Logo
Munich Personal RePEc Archive

Predicción de bancarrota: Una comparación de técnicas estadísticas y de aprendizaje supervisado para computadora

Pena Centeno, Tonatiuh and Martinez Jaramillo, Serafin and Abudu, Bolanle (2009): Predicción de bancarrota: Una comparación de técnicas estadísticas y de aprendizaje supervisado para computadora.

[thumbnail of MPRA_paper_19560.pdf]
Preview
PDF
MPRA_paper_19560.pdf

Download (559kB) | Preview

Abstract

We are interested in forecasting bankruptcies in a probabilistic way. Specifcally, we com- pare the classification performance of several statistical and machine-learning techniques, namely discriminant analysis (Altman's Z-score), logistic regression, least-squares support vector machines and different instances of Gaussian processes (GP's) -that is GP's classifiers, Bayesian Fisher discriminant and Warped GP's. Our contribution to the field of computa- tional finance is to introduce GP's as a potentially competitive probabilistic framework for bankruptcy prediction. Data from the repository of information of the US Federal Deposit Insurance Corporation is used to test the predictions.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.