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Audi vs BMW – On the Physcial Heterogenity of German Luxury Cars 

 

Claus Vistesen  

 

Abstract  

This paper uses Logit and Probit regressions to test for and quantify the physical heterogeneity 

between German luxury cars. Using a matched sample database, the binary response variable 

consisting of Audis and BMWs is fitted to a matrix of physical characteristics such as power, 

torque, fuel consumption, engine displacement etc. The results indicate that having a forced 

induction engine (e.g. turbo) is associated with a 51% lower probability of observing a BMW and 

that increasing fuel consumption by 1 liter per 100km lowers the probability of observing a BMW 

with 61%. The results are discussed in relation to the idea that consumers may not differentiate 

across luxury products on the basis of physical characteristics and how this may introduce a bias 

with respect to predicting demand in the context of available market data.  

 

1.0 Introduction  

The idea that you can take some of the most arcane tools of the economist’s toolbox and apply 

them directly to the unstable and complex reality of the real world remain a difficult aspiration in 

most contexts. Still, the estimation and identification of demand systems remain a panacea in the 

context of empirical microeconomics and although this paper, by no stretch of the word, 

represents a panacea, it is within this theoretical context that it makes its main argument. 

Formally, this takes us into the world of so-called pure characteristics demand models (PCDM) 

which are defined as discrete choice models in which consumers derive utility from physical 

product characteristics and, more specifically, choose between differentiated products and rank 

them based on these product characteristics Berry and Pakes (2007) and Thomassen (2007). This 

paper does not make use of market data and in this way does not fit and estimate a PCDM. Rather, 

it asks the simple question that the extent to which economists assume consumers to differentiate 

products on the basis of physical characteristics, it would be interesting to check along which lines 

differentiated products might differ in the context of physical characteristics.  

In order to deliver a stab to answer this question, the attention is turned to one of the most 

revered products in the world in the form of German luxury cars and specifically the two super 

brands Audi, as part of the VW group, and the independent make BMW. The choice of Audi and 

BMW as subjects of analysis is interesting for two reasons in particular. First of all, they are main 

competitors on most markets where they are both present and thus can, to a high degree, be 

viewed as close substitutes. This is interesting because of the extent to which consumers are 

expected to substitute on the basis of physical characteristics it would be interesting to see 

whether Audis and BMWs especially differ along physical dimensions. Secondly, Audis and BMWs 

represent interesting subjects of analysis precisely because they are luxury products and thus how 
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their main difference may not be captured by a physical characteristics model. In short, there is 

more to product heterogeneity amongst luxury products than physical characteristics Vickers and 

Renand (2003). The discussion of this issue will be deferred to after the empirical results have 

been presented.   

In general, the small theoretical framework which serves to frame the empirical estimations relies 

closely on the intuition, results and discussion provided in Thomassen (2007) who exactly sets out 

to estimate (and identify) a pure characteristics model for cars with data on the Norwegian 

market. The empirical analysis is based on data from the German market
1
 where a matched 

sample is created on the basis of the most popular competitive product lines in the Audi and BMW 

setup.  

The paper proceeds with the presentation of a small theoretical framework in section 2 before 

section 3 presents the estimation and results as well as a discussion of the relative benefits of the 

LPM and discrete choice models. Section 4 contains a small discussion on the obtained results with 

specific focus on the difference between the three estimated models
2
 as well as a perspective on 

what it means that I am analyzing luxury products. Section 5 concludes.  

 

2.0 Theoretical Framework 

In Thomassen (2007), consumer utility is represented by a so-called vertical differentiation model 

where agents choose between differentiated products on the basis of their valuations of physical 

characteristics relative to price Thomassen (2007, p. 4). I follow this intuition somewhat and adopt 

a standard model motivated through the following problem facing the representative agent.    

                                                           
1
 Which is most important in relation to price since physical characteristics of Audis and BMWs, in the present sample, 

are assumed homogenous across national markets (i.e. a BMW 325i will have 218 bhp regardless of whether it is sold 

in Denmark or Germany).  

2
 Linear Probability Model, Logit, and Probit.  
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Where “X(bar)” is a vector of physical characteristic and the utility consumers derive from these, 

“P’” is the price vector of the physical characteristics, y is income,  and “x” is simply a vector of the 

physical characteristics. Concerning the utility function I consider the most general representation 

where the marginal utility is positive for all physical characteristics which may put some 

constraints on the way we parameterize the utility function (and the subsequent econometric 

model). Also, I neatly bypass any discussion of whether marginal utility with respect to some 

characteristics might be non-linear or otherwise irregular. Finally, and as a further simplifying 

assumption I restrict all cross derivatives to be zero. This essentially means that the marginal 

utilities of each physical characteristic are assumed independent. This may of course be a quite 

problematic simplification since one would assume some of these cross derivatives to be quite 

important Thomassen (2007). For example one would expect an individual who puts a high 

marginal value on performance to put a comparatively small value on fuel consumption as well as 

one would expect an individual who places a high emphasis on a high torque level (i.e. good mid 

range pulling power from the engine) to also favor a turbo engine. 

Proceeding to solve the problem the current setup does not allow me to present an actual closed 

form solution, but merely one which can intuitively be seen leading to a formal solution. Setting up 

the constrained maximization problem (the Lagrangean) consequently yields;  
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Given the actual parameterization of the utility function there will be, for each consumer, a vector 

“x” which satisfies this system of equations and the classic assumption here is, as usual, that the 

aggregated value of this vector is the one that solves the specific problem in relation to the 

representative individual. It is important to emphasize at the offset that the price of the given car 

is not directly observable in this framework, but it can be reasonably assumed that in a world 

where physical characteristics are all that matters, the price of the car will be sum the of the prices 

of the individual physical characteristics; 
�

�

�

�

� �
=

=∑ .  

Although somewhat simplified the framework above lends itself easily to idea that since 

consumers’ utility for a given product is a linear function of this product’s physical characteristics, 

one crucial task would be to investigate along which lines “substitute products” might differ and, 

formally, to quantify this difference. It is towards this task that the investigation now turns with 

the focus centered on German luxury cars represented by Audis and BMWs. 

 

3.0 Data, Estimation and Results  

The data consists of a matched data sample made up of 217 cars (107 Audis and 110 BMWs) and is 

constructed on the basis of Audi’s and BMW’s most popular product lines
3
. In this way, the data 

sample includes data on the A3, A4, A6, and A8 for Audi and the 1-Series, 3-Series, 5-Series, and 7-

Series for BMW. The data is all tabulated from sources pertaining to the German market (i.e. 

German company websites) and therefore all prices will be German prices (incl. VAT) and quoted 

in Euros. In order to get a database that is as rich as possible, additional variation is obtained by 

including both the sedan and wagon models for the A4, A6, 3-Series, and 5-Series
4
 as well as a 

version with manual and one with automatic transmission are included for all models where 

applicable. The reason for this is that physical characteristics such as performance, fuel 

                                                           
3
 The dataset can be studied in detail from the accompanying data CD. Please mail the author for the data.  

4
 3 door and 5 door models for the A3 and 1-Series.  
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consumption and size may change as a function whether the car is a sedan or wagon model as well 

as whether it is equipped with a manual or automatic transmission.  

A natural question to ask at this point is naturally why not the whole model line-up has been 

chosen in order to provide the richest analysis. After all, in the present context one could even 

argue that by taking all models currently offered by Audi and BMW we would not only get a richer 

basis for analysis, we would also, de-facto, have the entire universe of BMW and Audi models and 

thus in some sense a population and not a sample. This however is only partially true and apart 

from the fact that punching in all models manually in excel would have required your humble 

scribe to fork over some cash for a student assistant, it is important to realize this 

universe/population of Audi and BMW models also has a time dimension in which not only 

existing models change but also where new models are introduced and old ones retired. For this 

reason it would not have been more consistent to include the entire model line-up. Finally, there 

is an argument, in itself, in including only the most popular model line-up and specifically to make 

a sample which is made up of competitive models. In this way, it is assumed that this method 

makes the analysis most relevant for a possible empirical application with actual sales data. 

Moving on to the actual physical characteristics used as independent variables they have been 

chosen with an eye to being easily quantifiable as well as offering, in total, the best generic 

description of the cars in question. There are 14 in total of which 3 are binary and 11 continuous.  

•� Dependent variable (BMW = 1, Audi = 0) 

•� Power Output in bhp (break horse power) 

•� Torque in NM (newtonmeters)
5
  

•� Cylinders (e.g. 4, 6, or 8)  

•� Engine Displacement (measured in CM^3) 

•� Engine type (1 = naturally aspirated (NA) and 0 = Forced Induction (i.e. turbo, compressor 

etc) 

•� Automatic gearbox (1 = yes, 0 = no)  

•� Drive train (1=AWD (all wheel drive), 0 = other (e.g. rear wheel drive or front wheel drive))  

•� Top Speed (in kilometers per hour (kph)) 

•� Acceleration (in 0-100 kph time)  

•� Fuel Consumption (in l/100 km)
6
 

                                                           
5
 This is a performance measure and indicates, unlike, horse power, the car’s ability to accelerate in the low and mid 

range revs area (i.e. not from a standstill). Usually cars equipped with Turbos, Compressors or other form of forced 

induction benefit from high torque figures.  

6
 Combined driving.  
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•� CO2 Emissions (in g/km)  

•� Weight (in kg) 

•� Power/weight (measured as power/weight; this is meant as a unifying performance 

indicator. performance is expected to increase in this ratio.) 

Apart from these variables, I also report the price in Euros which is not included in the formal 

estimation framework.
7
 Excel

8
 was used to generate the following table which plots the most 

important summary statistics for the variables mentioned above.  

Table 1 – Summary Statistics (orange signifies binary variables)
9
 

 

If we begin with the dependent variable, the results reveal an almost balanced sample with 50.1% 

of the cars made up of BMWs (110 in total). This point is important to emphasize in the context of 

the idea of a matched data sample thast tries to set up Audi and BMW competitively against each 

other. 

In order to get to grips with the summary stats, it is worthwhile to study the median car of the 

sample which has a naturally aspirated 2.0 four cylinder engine sporting 190 bhp and a torque of 

330 NM; it is also equipped with an automatic gearbox. Compared to an average family car (e.g. a 

Mazda 6 2.0 sedan, manual transmission) fuel consumption and environmental consideration are 

about the same
10

  whereas performance is significantly higher with a top speed of 232 kph (145 

mph) and an acceleration time from 0-100 kph (0-60 mph) at 7.7 seconds
11

 for the median car in 

this sample. These impressive performance features which easily surpass those of our standard 

                                                           
7
 For reasons explained in the theoretical section.  

8
 Excel does this better than SAS in my opinion. 

9
 More detailed table including more summary stats available in the appendix.  

10
 The Mazda emits 166 g CO2/km and uses 7 l/100 km.  

11
 Corresponding figures for the Mazda are 214 kph and 9.9 seconds.  
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family car likely owe themselves to the fact that we are scrutinizing two luxury brands where high 

performance is an important distinguishing trait with the important qualifier that the price of the 

median car (€ 37.940) is also significantly higher than for the Mazda (€ 29.200).  

In order to operationalize the data on the basis of the theory presented, consider the following 

model to be estimated;  

Eq.3 

� � � � ��� � � �

�

� � � � �

� �

α β β β

α

= + + + + +

⇔

= + +xβ

 

Where “Y” is the binary dependent variable taking on 1 if the observed car is a BMW and 0 if it is 

an Audi. “x” is a matrix (217x13) of all the car models fitted to their physical characteristics used in 

the theoretical framework and discussed above in relation with the summary statistics table. In 

the analysis that follows, this model will be estimated by OLS (i.e. as a linear probability model 

(LPM)) before moving on to Probit/Logit estimations.  

Beginning with the LPM the results can be scrutinized in appendix A1.0 
12

 where ***, **, and * 

indicates significance at the 1%, 5% and 10% level respectively. The overall fit of the model 

appears strong. With an R-Sq of 0.618 and a corresponding F value that is highly significant, the 

model indicates a clear and measurable difference between Audis and BMW. For example, the 

model indicates that increasing the power output with 1 bhp will increase the probability of 

observing a BMW by 1.3% as well as it indicates how observing a model with a naturally aspirated 

engine (i.e. non-turbo) will increase the probability of observing a BMW by a full 47.2%. Finally, 

the model also indicates that while Audis consume more gasoline per 100 km travelled, they emit 

less CO2 per km travelled. These and other results notwithstanding, the LPM is plagued by a 

number of significant problems when estimated with a binary variable as a left hand side 

(dependent) variable.  

Specifically, estimating a model as the one above with OLS is likely to violate the foundations of 

the linear model
13

 in at least three ways Gujarati (2003).  

Firstly, the residuals are not going to be normally distributed as required by the GMT; rather the 

error term will follow a Bernoulli distribution as it may only take two values. Using the model 

above Gujarati (2003) and Greene (2003), we get;  

                                                           
12

 SAS output of all estimations are given in the appendix.  

13
 The Gauss Markow Theorem (GMT).  
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The second problem concerns the variance of the error term which, in the context of OLS, is going 

to exhibit a non-constant variance (i.e. it will be heteroscedastic). Formally and given that we 

know the error term follows a Bernoulli distribution, this is easy to show;  

Eq.5 
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Clearly, the variance is a function of “x” and thus of a non-constant term which is what introduces 

unequal variance of the residuals (following Greene (2003, p. 666) the variance may even be 

negative).   

Whereas the two problems above perhaps could be neglected in the case of the first and, almost 

surely, amended in the case of the second through the development of a generalized least square 

estimator, the third and final problem is of a much more fundamental nature. Consider then the 

interpretation of the estimated coefficients in the LPM as probabilities. This follows from the fact 

that the residuals, and by derivative, the dependent variable follow a Bernoulli distribution. The 

obvious conclusion in this context is then that the estimated coefficients must be bounded by 0 

and 1. Formally;  

Eq.6 
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thus, when applying OLS, we cannot be sure that the estimated coefficients are bounded by 0 and 

1. This is a severe problem in the present context and essentially makes the interpretation of the 

estimated beta coefficients nonsensical. Going back to the estimation above the coefficient for the 

power/weight ratio estimated to -14.5 is a concrete example of this.  

In order to correct for these deficiencies it is customary to turn to Probit/Logit estimations which 

is done in the following sections. 

Given the flaws surrounding the linear model the key is to specify a model which has the following 

characteristics (eq 21-6 Greene (2003, p. 666);  
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Eq.7 
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Within this framework the Probit model assumes a normal distribution and the Logit a Logistic 

distribution with the expression on top for the Probit model and conversely for the Logit model 

below
14

. Deferring the discussion on the marginal effect to after the initial estimation results have 

been presented, the most important distinction between the LPM and the Probit/Logit model is 

that while the former is estimated with OLS the latter is estimated using the maximum likelihood 

method. Concretely, the estimation of the Probit/Logit models assumes, initially, that the left hand 

side function (Y) follows a Bernouilli distribution. A thorough derivation of this using the Logit 

model is presented in the appendix and in the following the results are examined.  

As an important note relative to the LPM estimated above it has been necessary to exclude the 

variable “drive train” from the analysis in order to get consistent maximum likelihood estimates.
15

 

The results from the Probit/Logit estimations are reported in appendix A1.0
16

 and even without 

the marginal effects that would make the estimates amendable to concrete interpretation; the 

estimations reveal a stark contrast with the LPM. Consequently, while the LPM returned 11 

variables with significant estimates at the 1%, 5% or 10% level the Probit and Logit returns only 

3
17

. Fortunately, both the Logit and Probit agree, as it were, on the significant variables in the form 

of “torque”, “enginetype” and “fuel consumption”. In concrete terms and restricting the 

relationship to the variables that are statistically significant, the models stipulate that increasing 

torque will lower the probability of observing a BMW, observing an NA engine will increase the 

probability of observing a BMW, and finally; that increasing fuel consumption (liters consumed per 

100 km) will lower the probability of observing a BMW. It is interesting here, in particular, to 

observe that Audis are indeed characterized by having turbo charged engines (with a 

corresponding small displacement) contrary to BMW where the adherence to the straight line six 

cylinder engine in many of the brand’s top models makes BMW mainly dominated by NA engines. 

It is however important to point out that this result is almost certainly restricted to petrol engines 

since all diesel engines (whether in an Audi or BMW) have some form of forced induction. The 

result on torque (i.e. a measure of the engine’s pulling power) follows from the result on engine 

                                                           
14

 Bottom equation.  

15
 Basically, SAS EG 4.2 did not like this variable presumably because it is only defined for Audi (i.e. there are no BMWs 

with AWD in the sample) and thus produced nonsensical results less it was removed from the estimation.   

16
 SAS output in the succeeding appendices.  

17
 With the ML estimate for ”CO2 Emmission (g/km)” in Logit out as it slightly fails the 10% threshold.  
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type in the sense that engines with forced induction exactly are characterized by a higher torque 

than NA engines. In the case of fuel consumption it appears that BMWs are notably more fuel 

efficient than Audis, a result which is interesting in so far as goes the idea that having forced 

induction (e.g. in the form of a turbo) should make it easier to drive the car efficiently.  

In terms of quantitative interpretation and although the odds ratio reported for the Logit model is 

fairly simple to interpret, it is inherently difficult to interpret the coefficients since these do not 

represent the marginal effects. In order to see this simply go back to eq. 7 and take the derivative 

with respect to “x” and realize (following the chain rule of differentiation) that this is not equal to 

the estimated coefficients;  

 

Eq. 8 

� �
�� � �

��
β

∂Φ
= Φ

∂
xβ

xβ . 

In order to amend this the approach adopted here is to find the marginal effect using the so-called 

means procedure which calculates the mean of the individual marginal effects. This is 

implemented in SAS EG 4.0 and coding
18

 is shown in the appendix. Focusing on the marginal 

effects for the variables
19

 that were estimated to have statistical significance above; we get the 

following output;  

Table 2 – Marginal Effects (significant variables) Full Model 

 

In terms of choosing between the Logit and Probit estimation it is difficult and also essentially a bit 

innocuous since they return virtually the same result. However, if pressed and by applying for 

example the decision rule based on the Akaike Information Criterion (AIC) the Logit model has the 

lowest value at 179.7 compared to the AIC for the Probit model at 181.4. In this way, I would go 

for the Logit estimation and conclude that increasing torque by 1 nm will decrease the probability 

                                                           
18

 http://support.sas.com/rnd/app/examples/ets/margeff/index.html 

19
 Full output can be scrutinized in the appendix.   
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of observing a BMW by 0.38%, observing an NA engine will increase the probability of observing a 

BMW by 50.88% and finally, increasing the liters of petrol/diesel per 100 km will decrease the 

probability of observing a BMW by 60.64%.  

As a final remark before moving on to a perspective and discussion on the results, it is worth 

noting that when it comes to the robustness of these results, the coefficient estimated for torque 

does not seem to be robust. Consequently, the appendix contains the output of a model estimated 

with only the three variables above as explanatory variables and in this estimation the sign for 

torque changes from negative to positive as well as the variable remains significant
20

.  

 

4.0 Discussion and Perspectives  

The estimation of the LPM indicated that Audis and BMWs differ across a wide range of physical 

characteristics, but this result was qualified significantly with the introduction of binary regression 

models where the number of significant (and robust) variables changed significantly. Without a 

doubt, this highlights the difficulties and inaccuracies in relation to the OLS framework when used 

to fit variables to explain a discrete dependent variable. On the difference between the Logit and 

Probit estimation there is very little between the two models in the present context. On the basis 

of the AIC the Logit model would be the chosen specification, but since the two models assume 

different probability distributions of the dependent variable, the AIC selection method is not 

strictly valid. In this sense, it is safe to say that the Probit and Logit estimations in this paper are 

very close substitutes.  

Turning to the concrete results and their general robustness it is important to realize that they are 

bound to be very sensitive to the sample strategy chosen. In this sense and following the intuition 

above, the idea of matched data sample in which the two brands are paired competitively is 

bound to produce different results than if all models and variants had been included. The 

important point here is that while the results would almost surely be quantitatively different, they 

might also be qualitatively different (i.e. the signs/statistical significance of coefficients could also 

differ markedly).  

As a perspective on the results it would naturally be apt to go back to the theoretical framework 

and see whether we can draw some interesting links between this and the empirical estimation. 

Initially, and if we might have hoped to be able to match our representative consumer with a 

utility function containing a rich set of parameters with an equally rich variance in the estimation, 

this hope cannot be fulfilled. In the present context, the estimated difference between Audis and 

BMWs based exclusively on physical characteristics consequently does not seem to conform well 

with the idea that consumers are very sensitive to physical differences between cars. Surely 

though the measured difference between Audis and BMWs with respect to engine type represents 

an important distinction between the two brands and could arguably be directly translated into 

the prediction that buyers of Audis and BMWs, to some extent, will be driven by their preference 

for a specific engine type. In the context of fuel consumption, one finds it intuitively difficult to 

believe that buyers of Audis and BMWs will choose one over the other based on fuel consumption, 

                                                           
20

 The two other variables ”behave” as expected.  
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but given the fact that BMWs do indeed appear to have better fuel consumption it will mean that 

they are valued higher (based exclusively on physical characteristics
21

) than Audis.  

The fundamental question we are centering on here is then whether in fact Audis and BMWs 

might not be differentiated across other aspects than their physical characteristics?  

It is here that the notion of Audi and BMW as luxury products becomes important. In order to see 

this, it is possible to use the framework developed in Vickers and Renand (2003) where luxury 

goods are defined on the basis of three conceptual dimensions; instrumental performance 

(functionalist/physical characteristics), experimentalism, and symbolic interactionism. Using a 

qualitative survey study the empirical results reveal that in the context of cars, a standard car will 

be defined mainly on the basis of its functionalist profile whereas a luxury car will predominantly 

be defined on the basis symbolic interactionism that includes variables broadly defined as 

signaling effect variables and thus what kind of signals the owner sends by owning e.g. an Audi or 

BMW Vickers and Renand (2003). To put it simply; while standard cars are indeed differentiated, 

in the minds of customers, on the basis of their tangible differences non-standard (luxury) cars are 

differentiated on the basis of their intangible differences which we might, rather insubstantially, 

coin as their brand value.  

This naturally introduces an important qualifier to the results shown here. In quantitative terms, 

Vickers and Renand (2003) present results to suggest that for luxury cars, only 12% of the variance 

in consumer preference is explained by physical characteristics. Taking this value to heart in the 

present case and taking the estimated R-SQ for the Logit model chosen as the preferred 

specification (0.488)
22

, we would need to scale down this by 0.12 (12%) which gives 0.059 as the 

estimated degree to which we can explain the variance in consumer preferences for luxury 

products solely on the basis of physical characteristics. This is naturally highly stylized, but it 

indicates that the extent to which we may find significant physical characteristics between Audis 

and BMWs these are likely to account for only a small part of the final variance in consumer 

preferences for these two products.  

Finally, it provides an important perspective to studies who might seek to use pure characteristics 

demand models (PCDM) in the context of luxury products or even product classes where both 

luxury and standard products are included. It is thus not unreasonable to expect that the potential 

difference in the way consumers perceive product classes could translate into a significant bias of 

the results. 

 

 

 

 

                                                           
21

 I.e. price notwithstanding! 

22
 McFadden’s pseudo R-SQ 
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5.0 Conclusion  

This paper has used Logit/Probit estimations to investigate and quantify the physical differences 

between Audis and BMWs. As expected and while the initial estimation with a LPM indicated a 

strong difference between Audis and BMWs based on a range of physical characteristics, the 

introduction of Logit/Probit models qualified this results significantly. In the context of a matched 

sample the results indicate that observing a car with a forced induction engine (e.g. Turbo) will 

decrease the probability of observing a BMW by 51%. The results also suggest that BMWs have 

better fuel consumption than Audis (in this sample) as increasing the liters of fuel consumed per 

100 KM by 1 liter will decrease the probability of observing a BMW by 61%. The strongest result in 

this context has to be the first one which seems to provide an important perspective on the 

differences between Audis and BMWs. Consequently, consumers who prefer forced induction in 

relation to gasoline engines (since all diesels are turbo charged) can be expected to choose Audis 

over BMW and vice versa for naturally aspirated engines of course. These results were discussed 

in the context of research that shows how consumers traditionally attach little value to physical 

characteristics in the context of luxury products.  

Further studies should attempt to widen the sample (potentially with Mercedes) to find more 

robust physical differences between the three big Germany luxury automakers.  
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Appendices 

A1.0 – Maxmimum Likelihood Estimates (Probit and Logit Models)  

A1-Table 1 – Linear Probability Model 
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A1-Table 2 – Probit Model (ML Estimates)  

26
 

A1-Table 3 – Logit Model (ML Estimates)  

 

                                                           
26

 With the p-value for ”CO2 Emission g/km” returned at 0.104 
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A1 -Table 4 – Logit Model (Odds Ratio) 

 

 

 

A2.0 - Regression Output SAS (Linear Probability Model) 

 

Number of Observations Read 217 

Number of Observations Used 217 
 

Analysis of Variance 

Source DF 

Sum of 

Squares 

Mean 

Square F Value Pr > F 

Model 13 33.52705 2.57900 25.28 <.0001 

Error 203 20.71259 0.10203     

Corrected Total 216 54.23963       
 

Root MSE 0.31943 R-Square 0.6181 

Dependent Mean 0.50691 Adj R-Sq 0.5937 

Coeff Var 63.01387     
 

Parameter Estimates 
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Variable DF 

Parameter 

Estimate 

Standard 

Error t Value Pr > |t| 

Intercept 1 4.49937 1.63352 2.75 0.0064 

pow 1 0.01274 0.00583 2.18 0.0301 

tor 1 -0.00323 0.00085166 -3.79 0.0002 

cyl 1 -0.19898 0.07421 -2.68 0.0079 

enginedis 1 0.00027883 0.00016339 1.71 0.0894 

enginetyp 1 0.47184 0.09677 4.88 <.0001 

gear 1 -0.01009 0.04736 -0.21 0.8315 

dt 1 -0.58978 0.06990 -8.44 <.0001 

tops 1 -0.00460 0.00554 -0.83 0.4069 

accel 1 -0.19945 0.06199 -3.22 0.0015 

fuelc 1 -0.57685 0.11875 -4.86 <.0001 

emmis 1 0.01509 0.00589 2.56 0.0112 

weight 1 0.00043584 0.00087922 0.50 0.6206 

ps.w 1 -14.50286 11.25023 -1.29 0.1988 
 

 

Generated by the SAS System ('Local', XP_PRO) on November 26, 2009 at 08:33:47 AM  

 

Linear Regression Results  

The REG Procedure 

 

Model: Linear_Regression_Model 

 

Dependent Variable: Y  
 

Test of First and Second 

Moment Specification 

DF Chi-Square Pr > ChiSq 

101 153.46 0.0006 
 

 

Generated by the SAS System ('Local', XP_PRO) on November 26, 2009 at 08:33:47 AM  
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A3.0 – Maximum Likelihood Estimation (Logit)  

In the following, I present a full derivation of the maxmium estimator in the context of the general Logit 

model. I am relying heavily on section 21.4 in Greene (2003, pp 671-673). The framework for the Logit (or 

Probit) estimation is essentially a standard maxmimum likelihood problem in the context of a Bernouilli 

distribution;  

Consider consequently the expression for the dependent variable in the general form;  

App. Eq. 2 

( )�	�� � � �� �= =x xβ  

which takes the following form as a joint probabitility function (the likelihood function); 

 

App. Eq. 2 

( ) [ ] [ ]� � � �

� �
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�
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� �

� �

� �

�
� �

�

� � � � � � � �

�� � �

= =

−

=

= = = = −

⇔

=

∏ ∏

∏

x xβ xβ

xβ xβ

 

taking logs;  

 

App. Eq. 3 

( ) ( ) ( ) ( )
�

�� �� � � � �� � � �
�

� �

�

�� � � � �
=

= + − −∑ xβ xβ  

 

choosing beta to minimize this expression yields;  
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App. Eq. 4 

( ) ( )
( )�

�� � �
� � � � �

� � � � �

�

� � �

�

��
� � � � �
� �β =

 ∂
= + − 

∂ − 
∑ xβ xβ

xβ xβ
 

 

in order to proceed from here we must specifiy the distribution of Y. Using the notation for the Logit from 

Greene (2003) where; 

 

App. Eq. 4 

( )
� � � �

� � � � � � �

�

�

= Λ

= Λ −Λ

xβ xβ

xβ xβ xβ
 

we get;  

App. Eq. 5 
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∑

∑

∑
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xβ xβ xβ xβ

xβ xβ

xβ xβ

xβ xβ xβ

xβ

 

which corresponds to equation 21-19 in Greene (2003, p. 671). From here one would derive the ML 

estimator for beta.  
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A4.0 – Regression Output (Logit Model)
27

 

The REG Procedure 

 

Model: Linear_Regression_Model 

 

Dependent Variable: Y  

Logistic Regression Results  

The LOGISTIC Procedure 

 

 

Model Information 

Data Set WORK.SORTTEMPTABLESORTED 

Response Variable Y 

Number of Response Levels 2 

Model binary logit 

Optimization Technique Fisher's scoring 

 

Number of Observations Read 217 

Number of Observations Used 217 

 

Response Profile 

Ordered 

Value Y 

Total 

Frequency 

1 0 107 

2 1 110 
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 Drive train variable excluded. 
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Probability modeled is Y='1'. 

 

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 

 

Model Fit Statistics 

Criterion 

Intercept 

Only 

Intercept 

and 

Covariates 

AIC 302.784 181.655 

SC 306.164 225.594 

-2 Log L 300.784 155.655 

 

R-Square 0.4877 Max-rescaled R-Square 0.6503 

 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 145.1293 12 <.0001 

Score 105.0749 12 <.0001 

Wald 52.6634 12 <.0001 

 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

Intercept 1 14.1505 16.8136 0.7083 0.4000 

pow 1 0.0723 0.0547 1.7496 0.1859 

tor 1 -0.0335 0.00849 15.5122 <.0001 

cyl 1 -0.7955 0.6665 1.4245 0.2327 

enginedis 1 0.00193 0.00152 1.6010 0.2058 

enginetyp 1 4.3742 1.0580 17.0924 <.0001 

gear 1 0.6427 0.4566 1.9815 0.1592 

tops 1 -0.0295 0.0520 0.3229 0.5699 



23 

 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

accel 1 -0.7804 0.6546 1.4212 0.2332 

fuelc 1 -5.2461 1.3216 15.7573 <.0001 

emmis 1 0.0823 0.0575 2.0473 0.1525 

weight 1 0.00982 0.00818 1.4429 0.2297 

ps.w 1 -1.3502 107.8 0.0002 0.9900 

 

Odds Ratio Estimates 

Effect Point Estimate 

95% Wald 

Confidence Limits 

pow 1.075 0.966 1.197 

tor 0.967 0.951 0.983 

cyl 0.451 0.122 1.667 

enginedis 1.002 0.999 1.005 

enginetyp 79.375 9.979 631.355 

gear 1.902 0.777 4.654 

tops 0.971 0.877 1.075 

accel 0.458 0.127 1.653 

fuelc 0.005 <0.001 0.070 

emmis 1.086 0.970 1.215 

weight 1.010 0.994 1.026 

ps.w 0.259 <0.001 >999.999 

 

Association of Predicted Probabilities and 

Observed Responses 

Percent Concordant 92.2 Somers' D 0.844 

Percent Discordant 7.8 Gamma 0.844 

Percent Tied 0.0 Tau-a 0.424 

Pairs 11770 c 0.922 
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A5.0 – Regression Output (Probit Model)
28

 

The LOGISTIC Procedure 

 

Model Information 

Data Set WORK.SORTTEMPTABLESORTED 

Response Variable Y 

Number of Response Levels 2 

Model binary probit 

Optimization Technique Fisher's scoring 

 

Number of Observations Read 217 

Number of Observations Used 217 

 

Response Profile 

Ordered 

Value Y 

Total 

Frequency 

1 0 107 

2 1 110 

 

Probability modeled is Y='1' 

 

 

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 

 

Model Fit Statistics 
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 Drive train variable excluded. 
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Criterion 

Intercept 

Only 

Intercept 

and 

Covariates 

AIC 302.784 183.303 

SC 306.164 227.241 

-2 Log L 300.784 157.303 

 

R-Square 0.4838 Max-rescaled R-Square 0.6451 

 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 143.4816 12 <.0001 

Score 105.0749 12 <.0001 

Wald 66.8948 12 <.0001 

 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

Intercept 1 11.7485 9.1543 1.6471 0.1994 

pow 1 0.0467 0.0305 2.3433 0.1258 

tor 1 -0.0187 0.00464 16.1652 <.0001 

cyl 1 -0.4192 0.3675 1.3009 0.2540 

enginedis 1 0.000854 0.000833 1.0511 0.3053 

enginetyp 1 2.4635 0.5744 18.3916 <.0001 

gear 1 0.2393 0.2519 0.9028 0.3420 

tops 1 -0.0214 0.0294 0.5290 0.4670 

accel 1 -0.5778 0.3577 2.6102 0.1062 

fuelc 1 -2.9994 0.7146 17.6171 <.0001 

emmis 1 0.0522 0.0321 2.6448 0.1039 

weight 1 0.00482 0.00461 1.0909 0.2963 

ps.w 1 -16.1212 59.9911 0.0722 0.7881 
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Association of Predicted Probabilities and 

Observed Responses 

Percent Concordant 91.9 Somers' D 0.838 

Percent Discordant 8.1 Gamma 0.838 

Percent Tied 0.0 Tau-a 0.421 

Pairs 11770 c 0.919 

 

 

 

 

 

 

 

A6.0 – Coding and Additional Output on Marginal Effects (Logit Model) 

 

Coding used for the marginal effect …  

proc qlim DATA=SASUSER.DATA_UPLOAD3
29

; 

model Y =pow tor cyl enginedis enginetyp gear tops accel fuelc emmis weight / discrete(d=logit);  

output out=outme marginal; 

run; 

quit; 

… yielding the following additional output: 

 

 

                                                           
29

 Note that the data is called “SASUSER.DATA_UPLOAD2” in all other cases since I had to create a new project to run 

the Logit estimation and its marginal effects.  
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The QLIM Procedure 
 

Discrete Response Profile of Y 

Index Value Frequency Percent 

1 0 107 49.31 

2 1 110 50.69 
 

Model Fit Summary 

Number of Endogenous Variables 1 

Endogenous Variable Y 

Number of Observations 217 

Log Likelihood -77.82765 

Maximum Absolute Gradient 0.00116 

Number of Iterations 114 

Optimization Method Quasi-Newton 

AIC 179.65530 

Schwarz Criterion 220.21407 

 

Goodness-of-Fit Measures 

Measure Value Formula 

Likelihood Ratio (R) 145.13 2 * (LogL - LogL0) 

Upper Bound of R (U) 300.78 - 2 * LogL0 

Aldrich-Nelson 0.4008 R / (R+N) 

Cragg-Uhler 1 0.4877 1 - exp(-R/N) 

Cragg-Uhler 2 0.6503 (1-exp(-R/N)) / (1-exp(-U/N)) 

Estrella 0.5987 1 - (1-R/U)^(U/N) 

Adjusted Estrella 0.5105 1 - ((LogL-K)/LogL0)^(-2/N*LogL0) 

McFadden's LRI 0.4825 R / U 

Veall-Zimmermann 0.6899 (R * (U+N)) / (U * (R+N)) 

McKelvey-Zavoina 0.9043   

N = # of observations, K = # of regressors 

 

Algorithm converged. 
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Parameter Estimates 

Parameter DF Estimate Standard Error t Value 

Approx 

Pr > |t| 

Intercept 1 14.018997 13.116432 1.07 0.2852 

pow 1 0.071654 0.015094 4.75 <.0001 

tor 1 -0.033431 0.008298 -4.03 <.0001 

cyl 1 -0.793837 0.658293 -1.21 0.2279 

enginedis 1 0.001925 0.001543 1.25 0.2122 

enginetyp 1 4.375089 1.047847 4.18 <.0001 

gear 1 0.643226 0.455746 1.41 0.1581 

tops 1 -0.029905 0.042400 -0.71 0.4806 

accel 1 -0.777098 0.597213 -1.30 0.1932 

fuelc 1 -5.243138 1.298495 -4.04 <.0001 

emmis 1 0.082057 0.055134 1.49 0.1367 

weight 1 0.009916 0.003008 3.30 0.0010 
 

 

 

 

Coding used to get the “average marginal effect” …  

proc means data=outme n mean; 

      var Meff_P2_tor Meff_P2_cyl Meff_P2_enginedis Meff_P2_enginetyp Meff_P2_gear Meff_P2_tops Meff_P2_accel 

Meff_P2_fuelc Meff_P2_emmis Meff_P2_weight; 

      title 'Average of the Individual Marginal Effects'; 

   run; 

   quit; 

… Yielding the following additional output: 
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Average of the Individual Marginal Effects  

The MEANS Procedure 
 

Variable Label N Mean 

Meff_P2_tor 

Meff_P2_cyl 

Meff_P2_enginedis 

Meff_P2_enginetyp 

Meff_P2_gear 

Meff_P2_tops 

Meff_P2_accel 

Meff_P2_fuelc 

Meff_P2_emmis 

Meff_P2_weight 
 

Marginal effect of tor on the probability of Y=2 

Marginal effect of cyl on the probability of Y=2 

Marginal effect of enginedis on the probability of Y=2 

Marginal effect of enginetyp on the probability of Y=2 

Marginal effect of gear on the probability of Y=2 

Marginal effect of tops on the probability of Y=2 

Marginal effect of accel on the probability of Y=2 

Marginal effect of fuelc on the probability of Y=2 

Marginal effect of emmis on the probability of Y=2 

Marginal effect of weight on the probability of Y=2 
 

217 

217 

217 

217 

217 

217 

217 

217 

217 

217 
 

-0.0038349 

-0.0910634 

0.000220820 

0.5018795 

0.0737864 

-0.0034305 

-0.0891432 

-0.6014560 

0.0094130 

0.0011375 
 

 

 

 

  

A7.0 – Coding and Additional Output on Marginal Effects (Probit Model) 

 

Coding used for the marginal effect …  

proc qlim DATA=SASUSER.DATA_UPLOAD2; 

model Y =pow tor cyl enginedis enginetyp gear tops accel fuelc emmis weight / discrete(d=probit);  

output out=outme marginal; 

run; 

quit; 

… yielding the following additional output 
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The QLIM Procedure 
 

Discrete Response Profile of Y 

Index Value Frequency Percent 

1 0 107 49.31 

2 1 110 50.69 
 

Model Fit Summary 

Number of Endogenous Variables 1 

Endogenous Variable Y 

Number of Observations 217 

Log Likelihood -78.68730 

Maximum Absolute Gradient 0.0000702 

Number of Iterations 108 

Optimization Method Quasi-Newton 

AIC 181.37460 

Schwarz Criterion 221.93337 
 

Goodness-of-Fit Measures 

Measure Value Formula 

Likelihood Ratio (R) 143.41 2 * (LogL - LogL0) 

Upper Bound of R (U) 300.78 - 2 * LogL0 

Aldrich-Nelson 0.3979 R / (R+N) 

Cragg-Uhler 1 0.4836 1 - exp(-R/N) 

Cragg-Uhler 2 0.6448 (1-exp(-R/N)) / (1-exp(-U/N)) 

Estrella 0.5926 1 - (1-R/U)^(U/N) 

Adjusted Estrella 0.504 1 - ((LogL-K)/LogL0)^(-2/N*LogL0) 

McFadden's LRI 0.4768 R / U 

Veall-Zimmermann 0.685 (R * (U+N)) / (U * (R+N)) 

McKelvey-Zavoina 0.736   

N = # of observations, K = # of regressors 
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Algorithm converged. 

 

 

 
 

Parameter Estimates 

Parameter DF Estimate Standard Error t Value 

Approx 

Pr > |t| 

Intercept 1 10.295478 7.495853 1.37 0.1696 

pow 1 0.038660 0.008007 4.83 <.0001 

tor 1 -0.018252 0.004473 -4.08 <.0001 

cyl 1 -0.393818 0.375489 -1.05 0.2943 

enginedis 1 0.000823 0.000860 0.96 0.3385 

enginetyp 1 2.476097 0.575664 4.30 <.0001 

gear 1 0.239729 0.247920 0.97 0.3336 

tops 1 -0.026386 0.023669 -1.11 0.2649 

accel 1 -0.543279 0.339146 -1.60 0.1092 

fuelc 1 -2.951291 0.719330 -4.10 <.0001 

emmis 1 0.049445 0.031630 1.56 0.1180 

weight 1 0.005987 0.001645 3.64 0.0003 
 

 

 

 

Coding used to get the “average marginal effect” …  

proc means data=outme n mean; 

      var Meff_P2_tor Meff_P2_cyl Meff_P2_enginedis Meff_P2_enginetyp Meff_P2_gear Meff_P2_tops Meff_P2_accel 

Meff_P2_fuelc Meff_P2_emmis Meff_P2_weight; 

      title 'Average of the Individual Marginal Effects'; 

   run; 

   quit; 

… Yielding the following additional output: 
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Average of the Individual Marginal Effects  

The MEANS Procedure 
 

Variable Label N Mean 

Meff_P2_tor 

Meff_P2_cyl 

Meff_P2_enginedis 

Meff_P2_enginetyp 

Meff_P2_gear 

Meff_P2_tops 

Meff_P2_accel 

Meff_P2_fuelc 

Meff_P2_emmis 

Meff_P2_weight 
 

Marginal effect of tor on the probability of Y=2 

Marginal effect of cyl on the probability of Y=2 

Marginal effect of enginedis on the probability of Y=2 

Marginal effect of enginetyp on the probability of Y=2 

Marginal effect of gear on the probability of Y=2 

Marginal effect of tops on the probability of Y=2 

Marginal effect of accel on the probability of Y=2 

Marginal effect of fuelc on the probability of Y=2 

Marginal effect of emmis on the probability of Y=2 

Marginal effect of weight on the probability of Y=2 
 

217 

217 

217 

217 

217 

217 

217 

217 

217 

217 
 

-0.0037504 

-0.0809234 

0.000169098 

0.5087987 

0.0492604 

-0.0054218 

-0.1116353 

-0.6064433 

0.0101601 

0.0012302 
 

 

 

 

 

A8.0 – Regression Output of the Preferred Specification Model (with three 

explanatory variables) 

 

Probit 

 

 

Logistic Regression Results  

The LOGISTIC Procedure 

 

Model Information 

Data Set WORK.SORTTEMPTABLESORTED 

Response Variable Y 

Number of Response Levels 2 

Model binary probit 

Optimization Technique Fisher's scoring 
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Number of Observations Read 217 

Number of Observations Used 217 

 

Response Profile 

Ordered 

Value Y 

Total 

Frequency 

1 0 107 

2 1 110 

 

Probability modeled is Y='1'. 

 

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 

 

Model Fit Statistics 

Criterion 

Intercept 

Only 

Intercept 

and 

Covariates 

AIC 302.784 225.996 

SC 306.164 239.515 

-2 Log L 300.784 217.996 

 

R-Square 0.3172 Max-rescaled R-Square 0.4229 

 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 82.7886 3 <.0001 

Score 70.9705 3 <.0001 

Wald 58.3633 3 <.0001 

 

Analysis of Maximum Likelihood Estimates 
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Parameter DF Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

Intercept 1 0.2885 0.4059 0.5052 0.4772 

tor 1 0.00741 0.00137 29.2578 <.0001 

enginetyp 1 2.6478 0.3466 58.3592 <.0001 

fuelc 1 -0.5329 0.0878 36.8450 <.0001 

 

Association of Predicted Probabilities and 

Observed Responses 

Percent Concordant 84.5 Somers' D 0.692 

Percent Discordant 15.3 Gamma 0.693 

Percent Tied 0.2 Tau-a 0.348 

Pairs 11770 c 0.846 

 

The QLIM Procedure 
 

Discrete Response Profile of Y 

Index Value Frequency Percent 

1 0 107 49.31 

2 1 110 50.69 
 

Model Fit Summary 

Number of Endogenous Variables 1 

Endogenous Variable Y 

Number of Observations 217 

Log Likelihood -108.99788 

Maximum Absolute Gradient 0.0000158 

Number of Iterations 12 

Optimization Method Quasi-Newton 

AIC 225.99576 

Schwarz Criterion 239.51535 
 

Goodness-of-Fit Measures 
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Measure Value Formula 

Likelihood Ratio (R) 82.789 2 * (LogL - LogL0) 

Upper Bound of R (U) 300.78 - 2 * LogL0 

Aldrich-Nelson 0.2762 R / (R+N) 

Cragg-Uhler 1 0.3172 1 - exp(-R/N) 

Cragg-Uhler 2 0.4229 (1-exp(-R/N)) / (1-exp(-U/N)) 

Estrella 0.36 1 - (1-R/U)^(U/N) 

Adjusted Estrella 0.3272 1 - ((LogL-K)/LogL0)^(-2/N*LogL0) 

McFadden's LRI 0.2752 R / U 

Veall-Zimmermann 0.4754 (R * (U+N)) / (U * (R+N)) 

McKelvey-Zavoina 0.4719   

N = # of observations, K = # of regressors 
 

Algorithm converged. 
 

Parameter Estimates 

Parameter DF Estimate Standard Error t Value 

Approx 

Pr > |t| 

Intercept 1 0.288369 0.401105 0.72 0.4722 

tor 1 0.007407 0.001388 5.34 <.0001 

enginetyp 1 2.647660 0.340541 7.77 <.0001 

fuelc 1 -0.532840 0.083195 -6.40 <.0001 
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Average of the Individual Marginal Effects  

The MEANS Procedure 
 

Variable Label N Mean 

Meff_P2_tor 

Meff_P2_enginetyp 

Meff_P2_fuelc 
 

Marginal effect of tor on the probability of Y=2 

Marginal effect of enginetyp on the probability of Y=2 

Marginal effect of fuelc on the probability of Y=2 
 

217 

217 

217 
 

0.0021091 

0.7539418 

-0.1517303 
 

 

 

 

 

 

Logit  

 

Logistic Regression Results  

The LOGISTIC Procedure 

 

Model Information 

Data Set WORK.SORTTEMPTABLESORTED 

Response Variable Y 

Number of Response Levels 2 

Model binary logit 

Optimization Technique Fisher's scoring 

 

Number of Observations Read 217 

Number of Observations Used 217 

 

Response Profile 

Ordered 

Value Y 

Total 

Frequency 

1 0 107 

2 1 110 
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Probability modeled is Y='1'. 

 

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 

 

Model Fit Statistics 

Criterion 

Intercept 

Only 

Intercept 

and 

Covariates 

AIC 302.784 225.066 

SC 306.164 238.585 

-2 Log L 300.784 217.066 

 

R-Square 0.3201 Max-rescaled R-Square 0.4268 

 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 83.7188 3 <.0001 

Score 70.9705 3 <.0001 

Wald 46.6662 3 <.0001 

 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

Intercept 1 0.6615 0.7063 0.8771 0.3490 

tor 1 0.0130 0.00260 25.1188 <.0001 

enginetyp 1 4.6597 0.6829 46.5604 <.0001 

fuelc 1 -0.9709 0.1728 31.5602 <.0001 

 

Odds Ratio Estimates 

Effect Point Estimate 

95% Wald 

Confidence Limits 
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Odds Ratio Estimates 

Effect Point Estimate 

95% Wald 

Confidence Limits 

tor 1.013 1.008 1.018 

enginetyp 105.602 27.695 402.664 

fuelc 0.379 0.270 0.531 

 

Association of Predicted Probabilities and 

Observed Responses 

Percent Concordant 84.9 Somers' D 0.699 

Percent Discordant 15.0 Gamma 0.700 

Percent Tied 0.2 Tau-a 0.351 

Pairs 11770 c 0.850 

The QLIM Procedure 
 

Discrete Response Profile of Y 

Index Value Frequency Percent 

1 0 107 49.31 

2 1 110 50.69 
 

Model Fit Summary 

Number of Endogenous Variables 1 

Endogenous Variable Y 

Number of Observations 217 

Log Likelihood -108.53282 

Maximum Absolute Gradient 0.0005893 

Number of Iterations 14 

Optimization Method Quasi-Newton 

AIC 225.06564 

Schwarz Criterion 238.58523 
 

Goodness-of-Fit Measures 

Measure Value Formula 

Likelihood Ratio (R) 83.719 2 * (LogL - LogL0) 
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Association of Predicted Probabilities and 

Observed Responses 

Upper Bound of R (U) 300.78 - 2 * LogL0 

Aldrich-Nelson 0.2784 R / (R+N) 

Cragg-Uhler 1 0.3201 1 - exp(-R/N) 

Cragg-Uhler 2 0.4268 (1-exp(-R/N)) / (1-exp(-U/N)) 

Estrella 0.3637 1 - (1-R/U)^(U/N) 

Adjusted Estrella 0.331 1 - ((LogL-K)/LogL0)^(-2/N*LogL0) 

McFadden's LRI 0.2783 R / U 

Veall-Zimmermann 0.4792 (R * (U+N)) / (U * (R+N)) 

McKelvey-Zavoina 0.737   

N = # of observations, K = # of regressors 
 

Algorithm converged. 
 

Parameter Estimates 

Parameter DF Estimate Standard Error t Value 

Approx 

Pr > |t| 

Intercept 1 0.661495 0.706312 0.94 0.3490 

tor 1 0.013047 0.002607 5.01 <.0001 

enginetyp 1 4.659853 0.683551 6.82 <.0001 

fuelc 1 -0.970972 0.172988 -5.61 <.0001 
 

 

 

 

Average of the Individual Marginal Effects  

The MEANS Procedure 
 

Variable Label N Mean 

Meff_P2_tor 

Meff_P2_enginetyp 

Meff_P2_fuelc 
 

Marginal effect of tor on the probability of Y=2 

Marginal effect of enginetyp on the probability of Y=2 

Marginal effect of fuelc on the probability of Y=2 
 

217 

217 

217 
 

0.0021688 

0.7745962 

-0.1614023 
 

 

 

 

 

 


