of the optimal hedge ratio 

appearing in equation (3) (Ederington, 1979).  

 

                                                 
5 For an excellent revision on futures hedging see Lien and Tse (2002). 
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Recently, Ederington and Salas (2008) have adapted the above approach to the case where spot 

price changes are partially predictable and futures prices are unbiased estimators of future spot 

prices. In this context, they show that the riskiness of the spot position is overestimated and the 

achievable risk reduction underestimated. Under this new approach, the unexpected result of the 

hedge in equation (1) can be reformulated as  

 

( ) ( )[ ]( ) ( )T,tFbtSEtSx tt1t Δ′−Δ−Δ=+ ψ                                                              (5) 

 

The risk of the hedge strategy in equation (2) is reformulated as  

 

[ ] ( ) ( )[ ]( ) ( )[ ]tttt1t T,tFbtSEtSVARxVAR ψψψ Δ′−Δ−Δ=+                                       (6) 

 

and the Minimum Variance Hedge Ratio obtained after minimizing equation (6) is  

 

( ) ( )[ ]( ) ( )( )
( )( )t

tt
t

T,tFvar

T,tF,tSEtScov
b

ψ
ψψ

Δ
ΔΔ−Δ

=′                                           (7) 

 

Ederington and Salas (2008) propose to use the basis (futures price minus the spot price) at the 

beginning of the hedge as the information variable to approximate the expected spot price change. If 

futures prices are unbiased predictors of futures spot price, the basis will be a measure of the 

expected change in the spot price until maturity (Fama & French, 1987). An unconditional estimate 

of the hedge ratio in equation (7) can be obtained by estimating the following linear regression 

using OLS 

 

ΔS(t) = a’ + b’ΔF(t,T) +λ(log(F(t,T)/S(t)))+ ε’(t)                               (8)  
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where λ(log(F(t,T)/S(t))) is used to estimate ( )[ ]ttSE ψΔ . Ederington and Salas (2008) show that 

OLS estimation of equation (8) obtains an unbiased and more efficient estimation of the 

unconditional minimum variance hedge ratio (b’) than that obtained by using equation (4). This is 

providing that the expected change in the spot price is perfectly approximated with the product 

between the basis at the beginning of the hedge – and its estimated coefficient 

(namely ( ) ( )( )( ) ( )[ ]ttSEtSTtF ψλ Δ= /,logˆ ).  

 

Measuring hedging effectiveness 

 

The risk reduction is computed to compare the hedging effectiveness of each strategy. 

Furthermore, ex post and ex ante results are distinguished by splitting the data sample into two 

parts. In the first part, the hedging strategies are compared ex post, whereas in the second part, an ex 

ante approach is used. That is, in the ex ante study, strategies are compared using forecasted hedge 

ratios, and models are estimated every time a new observation is considered. The variance of a 

hedge strategy is calculated as the variance of the hedged portfolio – as equation (6) shows. In this 

equation, the OLS estimated approximation of the expected spot price change using the basis is 

introduced ( ( ) ( )( )( ) ( )[ ]ttSEtSTtF ψλ Δ= /,logˆ ). The risk reduction achieved for each strategy is 

computed by comparison with the variance of the spot position (bt = 0 for all t in equation (6)). 

In the empirical application presented in sections 4 and 5, futures with different maturities 

(F(t,Ti) with i =1, 2, 3 and 4; and Ti = t + i) are considered to hedge the spot price variation. 

Furthermore, three hedging lengths are considered: one, two, and three weeks. Table 1 shows the 

six types of hedges carried out in this paper, one per row. This typology enables a study of the 

influence of the hedging length, and the ‘time to maturity’ effect on hedging performance (first and 

second columns, respectively in Table 1). The ‘time to maturity’ is computed as the time remaining 

to futures maturity when the hedge is finished. The ‘time to maturity’ is one (two or three) week(s) 

in those hedges finished one (two or three) week(s) prior to maturity. It is expected that hedging 
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performance improves as hedging length increases and time to maturity decreases.
6
 The third and 

fourth columns contain the spot and futures price variations implied in each hedging operation. 

Finally, the last column in Table 1 reports the basis used to approximate the expected spot price 

change in equations (6) and (8). It is important to note that only one basis is used per hedging 

period. This practice enables a comparison to be made of the hedging effectiveness of different 

futures contracts for the same hedging period – as the variance of the spot position to hedge is the 

same (bt = 0 for all t in equation (6)).
7
   

 

In the empirical application in section 5, four hedging strategies are compared. The hedging 

ratio obtained after estimating equation (4) is labelled ‘OLS without basis’ – and the hedging ratio 

obtained after estimating equation (8) is identified as ‘OLS with basis’. In the following section, a 

conditional covariance model enables the estimation of  the hedging ratio appearing in equation (7). 

This hedging strategy is identified as ‘ADC’. Hedging analysis is completed with the ‘Naive’ 

hedging ratios, that is, a hedge where futures positions have the same size, but the opposite sign 

than the position held in the spot market (i.e. bt = 1 for all t). 

 

[Insert Table 1 about here] 

 

3. The econometric framework 

 

One of the objectives of this paper is to compare the hedging effectiveness of conditional 

and unconditional minimum variance hedge ratio estimates. To obtain conditional estimates of the 

second moments, a two-step estimation procedure is followed. Firstly, a model in means is 

                                                 
6 Lindahl,1992. 
7 The unhedged spot price risk will be measured as ( ) )))](/),((log(ˆ[ tSTtFtSVAR k

k λ−Δ  after estimating λ by OLS 

from the adapted equation (8): ( ) ( ) ( ) ( )( ) ( )ttSTtFTtFbatS ki
kk ',,'' ελ +−+Δ+=Δ  for k=1,2 and 3, i= 1, 2, 3 and 4; and 

i > k. In the ex ante study, the unhedged spot price risk measure is computed by repeating this procedure each time a 

new observation is considered, obtaining a vector of λ coefficients that is as large as the out-of-sample period. 
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estimated and then the residuals of this model are taken in the second step as an input to model the 

conditional variance. To clean up any autocorrelation behaviour, a vector autoregressive regression 

model (VAR) is estimated in the first step. The model for the means is  
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where Δk
S(t) = log(S(t+k)/S(t)) with k = 1, 2, and 3; Δk

F(t,Ti) = log(F(t+k,Ti)/F(t,Ti)) with Ti = t+i; k 

= 1, 2, and 3 and i = 1, 2, 3, and 4 and k < i; represents the k log differences in futures prices when 

‘i’ periods remain to ‘delivery’ or settlement (note that F(t+k,Ti) = S(t+k) when k = i); the gammas 

are the parameters to estimate, p is the lag of the VAR and is chosen by minimizing the Akaike 

information criteria, so eliminating any autocorrelation patterns. The VAR model is estimated by 

OLS (Engle & Granger, 1987). The vector of residuals, εt+k = (ε1t+k,ε2t+k)’, are saved and used as 

observable data to estimate multivariate GARCH models. This two-step procedure (Kroner & Ng, 

1998; Engle & Ng, 1993) reduces the number of parameters to estimate in the second step, 

decreases the estimation error, and enables a faster convergence in the estimation procedure. In the 

VAR model in equation (9), the basis described in the last column of Table 1 appears as an external 

variable. The basis can be seen as an error correction term when spot and futures prices are 

cointegrated, but this is not the case (Viswanath, 1993; Lien, 1996). The inclusion of the basis in the 

VAR specification implys an efficient conditional estimation of the minimum variance hedge ratio 

(see equation (7)) as it contains important information for anticipating spot price changes. 

The number of published papers modelling conditional covariance is quite small compared 

to the enormous bibliography on time-varying volatility. The three most widely used models are: 

(1) the VECH model proposed by Bollerslev et al. (1988); (2) the constant correlation model, 

CCORR, proposed by Bollerslev (1990) and; (3) the BEKK model of Engle and Kroner (1995). 
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Each model imposes different restrictions on the conditional covariance and can lead to 

substantially different conclusions in any application that involves forecasting conditional 

covariance matrices. Recently, Kroner and Ng (1998) derived another multivariate GARCH model, 

the Asymmetric Dynamic Covariance Matrix model, ADC. This model encompasses the above 

models in the sense that, under certain restrictions, any particular model can be obtained.
8
 This is a 

good framework to compare the existing models, and the significance of the restrictions imposed by 

each. Kroner and Ng (1998) introduce asymmetries following the Glosten et al. (1993) approach. 

This is the most common method for introducing asymmetries in multivariate GARCH modelling 

(Gagnon & Lypny, 1995; Hendry & Sharma, 1999; Bekaert & Wu 2000). 

Kroner and Ng (1998) adopt a structured approach, similar to Hentschel (1995). They 

introduce a General Dynamic Covariance (GDC) matrix model nesting the existing models. This 

model can be generalized to include the asymmetric effects, the ADC. Under this framework, model 

selection is made easier by testing restrictions on the ADC. Kroner and Ng (1998) proved that with 

certain restrictions in the ADC model, the other models discussed above could be derived. The 

bivariate ADC and the restrictions imposed to obtain the other models can be written as  
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8 Myers (1991) and Baillie and Myers (1991) have used the VECH specification, without the asymmetric extension, in 

spot-futures covariance modelling for hedging purposes for various agricultural commodities. The CCORR model has 

been often used for modelling spot-futures covariance dynamics. Some examples are Cecchetti et al. (1988) in public 

debt; Kroner and Sultan (1993) in currencies; and Park and Switzer (1995) in stock indexes. The BEKK model has been 

used in Baillie and Myers (1991) (without asymmetries), and Gagnon and Lypny (1995), in modelling spot-futures 

covariance for agricultural commodities and interest rates, respectively. Finally, the ADC model has been used by 

Meneu and Torró (2003) to estimate conditional hedge ratios in stock indexes, and obtains the best ex ante performance 

when compared to the above-mentioned conditional specifications. 
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where 
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and ° is the Hadamard product operator (element-by-element matrix multiplication) and ωij, bij, aij, 

and gij for all i,j = 1,2 are parameters, ε1t and ε2t are the unexpected shock series obtained from 

equation (1). η1t = max [0,−ε1t] and η2t = max [0,−ε2t] are the Glosten et al (1993) dummy series 

collecting a negative asymmetry from the shocks, and hijt for all i,j = 1,2 are the conditional second 

moment series. The specification test proposed by Kroner and Ng (1998) is as follows: (1) If ρ12 = 

b12 = b21 = a12 = a21 = g12 = g21 = 0, a restricted asymmetric VECH is obtained with the conditional 

covariance equation having coefficients b11 b22,, a11 a22 and g11 g22; (2) if φ12 = b12 = b21 = a12 = a21 

= g12 = g21 = 0, the asymmetric CCORR model is derived; (3) if φ12 = 1 and ρ12 = 0 the asymmetric 

BEKK model is obtained. 

Normality assumption is not a realistic assumption for log-price variation in electricity. One 

empirical fact that characterises electricity price distribution is its leptokurtosis due to the presence 

of many extreme values. For this reason, a natural alternative to normality is the bivariate t-Student
9
  

 

( ),H0,t~ kttkt νψε ++                                                     (11) 

 

Parameter estimation is carried out by maximizing the sample log-likelihood function 

LN(β,ν) for N observations, with respect to the vector of parameters (β) in equation (5) and the 

                                                 
9 Koopman et al. (2007) use this distribution in the univariate case for daily electricity spot prices.  
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degrees of freedom (ν) parameter of a conditional bivariate t-Student distribution. That is, by 

maximizing 
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and Γ(·) is the Gamma function. The degrees of freedom parameter, ν, must be positive and it is 

convenient to assume that ν > 2. When ν tends to infinity, the Student density tends to the normal 

density (see Bauwens et al. (2006) for more details). The standard errors and their associated 

critical significance levels are calculated using the quasi-maximum likelihood method of Bollerslev 

and Wooldridge (1992) – and which is robust to the non-normality assumption. 

 

4. Data and preliminary analysis 

 

Electricity futures prices and spot prices are directly obtained from Nord Pool’s FTP server 

files. In the spot market, hourly power contracts are traded daily for physical delivery in the next 

24-hour period. This price is known as the system price and it is computed and published at midday 

the day before delivery. The system price is the spot reference for derivative contracts traded at the 

Nord Pool market and those contracts traded OTC – but settled by Nord Pool clearing services. 

There is a wide range of electricity derivative contracts (forward, futures, and options) traded at the 

Nord Pool exchange. At the moment, the most important are daily and weekly futures; monthly, 

quarterly and yearly forwards; and European type options on the quarter and year forwards.  
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To select which futures/forward contracts can be included in this study two important 

considerations are necessary: (i) firstly, a large number of observations are required to obtain 

insightful results; (ii) secondly, non-overlapping futures contracts are preferable in order to avoid 

artificially introducing autocorrelation in the data series. Therefore, it is necessary to balance the 

data frequency and delivery period length of the contracts to avoid introducing autocorrelation in 

the data series. For example, if yearly forwards are selected, no more than one price per year can be 

introduced; otherwise, expectations on the underlying commodity cannot be completely renewed. 

As a result, well-designed data series of yearly forward prices contain very few observations and no 

significant study can be carried out. Similar reasons can be argued for quarterly and monthly 

forward contracts. Therefore, the present study focuses on weekly futures (i.e. futures with delivery 

periods of one week), taking one price per week, with a closing price each Friday, or the day before 

if non-tradable.  

Futures prices in the Nord Pool database started to be collected at the end of 1995. Important 

changes in the contractual conditions and trading system were introduced in 1996 and 1997. 

Electronic trading was initiated at the end of 1996 and contracts with delivery periods longer than a 

week were changed from futures to forwards by the end of 1997. These changes were important 

enough to preclude the present study from using these years, and they were used instead as a 

learning period. As a result, the data period analysed is from January 1, 1998, until December 28, 

2008; that is, 574 weeks.
10

 During the sample period, eight weekly futures contracts could be traded 

daily, but only the four contracts nearest to the delivery period are free from non-trading problems. 

With the four contracts nearest to delivery weekly futures contracts, four data series of futures 

prices are built by maintaining the time to delivery constant.  

In Nord Pool, settlement of futures contracts involves both daily mark-to-market settlement 

and a final cash settlement for those positions remaining open at maturity. Final settlement covers 

                                                 
10 Futures maturing after December 31, 2005 are quoted in euros. In order to have a homogenous currency, those futures 

prices maturing in 2006 and 2007 are expressed in Norwegian krones, or NOKs, by using the exchange rate appearing 

in Nord Pool files. All of the empirical study was repeated for the data sample finishing on December 31, 2005, and 

identical conclusions were obtained.  
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the difference between the last closing price of the futures contract and the system price in the 

‘delivery period’. The system price is the hourly spot reference of the physical market. 

Consequently, in weekly futures contracts, the clearing spot reference is the average of the 168 

system prices (24 hours × 7 days) of the week, Monday to Sunday of the ‘delivering’ week.
 11

 This 

is the spot reference used in this paper. Figure 1 exhibits this time series jointly with each of the 

above presented futures price time series.  

 

[Insert Figure 1 about here] 

 

Futures prices are taken on Fridays, or the day before if non-tradable. This point might be 

very important when the effectiveness of several hedging strategies is compared, especially for the 

electricity case. As futures closing prices are computed at 15:30 and only one price is used each 

week for the preparation of the weekly spot price time series, an acceptable synchronization 

between spot and futures prices computation time is achieved when the closing price of the last 

trading day of the week is used.
12

 Furthermore, if another futures price is used, for example, the 

Wednesday closing price, the maturity effect in the analysed hedging strategies would not be 

measured as exactly as if the last trading day of the week was used.  

A preliminary analysis follows. Table 2 displays the basic statistics of spot and futures log 

price differences. Mean values deserve the first important comment. Whereas spot mean values are 

not significantly different from zero, futures means are negative and significantly different from 

zero in six out of seven cases. Specifically, the mean values of Δk
F(t,Ti) in the i=k case, take values 

varying between -1.53% and -5.40%. In the classical view of hedging pressure as a determinant of 

futures premiums (also known as a forward bias or forward premium), when a significant declining 

pattern is found in futures prices (futures prices above expected spot prices) it would be said that the 

                                                 
11 Each year, there is a week in spring with 167 hours and a week in autumn with 169 hours because of daylight saving 

time.  
12 The weekly spot price is known at Saturday midday. More specifically, Monday to Saturday system prices of each 

week will be already known at midday Friday. Nevertheless, to compute the weekly spot price, the Sunday system 

prices remain, but these prices are not published until Saturday midday.  
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futures market is in contango (long hedging pressure). The Kruskal-Wallis test contrasts the null of 

median equality between spot and futures time series. Results show that the null is rejected in six 

out of seven cases.  

Table 2 also displays the standard deviation of the analysed series. A pair-wise comparison 

between spot and futures standard deviation shows that the former is always higher. The Levene test 

contrasts the null of variance equality between spot and futures differenced series. Results show that 

the null is rejected in all the cases at 5% of significance level.  

The four spot time series analysed in Table 2 do not display significant skewness, whereas 

futures time series have significant skewness in all cases. Furthermore, when futures differences 

imply final settlement at maturity, that is when i=k, skewness is negative; but the skewness is 

positive in the remaining reported cases. The kurtosis results indicate that all the time series 

appearing in Table 2 have significant excess kurtosis. In accordance with the above results, 

normality distribution hypothesis is clearly rejected in all cases. Maximum and minimum values 

help to explain the above results, especially the high kurtosis. Finally, the Ljung-Box test with 

twenty lags detects significant autocorrelation and heteroscedasticity.  

The statistical behaviour of futures and spot log differences have some significant 

discrepancies that might be critical obstacles to overcome in order to design a successful hedging 

strategy. The two most insightful results are that futures have a declining pattern as maturity 

approaches, and that spot prices are more volatile than futures prices. This disparity produces a 

lower correlation than usual for linking futures and their underlying spots. This correlation appears 

in Table 3 and varies between 0.44 and 0.80. The highest correlation between spot and futures is 

obtained for those futures positions held until maturity, and steeply decreases as futures cancellation 

dates are increasing far from maturity dates. 

[Insert Table 2 about here] 

[Insert Table 3 about here] 
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Obviously, these results are important for electricity price risk management, as they show 

that only those futures contract positions held until maturity ensure a good risk reduction for 

hedgers. If futures positions are cancelled before, then the statistical differences between spot and 

futures prices will probably cause poor performance. These ideas are corroborated in the following 

section. 

 

5. Results 

 

In Table 5 some evidence of the predictive ability of the basis for the spot and futures price 

changes is presented. As this table shows, the basis has an important predictive power for 

explaining unexpected spot price changes (between 25% and 50%). However, the basis has little, or 

no ability to forecast futures price changes (between -0.16% and 1.16%). These results perfectly 

coincide with the Ederington and Salas (2008) approach where spot price changes are partially 

predictable; but futures prices are martingale.  

The estimation of the conditional covariance model (see equations (10) and (11)) is carried out by 

maximizing the sample log-likelihood function (see equation (12)). The estimation output is 

reported in Table 4. It is interesting to look at the last row of Panel (A) where the estimated values 

of the degrees of freedom parameter (ν ) are displayed. This parameter is significantly different 

from zero in the six estimated models and takes values varying between 4.56 and 6.83; 

consequently, the assumed distribution is supported by data. Looking at the results appearing in 

Panel (B), it can be said that the estimated ADC models cannot be reduced to any of the nested 

models.
13

  

                                                 
13 The standardized residuals of the model show no evidence of autocorrelation and heteroscedasticity. Results are 

omitted to maintain space.  
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Figures 2 and 3 display, respectively, the estimated conditional second moment and hedging 

ratios. It can be seen from Figure 3 that conditional hedging ratio values move around their 

unconditional values and, consequently, their performance is expected to be quite similar.
14

 

 

[Insert Table 4 about here] 

 [Insert Figure 2 about here] 

[Insert Figure 3 about here] 

 

Table 6 displays the variance reduction of the different hedging methods.
15

 This table 

contains three panels (A, B, and C) each corresponding to a different hedging length period (one to 

three weeks). The middle column in each panel reports in-sample results for the period December 

29, 1997 to October 5, 2003 (300 weeks).
16

 The last column in each panel reports out-of-sample 

results for the period October 6, 2003 to December 28, 2008 (274 weeks).
17

 Results can be 

                                                 
14 The average values of the OLS minimum variance hedge ratios appearing in Figures 3(a) to 3(f) are respectively 0.65, 

0.65, 0.68, 0.87, 0.90 and 0.93. This hedge ratio follows the classical pattern in the literature: as duration of the hedge 

increases, the hedging ratio and its performance increases (Lindahl, 1992). It is interesting to note that a perfect hedge is 

possible when hedges are held until maturity and a naive hedge is adopted. Adapting equation (8) to the notation in 

Table 1, if futures are held until maturity, a perfect hedge will be obtained as the relationship Δk
S(t) = a’ + b’Δk

F(t,Ti) 

+λ(log(F(t,Ti)/S(t))) becomes an identity for i=k, F(t+k,Ti)=S(t+k) with a’= 0, b’= 1 and λ = 1. This simple explanation 

is not possible using the equation (4) of the standard model. Furthermore, hedging effectiveness will be far below the 

expected 100% when spot price changes are partially predictable.  
15 Transaction costs are not considered when comparing hedging methods as the hedging theoretical framework is a 

one-period model for all hedging methods. Within this framework, the individual (see section 2) must take futures 

positions at the beginning of the period and cancel them at the end of the period. As hedging ratio values are quite 

similar in the three considered methods, the three methods will have similar transaction costs. The average trading fees 

for an additional trade on the Nord Pool futures has been less than 0.1% of the underlying asset value for the considered 

period. In December 2008, transaction costs represent approximately 0.007% of the underlying asset value. 
16 The autumn of 2002 was a dry season that pushed the hydro reservoirs into a sharp reduction (54% of average inflow 

for the preceding 20 years). In the late autumn and winter of the period 2002-2003 spot prices registered a very high 

level (twice to three times the normal level, with 850 NOK/MWh in January 2003). Further to the severe drought 

suffered, other factors could be important for such price behaviour, see von der Fehr et al. (2005) for more details. In 

order to split the total sample in two sub-periods, it was preferred to include the turmoil period in the first sub-period 

where an ex post view is adopted. By doing this, the second sub-period, where an ex ante view is adopted, will be free 

of such unusual price behaviour. Additionally, Lucia and Torró (2008) results support the view that circumstances 

changed in the Nord Pool market after the shock period. 
17 Results on Table 6 were repeated for the standard approach and similar conclusions to Ederington and Salas (2008) 

were obtained. First, when the unhedged spot variance is computed as ( )][ tSVAR
kΔ  instead of 

( ) )))](/),((log(ˆ[ tSTtFtSVAR k
k λ−Δ , the riskiness of the unhedged positions will be overestimated by 60% on average. 

Second, the estimates of the percentage risk reduction in the standard approach measured as: 

( ) ( ) ( )( )][/].[ tSVARTtFbtSVAR1100
k

i
k

t
k ΔΔ−Δ−× , underestimate the risk reduction obtained in Table 6 by about 30% 

on average. The risk reduction obtained within the standard approach is below 50% in most cases. It is interesting to 

note that obtaining risk reductions below 50% is quite common when futures hedging is carried out on commodities and 
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summarised in the following points: (i) hedging performance improves as hedging duration 

increases. That is, two-week hedges perform better than one-week hedges and so on. (ii) Hedging 

strategy performances worsen as ‘time to maturity’ increases when futures positions are cancelled 

early. That is, those hedges whose futures positions are cancelled two weeks prior to futures 

settlement have worse performances than those whose futures positions are held until one week 

prior to futures settlement, and so on. (iii) Differences in the risk reduction obtained by OLS 

methods (with and without the basis) are lower than 1% and inconclusive. Consequently, a more 

efficient hedge ratio estimate will not imply an improvement in the performance of the hedging 

strategy. (iv) Finally, when OLS and ADC hedge ratio performances are compared, results are again 

inconclusive in favour of any method as differences are quite small between both strategies. This 

result implies that the better statistical performance of the ADC model does not imply a better 

hedging strategy performance. Furthermore, the Naive strategy obtains a similar performance to the 

above remaining strategies in those hedges with durations of two and three weeks; but in the one-

week hedges, the Naive strategy clearly obtains the worst score.    

 

[Insert Table 5 about here] 

 

6. Conclusions 

 

This paper follows the Ederington and Salas (2008) framework when considering the 

expected change in spot prices when minimum variance hedge ratios are computed. The use of this 

new approach enables a significant improvement on the poor effectiveness measures of hedging 

strategies obtained in previous studies on electricity (Bystrom, 2003; Moulton 2005). Specifically, 

previous studies have overestimated the unexpected shocks in spot prices as a large part these 

                                                                                                                                                                  
the standard approach is used. This is especially true for non-storable commodities (Carter, 1999; section 3.2). Finally, 

Newey-West standard errors of the hedge ratios estimated using equation (8) are 25% lower on average than those 

obtained after using equation (4). Consequently, the introduction of the basis in the model allows more efficient 

minimum variance hedge ratio estimates. All these results are not reported to save space, but are available on request. 
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shocks (between 25% and 50%) can be anticipated using the information contained in the basis. 

Consequently the riskiness of the spot position in previous studies was overestimated and the 

achievable risk reduction underestimated. This poor effectiveness was also due to the special 

statistical features of electricity prices. There are two facts in electricity markets that explain the 

difficulty in obtaining a good performance when hedging spot price risk with futures contracts. 

Firstly, the no-storability property of electricity avoids the cash-and-carry connection between spot 

and futures, and so simultaneous spot and futures price liaison are less tight than is usual between 

futures and their underlying assets. Secondly, the special statistical features of electricity prices, 

specifically their high volatility and kurtosis. Both effects combined produce a low correlation 

between spot and futures prices and, consequently, a poor performance of hedging strategies can be 

expected.  

Further to the use of the new approach proposed by Ederington and Salas (2008), the 

empirical study carried out reveals that hedging performance can be significantly improved by 

increasing hedging duration and maintaining futures positions as near as possible to their final 

settlement. In this paper, weekly spot price risk is hedged with weekly futures, so the underlying 

asset in the futures contract and the asset in the spot position are practically identical. This 

identification is almost completed when futures positions are held as close as possible to their 

maturity. In this case, risk reduction attains its maximum values and better results are obtained by 

increasing the hedge duration. In this case, depending on the hedging duration (one to three weeks), 

and the analysed sub-period (in-sample and out-of-sample sub-periods), risk reduction attains 

values of between 60% and 80%.  

Finally, minimum variance hedge ratios that take into account the fact that spot price 

changes are partially predictable offer a similar performance to the unconditional version based on 

simple linear regressions, and the conditional version based on multivariate GARCH models. 

Consequently, it does not seem that improving statistical price modelling guarantees better 

performance.  
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Table 1. Type of hedges. 

 

This table displays the type of hedges and helps clarify the notation. Spot log variations are computed as Δk
S(t) = log(S(t+k)/S(t)) with k = 1, 2 

and 3; and represent the Nord Pool System Price log variation in k weeks, where the weekly system price (S(t)) is computed as the average price 

from Monday to Sunday of the total weekly hours (24 hours per 7 days). Δk
F(t,Ti) = log(F(t+k,Ti)/F(t,Ti)) with Ti = t+i; i = 1, 2, 3, and 4; k = 1, 2 

and 3; and k < i, represent the k weeks log variation in the weekly futures closing prices – ‘i’ weeks remaining to ‘delivery’ traded at Nord Pool 

on the last trading day of the week t. Note that F(t+k,Ti) = S(t+k) when k = i. ‘Duration’ column reports the number of weeks in each hedging 

period. ‘Time to maturity’ column is computed as ‘i’ minus ‘k’ and represents the time remaining to futures maturity when the hedge is finished. 

Last column reports the basis used to approximate the expected spot price change in equation (8).  

 

 

 

Duration 

(k weeks) 

Time  

to maturity 

(i−k weeks)

 

Spot log variation 

Δk
S(t) 

 

Futures log variation 

Δk
F(t,Ti) 

Basis  

approximating 

( )[ ]t
k

tSE ψΔ  

1 1  ΔS(t) = log(S(t+1)/ S(t)) ΔF(t,T2) = log(F(t+1,T2)/F(t,T2)) log(F(t,T1)/S(t)) 
1 2 ΔS(t) = log(S(t+1)/ S(t)) ΔF(t,T3) = log(F(t+1,T3)/F(t,T3)) log(F(t,T1)/S(t)) 
1 3 ΔS(t) = log(S(t+1)/ S(t)) ΔF(t,T4) = log(F(t+1,T4)/F(t,T4)) log(F(t,T1)/S(t)) 
2 1 Δ2

S(t) = log(S(t+2)/ S(t)) Δ2
F(t,T3) = log(F(t+2,T3)/F(t,T3)) log(F(t,T2)/S(t)) 

2 2 Δ2
S(t) = log(S(t+2)/ S(t)) Δ2

F(t,T4) = log(F(t+2,T4)/F(t,T4)) log(F(t,T2)/S(t)) 
3 1 Δ3

S(t) = log(S(t+3)/ S(t)) Δ3
F(t,T4) = log(F(t+3,T4)/F(t,T4)) log(F(t,T3)/S(t)) 
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Table 2 

The variables appearing in the heading of each column are described in Table 1. The Kruskal-Wallis and Levene statistics test median and variance equality, 

respectively, between Δk
S(t) and Δk

F(t,Ti) for k =1 in Panel (A) and k = i and i = 2, 3 and 4 in Panels (B), (C) and (D), respectively. Skewness means the 

skewness coefficient and has the asymptotic distribution N(0,6/T) under normality, where T is the sample size. The null hypothesis tests whether the 

skewness coefficient is equal to zero. Kurtosis means the excess kurtosis coefficient and it has an asymptotic distribution of N(0,24/T) under normality. The 

hypothesis tests whether the kurtosis coefficient is equal to zero. The Jarque-Bera statistic tests for the normal distribution hypothesis. The Jarque-Bera 

statistic is calculated as T[Skewness2/6+(Kurtosis)2/24]. The Jarque-Bera statistic has an asymptotic χ2
(2) distribution under the normal distribution 

hypothesis. Q(20) and Q
2
(20) are Ljung Box tests for twentieth order serial correlation in the differentiated and its squared series, respectively. Marginal 

significance levels of the statistical tests are displayed as [.]. 

 

Panel (A): One week log variations 

 ( )tSΔ  ),( 1TtFΔ  ),( 2TtFΔ  ),( 3TtFΔ  ),( 4TtFΔ  

Mean × 100 0.16 [0.74] −1.53 [0.00] −1.96 [0.00] −1.23 [0.00] −0.60 [0.06] 

Median × 100 0.16  −1.43  −1.36  −0.94  −0.38  

Kruskal-Wallis   11.42 [0.00] 15.60 [0.00] 7.34 [0.00] 2.48 [0.11] 

S. D. 0.11  0.08  0.10  0.09  0.08  

Levene    34.95 [0.00] 4.86 [0.02] 11.92 [0.00] 31.53 [0.00] 

Skewness -0.15 [0.14] −0.50 [0.00] 0.48 [0.00] 0.46 [0.00] 0.41 [0.00] 

Kurtosis 3.49 [0.00] 4.09 [0.00] 6.80 [0.00] 5.55 [0.00] 5.92 [0.00] 

Jarque-Bera 286.86 [0.00] 424.79 [0.00] 1129.33 [0.00] 755.69 [0.00] 853.40 [0.00] 

Minimum −0.50  −0.43  −0.47  −0.41  −0.42  

Maximum 0.52  0.31  0.71  0.62  0.55  

Q(20) 44.20 [0.00] 44.66 [0.00] 36.21 [0.01] 51.64 [0.00] 39.77 [0.00] 

Q
2
(20) 106.51 [0.00] 138.15 [0.00] 80.23 [0.00] 73.74 [0.00] 97.22 [0.00] 
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Table 2 (continued) 

Summary statistics of spot and futures prices log-differences 

 

 Panel (B)  

Two-week log variations 

Panel (C) 

Three-week log variations 

Panel (D) 

Four-week log variations 

 ( )tS
2Δ  ( )2

2 ,TtFΔ  ( )tS
3Δ  ( )3

3 ,TtFΔ  ( )tS
4Δ  ( )4

4 ,TtFΔ  

Mean × 100 0.31 [0.65] −3.51 [0.00] 0.49 [0.55] −4.77 [0.00] 0.66 [0.48] −5.40 [0.00] 

Median × 100 −0.06  −2.37  −0.03  −3.40  0.60  −5.13  

Kruskal-Wallis    21.57 [0.00]   24.61 [0.00]   23.32 [0.00] 

S. D. 0.17  0.13  0.20  0.17  0.23  0.19  

Levene    10.57 [0.00]   4.64 [0.03]   9.16 [0.00] 

Skewness -0.16 [0.12] −0.70 [0.00] −0.25 [0.01] −0.70 [0.00] −0.13 [0.20] −0.58 [0.00] 

Kurtosis 2.96 [0.00] 3.52 [0.00] 2.51 [0.00] 2.94 [0.00] 1.62 [0.00] 2.34 [0.00] 

Jarque-Bera 211.13 [0.00] 343.35 [0.00] 155.71 [0.00] 251.94 [0.00] 63.94 [0.00] 161.72 [0.00] 

Minimum −0.80  −0.76  −0.83  −0.94  −0.80  −0.97  

Maximum 0.63  0.43  0.76  0.49  0.81  0.56  

Q(20) 179.33 [0.00] 174.03 [0.00] 365.99 [0.00] 344.73 [0.00] 481.33 [0.00] 583.55 [0.00] 

Q
2
(20) 180.00 [0.00] 228.06 [0.00] 256.19 [0.00] 283.89 [0.00] 332.55 [0.00] 403.05 [0.00] 
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Table 3 

Correlation matrix of the spot and futures prices log variations 

The variables appearing in the heading of each row and columns are described in Table 1. For a sample 

size of T observations, the asymptotic distribution of the T times the correlation coefficient is a zero-one 

normal distribution. * indicates significance at the 1% significance level. 

 

Panel (A): One-week log variations 

 ΔS(t) ΔF(t,T1) ΔF(t,T2) ΔF(t,T3) ΔF(t,T4) 

ΔS(t) 1.0 0.72
*
 0.54

*
 0.47

*
 0.44

*
 

ΔF(t,T1)  1.0 0.76
*
 0.68

*
 0.62

*
 

ΔF(t,T2)   1.0 0.93
*
 0.89

*
 

ΔF(t,T3)    1.0 0.96
*
 

ΔF(t,T4)     1.0 

 

Panel (B): Two-week log variations 

 Δ2
S(t) Δ2

F(t,T2) Δ2
F(t,T3) Δ2

F(t,T4) 

Δ2
S(t) 1.0 0.80

*
 0.65

*
 0.60

*
 

Δ2
F(t,T2)  1.0 0.87

*
 0.80

*
 

Δ2
F(t,T3)   1.0 0.96

*
 

Δ2
F(t,T4)    1.0 

 

Panel (C): Three-week log variations 

 Δ3
S(t) Δ3

F(t,T3) Δ3
F(t,T4)

Δ3
S(t) 1.0 0.79

*
 0.72

*
 

Δ3
F(t,T3)  1.0 0.91

*
 

Δ3
F(t,T4)   1.0 

 

Panel (D): Four-week log variations 

 Δ4
S(t) Δ4

F(t,T4)

Δ4
S(t) 1.0 0.79

*
 

Δ4
F(t,T4)  1.0 
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Table 4 

Multivariate GARCH model estimates and restrictions tests 

 

The headings appearing in the first and second rows of each column are described in Table 1 and 

represent the pair of variables used to fit the model. This pair of variables are the input of a VAR model 

as described in equation (9). From each VAR, an innovation vector (ε1t, ε2t )’ is obtained without 

autocorrelation problems. Panel (A) of this table displays the quasi maximum likelihood estimates of the 

ADC model in equation (2), assuming a conditional t-Student distribution for the innovation vector 

(ε1t, ε2t )’. Significant coefficients at the 1%, 5%, and 10% of significance level are highlighted with one 

(*), two (**) and three (***) asterisks, respectively. Panel (B) displays the Wald test for the restrictions 

imposed on the ADC model to obtain the encompassed models. The specification test proposed by 

Kroner and Ng (1998) is as follows: (1) If ρ12 = b12 = b21 = a12 = a21 = g12 = g21 = 0, a restricted 

asymmetric VECH is obtained with conditional covariance equation having coefficients b11×b22, a11×a22 

and g11×g22; (2) if φ12 = b12 = b21 = a12 = a21 = g12 = g21 = 0, the asymmetric CCORR model is derived; (3) 

if φ12 = 1 and ρ12 = 0 the asymmetric BEKK model is obtained. Significant rejection of the null 

hypothesis at 1% of significance level is highlighted with an asterisk (*). 

 

 

Panel (A). Multivariate GARCH model estimates 

 ΔS(t) ΔS(t) ΔS(t) Δ2
S(t) Δ2

S(t) Δ3
S(t) 

 ΔF(t,T2) ΔF(t,T3) ΔF(t,T4) Δ2
F(t,T3) Δ2

F(t,T4) Δ3
F(t,T4) 

11ω    0.03*   0.00   0.01*   0.03*   0.02*   0.04* 

22ω  −0.01*   0.00   0.01* −0.01* −0.02*   0.00 

12ω    0.03*   0.04* −0.01*   0.04*   0.02*   0.05* 

11a    0.54*   0.61*   0.15*   0.32*   0.53*   0.61* 

12a    0.27*   0.49*   0.11* −0.03*   0.10***   0.19* 

21a  −0.03 −0.50*   0.09*   0.08* −0.01 −0.19* 

22a    0.32* −0.24*   0.16*   0.54*   0.40*   0.31* 

11b    0.78*   0.16*   0.99*   0.93*   0.78*   0.97* 

12b    0.07 −0.90* −0.17*   0.40*   0.02   0.75* 

21b  −0.09*   0.62* −0.07* −0.21*   0.01 −0.32* 

22b    0.69*   1.12*   1.03*   0.40*   0.77*   0.14* 

11g  −0.98* −0.59* −0.23*   1.14*   0.51* −0.13* 

12g  −1.31* −0.29* −0.31*   1.28*   0.57* −0.75* 

21g    0.48*   0.04   0.28* −0.66* −0.52*   0.51* 

22g    0.94* −0.23*   0.28* −0.94* −0.34*   0.82* 

12ρ    0.04*   0.11*   0.43* −0.03*   0.04 −0.13* 

12φ    0.92*   0.96*   0.45*   0.94*   0.89*   1.06* 

ν    4.56*   5.34*   5.15*   6.15*   6.83*   6.12* 

Panel (B). Testing restrictions for nested models 

VECH 119.84* 3.35×103* 2.47×107* 7.43×1011* 11.20* 208.46* 

CCORR 7.44×103* 3.34 ×103* 2.07×107* 6.37×1011* 321.39* 2.32×103* 

BEKK 17.85* 58.36* 8.53×107* 1.4721×105* 16.08* 154.91* 
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Table 5. The basis as a predictor of the change in spot and futures prices 

 

This table displays the results of the regression between spot and futures changes appearing in 

the first column on the basis as defined in the second column for the whole sample period 

(1998-2008). Between brackets t-statistic values computed with Newey-West standard errors 

are reported. Significant coefficients at the 1%, 5%, and 10% of significance level are 

highlighted with one (*), two (**) and three (***) asterisks, respectively. 

 

Dependent variable basis intercept Basis coefficient Adjusted R
2 

ΔS(t) log(F(t,T1)/S(t)) –0.01 (–4.01)
 *
   1.02 (17.26)

*
  50.55% 

ΔF(t,T2) log(F(t,T1)/S(t)) –0.02 (–3.80)
 *
   0.02 (0.44) –0.15% 

ΔF(t,T3) log(F(t,T1)/S(t)) –0.01 (–2.44)
 *
 –0.01 (–0.14) –0.14% 

ΔF(t,T4) log(F(t,T1)/S(t)) –0.01 (–1.57)   0.01 (0.19) –0.16% 

Δ2
S(t) log(F(t,T2)/S(t)) –0.03 (–4.39)

 *
   0.99 (14.33)

 *
  34.89% 

Δ2
F(t,T3) log(F(t,T2)/S(t)) –0.03 (–3.14)

 *
 –0.12 (–1.48)   0.57% 

Δ2
F(t,T4) log(F(t,T2)/S(t)) –0.02 (–1.88)

 ***
–0.09 (–1.19)   0.35% 

Δ3
S(t) log(F(t,T3)/S(t)) –0.04 (3.24)

*
   0.83 (7.95)

 *
 25.55% 

Δ3
F(t,T4) log(F(t,T3)/S(t)) –0.03 (–2.54)

**
 –0.16 (–1.76)

***
   1.16% 
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Table 6. Hedging effectiveness 

This table displays the risk reduction achieved by each hedging strategy: Naive, OLS without the basis (see 

equation (4)), OLS with the basis (see equation (8)) and the ADC conditional estimate. The second column in 

each panel reports in-sample results for the period December 29, 1997, to October 5, 2003, (300 weeks). The 

third column in each panel reports out-of-sample results for the period October 6, 2003, to December 28, 

2008, (274 weeks). In the first row of each panel, the unhedged spot position variance is reported. This 

variance is computed as ( ) )))](/),((log(ˆ[ tSTtFtSVAR k
k λ−Δ  and constitutes the base to calculate the risk reduction 

achieved with each hedging strategy. Variance of each hedging strategy is computed as 

( ) ( ) )))](/),((log(ˆ,ˆ[ tSTtFTtFbtSVAR ki
k

t
k λ−Δ−Δ  where spot and futures log-variations are defined as in Table 1 and 

bt represents the hedging ratio. Ex ante hedging ratios are forecasted values in t and each time a new 

observation is added the model is estimated again in the ADC and OLS hedging strategies. Those strategies 

with largest risk reduction are indicated with an asterisk (*). 

 

 

Panel (A). Hedging one-week spot risk (ΔS(t)) 

 In the sample  Out of the simple  

Spot variance (no hedged) 0.00791 0.00431 

Hedging Strategy Risk reduction (%) Risk reduction (%) 

Hedging with the second to ‘delivery’ (ΔF(t,T2)) 

Naive (b=1) 43.58 27.62 

OLS w/o basis 58.46  58.93 

OLS with basis 58.47 (*) 59.07 (*) 

ADC 57.68 57.69 

Hedging with the third to ‘delivery’ (ΔF(t,T3)) 

Naive (b=1) 35.50 13.05 

OLS w/o basis 48.13 46.40  

OLS with basis 48.20  45.84  

ADC 49.80 (*) 47.76 (*) 

Hedging with the fourth to ‘delivery’ (ΔF(t,T4)) 

Naïve (b=1) 33.70   6.63 

OLS w/o basis 40.77 33.94 

OLS with basis 40.79 34.31 (*) 

ADC 42.97 (*) 33.97 
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Table 6. Hedging effectiveness (continued). 

 

 

Panel (B). Hedging two-week spot risk (Δ2
S(t)) 

Spot variance (not hedged) 0.02278 0.01295 

Hedging with the third to ‘delivery’ (Δ2
F(t,T3)) 

Naïve (b=1) 75.52 69.09 

OLS w/o basis 76.29 75.83 (*) 

OLS with basis 76.90 (*) 74.98 

ADC 71.11  70.26  

Hedging with the fourth to ‘delivery’ (Δ2
F(t,T4)) 

Naive (b=1) 66.19 58.15 

OLS w/o basis 66.48 63.20 (*) 

OLS with basis 66.76 (*) 62.31 

ADC 57.81 57.15 

 

Panel (C). Hedging three-week spot risk (Δ3
S(t)) 

Spot variance (not hedged) 0.03549 0.02286 

Hedging with the fourth to ‘delivery’ (Δ3
F(t,T4)) 

Naive (b=1) 81.42 81.71 

OLS w/o basis 80.84 82.60 

OLS with basis 81.73 (*) 82.86 (*) 

ADC 68.05 74.48 

 



 33

Figure 1. System and weekly futures prices. 
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Figure 1(a). System price (——) and the first 

to ‘delivery’ futures price (- - -) 

Figure 1(b). System price (——) and the 

second to ‘delivery’ futures price (- - -) 
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Figure 1(c). System price (——) and the third 

to ‘delivery’ futures price (- - -) 

Figure 1(d). System price (——) and the 

fourth to ‘delivery’ futures price (- - -) 
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Figure 2. Annualized conditional volatilities. 

Notes. In each graph, the solid line (——) and the dashed line (- - -) correspond to the spot 

and futures annualized conditional volatility (in percentage), respectively. The displayed 

conditional volatilities are estimated in the ‘one-week’ hedging period models. The vertical 

line separates the ex post and ex ante hedging periods.  
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Figure 2(a). Second to ‘delivery’ futures 
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Figure 2(b). Third to ‘delivery’ futures price  
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Figure 2(c). Fourth to ‘delivery’ futures 



 35

Figure 3. Hedging ratios. 

Notes. The vertical line separates the ex post and ex ante hedging periods. ADC hedging 

ratios are represented with continuous lines (——) and OLS hedging ratios estimated with 

equation (8) are represented with dashed lines (- - -). Spot and futures log-variations are 

defined as in Table 1. 
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Figure 3(a). Hedging ΔS(t) risk with ΔF(t,T2). Figure 3(b). Hedging ΔS(t) risk with ΔF(t,T3). 
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Figure 3(c). Hedging ΔS(t) risk with ΔF(t,T4). Figure 3(d). Hedging Δ2
S(t) risk with Δ2

F(t,T3). 
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Figure 3(e) Hedging Δ2
S(t) risk with Δ2

F(t,T4). Figure 3(f) Hedging Δ3
S(t) risk with Δ3

F(t,T4). 

 


